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We developed a method to automatically generate humanlike trunk motions based on
speech (i.e., the neck and waist motions involved in speech) for a conversational android
from its speech in real time. To generate humanlike movements, the android’s mechanical
limitation (i.e., limited number of joints) needs to be compensated for. By enforcing
the synchronization of speech and motion in the android, the method enables us to
compensate for its mechanical limitations. Moreover, motion can bemodulated to express
emotions by tuning the parameters in the dynamical model. This method is based on a
spring-damper dynamical model driven by voice features to simulate the human trunk
movements involved in speech. In contrast to the existing methods based on machine
learning, our system can easily modulate the motions generated due to speech patterns
because themodel’s parameters correspond tomuscle stiffness. The experimental results
show that the android motions generated by our model can be perceived as more natural
and thus motivate users to talk longer with it compared to a system that simply copies
human motions. In addition, our model generates emotional speech motions by tuning
its parameters.

Keywords: humanlike motion, speech-driven system, head motion, android, emotional motion

1. INTRODUCTION

Humanoid robots, especially android robots, are expected to join daily human activities since they
can interact with people in a humanlike manner. Androids that resemble humans are suitable for
social roles that require rapport and reliability (Prakash and Rogers, 2014), and recent studies
have used them as a guide at an event site (Kondo et al., 2013), a salesperson at a department
store (Watanabe et al., 2015), a bystander in a medical diagnosis (Yoshikawa et al., 2011), and a
receptionist (Hashimoto and Kobayashi, 2009). One critical issue in developing androids is the
design of behaviors that people can accept. People tend to expect an agent’s behaviors to be based
on its appearance (Komatsu and Yamada, 2011); accordingly, humanlike or natural behaviors are
expected from androids. Here, natural means humanlike since their appearance is very humanlike
and humanlike motion matches with the androids. In other words, people tend to have negative
impressions of androids when they do not show the expected humanlike motions. However,
an android actually suffers from a clear technical limitation originating in its mechanics; it is
not possible to produce motions that are exactly the same as those of humans. The number of
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controllable joints, the range of jointmotions, and achievable joint
velocity are limited, and thus an android’s motion is much less
complex than a human’s motion.

This issue can be serious for an android. To effectively exploit
its humanlike characteristics, androids must be designed with
motions that can foster rapport and reliability. This requires the
capability to express subtle changes of facial expressions and body
motions. Concerning nonverbal behavior, a human conveys infor-
mation to a partner not only by gestures but also by varying such
motions slightly according to emotions or attitudes. Therefore, in
the design of android motions, we must solve the following issues:

• The android needs to produce humanlike motions despite its
mechanical limitations (e.g., restricted degrees of freedom).

• Themotionsmust bemodulated (i.e., changeable motion prop-
erties) based on the android’s internal state (i.e., expressing
emotions or attitudes).

For the first issue, androids must provide humanlike impres-
sions even though their motions are not exactly identical as those
of humans. To develop amodel that can generate suchmovements,
this study focuses on the synchronization between such multi-
modal expressions as speech and body movement. By enforcing
multimodal synchronization in an android, we hypothesize that
people will feel a motion’s human-likeness even though it is
mechanically restricted. This idea comes from existing knowledge
that the multiplicative integration of multimodal signals is an
effective cognitive strategy for humans to recognize an object’s
material or texture (e.g., Ernst and Banks, 2002; Fujisaki et al.,
2014). In the development of a motion generation model, we also
need to consider how to evaluate the human-likeness of the gener-
ated motion. If we can reproduce human motions in androids, we
can develop a model by minimizing the measurable differences
between the generated motion and the original human motion.
Unfortunately, this approach does not achieve humanlikemotions
due to themechanical limitations. Therefore, this study develops a
model based on subjective human evaluations; we selected model
parameters whose generated motions were subjectively judged
for their human-likeness. The second issue can be solved by
parameterizing the motion generation. Accordingly, this study
develops an analytical model with parameters that influences the
characteristics of the generated motions.

This study’s target is a conversational android that mainly talks
with people. It needs to evoke and maintain people’s motivation
to talk with it by creating a sense of reliability. Moreover, it needs
to give the impression that it is producing its own utterances.
It should also produce movements involved in speaking (speech
motion). In addition, such speech motions must be changeable
based on the android’s current emotion. This study proposes a
method of generating speech motions by modeling the dynamics
of the human’s trunk (neck and waist) motions involved in speech
production. The synchronization between multimodal expres-
sions (speech and body movements) improves the naturalness of
the android’smotion and reduces the negative impressions of non-
complex motions caused by its mechanical limitations. People
might accept that the android itself is speaking if the movements
of its lips, neck, chest, and abdomen, which are normally involved
in human vocalization, are produced. This approach also allows

motion variation by tuning the parameters in the dynamical
model. The motion can be easily modulated to express the desired
emotion since the parameters can be associated with motion
changes owing to various mental states. Another important issue
is real-time processing. In some cases, the utterance data cannot be
prepared in advance for an autonomous robot: that is, themotions
cannot be generated in advance. We design motion generation to
occur simultaneously when the android speaks.

To find which speech and head motion features are syn-
chronized during speaking, we first investigates human speech
motions in Section 3. In Section 4, we develop a motion gener-
ation model that enforces the synchronization found in Section 3.
The naturalness of generated motion needs to be subjectively
evaluated. In Section 5, a psychological experiment verifies that
the proposed model can generate android speech motions that
can motivate people to talk with it. Section 6 shows that speech
motion can be changed to express emotions by tuning the model
parameters.

2. RELATED WORKS

Many studies have tackled the issue of human motion transfer
in humanoid robots while overcoming the limitation of robot
kinematics. For example, Pollard et al. (2002) proposed a method
to scale the joint angles and velocities ofmeasured humanmotions
to the capabilities of a humanoid robot. Their robot successfully
mimicked the dancing motions of performers while preserving
their movement styles. Even though those studies basically aimed
to reproduce a human performer’s motion, they could not modu-
late the motions and/or mix them with other motions according
to a given situation. Furthermore, most studies have focused on
transferring a motion’s gestural meaning and not its human-
likeness or changes of motion properties.

Another approach to the human-likeness of android motion is
multimodal expression, that is, displaying motions synchronized
with other expressions, such as speech. Salem et al. (2012) pro-
posed that generated a pointing gesture by a communication robot
that matches its utterance (for example, the robot points to a vase
and says “pick up that vase”). This study showed the importance
of gesture-level synchronization. Sakai et al. (2015) made a robot’s
head motion more natural by enforcing the synchronization of
speech and motion. Their method automatically added head ges-
tures (e.g., nodding and tilting) to the robot motions transferred
from human motions, where the head gestures were synchro-
nized with a human’s speech acts. In their experiments with
their method, people had more natural impressions of the robot
motion than with the transferred motion. This result suggests that
enforcing the synchronization of speech and motion improves the
naturalness and human-likeness of an android’s motion.

Some studies of virtual agents have proposed methods to auto-
matically generate the neck movements of agents matched with
their speech. Le et al. (2012) modeled the relationship between
human neck movements (roll, pitch, and yaw) and the voice
information (power and pitch) using a Gaussian mixture model
(GMM) for real-time neck-motion generation. Other models
using a Hidden Markov Model (HMM) have also been proposed:
Sargin et al. (2008), Busso et al. (2005), and Foster andOberlander
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(2007). Watanabe et al. (2004) proposed a different kind of model
that estimates the speaker’s nodding timing based on historical
on–off patterns in the voice. These methods can successfully gen-
erate humanlike motions, but they are restricted to certain situa-
tions in which a model’s learning data can be collected. Generally,
human speech motions depend on the relationship between the
speaker and listener and the speech context (for example, in happy
situations, the magnitude and speed of human speech motions
might be larger than usual). To alter the agent motion to fit the
given situation, data must be collected for any situation, which is
impractical, unfortunately.

