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Current state-of-the-art approaches to emotion recognition primarily focus on modeling 
the nonverbal expressions of the sole individual without reference to contextual elements 
such as the co-presence of the partner. In this paper, we demonstrate that the accurate 
inference of listeners’ social-emotional state of attention depends on accounting for the 
nonverbal behaviors of their storytelling partner, namely their speaker cues. To gain a 
deeper understanding of the role of speaker cues in attention inference, we conduct 
investigations into real-world interactions of children (5–6 years old) storytelling with their 
peers. Through in-depth analysis of human–human interaction data, we first identify 
nonverbal speaker cues (i.e., backchannel-inviting cues) and listener responses (i.e., 
backchannel feedback). We then demonstrate how speaker cues can modify the inter-
pretation of attention-related backchannels as well as serve as a means to regulate the 
responsiveness of listeners. We discuss the design implications of our findings toward 
our primary goal of developing attention recognition models for storytelling robots, and 
we argue that social robots can proactively use speaker cues to form more accurate 
inferences about the attentive state of their human partners.

Keywords: attention and engagement, nonverbal behaviors, speaker cues, listener backchannels, emotion 
recognition, children and storytelling, human-robot interaction

1. inTrODUcTiOn

Storytelling is an interaction form that is mutually regulated between storytellers and listeners where 
a key dynamic is the back-and-forth process of speaker cues and listener responses. Speaker cues, 
also called backchannel-inviting cues, are signaled nonverbally through changes in prosody, gaze 
patterns, and other behaviors. They serve as a mechanism for storytellers to elicit feedback from 
listeners (Ward and Tsukahara, 2000). Listeners contingently respond using backchannel feedback 
which is signaled linguistically (e.g., “I see”), para-linguistically (e.g., “mm-hmm”), and nonverbally 
(e.g., head nod).

To support human-robot interactions (HRI), prior approaches have typically treated speaker cues 
as timing mechanisms to predict upcoming backchannel opportunities. In contingently responding 
to a person’s speaker cues, robot listeners are able to support more fluid interactions, engender feelings 
of rapport, and communicate attention (Gratch et al., 2007; Morency et al., 2010; Park et al., 2017). 
In this paper, we introduce additional functions speaker cues have in social interactions beyond this 
stimulus-response contingency. Our main contribution is demonstrating how:

1. speaker cues serve as a means to regulate the responsiveness of listeners.
2. speaker cues can modify the interpretation of backchannels when inferring listener’s attention.
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For our first claim, we begin by identifying backchannels 
that signal the attention and engagement of listeners as well 
as speaker cues capable of eliciting those backchannels. We 
examine multimodal speaker cues (prosody and gaze) and their 
emission as either singlets or combinations, and we find that 
compounded cues have a higher likelihood of eliciting a response 
from listeners.

We support our second claim through a two-part process. 
First, our video-based human-subjects experiment demon-
strates that accurate inference about listeners’ attentive state 
depends on observing not just the listeners but also their 
storytelling partner. Second, through a finer-grain analysis, 
we find that the interpretation of backchannels from a listener 
depends on the storyteller’s cueing behaviors. This cue-response 
pair is necessary for an accurate understanding of listener’s  
attention.

Our primary research goal is to develop contextually aware 
attention recognition models for social robots in storytelling 
applications. In this paper, we focus on the nonverbal behaviors 
of storytellers as key context in which we evaluate the attentive 
state of listeners. A storyteller’s speaker cues play an important 
role in the attention inference about listeners. This social and 
interpersonal context to attention, or more broadly emotion, rec-
ognition is especially relevant for human–robot interactions. HRI 
researchers depend on emotion recognition technologies to better 
understand user experience. But a common approach in affective 
computing is to model only the expressions of the sole individual 
without reference to external context like the co-presence of a 
social agent. In using these technologies for storytelling robots, 
we miss out on the added value their cueing actions can bring to 
the inference process. In pursuit of our research goal, this paper’s 
approach is to first deeply understand the interpersonal nature 
of attention inference from the human perspective. Based on 
our findings from human–human interaction studies, we extract 
design implications when developing attention recognition 
models for social robots.

Our paper is outlined as follows:

•	 Section 2: Background: We elaborate on how current emo-
tion recognition technologies disagree with modern theories 
of human nonverbal communication. We review speaker cues 
and listener backchannels that have been studied among adult 
populations and highlight the limited findings surrounding 
young children in peer-to-peer interactions.

•	 Section 3: Effect of Storyteller Context on Inferences about 
Listeners: Through a video-based human-subjects experi-
ment, we manipulate the presence, absence, or falseness of 
storytellers from original interactions with listeners. Although 
the listeners’ nonverbal behaviors remain exactly the same, 
perceptions about their attentive state from a third-party 
observer are different across these contextual manipulations.

•	 Section 4: Effect of Speaker Cues on Listener Response 
Inter pretation and Regulation: Through a data collection of 
peer-to-peer storytelling, we identify attention-related listener 
responses as well as speaker cues that children use amongst 
peers. We examine which speaker cues, taken singly or in com-
bination, can elicit a contingent response from listeners, and 

we find that listeners are more likely to respond to stronger 
cueing contexts. Lastly, using a logistic regression model, we 
find that backchannels are interpreted differently if observed 
after a weak, moderate, or strong cue.

•	 Section 5: General Discussion: We summarize our findings 
based on our human–human interaction studies and draw 
implications when modeling attention recognition for HRI.

2. BacKgrOUnD

2.1. context in emotion recognition—
humans vs Machines
Emotion recognition systems typically discretize emotional states 
as a basic set of anger, surprise, happiness, disgust, sadness, and 
fear, while states such as boredom, confusion, frustration, engage-
ment, and curiosity are considered to be non-basic (D’Mello and 
Kory, 2015). In our work, we focus on the social-emotional state 
of engagement which we interchangeably use with the word 
attention. Note, this should not be confused with joint attention, 
which is a different research problem of inferring what people are 
attending to in a physical environment (Scassellati, 1999). The 
nonverbal behaviors that support joint attention serve more as 
a mechanism to attend to objects and events rather than ones 
associated with communicating emotional states.

