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The total knowledge contained within a collective supersedes the knowledge of even
its most intelligent member. Yet the collective knowledge will remain inaccessible to us
unless we are able to find efficient knowledge aggregation methods that produce reliable
decisions based on the behavior or opinions of the collective’s members. It is often stated
that simple averaging of a pool of opinions is a good and in many cases the optimal
way to extract knowledge from a crowd. The method of averaging has been applied to
analysis of decision-making in very different fields, such as forecasting, collective animal
behavior, individual psychology, and machine learning. Two mathematical theorems,
Condorcet’s theorem and Jensen’s inequality, provide a general theoretical justification for
the averaging procedure. Yet the necessary conditions which guarantee the applicability
of these theorems are often not met in practice. Under such circumstances, averaging can
lead to suboptimal and sometimes very poor performance. Practitioners in many different
fields have independently developed procedures to counteract the failures of averaging.
We review such knowledge aggregation procedures and interpret the methods in the light
of a statistical decision theory framework to explain when their application is justified.
Our analysis indicates that in the ideal case, there should be a matching between the
aggregation procedure and the nature of the knowledge distribution, correlations, and
associated error costs. This leads us to explore how machine learning techniques can
be used to extract near-optimal decision rules in a data-driven manner. We end with
a discussion of open frontiers in the domain of knowledge aggregation and collective
intelligence in general.

Keywords: collective intelligence, collective behavior, majority voting rule, machine learning, decision-making,
statistical decision theory

1. INTRODUCTION

Decisions must be grounded on a good understanding of the state of the world (Green and Swets,
1988). Decision-makers build up an estimation of their current circumstances by combining cur-
rently available informationwith past knowledge (Kording andWolpert, 2004; Körding andWolpert,
2006). One source of information is the behavior or opinions of other agents (Dall et al., 2005;
Marshall, 2011). Decision-makers are, thus, often faced with the question of how to best integrate
information available from the crowd. Over the past 100 years, many studies have found that the
average group opinion often provides a remarkably good way to aggregate collective knowledge.

Collective knowledge is particularly beneficial under uncertainty. We look to the many rather
than the few when individual judgments turn out to be highly variable. Pooling opinions can
then improve the reliability of estimates by cancelation of independent errors (Surowiecki, 2004;
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Hong and Page, 2008; Sumpter, 2010;Watts, 2011). A seminal case
study of the field concerns the ox-weighting competition reported
by Galton (1907). In a county fair, visitors had the opportunity to
give their guesses regarding the weight of a certain ox. After the ox
had been slaughtered and weighed, Galton found that the average
opinion (1198lb) almost perfectly matched the true weight of the
ox (1197lb) despite the fact that individual opinions varied widely
(from below 900 to above 1,500). Numerous other studies have
reported similar effects for other types of sensory estimation tasks
as well as other types of problems like making economic forecasts
(Lorge et al., 1958; Treynor, 1987; Clemen, 1989; Krause et al.,
2011).

Sometimes, rather than estimating the numeric value of a quan-
tity, the group needs to choose the best option among a set of
alternatives. In such cases, the majority vote can be seen as the
analog of averaging. Themajority vote can produce gooddecisions
even when individual judgment is fallible (Hastie and Kameda,
2005). This case was mathematically analyzed in the 18th century
by Marquis de Condorcet (Condorcet, 1785; Boland, 1989). Con-
dorcet imagined a group of people voting on whether or not a
particular proposition is true. Condorcet thought individuals were
fallible—each individual had only a probability p of getting the
answer right. Condorcet found that if p is greater than 0.5 and
all individuals vote independently, then the probability that the
majority in a group of N people get the answer correct is higher
than p. In fact, asN grows larger, the probability of a correct group
decision rapidly approaches certainty. In other words, the group
outperforms the individual.

If the assumptions of Condorcet’s theorem are not satisfied,
then relying on the majority vote can be dramatically worse
than using the opinion of a single randomly selected individual
(Kuncheva et al., 2003). A similar argument can be made for
relying on the crowd average in the case of making quantitative
estimates. On the one hand, there are known sets of scenarios
where opinion averaging clearly helps (Galton, 1907; Surowiecki,
2004; Hong and Page, 2008). While we cannot guarantee the
convergence of the group average to the truth for the continuous
case, we can guarantee that the distance between the truth and
the average group opinion (the error) is always equal to or smaller
than the average error of an individual opinion (Larrick and Soll,
2006). In this sense, the group average is guaranteed to outperform
the individual.