The situation-dependency issue of can be solved bymodulating
the android’s motions. Jia et al. (2014) synthesized the head and
facial gestures of a talking agent with emotional expressions. In
their method, the nodding motion involved in the utterance of
stressed syllables is modulated according to the emotion repre-
sented in a PAD model (an extension of Russell’s emotion model,
Russell, 1980). However, their study focused only on positive
emotions. Moreover, only the amplitude of motion was modu-
lated, although the other motion features (e.g., velocity) should
be varied according to the emotion. Masuda and Kato (2010)
developed a method that changed the gestural motions of a robot
by associating Laban theory (Laban, 1988) with Russell’s emotion
model. Unfortunately, since their method produced exaggerated
gestures that cannot be expressed by humans, it is unsuitable for
very humanlike androids. Other researchers have studied the rela-
tionship between motion characteristics and emotion in walking
(Gross et al., 2012) and kicking (Amaya et al., 1996) motions.
Such studies commonly conclude that the magnitude and speech
of motion vary depending on the emotion.

Physiological studies are also helpful to understand motions of
situation dependency, which is, the relationship between internal
states and motion characteristics. Many studies reported that psy-
chological pressure influences the human’s musculoskeletal sys-
tem and produces jerky motions. For example, anxiety increases
muscle stiffness (Fridlund et al., 1986). Nakano and Hoshino
(2007) showed that a human’s waist moves slowly in a relaxed
state but jerkily in a nervous state. This also suggests that the
musculoskeletal system is influenced by mental pressure. Conse-
quently, speech motion that is dependent on internal states might
be generated by simulating the dynamics of the musculoskeletal
system.

In this study, we develop an analyticalmodel based on the phys-
ical constraints (kinematic relations) of a human’s speech pro-
duction. We focus on the motions of the body’s trunk (neck and
waist) on the sagittal plane, since lateral motions usually depend
on the social situation, e.g., neck yawing due to gaze aversion that
depends on the conversation context (Andrist et al., 2014) as well
as on the speaker’s personality (Larsen and Shackelford, 1996).
The motion generation is formulated by a spring-damper model
that simulates musculoskeletal dynamics. The generated motion
can be easily modulated by tuning the parameters of muscle
stiffness to express internal states. Motions are triggered by utter-
ances in this model. By observing a person’s utterances, this study
found the physical constraints between speech production and the
movements of the human head and mouth (opening/closing) to
implement this trigger.

3. RELATIONS BETWEEN PROSODIC
FEATURES AND HEAD MOTIONS

3.1. Basic Idea of Generation Model
We generate a speech motion synchronized with an utterance to
enforce multimodal synchronization to avoid unnatural motions
caused by hardware limitations. Such motions should also be
generated by an analytic model to easily modulate them based on
the android’s emotion. This section first finds the relation between
prosodic features and head motions, which is not influenced by
social situation. Human head movements are synchronized with
prosodic features when a person speaks; in particular, voice power
and pitch features have high correlation with head movements
(Bolinger, 1985). However, for our current Japanese targets, the
correlation between prosodic features and head movements is
not very high (Yehia et al., 2002). Anatomical research has also
reported that the human head moves when the mouth is opened
(Eriksson et al., 1998). Since mouth openness strongly depends
on vowels in Japanese, we expect to find a relationship between
headmovements and prosodic information that involves Japanese
vowels. Here, we reveal what features of human movements are
related to the three voice features (power, pitch, and vowels) when
a person is speaking without interacting with anyone. Those rela-
tions underlie the model to generate context-free head motions
in speaking (Section 4). These motions can be modulated to fit a
social situation by turning the model parameters (Section 6).

3.2. Experimental Setup
To examine the relation between head motion and voice features,
we recorded the speech of human subjects while controlling their
voice features. Before the experiment, a preliminary test checked
whether people could pronounce the required vowels (a, i, u, e, o)
with the required pitch and power. We found that people did not
move their heads at all when the power was low. Based on this
result, we identified a relationship where the more loudly people
speak, the larger the head movement becomes. We asked the sub-
jects to produce loud voices in the experiments. The preliminary
test also suggested that the vowel changes affect head motions
when people loudly pronounced the vowels, but they had some
difficulty doing so while keeping the required pitch. We prepared
two tests: pitch and vowel. The former measured the head motion
when the participants pronounced a set of any syllables (here we
chose five vowels) with the required pitch (3 s for each syllable)
to investigate the relation between the head motion and pitch.
The lattermeasured the headmotionwhen the participants loudly
pronounced the required vowel for 3 s with any pitch to investigate
the relation between the head motion and vowels.

The head movements were measured by an inertia measure-
ment unit (IMU) (InterSense InertiaCube4) attached to the top
of the head at a measurement sampling rate of 100Hz. The
participants were given the following instructions: “Clearly pro-
nounce a high-voice-pitch ‘a”’ or “clearly pronounce a low-voice-
pitch ‘i’.” The frequency of the pitch was not fixed since they
had difficulty producing the required frequency. They were also
required to reset their posture forward before each pronunciation.
In the pitch test, they loudly pronounced five vowels (each for 3 s)
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with high, middle, and low pitch. In the vowel test, they loudly
pronounced each vowel for 3 s with whatever pitch they could
easily pronounce.

The participants conducted each test twice. The first trial accli-
mated them to speaking in the experimental room and checked
that the recording system.

3.3. Results
Eleven Japanese speakers (six males, five females, average age:
22.0, SD: 0.54) participated in the experiment. Theywere recruited
from a job-offering site for university students with different back-
grounds. We removed one male from our analysis since he pro-
nounced all the words with the same tone although we instructed
him to pronounce them in high, middle, and low tones.

In the pitch test, the participants tended to maintain almost
constant head posture while speaking. We calculated the average
head-elevation angle during their utterances (Figure 1). They
tended to look up when pronouncing with a high pitch and look
forward or down when pronouncing with a low pitch. A one-
way analysis of variance (ANOVA) with one within-subject factor
revealed a significant main effect (F(2, 18)= 12.84, p< 0.01).
Hereafter, F and p denote F statistics and significance level. Fol-
lowing this result, we conducted multiple comparisons by the
Bonferroni method and found significant differences in the head
angle as the angles increased with a greater pitch level. This means
that they respectively tended to move their heads up and down
when they spoke with high and low pitch.

Figure 2 shows the results of the vowel test results. The average
head-elevation angle during speech wasmeasured as well as in the
pitch test. The vertical axis shows the head angle displacements
and how much the head angle changed while pronouncing the
vowels compared with the before pronouncing them. We catego-
rized the vowels into two groups: wide group (a, e, o) and narrow
group (i, u). We found a significant difference between the two
groups (p< 0.05).1 The participants greatly moved their heads
when they opened theirmouths. The observedmotions seem to be

1We use the Wilcoxon rank sum test because the normality was not assumed by a
Shapiro–Wilk test.