Emotion recognition systems have primarily focused on 
detecting prototypical facial expressions through facial muscle 
action units (FACS) (Sariyanidi et al., 2015). Based on a recent 
survey, facial expressions are still the main modality used for 
affect detection but have also extended to include gaze behaviors, 
body movements, voice features, spoken language, and bio-
signals such as electrodermal activity (D’Mello and Kory, 2015). 
Of the 90 systems reported, 93% of approaches focus on these 
within-person features and exclude extrinsic factors such as the 
environment or interaction partners.

This representation follows a classical theory in human non-
verbal communication of nonverbal leakage where emotional 
states are direct influencers of exhibited nonverbal behaviors 
(Knapp and Hall, 2010). Traditional emotion understanding 
models such as those utilized by Ekman (1984) focus on the non-
verbal expressions of single individuals without reference to any 
contextual elements such as setting, cultural orientation, or other 
people. By contrast, modern theories emphasize the contextual 
nature of nonverbal inference where greater accuracy comes from 
decoding expressions with reference to the social context (Barrett 
et al., 2011; Hassin et al., 2013).

Toward this, a growing amount of work has started to model 
the behaviors of both interactants to recognize social-emotional 
states, such as trust (Lee et al., 2013), rapport (Yu et al., 2013), 
and bonding (Jaques et al., 2016). Although the behaviors of both 
interactants are now being considered, they are fundamentally 
represented as a pair of independent events or captured as joint 
or dyadic features (like the number of conversational turns) for 
non-temporal models. As such, these approaches do not con-
sider the added information that comes from the interpersonal 
call–response dynamic of social interactions. Although this is a 
foundation when modeling other domains such as turn-taking 
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(Thórisson, 2002) or conversational structure (Otsuka et al., 2007), 
emotion recognition models for dyadic interactions currently do 
not consider the causal properties between the behaviors of dyads 
and how they can influence each other.

2.2. speaker cues and listener 
responses—children vs adults
A well-known dynamic in face-to-face communication is the 
call–response contingencies between speaker cues and listener 
backchannels, which we will also refer to more broadly as “lis-
tener responses.” The role of listener responses in conversations 
have been comprehensively characterized as carrying different 
functions such as signaling understanding, support, empathy, 
and agreement (Maynard, 1997) as well as facilitating conversa-
tional flow (Dittmann, 1972; Duncan and Fiske, 1977). However, 
in this paper, we specifically focus on the role of backchannels 
as evidence of continued attention, interest, and engagement of 
listeners (Kendon, 1967; Schegloff, 1982). It is important to note 
that we will consistently use the words cues and responses to dif-
ferentiate the source of the emitted nonverbal behavior as either 
from a speaker or listener, respectively.

Although there is extensive research on adult listening and 
speaking behaviors, limited prior work exists in investigating 
younger populations especially in the context of peer-to-peer 
storytelling. In adult–child conversations, prior works have 
focused on demonstrating the effect of age on the backchanneling 
behaviors of children. More specifically, 11-year-olds were found 
to provide significantly more listener responses to adults than 
7- or 9-year-olds and with a threefold increase between 7-year-
olds and 11-year-olds (Hess and Johnston, 1988). In a separate 
study investigating 2- to 5-year-olds, older preschool children 
were found to use more head nods and spent more time smil-
ing and gazing at adult speakers, suggesting that older children 
better understand a listener’s role in providing collaborative  
feedback (Miller et al., 1985).

Both children and adult listeners were found to respond more 
frequently to joint cues (e.g., co-occurring speaker cues like 
simultaneous eye-contact with long speech pauses) over single 
cues. Joint cues were found to quadratically increase the likeli-
hood of eliciting a backchannel response (Hess and Johnston, 
1988; Gravano and Hirschberg, 2009). For an organized collec-
tion of prior research into speaker cues and listener responses of 
adults and children, see Tables S1 and S2 in the Supplementary 
Materials. We extend these prior works by pioneering the identi-
fication of attention-related listener responses and speaker cues 
that children employ amongst peers (not with adults) in storytell-
ing interactions.

3. eFFecT OF sTOrYTeller cOnTeXT 
On inFerences aBOUT lisTeners

3.1. Overview
Although modern theories of human nonverbal communication 
emphasize the contextual nature of emotion understanding, cur-
rent state-of-the-art approaches to emotion recognition primar-
ily focus on the sole individual without reference to contextual 

elements such as the co-presence of interaction partners. The 
goal of this section is to demonstrate how a similar expectation 
placed on human observers results in them forming less accurate 
inferences about the emotions of others. Through a video-based 
experiment, we manipulate the presence, absence, or falseness of 
storytellers from original interactions with listeners. Although 
the listeners’ behaviors remain exactly the same, we expect 
that the perception about their attentive state from third-party 
observers will be different across these conditions. We hypoth-
esize the following:

Main Hypothesis: Inference performance about a listener’s 
attentive state is best when observing both the storyteller’s and 
listener’s behaviors of a social interaction and worst when miss-
ing the storyteller context.

We quantify inference performance as a function of predic-
tion speed and accuracy and aim to demonstrate that both 
measures improve when observing the true storyteller context to 
the listener’s behaviors. We argue that accurate inference about 
listeners’ attention depends on also observing the storyteller.

3.2. Method
Through a video-based human-subjects experiment, we study 
how the perception of listeners changes when observing their 
original behaviors in different storyteller contexts.

3.2.1. Participants
Participants were recruited online through Amazon Mechanical 
Turk. Turk Workers were from the United States to ensure cultural 
relevance. To limit the participation pool to high-quality workers, 
their qualification requirements met the following:

•	 Number of approved HITs (Human Intelligence Tasks) greater 
than 5000,

•	 Approval rating from former requesters greater than 98%.

From the 542 Turk workers that submitted to the HIT task, 
36 individuals were rejected for not fully completing all parts of 
the task or for not properly following the task’s instructions. The 
average age of the remaining 506 participants was 38-years-old 
(SD = 11). Nearly half (56%) were parents and gender was close to 
balanced (53% female). Below we detail two exclusion principles 
applied in removing participants from our analysis.

3.2.2. Study Procedure
The online survey-based experiment took an average 19 minutes 
(SD = 12) to complete the following three parts: Affect Recogni-
tion Assessment, Training Exercise, and Inference Task.