More generally, we can measure the penalties induced by our
answers in more complex ways than by simply calculating the
distance between our answer and the truth. A mathematical tool
known as a cost function specifies the penalties we incur for
every possible combination of the truth and our answer which
may occur. As previous authors have emphasized, if we measure
our cost using convex mathematical functions, then, according
to Jensen’s inequality (Larrick et al., 2003; Kuczma and Gilányi,
2009), the crowd mean is expected to outperform a randomly
selected individual. In section 5 of our review, we will provide
the reader with an introduction to cost functions and Jensen’s
inequality and argue, as others have done (Taleb, 2013; LeCun
et al., 2015), that real-world cost functions are not restricted
to be convex. For non-convex cost functions, the guarantee of
Jensen’s inequality no longer holds, and the average group opinion

can perform worse in expectation than a randomly chosen indi-
vidual. Averaging methodologies, thus, sometimes lead to what
might be called negative collective intelligence, where individuals
outperform the collective.

When the majority vote and the average opinion fail or prove
suboptimal, we can resort to other means of opinion aggrega-
tion. We will review many alternatives including the full vote
procedure, opinion unbiasing, wisdom of the resistant, choosing
rather than averaging, and wisdom of select crowds (Soll and
Larrick, 2009; Ward et al., 2011; Mannes et al., 2014; Madiro-
las and de Polavieja, 2015; Whalen and Yeung, 2015), which
have all been successfully used to rescue collective wisdom when
more traditional methods proved unsuccessful. While the appli-
cability of these methods is more domain dependent than the
applicability of averaging strategies, practice has shown them to
yield sufficiently large improvements to make their application
a worthwhile endeavor. Throughout the article, we will review
the more recent methodologies in the light of signal detection
theory (Green and Swets, 1988) to explain when and why the
newer generation of methodologies are likely to work. We will
also provide new mathematical perspectives on old results such
as Condorcet theorem and explain how our mathematical treat-
ment facilitates the analysis of some simple extensions of classical
results.

Recent technological advances have also opened up the pos-
sibility of gathering very large datasets from which collective
wisdom can be extracted (Sun et al., 2017). Large datasets allow
researchers to consider and reliably test increasingly complex
methodologies of opinion aggregation. These models are often
represented as machine learning rules of opinion aggregation
(Dietterich, 2000; Rokach, 2010; Polikar, 2012). In the final part of
our article, we review how machine learning methods can expand
on more traditional heuristics to either verify the optimality of
existing heuristics or propose new heuristics in a data-driven
manner.

Before we proceed, it is important to note a few caveats. First,
there may be reasons to use (or not use) averaging procedures
which are unrelated to the problems of reducing uncertainty or
the search for an objective truth. For example, Conradt and Roper
(2003) have presented a theoretical treatment where the majority
vote emerges as a good solution to the problem of resolving
conflicts of interest within a group (such applications may in
turn suffer from other problems such as the absence of collective
rationality (List, 2011)). These issues remain outside the scope of
the present review.

Second, many natural and artificial systems from amoebas
(Reid et al., 2016) to humans (Moussaïd et al., 2010) need to
implement their decision rules through local interaction rules,
especially when the collectives have a decentralized structure.
We will occasionally make reference to how some algorithms
are implemented in distributed systems. But we are primarily
interested in what can in principle be achieved by optimal infor-
mation aggregators that have access to all the relevant information
in the collective. Hence, considerations relating to decentralized
implementations with local interactions are not our focus and also
remain mostly outside of the scope of the present review. We refer
the interested reader to dedicated review articles on this topic
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(Bonabeau et al., 1999; Couzin and Krause, 2003; Garnier et al.,
2007; Vicsek and Zafeiris, 2012; Valentini et al., 2017).

2. A BRIEF PRIMER ON STATISTICAL
DECISION THEORY

Webegin our review of collective intelligencewith a brief survey of
statistical decision theory (Green and Swets, 1988; Bishop, 2006;
Trimmer et al., 2011). Statistical decision theory studies how to
find good solutions to a diverse array of problems which span
the gamut from everyday sensory decision-making (e.g., using
both your eyes and your ears to localize the source of an external
event (Stein and Stanford, 2008)) all the way to rare technocratic
decision-making (e.g., using multiple risk metrics to evaluate the
disaster premiums on a public building). In all these cases, one
is faced with multiple useful but imperfect information sources
which one has to combine in order to arrive at the final decision. It
is easy to see how the aforementioned concepts relate to collective
decision-making. After all, an opinion is just another information
source, often useful, but sometimes fallible, and a group of opin-
ions is merely a term used to represent the multiplicity of such
information sources (Dall et al., 2005).