FIGURE 1 | Head postures related to voice pitch. The angle is zero when the
participant is facing forward.

made purely for pronouncing utterances since there was no social
context; they were pronouncingmeaningless syllables without any
interaction. Therefore, the revealed relations might not depend
on the social situations. However, the speech motions did change
depending on the social situation. The generated motions of the
android based on the relations must match the social situation.

Most participants in the vowel test pronounced with a middle
pitch. The angle displacements in Figure 2 are less than 5° but the
head angles of middle pitch in Figure 1 exceed 5°, because they
slightly raised their head postures and moved their heads when
they opened their mouths.

4. SPEECH-DRIVEN TRUNK MOTION
GENERATION

4.1. Generating Smooth Motion from
Prosodic Features
In this section, we develop a model to generate a context-free
trunk motion. First, we made a head motion-generation model
based on the above results and extended it to both trunk and neck
motions. We found a strong relation between the head angle and
the prosodic features in Section 3, but a simple mapping is not
appropriate for generating a smoothmotion, which is essential for
human-likeness (Shimada and Ishiguro, 2008; Piwek et al., 2014).
This is because prosodic features are sometimes intermittent and
change rapidly. The model needs to generate smooth motions
based on the rapidly changing discrete sound input. Concerning
humanlike motions, people perceive naturalness in the second-
order dynamic motions of a virtual agent (Nakazawa et al., 2009).
Therefore, we use a spring-damper dynamical model (Figure 3;
equation (1)) to generate a smooth motion from the non-smooth
prosodic features

jθ̈base + dθ̇base + kθbase = τ(t)dir(t). (1)

Head angle θbase is driven by the external force τ (t)dir(t), where
t denotes discrete time. The absolute values of force τ (t) and force
direction dir(t) are separately described below for convenience of
explanation. The prosodic information is associated with the force
τ (t)dir(t) based on the results in Section 3. For example, if the

FIGURE 2 | Head displacements related to vowels.
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model is given, a large upward force ismade bywidely opening the
mouth, and a large upward neckmovement is generated, following
second-order dynamics. Parameters j, k, and d in the equation are
equivalent to head weight, muscle stiffness, and muscle viscosity,
respectively, based on using the spring-damper model of human
muscle dynamics (Linder, 2000; Liang and Chiang, 2006). The
meaning of each parameter is easy to grasp, and we can intuitively
modulate the motion by changing the parameters. Furthermore,
muscle stiffness is related to a person’s internal states such as
emotion and tension.We assume that we canmodulate themotion
to express the speaker’s internal states.

4.2. Head-Motion Generation Based on
Spring-Damper Model
This section defines the external force in equation (1) using
prosodic information. The results in Section 3.3 show that pro-
nouncing vowels with a wide opened mouth produces a large
head movement. Hereafter, to express the vowel information with
a continuous value, we use the value of mouth-openness value.
As the mouth is opening, the force m(t), which is proportional
to the degree of mouth openness ϵ(t), is given to the model. ϵ(t)

FIGURE 3 | Spring-damper model for speech motion generation.

can be estimated from the voice, as described in Section 4.3. On
the contrary, no force is given to the model while the mouth is
closing, and thus the head smoothly returns to its original position
by using the restoring force of the spring, as shown in equation
(2). In this study, the sampling time is 10ms. As described in
Section 4.3, speaking with large power produces a large head
movement. While the voice power is increasing or keeping the
same level, force p(t), which is proportional to it, is given to the
model. As with the vowel, no force is given to the model with
the power shown in equation (3). In total, the force is expressed
as equation (4), where v and l are constant values (no physical
meaning) to balance different scales of values (voice power and
degree of mouth openness). Figure 4 shows an example of the
input force generated from the voice:

m(t) =

{
ϵ(t) (ϵ(t) >= ϵ(t − 1))
0 (otherwise)

, (2)

p(t) =

{
ρ(t) (ρ(t) >= ρ(t − 1))
0 (otherwise)

, (3)

τ(t) = vp(t) + lm(t). (4)

From the voice pitch results in Section 3.3, we associate the
pitch with the force’s direction, as shown in equation (5), where
pt denotes the state of pitch (pt ∈ {High, Middle, Low}). Since the
participants in the pitch test tended to change their postures more
than usual, we focused on the direction of movement. Figure 1
shows that the average head angle is a low pitch with a positive
value, but we defined dir(t), which became minus when the pitch
was low, to enforce the relationship between the pitch and head
direction.

Equation 5 means that an upward force is given to the head
when the pitch is high and a head-lowering movement when the
pitch is low. When the pitch is in the mid-range, no force is given

FIGURE 4 | Input force generated from the voice data.
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to themodel and only a restoringmovement is generated. The next
section describes how we classify the pitch into three groups

dir(t) =


1 (Head up) (pt = High)
−1 (Head down) (pt = Low)
0 (Restoringmovement) (pt = Middle)

. (5)

4.3. Prosodic Information Extraction
Fundamental frequency F0 was extracted in a 32-ms frame size
every 10ms. We used a conventional method that extracts the
autocorrelation peaks of residual signals calculated by a linear
predictive coding (LPC) inverse filter. Then value F0 is calculated
by averaging F0 over the last 100ms. The pitch is classified as
follows:

pt =


High F0 > F0high
Low F0 < F0low
Middle (otherwise)

. (6)

The frequency range was empirically determined since the
voice’s fundamental frequency depends on speaker’s gender
and age.

We estimated the mouth openness using a lip-motion-
generating system (Ishi et al., 2012) based the voice’s formant
information. These methods can extract the prosodic features in
real time and simultaneously create motion generation when the
android produces a voice.

4.4. Trunk Motion Generation
Zafar et al. (2002) revealed that an up-and-down movement of
the head also produces a front-and-back movement of the body.

This suggests that a cooperative movement between the neck and
waist might produce a more humanlike impression. Zafar et al.
(2000) also reported that lip movement is followed by a neck
movement, although with a slight delay. From these findings, we
defined trunk motions (including head motion) as phase-shifted
motions of θbase, as shown in equation (7). acti indicates the i-th
actuator of the robot (Figure 5), and αacti and βacti are parameters
that determine the coordination between the joints:

θacti(t) = αactiθbase(t + βacti). (7)

4.5. Improvement of the Model
To verify the model, we recorded the voice and motion of the
speakers and compared the motions generated by our model
and the originals. We tested two female speakers: Speakers M
and H. We tested female voices because we used a female type
of android is used in the latter experiment. The speakers read
a self-introduction whose content was identical (approximately
50 s), and their trunk movements (neck and waist angles) were
measured by the IMU attached to their head and torso.

To test the proposed model, we controlled the android’s neck
joint by the model. Parameters j and d in the model were set
to 0.0676 and 0.52. k was set to 0.195 (θbase ≥ 0) and 0.065
(θbase < 0). We assumed that the head can move easily when it
looks downward since the head posture is not defying gravity.
To implement these characteristics we set a smaller k value for
θbase ≥ 0. Balance parameters v and l in equation (4) were set to
0.001 and 0.0005, where the voice power ranged approximately
from 10 to 20 dB and the mouth openness ranged approximately
from 0 to 200 (non-dimensional value). Thresholds F0high and

FIGURE 5 | Multi-joint control.
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A B

FIGURE 6 | Human head movements during speaking (top plot shows speech waveform and bottom plot shows generated head motion). (A) Speaker H.
(B) Speaker M.