3.2.2.1. Affect Recognition Assessment
The Diagnostic Analysis of Nonverbal Behavior (DANVA2) is an 
assessment to measure an individual’s nonverbal affect recogni-
tion ability (Nowicki and Duke, 1994). The evaluation consists 
of viewing a series of facial expressions as well as listening to 
paralinguistic expressions of children to identify the expressed 
emotion: happiness, sadness, anger, or fear. Individuals are scored 
based on the number of items incorrectly identified from 24 
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different pictures of children’s faces and 24 different recordings 
of children’s voices. Participants took this assessment through 
a web-based flash program that would present the stimuli and 
record their multiple choice response.

Overall, participants scored a mean error of 2.9 (SD =  2.0) 
in recognizing children’s facial expression and 4.8 (SD = 2.6) in 
recognizing children’s paralinguistic expressions. To ensure that 
our population consisted of individuals of average affect recogni-
tion ability, 23 participants that scored an error greater than two 
standard deviations from the population’s average on either the 
DANVA face or voice subtests were excluded from our analysis 
below.1

3.2.2.2. Training Exercise
To familiarize participants with the procedure of the primary task, 
they first experienced the task procedure on a simple example 
video as a training exercise. Participants were asked to carefully 
watch the video and immediately pause it when they heard the 
word “bat.” Then they were instructed to report the number in the 
upper-left hand corner of the video, which represented the video 
frame corresponding to the paused scene.

Overall, participants were on average 41 frames, or 1.4  sec-
onds, away from the exact moment of the target event (SD = 147 
frames or 4.9 seconds). Participants that were within two standard 
deviations from the population’s average response frame passed 
this training exercise. As a measure of task adherence to filter out 
low-quality Turk workers, the 22 participants who failed to meet 
these criteria were excluded from our analysis below.

3.2.2.3. Inference Task
Participants were asked to watch a series of videos (each around 
30 seconds in duration) of different children listening to a story-
teller. Participants were told that in all the videos the listener is at 
first paying attention to the story, but we want to know when/if the 
listener stops being attentive to the narrator’s story. Following the 
same procedure introduced in the training exercise, participants 
reported their paused frame, which represented the moment they 
perceived the listener transitioning from attentiveness to inatten-
tiveness. They also had the option of reporting if they believed 
that the listener was paying attention the entire time.

3.2.3. Experiment Design
From an original interaction between a listener and their story-
telling partner, we manipulate the presence, absence, or falseness 
of the storyteller through a video-based experiment. Although 
the listener’s behaviors remain the same, we investigate how an 
observer’s perception about the listener’s attentive state changes 
across the different contextualizations. As a within-subject study 
design, a participant viewed a video from each of the three 
conditions but of three different listeners in a random order. In 

1 There is a bit of irony in using a standard contextless test to exclude participants 
from a study that is investigating the influence of context on affect recognition. 
It is possible to make an inference (of lesser accuracy) in contextless situations, 
but we are investigating the added value of context. This exclusion is to ensure a 
population of typical development.

using three different listeners, we can generalize our results to be 
beyond a listener-specific phenomenon. Our three conditions are 
defined as the following:

 1. TRUE (control): Participants viewed the original interaction 
between a storyteller and listener. With access to both the sto-
ryteller’s and the listener’s behaviors, they made an inference 
about the listener’s attentive state.

 2. ABSENT: Participants only viewed the listener. They made 
their inference based solely on the listener’s nonverbal 
behaviors.

 3. FALSE: Participants viewed an unmatched interaction where 
the original storyteller is replaced with one from a different 
storytelling episode.

From three different storytelling interaction videos collected 
in Section 4.2, we created a set for the TRUE condition with the 
audio and video (AV) of the original storyteller, a set for the 
ABSENT condition with the storyteller’s AV removed, and a set 
for the FALSE condition with the AV of a different storyteller 
(see Figure 1A). It is important to note that although the audio 
recordings captured both of the storyteller’s and listener’s voices, 
in general only the storyteller is speaking and the listener is quiet. 
To preserve the illusion that the FALSE condition was showing 
real interactions, we avoided moments containing any dialog-
related coordination. For example, we carefully selected video 
snippets that did not include when a storyteller asked a direct 
question or was interrupted by the listener.

All the videos were composed and edited to allow a viewer 
to easily see the facial expressions of both the storyteller and 
listener. We also preserved their gaze cues by arranging the 
images to mimic the original interaction geometry. As shown in 
Figure  1B, we ensured that a listener’s behavior between each 
condition remained exactly the same. Please see Videos S1–S3 in 
the Supplementary Materials to watch an example set of videos 
used for this experiment.

3.2.4. Dependent Measures
The video snippets contain a single point where the listener 
transitions from attentiveness to inattentiveness as illustrated in 
Figure 2. This transition point is based on the hand-annotated 
attention labels from trained experts (see Section 4.2.3). From 
a participant’s report on where he/she believed the transition 
point to be, we defined two dependent measures for inference 
performance.

 1. Accuracy: A response frame after the transition point is 
marked as correct and elsewhere as incorrect, including the 
option of reporting the listener as attentive for the entire time. 
Accuracy is a dichotomous variable, where a value of 0 means 
incorrect and 1 means correct.

 2. Latency: Latency is measured as the distance between the 
response frame from the target frame. This difference repre-
sents the participant’s delay and is only calculated for correct 
inferences.

In accordance with our hypotheses, we expect an increasing 
trend (TRUE > FALSE > ABSENT) where participants achieve 
their best inference performance in both accuracy and latency 
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FigUre 1 | Video-based human-subjects experiment. (a) From TRUE interactions between a storyteller and listener, we manipulate the absence and falseness of 
the storyteller context. For the FALSE condition, we replace the original storyteller with the audio and video of a different storyteller. The ABSENT condition removes 
all storyteller context (both audio and video). (B) We illustrate how for Listener-3, at frames 260, 290, and 320, we retain his exact behavior across the three 
conditions: TRUE (top row), FALSE (middle row), ABSENT (bottom row).
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with the TRUE condition and their worst inference perfor-
mance with the ABSENT condition since it lacks any storyteller 
context. We anticipate that participants will have a difficult time 
with the FALSE condition since the disjointed set of storyteller’s 
cues to listener’s responses will either delay or confuse their 
inference process. Although participants were informed, 
through a brief description, of the storytelling context of their 
upcoming videos, the FALSE condition at least visually presents 
the listeners’ behaviors in an interpersonal context. As such, 

we hypothesize that a false/unmatched context is better than 
having no context.