Statistical decision theory examines the factors that influence
how to arrive at a decision in a way that makes optimal use of all
the available information. In particular, it has highlighted three
critical factors which need to be examined for the purposes of
specifying an optimal decision rule. These relevant factors are:

1. the relation between an information source and the truth,
2. the relations that multiple information sources have between

each other,
3. the cost induced by errors (deviations from truth).

We will first give an informal explanation of each factor sepa-
rately and then cover applications to collective decision-making in
more detail.

The relation between an information source and the truth
speaks to how much information one variable carries about
another variable. The mathematical characterization is usually
done in terms of probability distributions and is perhapsmost eas-
ily understood in the context of categorical questions. We might
consider a scenario where a doctor is asked to judge 100 medical
images regarding whether or not they depict a cancerous mole.
Provided we have determined which images contain cancerous
moles through an independent means (perhaps by using histo-
logical techniques), we can calculate the accuracy of the doctor
by computing the percentage of cases where the doctor gave an
opinion coincidingwith the truth. This number acts as an estimate
of how likely it is for the doctor to give the correct diagnosis when
she is asked to evaluate a new case.

We can gain even further insight into the doctor’s performance
by examining the idea of confusion matrices (Green and Swets,
1988; Davis and Goadrich, 2006). In binary decisions, confusion
matrices measure two independent quantities. The first quantity
of interest is the probability of a false alarm. In our example, false
alarm probability characterizes how likely it is that a doctor will
regard a benign growth as a cancerous mole. The second quantity
of interest, known as the true positive rate, will specify the fraction

of all cancerous moles that our doctor was able to correctly
detect. True positives and false alarms are often examined from
the point of view of individual decision-makers. Knowledge of
these quantities allows agents to trade off different kinds of errors
(Green and Swets, 1988). The notions of false alarms and true
positives also turn out to facilitate the development ofmethods for
group decision-making as we will show below in our discussion of
collective threat detection (Wolf et al., 2013).

The methodology is applicable to continuous variables as well.
As an illustration, we might during some point in the day ask
random people on the street to estimate the time of day without
looking at the watch and then graph the distribution of opinions
to characterize the reliability of their time estimates under our
experimental conditions. It is typically useful to have some idea of
the reliability of our information sources because the knowledge
enables us to estimate the average quality of our final decision,
calculate the probability of a serious error or potentially rank
different sources in terms of reliability so as to prioritize more
reliable sources over less reliable ones (Green and Swets, 1988;
Tawn, 1988; Silver, 2012; Marshall et al., 2017). Even more inter-
estingly, it allows us to correct for systematic statistical biases
(Geman et al., 2008; Trimmer et al., 2011; Whalen and Yeung,
2015) and, thus, improve overall performance. Systematic biases,
if they are measurable, are often easily eliminated by a small
change in the decision rule, perhaps similar to how a man who
is consistently wrong is easily transformed to a useful assistant if
one always acts opposite to his advice.We invite the reader to look
at Figures 1A–C for a graphical illustration of these issues.

Just like opinions carry information regarding the truth, they
may also carry information about each other. As an everyday
example, let us look at a group of school children who have been
taught to eat or avoid certain types ofmushrooms from a common
textbook. Our scenario creates an interesting situation, where one
need not poll the entire class to know what all kids think. Asking
only a few students for their opinion on any particular mushroom
will tell us what the others likely think. Their opinions are now
generated through a shared underlyingmechanism (Barkow et al.,
1995) and may be said to have a mutual dependence.

Mutual dependencies between variables influence the opti-
mal decision rule in many ways. Pairs of variables that show a
mutual relation to each other are frequently studied using their
correlations (though there are other forms of dependencies not
captured by correlations). Correlations can impede the emergence
of collective intelligence (Bang and Frith, 2017). Thus, in the
social sciences, much effort has been devoted to methodologies
aimed at eliminating correlations and encouraging independence
(Janis, 1972; Myers and Lamm, 1976; Kahneman, 2011), but we
will review situationswhere correlations boost group performance
as well. Interestingly, while it is true that if we are using an
optimal decision rule, then on average, more information can
only improve our performance or leave it at the same level, this
conclusion does not hold for suboptimal decision rules. In such
cases, extra information can actually decrease the performance
(see section 4). Therefore, correlations and dependencies within
opinion pools are well worth studying. Figures 1D–F illustrates
the diverse forms which inter-individual opinion dependencies
may take.
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FIGURE 1 | The three factors that influence aggregation rules. (A–C): the relationship between individual opinions and the truth. Blue curves show group opinion
distributions, red lines mark the location of the truth, and green lines mark the average group opinion. (A) A low bias but high variance distribution. (B) A high bias,
low variance distribution. (C) A biased distribution with fat tails marked by the slower decay of the probability distribution away from the mean. (D–F) The relationship
between the opinions of two individuals. (D) Uncorrelated opinions. (E) Negatively correlated opinions. (F) A complex dependence between two individual’s opinions.
(G–I) Various cost functions. (G) A convex cost function (see Section 5 and Appendix A1.1–1.2 for more extended discussions). (H,I) Two non-convex cost functions.
In order to illustrate the property of convexity, we have also intersected each cost function with a red line. See section 5 for a further explanation.