F0low in equation (6) were, respectively, set to 256 and 215Hz.
These parameters described in this session were set by trial and
error. The experimenter selected the parameters in a preliminary
trial for a natural neck motion that matched the speech. Mouth
openness (ϵ(t)) was calculated from the voice by Ishi et al.’smethod
(Ishi, 2005). Generated angle θbase was directly used to control the
neck joint (i.e., θneck(t)= θbase(t)), but no other trunk joints were
controlled in this experiment.

Figure 6 shows the head angles generated from two speakers’
voices. Here, original indicates the original motion and non-
restricted indicates the motion (θneck(t)) generated by the pro-
posed model. In Figure 6B, there is a clear difference between
the trajectories of the original and proposed method, where the
original angle was positive in most cases (Speaker M looked
up during the speech), but the angle by the proposed method
was negative in most cases. This is because Speaker M reset her
posture again just before speaking and consequently looked a
little bit up during the speech, although she was required to face
forward before speaking and to keep her gaze during the speech.
In this research, since we focus on the correlation between the
changes of the prosodic information and the neck pitch angle,
our system cannot reproduce the direction in which the original
speaker looked. This study did not consider the average neck
angle in its later analysis. The original motions tended to consist
of large movements followed by small vibrating motions. On the
other hand, the proposed model seems to generate a simple cyclic
pattern, which produces a robot-like impression.We assumed that
the speakers would prominently make a large head movement
when they make a large voice and widely open their mouths. In
other words, the amount of motion is not simply proportional
to the magnitude of the prosodic features; large changes in the
prosodic features produce larger movements. To clearly express
this relationship, we introduce thresholds to restrict the motions
shown in equations (8) and (9) by which a large driving force
is only given to the model when the voice power and/or mouth
openness are largely increasing. In this model, larger movements
are generated when the prosodic features exceed the thresholds
(p_th and m_th), and otherwise the restoring force generates
small vibrating movements. The plot of restricted in Figure 6
shows the movements by this model, where the thresholds p_th

and m_th were empirically set to 1 and 10 so that large head
movements prominently appear synchronized with a loud voice.
With this improvement, motions similar to the original ones can
be generated:

p(t) =

{
ρ(t) (ρ(t) − ρ(t − 1) >= p_th)
0 (otherwise)

, (8)

m(t) =

{
ϵ(t) (ϵ(t) − ϵ(t − 1) >= m_th)
0 (otherwise)

. (9)

5. EVALUATION OF PROPOSED SYSTEM

5.1. Experimental Setup
First, we evaluated the impressions of the android’s movements
generated by the proposed method to show that it could gen-
erate natural and humanlike motions. The next section shows
that the generated movements can be modulated for expressing
internal states. The existing systems described in Section 2 basi-
cally reproduce the original humanmovements. Suchmethods do
not enforce the synchronization between speech and motion. To
show how our method improved the impressions of the androids,
we compared it with a method in which the original speaker
motions were reproduced in the android. This method copied
the speaker’s head and waist angles measured by IMU to the
corresponding joint angles of the android (copy condition). Fur-
thermore, to verify whether an unnatural impression is produced
when the motion is not synchronized with the voice, we prepared
another android motion by copying the original with a 1-s delay
(non-synchronized condition) and two conditions for our model:
with improvement of equations (8) and (9) and another without
it. Then, we compared four conditions (proposed method with
improvement, proposed method without improvement, copy, and
non-synchronized, hereafter referred to as Proposed-I, Proposed-
NI, Copy, and NoSync). We used a female type of android, named
ERICA (Figure 7).

The participants evaluated the android’s movements without
any interactions (videotaped movements were used). We used
the recorded human motion data and voice data mentioned in
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Section 5. To verify that the method generated motions from any
speaker’s voice, this experiment used the data from both speakers.
A comparison of Figures 6A,B revealed that the movement of
Speaker M was larger and more frequent than that of Speaker H.
Consequently, we examined the movement of different types of
speakers.

The parameters in the model were the same as those used
in Section 5. The head and waist motions in the Proposed-I
and Proposed-NI conditions were generated from the speakers’
voice data and used to control ERICA’s corresponding joints
(i.e., we used two joints). The neck joint was controlled as
θneck(t)= θbase(t). No phase-shift between the neck and waist
motions was assigned, that is, θwaist(t)=αwaistθbase(t), where
αwaist = 0.1. The android’s lip movements were automatically

FIGURE 7 | Android ERICA.

generated from the voice by Ishi et al.’s method (Ishi, 2005) in
all the conditions. Furthermore, we added blinking at random
intervals normally distributed with a mean of 4 s and a SD of
0.5 s. Figure 8 shows the kinematic structure of the android. We
used joint 1 for blinking, joints 15 and 18 for trunk movements,
and joint 13 for lip movements. The waist joint’s control input
was processed by a low-pass filter that moved over an average of
the past 200ms, since the time constant in the waist control is
larger than in the neck control. The android’s voice was provided
by playing the original voice. Its movements were videotaped by
covering the front waist-up image of its body (Figure 9), and the
videos were used as the experimental stimuli.

Each participant evaluated all eight conditions (four types of
motion× two types of speaker). The order of speakers was fixed

FIGURE 9 | Video stimulus.

FIGURE 8 | Kinematic structure of proposed android.
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(Speaker H was first) because we assumed that there would be no
order effect related to the speakers. We counterbalanced the order
of the four motion conditions. The participants could watch the
video stimuli as many times as they liked.

5.2. Evaluation Measurements
The participants rated the naturalness and impression of each
motion in the video on a 7-point Likert scale. For naturalness, the
questionnaire asked whether “the neck and waist movements are
natural” (naturalness). Piwek et al. (2014) revealed that natural
movements improve the sense of intimacy toward agents. Then,
the questionnaire asked participants to rate the statement, “I want
to interact with the android,” (will) as the willingness to interact
with it.

5.3. Results
Fifteen Japanese speakers (12 males, 3 females, average age: 21.5,
SD: 1.6) participated in the experiment. They were recruited in
the same manner as described earlier. We conducted a two-way
ANOVA with two within-subject factors (motion and speaker)
and found no significant effect for the scores of will, but there
was a significant trend of the motion factor for naturalness scores
(F(3, 42)= 2.33, p< 0.1). In further examining the scores for
Proposed-I and Proposed-NI scores, we found that some gave
higher scores for Proposed-I, while others assigned opposite
scores. This means that the effect of motion restriction in equa-
tions (8) and (9) was subjective. To comprehensively verify
the effect of the proposed method, we combined the scores
of Proposed-I and Proposed-NI scores into the scores of the
“Proposed” condition by extracting the higher score between
Proposed-I and Proposed-NI within-participants for each evalu-
ation measurement.

A two-way ANOVA with two within-subject factors was con-
ducted. Regarding the will score, there was a significant effect of
motion factor (F(2, 28)= 4.90, p< 0.05). Figure 10 compares the
scores between the motion factors. Multiple comparisons by the
Holmmethod revealed significant differences between conditions
as Proposed>Copy (p< 0.05) (meaning the Proposed condition

FIGURE 10 | Willingness to talk with android.

score is larger than that in the Copy condition, and the same here-
after) and Proposed>NoSync (p< 0.05). Regarding Naturalness,
there was a significant effect of motion factor (F(2, 28)= 6.51,
p< 0.01) as well as significant differences between conditions as
Proposed>Copy (p< 0.05) and Proposed>NoSync (p< 0.01)
(Figure 11).