3.3. analysis of inference accuracy
We examine the ability of storyteller context to predict an 
increasing trend of inference accuracy using generalized 
linear  models  (GLM). A multilevel (i.e., mixed-model) logistic 
regression was performed to determine the effect of storyteller 
context on the likelihood of participants making a correct 
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TaBle 1 | Effect of storyteller context on inference accuracy and latency.

conditions

True False absent

Measures n Measures n Measures n

Accuracy 58.4% correct 461 57.7% correct 461 51.0% correct 461
Latency 96 frames 269 107 frames 266 99 frames 235

Accuracy is reported as the percentage of participants correctly inferring attention transitions of a condition. Latency is reported as the median time-to-respond when a correct 

inference is made. N is the number of samples per condition (542 participants − 81 exclusions = 461 samples). Note, latency’s N varies per condition since it only includes the 
samples with correct inferences.

FigUre 2 | Example of scoring accuracy and latency. At frame 440, a listener is annotated by experts as transitioning from an attentive to inattentive state.  
As such, a participant who predicted and reported the transition occurring at 250 frames is marked as being incorrect (accuracy of 0). A participant who made  
a prediction at 600 frames is accurate with a latency of 160 frames.
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inference about listeners’ attentive state while controlling for 
within-subject dependencies from repeated measures (see Table 
S3 in Supplementary Material for model details). Based on our 
expectation that inference accuracy increases across treatment 
groups, the predictor variable is contrast coded as ordered values 
[−1, 0, 1] to model a linear trend, where having access to the true 
context yields the highest likelihood of accurate inference while 
having access to no context yields the lowest.

Based on the Wald Chi-square statistic, the logistic regres-
sion model was statistically significant, [χ2(1) = 4.15, p = 0.04], 
which indicates a linear relationship between our expected 
order of storyteller-context treatment and likelihood of correct 
inference. As shown in Table  1, an ascending trend in infer-
ence accuracy is observed with the TRUE condition obtaining 
the highest percentage of participants that correctly predict the 
attentive state of listeners and the ABSENT condition obtaining 
the lowest.

3.4. analysis of inference latency
Similar to the trend analysis described for accuracy, we examine 
the ability of storyteller context to predict an increasing trend 
of inference latency values. The latency observations are positive 
whole numbers and have a skewed distribution since the highest 
density of observations are found closest to the target frame and 
then drop-off over time. Given the nature of the data, we used 

a gamma GLM (versus the typical normal distribution assump-
tion) with storyteller context as the primary predictor of the log 
latency while again controlling for within-subject dependencies. 
We expected an increasing trend where participants experienced 
the greatest delays in the ABSENT condition, followed by the 
FALSE condition, and with the TRUE condition obtaining the 
lowest latencies, but no significant trend was found [χ2(1) = 0.01, 
p = 0.94].

However, rather than looking for a trend, we instead looked 
for any differences between the conditions. By treating the 
predictor as a categorical variable, a statistically significant 
gamma GLM was found, [χ2(2) = 6.35, p = 0.04]2 (see Table S4 
in Supplementary Material for model details). More specifically, 
there is a significant difference between the TRUE and FALSE 
conditions, t(767)  =  2.21, p  =  0.03, with the TRUE condition 
obtaining lower latencies (x  =  96 frames) than the FALSE 
condition (x = 107 frames). No significant difference was found 
between the TRUE and ABSENT conditions.

3.5. Discussion
Our main hypothesis was upheld regarding inference accu-
racy and partially upheld regarding inference latency. When 

2 There are two degrees-of-freedom since the three conditions are dummy coded as 
two categorical predictor variables.
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FigUre 3 | Story space setup. Setup included three different camera angles, a high-quality microphone, listener and storyteller chairs, and a storybook with 
compounding story elements per page. The bottom-right photo shows how we labeled each chair to further emphasize to a child his/her role as either the storyteller 
or listener.
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predicting the attentive state of listeners, participants are most 
accurate when able to observe the true storyteller, less accurate 
with a false storyteller, and worst with no storyteller.

In regard to inference latency, we found that participants were 
faster in forming correct inferences with true storytellers over 
false ones. We had anticipated participants to be slowest in form-
ing their predictions when missing the storyteller context, but 
they actually achieved similar speeds as when having it. If we view 
latency as an operationalization of confidence, we can interpret 
this result to mean that they felt similarly confident about their 
appraisals.

In sum, by changing the storyteller context in which listener 
behaviors are observed, we can delay or even cause incorrect infer-
ences to be formed about the listener’s attentive state. Participants 
are most accurate when observing both the storyteller’s and 
listener’s behaviors of a social interaction. They are least accurate 
when missing the interpersonal context of the storyteller. When 
presented with a false storyteller context, participants are again 
less accurate but also slower. This demonstrates the extent to 
which we can degrade an observer’s perceptions about the social-
emotional state of listeners.

4. eFFecT OF sPeaKer cUes On 
lisTener resPOnse inTerPreTaTiOn 
anD regUlaTiOn

4.1. Overview
Our video-based human-subjects experiment demonstrated that 
the accurate interpretation of listeners’ attentive state depends on 
also observing the storyteller. But what is it about the partner’s 
behaviors that lead human observers to form more accurate 
inferences? In this section, our goal is to better understand the 
relationship between the storyteller’s speaker cues and listener’s 
backchannels as well as how their joint meaning impacts percep-
tions about listener’s attention.

We conduct a series of analyses of human–human interac-
tions. We begin by detailing our method for data collection and 
annotation of peer-to-peer storytelling interactions of young 
children in Section 4.2: Data Collection. Before we can start to 
investigate the relationship between cues and responses, we first 
identify the relevant nonverbal behaviors of our particular young 
population. As such, in Section 4.3: Analysis of Listener Behavior, 
we find backchanneling behaviors that communicate attention. 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FigUre 4 | Video-recordings of storytelling interactions. Three time-
synchronized cameras captured the frontal view of each participant along 
with a bird’s-eye-view (a). Image (B) is the listener view. Image (c) is the 
storyteller view.
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Furthermore, in Section 4.4: Analysis of Speaker Cues, we examine 
which of the coded multimodal speaker cues are observed to elicit 
contingent backchannels from listeners. Finally, in Section  4.5: 
Analysis of Cues and Responses to Predict State, we model the 
relationship between cues and responses and their effects on the 
perceived attentiveness of listeners.