After we have determined the relationship between the truth
and our information sources as well as the information that the
opinions provide about each other, we have all the necessary
knowledge to calculate the probability distribution of the truth.
Yet knowing the likely values of the truth alone will not be suffi-
cient. Before we are able to produce a final estimate, we need to
consider the cost of errors (Green and Swets, 1988). We need a
mathematical rule specifying how much cost is incurred by all the
various different deviations from the truth whichmay occur when
we make an error. A more extended definition and discussion of
cost functions will follow in section 5. At this point, the reader
might gain a quick intuition into the topic by examining graphical
illustrations of various cost functions in Figures 1G,H.

Cost functions are typically application dependent, but in aca-
demic papers, the most commonly used cost functions seem to

be the mean squared error and the mean absolute deviation. The
cost function has an important influence on the final decision rule.
For example, if errors are penalized according to their absolute
value, then an optimal expected outcome is achieved if we give
as our answer the median of our probability distribution, whereas
in the case of the squared error cost function, we should produce
the mean of our probability distribution as final answer (Bishop,
2006). As the cost function changes, so changes our decision rule
as well. It will turn out that certain cost functions will lead us away
from averaging methodologies toward very different decision
rules.

Throughout the review, we will make references to the afore-
mentioned three concepts of statistical decision theory and how
they have informed the design of new methods for knowledge
aggregation. To help structure our review, we have grouped
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together methods into subsections according to which factor is
most relevant for understanding the aggregation methods, but
since ideally an aggregation procedure will make use of all three
concepts, a strict separation has not been maintained and all con-
cepts will be relevant to some degree in all subsequent chapters.

3. THE RELATIONSHIP BETWEEN
INDIVIDUAL OPINIONS AND THE TRUTH

In decentralized systems, individual agents may possess valuable
information about many different aspects of the environment.
Ants or bees know the locations of most promising food sources,
humans know facts of history, and robots know how to solve
certain tasks. But the knowledge of individual agents is usually
imperfect to some degree. For the purposes of decision-making
and data aggregation, it is useful to have some kind of quantitative
characterization of the knowledge of individual agents. Probability
distributions and empirical histograms (Rudemo, 1982) are a con-
venient means to characterize the expected knowledge possessed
by a randomly selected individual.

If the truth is known and we have a way to systematically
elicit the opinions of random members in a population, then
constructing opinion histograms is technically straightforward.
Three key characteristics of the empirical histogram are known
to be very important for data aggregation: the bias, the variance,
and the shape of the distribution (Geman et al., 2008; Hong and
Page, 2008). The bias measures the difference between the average
group opinion and the truth. The smaller the bias, the more
accurate is the group. The variance characterizes the spread of
values within the group. If group member opinions have large
variance, then we need to poll many people before we gain a good
measure of the average group opinion (see Appendix A1.3 for
formalmathematical definitions of above terms andFigures 1A–C
for a pictorial explanation).

The shape of the distribution is a more complicated concept.
Many empirical distributions do not have a shape that is eas-
ily characterized in words or compact algebraic expressions. If
one is lucky enough to find a compact characterization of the
distribution it can greatly improve the practical performance of
wisdom of the crowd methods (Lorenz et al., 2011; Madirolas
and de Polavieja, 2015). In the absence of an explicit description
of the distribution, it is helpful to look at qualitative features
such as the presence or absence of fat tails. Distributions with fat
tails show strong deviations from the Gaussian distribution and
are distinguished by unusually frequent observation of very large
outliers (Taleb, 2013).