We also found an interaction effect between motion and
speaker factors for naturalness (F(2, 28)= 5.89, p< 0.01).
Figure 12 shows the average naturalness scores of six conditions.
In the NoSync condition, the Speaker H score was significantly
higher than that for Speaker M (F(1, 14)= 12.64, p< 0.01). In
the Speaker M condition, there was a significant simple main
effect for the motion factor (F(2, 28)= 14.40, p< 0.01). We
conducted multiple comparisons by the Holm method and found
significant differences among the conditions: Proposed>Copy
(p< 0.05), Proposed>NoSync (p< 0.001), and Copy>NoSync
(p< 0.05). The experimental results showed that the android
motions generated by our model appeared more natural and
motivated participants to talk more compared with copying of the
human motions. This also means that our method outperformed
the existing method by ideally reproducing the original human

FIGURE 11 | Naturalness of neck and waist motions.

FIGURE 12 | Naturalness of neck and waist motions for each speaker.
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movements. We tested two speakers and found this effect for both
of them suggesting our model generated natural speech motions
for various speech patterns.

5.4. Discussion
Whywas the speechmotion of our model evaluated as more natu-
ral than the copying of the humanmotions?We usually do not feel
unnaturalness when we see a person who barely moves her head
while speaking. We usually rationalize such a situation, for exam-
ple, her body is tense due to some strain. However, when we see
an android whose head barely moves, we might blame the system.
We assumed that people would differently attribute the reason
for the movement by a human or an android. If people clearly
sense the correlation between the motion and prosodic features,
which are typical in human speech, we can expect to avoid the
attribution of a reason for non-humanlikemotions by the android.
This might explain why the proposed method’s motions were
better than the copied motions. Humans have many joints and
muscles in their bodies and always make complex and subtle body
motions, which cannot be perfectly reproduced in an android due
to the limitations of its degrees of freedom and the characteristics
of its actuators. That is, incomplete copying of human motions
produces amore negative impression than uncopiedmotions. The
proposedmethod, on the other hand,might be able to compensate
for such incompleteness by expressively showing the motions that
are strongly related to certain voice features. A similar result
was obtained in a study of speech-driven lip motion generation
by an android (Ishi et al., 2011). Perhaps the synchronization
between voice andmotion captures the essence of human-likeness
in speech motions. In the future, with our model, we will inves-
tigate which kinds of motions essentially contribute to human-
likeness by modulating the model parameters. In this sense, our
proposed analytical model is helpful for studying the mechanism
of human–robot interaction.

We found no significant differences between the Copy and
NoSync conditions, although we expected the latter to be worse
(e.g., since asynchrony between voice and lip movement on
decreases the human-likeness of human and virtual characters
(Tinwell et al., 2015)). However, this depended on the speaker.
As shown in Figure 12, NoSync-Speaker M had a significantly
lower score in naturalness score. We inferred a strong correlation
between speech and motion for Speaker M but not for Speaker
H. Since the participants attributed some meaning to the delayed
motions in the NoSync-Speaker H condition, and thus they did
not give bad scores. This result does not negate the necessity for
a temporal synchronization between speech and motion, but we
need further study to determine for which kinds of speech pat-
terns this synchronization is necessary. Kirchhof (2014) suggested
that the necessity of temporal synchrony between speech and
gestures becomes smaller by loosening their semantic synchrony.
A semantical correspondence between speech and motion might
govern the participant impressions.

Comparing Figure 6B with Figure 6A, Speaker M’s motions
tend to have a larger magnitude. This means that she has a
higher speech-motion correlation and moves her body more.
Nevertheless, Speaker M’s naturalness score is lower than that of
Speaker H in the copy condition although the difference is not

significant. Perhaps motion copying failed to take into account
the coordination throughout the entire body. Speaker M might
greatlymove not only her neck andwaist but also other body parts
to balance her entire body during speech; however, the system
does not generate thosemotions. The participantsmight feel some
unnaturalness in the android’s entire body movements with the
loss of coordination. Since the proposed method reproduces well-
coordinatedmotionswith only the neck andwaist, the participants
felt that they were natural, even though they were different from
the original speaker’s motion. In their study of humanoid motion
generation, Gielniak et al. (2013) showed that the coordinated
motions on multiple joints produced humanlike motions. Their
method emulates the coordinated effects of human joints that are
connected by muscles, and their experimental result showed that
this coordination provides the impression of human-likeness in
the robotmotions. These results suggest thatmotion coordination
under a physical body’s constraints is critical for giving a natural
impression of motions.

The preference for Proposed-I or Proposed-NI motion
depended on the participants. Some believed that Proposed-NI
is better since it moved more, but others felt the opposite. People
tend to prefer a person who mimics them: the chameleon effect
(Chartrand and Bargh, 1999). Accordingly, we infer that the
participants preferred motions that resembled their own. We
could choose either Proposed-I or Proposed-NI for the android
motion based on the personality of the conversation partner
by prior personality questionnaires or estimations based on a
multimodal sensor system. Further study is needed to investigate
how to generate an android’s speechmotion to suit the personality
of the conversation partner.

6. EVALUATION OF CAPABILITY OF
EMOTIONAL EXPRESSION

6.1. Purpose of Experiment
This section shows how the generated motions can be modulated
to express the internal state of an android. The parameters in the
proposed model correspond to muscle stiffness, which depends
on the speaker’s mental state, e.g., stress and emotion (Sainsbury
and Gibson, 1954; Fridlund et al., 1986). In other words, perhaps
we can modulate the speech motions based on the mental states
by tuning the parameters of the spring-damper model shown in
equation (1).

We experimentally showed that our participants properlymod-
ulated the android’s motions based on its desired internal states.

6.2. Experimental Setup
Some researchers revealed that motion properties, e.g., magni-
tude and speed, vary by emotional states (Amaya et al., 1996;
Michalak et al., 2009; Masuda and Kato, 2010; Gross et al., 2012).
Consequently, we transformed independent variables j, d, and
k in equation (1) to ω0, ξ, and ϕ in equation (10) so that the
participants can intuitively change the speed andmagnitude of the
android’s motions. ω0, which is the natural angular frequency, is
equivalent to the time that a motion needs to be converged. ξ is
the damping ratio. The damping property depends on ξ (ξ > 1:
over damping, ξ = 1: critical damping, ξ < 1: damped oscillation).
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A B

FIGURE 13 | Experimental setup. (A) Interface for adjusting motion parameters. (B) Block diagram.

ϕ is the reciprocal of inertia, and the magnitude of motion is
proportional to ϕ:

θ̈base(t) + 2ξω0θ̇base(t) + ω2
0θbase(t) = ϕT(t)Dir(t)

j = 1
ϕ

, k =
ω2

0
ϕ

, d =
2ξω0

ϕ
. (10)

In this experiment, we set the damping ratio (ξ = 1). The
human head rhythmically moves in synchronization to speech.
Since this movement is not damped, the damping ratio should be
ξ ≈ 1. The participantsmodulatedω0 andϕ through the graphical
user interface (GUI) in Figure 13A. The range of ω0 was set at
1–10 in 0.5 steps, and the range of ϕ was set to 100–102 in 100.05

steps. The android speaks by playing a prerecorded voice while its
neck and mouth move in synchrony with its voice. The voice was
played from speakers on its head. We delayed the voice by 333ms
for synchronization with the motion because of the calculation
delay of the prosodic features and the communication time with
the android. The setting’s block diagram is shown in Figure 13B.
The motion properties were changed immediately in response to
the changes inω0 andϕ. The participants explored theGUI to find
proper ω0 and ϕ values for expressing the desired emotion while
looking at the android’s motions.