4.2. Data collection
4.2.1. Participants
Children of typical development were recruited from a Boston 
public elementary school whose curriculum already included 
an emphasis on storytelling. A total of 18 students from a single 
kindergarten (K2) classroom participated in the study. The 
average age was 5.22 years old (SD = 0.44) and 61% were male. 
Overall, 10 participants identified as White, 3 as Black or African 
American, 2 as Hispanic or Latino, 1 as Asian, 1 as Mixed, and 1 
not specified.

4.2.2. Storytelling Task
Over a span of 5 weeks, each child completed at least three rounds 
of storytelling with different partners and storybooks. The story-
books were a series of colored pictures with illustrated characters 
and scenes that the children used to craft their own narratives 
(see Figure 3 for an example storybook). In a dyad session, the 
pair of students took turns narrating a story to their partner with 
each turn generating a storytelling episode. Importantly, for each 
child participant, we had multiple examples of them being a 
storyteller and a listener. In sum, our data collection consisted of 
58 storytelling episodes. The average length of a child’s story was 
1 minute and 17 seconds.

4.2.3. Video-Coded Annotations and Data Extraction
For each storytelling episode, the behaviors of both the listener 
and storyteller were manually annotated by multiple independ-
ent coders. We achieved moderate levels of agreement (Fleiss’ 
κ =  0.55). For storytellers, we coded for gaze- and prosodic-
based speaker cues. For listeners, we annotated for gaze 
direction, posture shifts, nods, eyebrow movement, smiles and 
frowns, short utterances, and perceived attentiveness. From 
the video recordings of the three time-synchronized cameras 
shown in Figure  4, coders used a video-annotation software 
called ELAN (Wittenburg et  al., 2006) to mark the start and 
stop times for all the behaviors listed in Table 2 except for the 
prosodic cues. For the attentive state annotation, a “listening” 
label meant that the participant was paying attention to the sto-
ryteller’s story. It is important to note that our state annotation 
included when a listener took a “speaking-turn” as a mutually 
exclusive event. This enabled us to filter observations regarding 
conversational behaviors or turn-yielding cues, which has been 
demonstrated to be different from backchannel-inviting cues 
(Gravano and Hirschberg, 2009). Based on the “Task” annota-
tion, we further excluded moments from our analyses when 
both children participants were off-task from the storytelling 
activity.

We developed a custom program to help coders easily annotate 
when and what type of prosodic cue was detected in speech. The 

program played back the audio recording of a storytelling episode, 
and coders were asked to simulate in real time being a listener and 
mark the moments when they wanted to backchannel by simply 
tapping the space bar. After this simulation, coders reviewed the 
audio snippets surrounding these moments to reflect on what 
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TaBle 2 | List of all annotated behaviors.

category labels s l

Gaze book, partner, away X X

Posture upright, toward, away, other X

Nod none, nod X

Eyebrows neutral, raise, furrow X

Mouth neutral, smile, frown, other X

Utterance none, “ok,” “oh,” “so,” “then,” “yeah,” “uh-huh,” “ok then,” 
“and then,” “and they”

X

Voicing silence, storyteller’s voice, listener’s voice, both joint

Task on-task, off-task joint

Attentive 
State

listening, not listening, speaking-turn X

Prosodic 
Cue

none, pitch, energy, pause, filled pause, long utterance, 
other

X

The selected set of nonverbal behaviors were either found in prior works (see Tables 
S1 and S2 in Supplementary Material) or commonly observed in the storytelling 
interactions. Each annotation category has a set of mutually exclusive labels and was 
coded for storytellers (S) and/or listeners (L) or jointly evaluated (joint). An italicized label 
is the default behavior of an annotation category.

FigUre 5 | Estimating the ending-time of a prosodic cue. Based on the 
backchannel time, we extract the last speaking-turn of the storyteller and 
estimate that its terminating edge is the ending-time of the prosodic cue. This 
is calculated for all prosodic-based cues except for the pause cue, which is 
roughly estimated to be halfway between the backchannel time and the 
terminating edge.
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prompted their backchannel and categorize their reasoning into 
one or more of the following prosodic cues:

•	 pitch (intonation in voice, change in tone)
•	 energy (volume of voice, softness/loudness)
•	 pause (pause in speech, long silence)
•	 filled pause (e.g., “um,” “uh,” “so,” “and”)
•	 long utterance or wordy (a long contiguous speech segment)
•	 other

This stimulus-based coding was a method for annotators to 
identify when they wanted to backchannel (i.e., backchannel 
moment) in addition to categorizing their why (i.e., speaker 
cue(s) event). The null-space that was not marked had an implied 
default label of “none.”

Three coders underwent this simulation, and we followed 
the Parasocial Consensus approach from Huang et al. (2010) to 
build consensus of when backchannel opportunities occurred. 
More specifically, each of our three coders’ registered backchan-
nel times were added as a “vote” on a consensus timeline with a 
duration of one second around the central moment. An area in 
the timeline with more than two total votes was counted as a valid 
backchannel moment.

From these backchannel moments and the voicing annota-
tions, we estimated the emission time of prosodic cues (see 
Figure 5 for more detail). To capture the complete cue context 
embodied by storytellers, we combined the prosodic cues with 
physical gaze cues to gain sets of multimodal cues.3 In sum, for the  

3 Based on the prosodic cue ending-time and gaze onset-time, events were con-
sidered to be co-occurring and merged if they are within an empirically found 
1.3 seconds of each other. This merging averages the times and reflects a collective 
moment of emission. When looking at the period between back-to-back gaze 
cues, we found a minimum time of separation of 1.5 seconds between cues. This 
establishes an upper bound of a merge window when trying to collect co-occurring 
cues. Beyond this window, we start encroaching on cues that could be a part of the 
next cueing instance.

proceeding set of analyses, we know when and which multimodal 
cues occurred throughout the storytelling episodes.

4.3. analysis of listener Behavior
A logistic regression analysis finds the best model to describe 
the relationship between the outcome and explanatory variables. 
Based on the fitted coefficients (and its significance levels), we can 
determine how much the explanatory variables can predict the 
outcome. Our goal is to identify nonverbal behaviors (explana-
tory variables) that can predict a listener’s perceived attentive state 
(outcome). More specifically, for each annotated listener behavior 
listed in Table 2, a logistic regression analysis was performed to 
predict attention (0/1) based on the behavior’s normalized dura-
tion and frequency rate. Normalized duration and frequency 
rates of behaviors were observed during a block period of either 
attentiveness or inattentiveness. Note, multiple block periods can 
exist in a single storytelling episode. For nonverbal behaviors 
that are quickly expressed (i.e., an average duration less than 
90 seconds), the frequency rate was the only predictor.