6.3. Experimental Conditions and
Measurements
We chose four emotional states (happy, bored, relaxed, and tense)
based on Russell’s emotion model (Russell, 1980), and the par-
ticipants searched for the values of ω0 and ϕ values to feel the
android’s motion expressed by each emotion.

The difficulty of tuning the motions depends on the speech
voice (the tuning was easy for some voices but not for the others).
Therefore, the speech voice was fixed in all the emotions and
for all participants. This voice sample was approximately a 1-min

recording of a female experimental assistant reading a news story
aloud while maintaining a neutral mental state.

The android changed its eye direction and facial expression to
express its emotional state. This is because people felt difficulty
exploring the parameters without facial expression in the pre-
liminary trial. The eye movements and facial expression follow
Ekman’s report (Ekman and Friesen, 1981). In happy and relaxed
emotions, the android smiled by lifting the angle of her mouth up
and cyclically moving her eyes horizontally. In bored and tense
emotions, it grimaced with her eyelids down and rolled her eyes
downward.

The participants sat in front of the android and adopted the
parameters ω0 and ϕ using the GUI shown in Figure 13A. For
each emotion preset, they searched for the parameter values that
produced the android’s desired emotional expression. The order
of the four emotion conditions was counterbalanced among the
participants.

To evaluate the degree of easiness of this modulation, we mea-
sured how long it took to modulate the motions. To the evaluate
the degree of satisfaction with the modulation, the participants
also answered a 7-point Likert scale questionnaire (1: unsatisfac-
tory, ~4: not sure, ~7: satisfactory). Based on satisfactory scores,
we wanted to evaluate whether android motions were produced
as the participants expected. High scores denote successfully
produced motions.

6.4. Results
Twelve subjects (six males, six females, average age: 20.4, SD: 1.0)
participated in the experiment. They were recruited in the same
manner for the above two experiments.

Table 1 shows the elapsed needed time to modulate the
motions. The voice used in this experiment was about 1min,
and the results revealed that the participants fixed the parameters
within 3–5 repetitions. They did not take that much time for
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motion tuning, even though the results were not compared with
those of other methods. Figure 14 shows the average degree of
satisfaction with the modulated motions. Because the average
scores of all the emotion exceeded four, the participants felt the
modulated motions expressed the desired emotion. Even tough
some experienced difficulty tuning the motion due to incongruity
between the manner of speaking (speech in neutral emotion)
and the emotion, they successfully produced the desired emo-
tional motion. A statistical test revealed that the average scores
of happy, relaxed, and tense were significantly higher than four
(p< 0.01), but not bored (p< 0.1).2 Expressing the bored motion
was difficult with the trunk motion.

Figure 15 shows examples of modulated motion (time series of
head angle) and corresponding voice data. There is a tendency for
the magnitude and speed of the motions to increase in the order

2We used t-test if the normality was assumed by the Shapiro–Wilk test; otherwise
the Wilcoxon rank sum test was used.

TABLE 1 | Elapsed time to modulate the motions [s].

Happy Bored Relaxed Tense

Average 305 294 188 278
SD 205 266 132 213

FIGURE 14 | Degree of satisfaction with the modulated motions.

of bored, relaxed, happy, and tense. This result shows that the
modulatedmotion properties are different based on the emotional
states.

6.5. Discussion
One the other hand, the existing learning-based systems need
to additionally collect human emotional motion data when we
generate the android’s emotional expressions that are not included
in the learning data. The proposed model has an advantage with
facility in the motion development.

Figure 14 shows the participants were not sufficiently satisfied
by the generated motions of bored. Such motions were expressed
by small trunk movements, but they might have thought that just
making small motions is insufficient for the bored state. They
wanted to add a facial expression or a voice to distinctively express
boredom but they could not; therefore, their degree of satisfaction
fell. To precisely express the emotional states in the android,
the facial expression, loudness of voice and speech rate must be
involved in the motion modulation. In the future, our system
needs to implement this idea.

The speech voice was fixed in the experiment, but the speech
pattern is usually changed owing to the speaker’s emotional state.
For example, the voice usually becomes louder and faster in the
tense and happy states and lower and slower in the bored and
relaxed states. This is similar to the relation between the mag-
nitude and speed of the motions and the emotional state shown
in Figure 15. A tense state brings larger and faster motions and
a relaxed state brings smaller and slower motions. This suggests
that the motion and speech patterns are similarly changed by the
emotional state, such as the magnitude, and the speed of voice
and motion become larger and faster in the tense and happy states
and smaller and slower in the bored and relaxed states. If this
relation generally holds, the proposed model can generate emo-
tional speech motions based on emotional voices without tuning
the parameters. Furthermore, developing a system of automatic
emotional voice and motion generation is possible by integrating
our model with the emotional voice synthesization (Murray and
Arnott, 2008). Future work should reveal the relation for this
system. Here, the relation might depend on the age and gender of

A B

C D

FIGURE 15 | Examples of emotional motion modulated by the participants. (A) Bored motion, (B) relaxed motion, (C) happy motion, and (D) tense motion.
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the speaker since a gender difference exists in non-verbal behav-
iors (Frances, 1979). For example, male speakers might express
more emotional motions. To use our model in different types of
androids, such dependencies must be investigated in future work.

7. FUTURE WORKS

People tend to anticipate some properties of a speaker’s motion
when they hear her voice, for example, a vigorous movement
is expected from a cheerful voice. We found fewer differences
between the proposed and copy methods in the Speaker H com-
parison (Figure 12) because the participants might have expected
much movement from her voice. The proposed model generates
the motion based on pitch, power, and vowel information, but
we also expect other voice features to be related. Identifying the
relation between voice features and expected motion is critical.
Moreover, human movement has some randomness that should
be implemented in the method. This study tested the proposed
method for Japanese speech, but the idea of synchronization
between motions and voice features could more effectively work
for English speech, since English speakers show a higher corre-
lation between speech and head movement than Japanese speak-
ers (Yehia et al., 2002). Furthermore, the results here were only
obtained from university students. Although elderly people prefer
a human-like to a robot-like appearance, younger adults prefer the
opposite (Prakash and Rogers, 2014). Therefore, the influence of
the android’s appearance and the participants’ age must also be
investigated in future work.

We evaluated our proposed method for subjective impressions
but not for behavioral aspects. The participant behavior or attitude
toward the android might change if they had a feeling of human-
likeness about it. For instance, gaze behavior (Shimada and Ishig-
uro, 2008) and posture are influenced by the relationship between
conversation partners. In future work, a behavioral evaluation is
necessary to scrutinize the method’s effects.

8. CONCLUSION

We developed a method that automatically generates humanlike
trunk motions of a conversational android from its speech in real
time. By enforcing the speech motions that are strongly related

to prosodic features, the method compensates for the negative
impressions caused by incomplete copying of human motions
from which conventional methods suffer. By simulating human
trunkmovement based on a spring-damper dynamical model, the
motion can be modulated based on the android’s internal states.
Our experimental results show that the android motions gener-
ated by themodel appear natural andmotivate people to talkmore
with the android, even though the generatedmotions are different
from the original humanmotions. The results also suggest that the
model can generate humanlike motions for any speech pattern.
The additional capability of enforcing multimodal synchroniza-
tion must be applicable to other types of humanoid robots and
other modalities than speech and motion. Such possibilities must
be investigated in future work.