Shown in Table  3, gazes, leans, brow-raises, smiles, nods, 
and utterances are nonverbal behaviors that significantly predict 
listeners’ attention. Based on the sign of the coefficients (b) and 
significance (p) of the explanatory variables, we determine that 
frequent partner-gazes, frequent forward-leans, frequent brow-
raises, prolonged smiles, frequent nods, and frequent utterances 
are positively associated with an attentive listener. By contrast, 
prolonged away-gazes from the partner, frequent away-leans, and 
prolonged brow-raises are negatively associated. Interestingly, 
brow-raises can hold opposite associations depending on their 
form of emission.

4.4. analysis of speaker cues
In Section 4.2.3, adult-coders annotated when and what type 
of speaker cue was detected in the storytelling interactions. 
Therefore, the annotated speaker cues are based on adult 
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TaBle 3 | Descriptive statistics and logistic regression models to estimate attention from listener behaviors.

logistic regression Models

Behavior Total Mean Freq Mean Dur % Pop Overall Freq Term Dur Term

Gaze Partner 270 4.66 2.19 100 χ2(2, 192) = 62.06 b = 10.23 b = 3.06
p* = 3.34e−14 p* = 8.25e−08 p = 0.22

Gaze Away 698 12.03 4.43 100 χ2(2, 192) = 152.34 b = 0.10 b = − 8.56
p* = 8.33e−34 p = 0.95 p* = 3.27e−13

Lean Toward 110 1.90 8.98 100 χ2(2, 173) = 22.25 b = 2.97 b = 0.79
p* = 1.48e−05 p* = 7.57e−04 p = 0.18

Lean Away 78 1.34 5.81 94 χ2(2, 173) = 11.60 b = − 1.98 b = 0.04
p* = 3.02e−03 p* = 4.57e−03 p = 0.96

Brow–Raise 102 1.76 2.33 100 χ2(2, 141) = 11.88 b = 2.47 b = − 5.28
p* = 2.63e−03 p* = 0.01 p* = 0.02

Brow-Furrow 17 0.29 3.23 44 χ2(2, 141) = 2.06 b = 1.96 b = − 3.43
p = 0.36 p = 0.38 p = 0.33

Smile 173 2.98 7.23 94 χ2(2, 173) = 12.35 b = 0.88 b = 1.69
p* = 2.08e−03 p = 0.26 p* = 0.04 

Frown 9 0.16 2.55 28 χ2(2, 173) = 1.50 b = − 3.83 b = 2.17
p = 0.47 p = 0.27 p = 0.58

Nod 18 0.31 1.13 39 χ2(1, 34) = 7.61 b = 5.28 –
p* = 5.80e−03 p* = 0.03

Utter 18 0.31 0.94 50 χ2(1, 42) = 4.24 b = 6.72 –
p* = 0.04 p* = 1.27e−03

Total is the collective frequency counts found in the dataset. The Mean Frequency is the average number of occurrences in a storytelling episode (i.e., Total/58). The Mean Duration 
is the average duration of an emitted behavior in seconds. % Pop refers to the proportion of the population (of the 18 participants) that demonstrated a single instance of the 
behavior across the repeated interactions. The logistic regression models predict the listener’s attention based on the normalized duration and/or frequency rate of the nonverbal 
behavior. Note, the number of observations N for the chi-squared tests (i.e., χ2 (DF, N)) are different for each annotation category since each analysis includes block periods only from 
storytelling episodes where at least one instance of the behavior type was observed.
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perception. But which ones do children perceive, understand, and 
know to respond to? In our next set of analyses, we examine which 
speaker cues, taken singly or in combination, were observed to 
elicit a contingent backchannel from child listeners. We marked a 
backchannel as being contingent if the listener responded within 
[0.5−3.0]  seconds4 after the emitted cue with any of the previ-
ously found attentive behaviors. Those attentive behaviors were 
the onset of partner-gazes, forward-leans, brow-raises, nods, and 
utterances as well as prolonged smiles.

To further refine our proceeding analyses, we considered the 
situation where a speaker cue occurred but during a period when 
the listener was not paying attention to the storyteller. Their lack 
of a contingent response in this situation does not add relevant 
information to determining which cues children know to respond 
to. As such, our analyses only included data from moments when 
listeners were marked as attentive. This way, we can reason that 
when an attentive listener is unresponsive to a particular speaker 
cue, it is because the listener does not know to respond to this 
type of cueing signal.

4.4.1. As Individual Signals
A logistic regression analysis was performed to determine which 
speaker cues predict that an attentive listener will contingently 
backchannel. The overall logistic regression model was statistically 

4 We found that children positively respond on average 1.77 seconds (SD = 1.30) 
after an emitted cue. As such, we considered only the listener behaviors within a 
standard deviation from this average response time.

significant [χ2(6) = 45.9, p = 3.15e−08], and the speaker cues—gaze, 
pitch, filled pause, and long utterance taken singly—can elicit a 
response from young listeners (see Table 4). As expected, some 
of the speaker cues—energy and pause—do not offer significant 
predictive ability when examined in isolation. However, young 
children have been previously observed to respond more often in 
stronger cue contexts where two or more cues are co-occurring  
(Hess and Johnston, 1988).

4.4.2. As Co-Occurring Signals
Using the set of multimodal cues (extracted in Section 4.2.3), 
we examined the ability of cue combinations to predict that an 
attentive listener will contingently backchannel. The likelihood of 
observing a combination of cues is much smaller than individual 
cues, resulting in small sample sizes for each unique combination. 
Rather than performing a logistic regression analysis, we use the 
binomial exact test to determine whether the response rate of a 
cue combination is greater than an expected rate of 0.5. As shown 
in Table 5, the one-sided binomial test indicates that the response 
rates of the co-occurring cues Pitch-Energy, Gaze-Pause, Gaze-
Pitch, Gaze-Pitch-Pause, and Gaze-Pitch-Energy are significantly 
higher than the expected rate. Interestingly, as the number of co-
occurring cues increases (1 → 2→ 3), the likelihood of receiving 
a response also increases (0.68 → 0.82 → 0.93)5. Stronger the cue 
context, the more likely a listener will respond.

5 Averaged response rates of only significantly predictive cues.
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TaBle 4 | Descriptive statistics and the logistic regression model for individual speaker cues.

logistic regression Model

Predictors gaze Pitch energy Pause Filled pause long utterance

b 1.89 0.65 0.08 0.09 1.33 1.05
t-stat 5.35 2.16 0.22 0.31 2.13 2.25
p-value p* = 8.67e−08 p* = 0.03 p = 0.82 p = 0.76 p* = 0.03 p* = 0.02
N 174 147 52 122 27 17
rate 0.76 0.59 0.58 0.51 0.59 0.76

The logistic regression model predicts the likelihood of a contingent response from an attentive listener based on the emitted speaker cues. N is the collective frequency counts 
found in the dataset. Rate is the likelihood of a response from listeners.

TaBle 5 | Descriptive statistics and the one-sided binomial exact test for 
co-occurring speaker cues.

2 cues n rate p-value 3 cues n rate p-value

..PE.. 14 0.57 p = 0.40 .CPE.. 10 0.70 p = 0.17

.CP... 64 0.56 p = 0.19 GCP... 14 0.93 p* = 9.16e-04

..P.F. 19 0.63 p = 0.18 GC.E.. 15 0.93 p* = 4.88e-04

.C...W 12 0.75 p = 0.07

.C.E.. 44 0.66 p* = 0.02
G.P... 18 0.89 p* = 6.56e-04

GC.... 39 0.90 p* = 1.68e-07

We show the most frequently observed cue combinations in our dataset. Cue 
combinations are specified through the presence of the cue’s symbolic letter. G: Gaze, 
C: Pitch, P: Pause, E: Energy, F: Filled Pause, W: Wordy (for long utterances). A dot 
represents the absence of that cue. N is the total occurrences of the cue combination 
found in the dataset. The one-sided binomial exact test determines whether the 
response rate of a cue combination is greater than an expected rate of 0.5.
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captured whether the perception about a listener changed (or 
remained the same) after witnessing the emoted response to the 
cue context.

In sum, for the following analyses, we use data tuples of 
<Cue, Response, State>:

•	 Cue: number of co-occurring speaker cues representing 
strength of weak, moderate, or strong [1 to 3].

•	 Response: measure of listener response to a cue as an overall 
valence rating [−3 to +4].

•	 State: perception of listener’s attentive state sampled immedi-
ately after the response window [0 or 1].

We first examine the ability of cues and responses as inde-
pendent predictors to explain state by themselves (Section 4.5.1: 
Only Main Effects) and then compare what happens when we add 
an interaction term that represents the relationship between cues 
and responses (Section 4.5.2: With Interaction Effects).

4.5.1. Only Main Effects
We examined the ability of cue-strength and response-valence to 
predict listeners’ attention. The overall logistic regression model 
was statistically significant, [χ2(2)  =  71.4, p  =  3.2e−16], where 
response-valence was the primary predictor in estimating state  
(see Table 6A). One unit increase in the response-valence makes 
the listener 2.91 times more likely to be paying attention. This 
result is not surprising since listeners’ behaviors are, of course, 
good predictors of their attentive state. But this analysis also 
serves as a means to validate our method of measuring listener 
response as an overall valence rating.

4.5.2. With Interaction Effects
In adding an interaction term to our previous logistic regres-
sion model, we find that the overall model is again statistically 
significant, [χ2(3) = 78.4, p = 6.74e−17], but can explain more of 
the variance R2 = 19.5% compared to R2 = 17.8% of the previous 
model. As shown in Table 6B, the interaction term is significant 
(p = 0.02), which indicates that the predictive power of listener 
response is modified by the cue context.

As shown in Figure 6, the strong-cue curve approaches areas 
of higher likelihood (i.e., y-axes limits) more quickly than the 
other curves, especially in comparison to the weak-cue curve 
which has less steep tails. This means, that for the same valence of 
listener response, stronger cues facilitate higher levels of certainty 
regarding listener’s attentive state.

4.5. analysis of cues and responses  
to Predict state
Our primary goal is to better understand the relationship 
between speaker cues and listener responses and how their 
joint meaning can influence perceptions about listeners’ 
attention. To fully model how the unique combinations of 
cue-response pairs effect this perception, we need much more 
data. Given our dataset, we instead create similarity heuristics 
to form groups that define a smaller range of possible behavior 
combinations.

Based on the relationship between cue-strength and response 
rate from our prior analysis (Section 4.4.2), we categorize mul-
timodal cues based on their number of co-occurring cues as 
either weak, moderate, or strong cue contexts. For example, a 
Gaze-Pitch-Energy multimodal cue is represented with a value 
of 3, or a strong cue context.

Based on our analysis in Section 4.3, listener response 
combinations are grouped based on their overall valence score. 
Measured as a sum of individual valences, a forward-lean (+), 
prolonged smile (+), and an away-gaze (−) observed from the 
listener within [0.5−3.0] seconds after an emitted cue is repre-
sented as a total valence value of +1, an overall weak positive 
response. By accounting for both positive and negative behaviors, 
we roughly measure the magnitude and direction of listeners’ 
overall response during this time window.

We also recorded whether annotators marked listeners as 
being attentive or inattentive by the end of this time period. This 
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FigUre 6 | Graphical representation of the logistic regression model from 
Section 4.5.2. (a) The model predicts the attentive state of listeners based 
on cue-strength and response-valence as well as their interaction. The x-axis 
represents overall listener’s response as either very positive (+4) to very 
negative (−3). The y-axis represents the likelihood of attention, or inversely as 
inattention. (B) Shows the 95% confidence bounds of strong vs weak cue 
contexts. For the same valence of listener response (e.g., x = −2), there is a 
difference in interpretation if we observed it after a weak vs a strong cue. 
Strong cues buy us greater certainty that the listener is not paying attention 
(likelihood of 70–100% vs 50–70%).

TaBle 6 | Logistic regression models predicting attention based on cues and 
responses.