ETHICS STATEMENT

The study was approved by the Ethics Committee of the
Advanced Telecommunications Research Institute International
(Kyoto, Japan). In the beginning of the experiment, we explained
about this study to the subjects who were university students and
received informed consent from them. We used a job-offering site
for university students, and the subjects were recruited.

AUTHOR CONTRIBUTIONS

KS proposed the idea of this speech-driven trunk motion gener-
ating system, build the experiment system, conducted the exper-
iment, analyzed the result, and wrote this article. TM designed
the experiment, analyzed and evaluated the result. CI worked
in the system development, especially sound signal analysis. HI
proposed the basic idea to generate humanlike movements under
a mechanical limitation of the android (i.e., limited number of
joint).

FUNDING

This research was supported by the Japan Science and Tech-
nology Agency, ERATO, ISHIGURO symbiotic Human-Robot
Interaction Project, Grant Number JPMJER1401.

REFERENCES
Amaya, K., Bruderlin, A., and Calvert, T. (1996). “Emotion from motion,” in

Graphics Interface, Vol. 96, Toronto, 222–229.
Andrist, S., Tan, X. Z., Gleicher, M., and Mutlu, B. (2014). “Conversational gaze

aversion for humanlike robots,” in Proceedings of the 2014 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, New York, NY, 25–32.

Bolinger, D. (1985). Intonation and Its Parts: Melody in Spoken English. Stanford:
Stanford University Press.

Busso, C., Deng, Z., Neumann, U., and Narayanan, S. (2005). Natural head motion
synthesis driven by acoustic prosodic features. Comput. Animat. Virtual Worlds
16, 283–290. doi:10.1002/cav.80

Chartrand, T. L., and Bargh, J. A. (1999). The chameleon effect. J. Pers. Soc. Psychol.
76, 893–910. doi:10.1037/0022-3514.76.6.893

Ekman, P., and Friesen, W. V. (1981). The repertoire of nonverbal behavior:
categories, origins, usage, and coding. Nonverbal Commun. Interact. Gesture
57–106.

Eriksson, P.-O., Zafar, H., and Nordh, E. (1998). Concomitant mandibular and
head-neck movements during jaw opening-closing in man. J. Oral Rehabil. 25,
859–870. doi:10.1046/j.1365-2842.1998.00333.x

Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and haptic
information in a statistically optimal fashion.Nature 415, 429–433. doi:10.1038/
415429a

Foster, M. E., and Oberlander, J. (2007). Corpus-based generation of head and
eyebrow motion for an embodied conversational agent. Lang. Resour. Eval. 41,
305–323. doi:10.1007/s10579-007-9055-3

Frances, S. J. (1979). Sex differences in nonverbal behavior. Sex Roles 5, 519–535.
doi:10.1007/BF00287326

Fridlund, A. J., Hatfield, M. E., Cottam, G. L., and Fowler, S. C. (1986). Anxiety and
striate-muscle activation: evidence from electromyographic pattern analysis. J.
Abnorm. Psychol. 95, 228. doi:10.1037/0021-843X.95.3.228

Fujisaki, W., Goda, N., Motoyoshi, I., Komatsu, H., and Nishida, S. (2014).
Audiovisual integration in the human perception of materials. J. Vis. 14, 1–20.
doi:10.1167/14.4.12

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4913

https://doi.org/10.1002/cav.80
https://doi.org/10.1037/0022-3514.76.6.893
https://doi.org/10.1046/j.1365-2842.1998.00333.x
https://doi.org/10.1038/415429a
https://doi.org/10.1038/415429a
https://doi.org/10.1007/s10579-007-9055-3
https://doi.org/10.1007/BF00287326
https://doi.org/10.1037/0021-843X.95.3.228
https://doi.org/10.1167/14.4.12
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Sakai et al. Novel Speech Motion Generation

Gielniak, M., Liu, K., and Thomaz, A. (2013). Generating human-like motion for
robots. Int. J. Robot. Res. 32, 1275–1301. doi:10.1177/0278364913490533

Gross, M. M., Crane, E. A., and Fredrickson, B. L. (2012). Effort-Shape and kine-
matic assessment of bodily expression of emotion during gait. Hum. Mov. Sci.
31, 202–221. doi:10.1016/j.humov.2011.05.001

Hashimoto, T., and Kobayashi, H. (2009). “Study on natural head motion in waiting
state with receptionist robot SAYA that has human-like appearance,” in Proceed-
ings of 2009 IEEEWorkshop on Robotic Intelligence in Informationally Structured
Space, Nashville, TN, 93–98.

Ishi, C. T. (2005). Perceptually-related F0 parameters for automatic classification
of phrase final tones. IEICE Trans. Inform. Syst. 88, 481–488. doi:10.1093/ietisy/
e88-d.3.481

Ishi, C. T., Liu, C., Ishiguro, H., and Hagita, N. (2011). “Speech-driven lip motion
generation for tele-operated humanoid robots,” in Auditory-Visual Speech Pro-
cessing, Volterra, 131–135.

Ishi, C. T., Liu, C., Ishiguro, H., Hagita, N., Robotics, I., and Labs, C. (2012).
Evaluation of Formant-Based LipMotion Generation in Tele-Operated Humanoid
Robots. Vilamoura: IEEE, 2377–2382.

Jia, J., Wu, Z., Zhang, S., Meng, H. M., and Cai, L. (2014). Head and facial gestures
synthesis using PAD model for an expressive talking avatar. Multimed. Tools
Appl. 73, 439–461. doi:10.1007/s11042-013-1604-8

Kirchhof, C. (2014). “Desynchronized speech-gesture signals still get the message
across,” in International Conference on Multimodality, Hongkong.

Komatsu, T., and Yamada, S. (2011). Adaptation gap hypothesis: how differences
between users’ expected and perceived agent functions affect their subjective
impression. J. Syst. Cybern. Inform. 9, 67–74.

Kondo, Y., Takemura, K., Takamatsu, J., andOgasawara, T. (2013). A gesture-centric
android system for multi-party human-robot interaction. J. Hum.Robot Interact.
2, 133–151. doi:10.5898/JHRI.2.1.Kondo

Laban, R. V. (1988). The Mastery of Movement. Princeton Book Co. Pub.
Larsen, R. J., and Shackelford, T. K. (1996). Gaze avoidance: personality and social

judgments of people who avoid direct face-to-face contact. Pers. Individ. Dif. 21,
907–917. doi:10.1016/S0191-8869(96)00148-1

Le, B. H., Ma, X., and Deng, Z. (2012). Live speech driven head-and-eye motion
generators. Vis. Comput. Graph. 18, 1902–1914. doi:10.1109/TVCG.2012.74

Liang, C.-C., and Chiang, C.-F. (2006). A study on biodynamic models of seated
human subjects exposed to vertical vibration. Int. J. Ind. Ergon. 36, 869–890.
doi:10.1016/j.ergon.2006.06.008

Linder, A. (2000). A new mathematical neck model for a low-velocity rear-end
impact dummy: evaluation of components influencing head kinematics. Accid.
Anal. Prev. 32, 261–269. doi:10.1016/S0001-4575(99)00085-8

Masuda, M., and Kato, S. (2010). “Motion rendering system for emotion expression
of human form robots based on Laban movement analysis,” in Proceedings of the
19th International Symposium in Robot and Human Interactive Communication,
Viareggio, 324–329.