(a) Main effects Model

Predictor cue response

b 0.02 1.07
t-stat 0.09 7.20
p-value p = 0.93 p* = 5.98e−13

(B) With interaction effects

Predictor cue response cue⋅response 

b 0.09 0.10 0.70
t-stat 0.38 0.24 2.41
p-value p = 0.71 p = 0.81 p* = 0.02

(A) The first logistic regression model considers only the main effects of cue-strength 
and response-valence to predict state. (B) The second model adds an interaction term 
which represents the relationship between cues and responses.
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4.6. Discussion
4.6.1. Attention-Related Backchannels  
of Young Listeners
We identified nonverbal behaviors that are indicative of a child 
either attentive or inattentive to their partner’s storytelling (see 
summary Table  7). We determined the form in which these 
nuanced behaviors are emitted and differentiate the relevance of a 
behavior as either a prolonged expression or as a frequent occur-
rence. Of the behaviors identified, the most unexpected result 
was the opposing interpretations of frequent versus prolonged 
brow-raises. Prolonged brow-raises most often co-occurred when 
listeners were also looking away from storytellers (see Figure S1 
in Supplementary Material for a correlation map); their joint 
emission can serve as a strong signal of a listener losing attention.

4.6.2. Response Rate of Multimodal Speaker Cues
By examining prosodic- and gaze- based cues, we identified 
multimodal speaker cues, taken singly or in combinations, that 
can elicit a response from listeners at different rates of success (see 
summary Table 8). Some prosodic cues such as pauses in speech 
or changes in energy seem to be too subtle for young children 
to perceive, but their cueing context can be strengthened by 
adding co-occurring behaviors such as a gaze cue. We confirm 
prior work by Hess and Johnston (1988) in demonstrating that 
children respond more often in stronger cue contexts. However, 
we differentiate our work by finding cues that young listeners 
know to respond to as well as employ themselves as storytellers.

4.6.3. Magnifying Certainty about Listeners’  
Attentive State
We found that speaker cues can modify the interpretation of back-
channel responses. For the same valence and quality of listener 
response, there is a difference in interpretation if observed after 
a weak versus a strong speaker cue. We found that stronger cues 
buy us greater certainty that a listener is attentive or inattentive. 
We need both speaker cues and their associated listener responses 
for an accurate understanding of attention. Backchannels are 

more informative about the attentive state of listeners when we 
also know the manner in which they were elicited.

5. general DiscUssiOn

Our primary contribution is introducing the role speaker 
cues can have in the process of attention inference. We found 
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TaBle 8 | Speaker cue summary.

single cue rate Dual cues rate Tri cues rate 

Pitch 0.59 Pitch-Energy 0.66 Gaze-Pitch-Energy 0.93
Filled Pause 0.59 Gaze-Pause 0.89 Gaze-Pitch-Pause 0.93
Long Utterance 0.76 Gaze-Pitch 0.90
Gaze 0.76

Summary of multimodal cues that children storytellers are observed to use and also 
can elicit a contingent response from children listeners with varying rates of success.

TaBle 7 | Listener response summary.

attentive Behaviors inattentive Behaviors

Frequent Partner-gazes Prolonged Away-gazes
Frequent Forward-leans Frequent Away-leans
Frequent Brow-raises Prolonged Brow-raises
Prolonged Smiles
Frequent Nods
Frequent Utterances

Summary of nonverbal behaviors, as prolonged expressions or frequent occurrences, 
that are indicative of an attentive or inattentive child listener.
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that speaker cues add interpretive value to attention-related 
backchannels and also serve as a means to regulate the respon-
siveness of listeners for those backchannels. Although these 
findings are based on human–human interaction studies, 
their implications are noteworthy toward our research goal of 
developing attention recognition models for social robots. We 
detail two major implications that will need further validation 
in an HRI context, which open promising directions for future 
research.

5.1. Design implication 1: Modeling the 
cueing actions of robots can increase 
attention recognition accuracy
Since speaker cues and listener responses are both necessary for 
accurate attention inference, robot storytellers capable of account-
ing for their own nonverbal cueing behaviors in their attention 
models can form more accurate inferences about their human 
partners. Current approaches to attention recognition primarily 
focus on modeling the nonverbal behaviors of the sole individual, 
e.g., just the listener. As we saw in our video-based human-
subjects experiment, this approach is akin to asking participants 
to form accurate inferences about listeners while removing the 
context of the storyteller. But, inference performance decreases 
when missing this interpersonal context.

Furthermore, we found that the interpretation of backchan-
nels from listeners depends on whether it was observed after a 
weak, moder ate, or strong speaker cue. A strong cue is a strong 
elicitation for a response. As such, the cue-response pair is more 
informative.

By including both the robot storyteller’s cues and the human 
listener’s backchannels, attention recognition models can 
achieve more accurate predictions especially when used in social 
situations.

5.2. Design implication 2: social robots  
can Pursue a Proactive Form of attention  
recognition in hri
Since compounded cue contexts have a higher likelihood of elici-
ting a response from listeners, robot storytellers can manipulate 
their production of nonverbal speaker cues to deliberately gain 
more information. In moments of high uncertainty about the 
listener, a social robot can plan to emit an appropriate cue context 
to strongly elicit a response that can reduce state uncertainty. 

Through cueing actions, social robots can pursue a proactive 
form of inference to better understand their partner’s emotional 
state. Toward this, an immediate extension of this work is to 
validate whether robot-generated speaker cues result in similar 
response rates from children listeners. To develop a robot capable 
of producing these nonverbal cues, we refer readers to our prior 
work in modeling prosodic-based cues through a rule-based 
method (Park et al., 2017).

5.3. limitations
Admittedly, our work does not explicitly include a robot in the 
studies. But strong evidence exist in demonstrating the readiness 
of the human mind to respond to technology as social actors—
capable of evoking the same social responses as they would with 
a human partner (Reeves and Nass, 1996; Desteno et al., 2012). 
We expect our finding from studying human–human interactions 
will carry over to human-robot interactions. However, further 
experimental validation is necessary to confirm the effectiveness 
of robot-generated speaker cues to boost attention recognition 
accuracies when incorporated into the model and evaluated in a 
human–robot interaction context.

cOnclUsiOn

Socially situated robots are not passive observers, but their own 
nonverbal behaviors contribute to the interaction context and 
can actively influence the inference process. We argue for a move 
away from the contextless approaches to emotion recognition, 
especially for human–robot interaction. A robot’s awareness 
of the contextual effects of its own nonverbal behaviors has an 
important role in affective computing.
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