Michalak, J., Troje, N. F., Fischer, J., Vollmar, P., Heidenreich, T., and Schulte,
D. (2009). Embodiment of sadness and depression–gait patterns associ-
ated with dysphoric mood. Psychosom. Med. 71, 580–587. doi:10.1097/PSY.
0b013e3181a2515c

Murray, I. R., and Arnott, J. L. (2008). Applying an analysis of acted vocal emo-
tions to improve the simulation of synthetic speech. Comput. Speech Lang. 22,
107–129. doi:10.1016/j.csl.2007.06.001

Nakano, A., andHoshino, J. (2007). Composite conversation gesture synthesis using
layered planning. Syst. Comput. Japan 38, 58–68. doi:10.1002/scj.20532

Nakazawa, M., Nishimoto, T., and Sagayama, S. (2009). “Behavior generation for
spoken dialogue agent by dynamical model,” in Proceedings of Human-Agent
Interaction Symposium (in Japanese), Tokyo, 2C-1.

Piwek, L., McKay, L. S., and Pollick, F. E. (2014). Empirical evaluation of the
uncanny valley hypothesis fails to confirm the predicted effect of motion.
Cognition 130, 271–277. doi:10.1016/j.cognition.2013.11.001

Pollard, N. S., Hodgins, J. K., Riley, M. J., and Atkeson, C. G. (2002). “Adapting
human motion for the control of a humanoid robot,” in Proceedings of the 2002
IEEE International Conference on Robotics and Automation, Vol. 2, Washington,
DC, 1390–1397.

Prakash, A., and Rogers, W. A. (2014). Why some humanoid faces are perceived
more positively than others: effects of human-likeness and task. Int. J. Soc. Robot.
7, 309–331. doi:10.1007/s12369-014-0269-4

Russell, J. A. (1980). A circumplex model of affect. Personal. Soc. Psychol. 39,
1161–1178. doi:10.1037/h0077714

Sainsbury, P., and Gibson, J. G. (1954). Symptoms of anxiety and tension and
the accompanying physiological changes in the muscular system. J. Neurol.
Neurosurg. Psychiatr. 17, 216–224. doi:10.1136/jnnp.17.3.216

Sakai, K., Ishi, C. T., Minato, T., and Ishiguro, H. (2015). “Online speech-driven
head motion generating system and evaluation on a tele-operated robot,” in
Proceedings of the 24th International Symposium in Robot and Human Interactive
Communication, Kobe, 529–534.

Salem,M., Kopp, S., Wachsmuth, I., Rohlfing, K., and Joublin, F. (2012). Generation
and evaluation of communicative robot gesture. Int. J. Soc. Robot. 4, 201–217.
doi:10.1007/s12369-011-0124-9

Sargin,M. E., Yemez, Y., Erzin, E., and Tekalp, A.M. (2008). Analysis of head gesture
and prosody patterns for prosody-driven head-gesture animation. IEEE. Trans.
Pattern. Anal. Mach. Intell. 30, 1330–1345. doi:10.1109/TPAMI.2007.70797

Shimada, M., and Ishiguro, H. (2008). “Motion behavior and its influence on
human-likeness in an android robot,” in Proceedings of the 30th Annual Meeting
of the Cognitive Science Society, Washington, DC, 2468–2473.

Tinwell, A., Grimshaw, M., and Nabi, D. A. (2015). The effect of onset asynchrony
in audio visual speech and the uncanny valley in virtual characters. Int. J. Mech.
Robot. Syst. 2, 97–110. doi:10.1504/IJMRS.2015.068991

Watanabe, M., Ogawa, K., and Ishiguro, H. (2015). “Can androids be salespeople
in the real world?” in Proceedings of the ACM Conference Extended Abstracts on
Human Factors in Computing Systems, Seoul, 781–788.

Watanabe, T., Okubo, M., Nakashige, M., and Danbara, R. (2004). InterActor:
speech-driven embodied interactive actor. Int. J. Hum. Comput. Interact. 17,
43–60. doi:10.1207/s15327590ijhc1701_4

Yehia, H. C., Kuratate, T., and Vatikiotis-Bateson, E. (2002). Linking facial anima-
tion, head motion and speech acoustics. J. Phon. 30, 555–568. doi:10.1006/jpho.
2002.0165

Yoshikawa, M., Matsumoto, Y., Sumitani, M., and Ishiguro, H. (2011). “Develop-
ment of an android robot for psychological support in medical and welfare
fields,” in Proceedings of the 2011 IEEE International Conference on Robotics and
Biomimetics, Phuket, 2378–2383.

Zafar, H., Nordh, E., and Eriksson, P.-O. (2000). Temporal coordination between
mandibular and head-neck movements during jaw opening-closing tasks in
man. Arch. Oral Biol. 45, 675–682. doi:10.1016/S0003-9969(00)00032-7

Zafar, H., Nordh, E., and Eriksson, P.-O. (2002). Spatiotemporal consistency of
human mandibular and head-neck movement trajectories during jaw opening-
closing tasks. Exp. Brain Res. 146, 70–76. doi:10.1007/s00221-002-1157-y

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Sakai, Minato, Ishi and Ishiguro. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4914

https://doi.org/10.1177/0278364913490533
https://doi.org/10.1016/j.humov.2011.05.001
https://doi.org/10.1093/ietisy/e88-d.3.481
https://doi.org/10.1093/ietisy/e88-d.3.481
https://doi.org/10.1007/s11042-013-1604-8
https://doi.org/10.5898/JHRI.2.1.Kondo
https://doi.org/10.1016/S0191-8869(96)00148-1
https://doi.org/10.1109/TVCG.2012.74
https://doi.org/10.1016/j.ergon.2006.06.008
https://doi.org/10.1016/S0001-4575(99)00085-8
https://doi.org/10.1097/PSY.0b013e3181a2515c
https://doi.org/10.1097/PSY.0b013e3181a2515c
https://doi.org/10.1016/j.csl.2007.06.001
https://doi.org/10.1002/scj.20532
https://doi.org/10.1016/j.cognition.2013.11.001
https://doi.org/10.1007/s12369-014-0269-4
https://doi.org/10.1037/h0077714
https://doi.org/10.1136/jnnp.17.3.216
https://doi.org/10.1007/s12369-011-0124-9
https://doi.org/10.1109/TPAMI.2007.70797
https://doi.org/10.1504/IJMRS.2015.068991
https://doi.org/10.1207/s15327590ijhc1701_4
https://doi.org/10.1006/jpho.2002.0165
https://doi.org/10.1006/jpho.2002.0165
https://doi.org/10.1016/S0003-9969(00)00032-7
https://doi.org/10.1007/s00221-002-1157-y
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Novel Speech Motion Generation by Modeling Dynamics of Human Speech Production
	1. Introduction
	2. Related Works
	3. Relations Between Prosodic Features and Head Motions
	3.1. Basic Idea of Generation Model
	3.2. Experimental Setup
	3.3. Results

	4. Speech-Driven Trunk Motion Generation
	4.1. Generating Smooth Motion from Prosodic Features
	4.2. Head-Motion Generation Based on Spring-Damper Model
	4.3. Prosodic Information Extraction
	4.4. Trunk Motion Generation
	4.5. Improvement of the Model

	5. Evaluation of Proposed System
	5.1. Experimental Setup
	5.2. Evaluation Measurements
	5.3. Results
	5.4. Discussion

	6. Evaluation of Capability of Emotional Expression
	6.1. Purpose of Experiment
	6.2. Experimental Setup
	6.3. Experimental Conditions and Measurements
	6.4. Results
	6.5. Discussion

	7. Future Works
	8. Conclusion
	Ethics Statement
	Author Contributions
	Funding
	References