3.1. Leveraging Information about Biases
and Shapes
Each of the abovementioned features of the empirical distribution
can be leveraged to improve group intelligence. We begin with
biases. Biases on individual questions are not very helpful per se.
When those same biases reliably recur across questions, they
become useful. The minds of humans and animals make system-
atic errors of estimation and decision-making which ultimately
stem from our sensory and cognitive architecture (Tversky and
Kahneman, 1974; Barkow et al., 1995). These biases can also affect

crowd estimates (Simmons et al., 2011). Whalen made use of
the concept of biases for improving crowd estimates of expected
movie gross revenues (Whalen and Yeung, 2015). Whalen began
by asking people to forecast the gross revenues of various movies.
When he graphed crowd averages against the truth an orderly
pattern became apparent. Crowds systematically underestimated
the revenues of all movies. The bias even appeared greater for
higher grossing movies. The remedy to the problem was straight-
forward—crowd estimates needed to be adjusted to higher values.
The up-weighting procedure considerably increased crowd accu-
racy on a set of hold-out questionswhichwere not used to estimate
the bias.

Another important practical use case of biases concerns crowd
forecasting of probability distributions. Humans systemically
underestimate the probability of high probability events as well
as overestimating the probability of low probability events (Kah-
neman and Tversky, 1979). Human crowd predictions show sim-
ilar biases and a debiasing transformation can then be used to
improve the accuracy of crowd probability predictions (Ungar
et al., 2012). A related method uses opinion trimming to improve
the calibration of probability forecasts (Jose et al., 2014).

Similar to the way knowledge about biases helps design better
aggregation methods, knowledge about the shape of the distribu-
tion is critical for designing the best knowledge integration tech-
niques. In many real datasets, varying expertise levels deform the
distribution of opinions from a normal distribution to a fat-tailed
distribution (Galton, 1907; Yaniv and Milyavsky, 2007; Lorenz
et al., 2011). Fat-tailed distributions generate more frequent out-
liers that have large effects on estimating the mean when using
classical statistical procedures. When data are generated from a
fat-tailed process, it is better to use robust statistical estimation
methods. A useful technique for estimating the mean involves
leaving out a certain percentage of the most extreme observations
(Rothenberg et al., 1964). Pruning away the outliers may improve
wisdom of the crowd estimates (Yaniv and Milyavsky, 2007; Jose
and Winkler, 2008). One particular type of distribution called the
log-normal distribution even has a convenient estimator known as
the geometric mean which can be very effective as an estimation
procedure for datasets conforming to the distribution.

3.2. Individuality and Expertise
Previously, we treated all members of the crowd as identical
information carriers. This is generally not the case. Sources of
information may be distinguished from one another by their type,
historical accuracy, or some other characteristic. When informa-
tion is available regarding the reliability of sources, a weighted
arithmetic mean typically works better than simple averaging
(Silver, 2012; Budescu and Chen, 2015; Marshall et al., 2017). For
example, sites aggregating independent polls produce their final
predictions by weighting the independent polls proportionally to
the number of participants in each poll, because, all other things
being equal, larger polls are more reliable (Silver, 2012).

In the field of multi-agent intelligence, individuals are typically
broadly similar, but may nevertheless have some individual char-
acteristics. One particularly frequently explored topic concerns
analysis of historical accuracy in order to improve future predic-
tive power. Historical track records are, for example, used to form

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 565

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Laan et al. Collective Wisdom when Group Mean Is Wrong

smaller but better informed subgroups. Having a subgroup rather
than a single expert allows the averaging property to stabilize
group estimates whilst avoiding the systematic biases which often
plague amateur opinions. Mannes et al. (2014) have studied the
performance of select crowds of experts on an extensive collection
of 50 datasets. Experts were first ranked relative to past perfor-
mance and subsequently, the future predictions of either thewhole
crowd, the best member of the crowd or a collection of the best
5 members of the crowd (the select crowd) were compared with
each other. The select crowdmethod systematically outperformed
other methods of knowledge aggregation.

In another study (Goldstein et al., 2014), nearly 100,000 thou-
sand online fantasy football players were ranked in order of
past performance. The investigators then formed virtual random
subgroups which varied in size and the amount of experts they
contained. The behavior of the subgroups was used to predict
which players will perform best in English Premier League games.
Analysis indicated that small groups of 10–100 top performers
clearly out-competed larger crowds where expert influence was
diluted, thus showing the benefits of taking expertise into account.
In general, following the experts is expected to be beneficial if we
have both good track records and there is a wide dispersion in
individual competence levels, while for relatively uniform crowds
averaging methods perform as well or better (Katsikopoulos and
King, 2010).

When extensive historical records are missing, experimental
manipulations have been invented to tease out the presence of
expertise. One such strategy is known as the wisdom of the resis-
tant (Madirolas and de Polavieja, 2015). Wisdom of the resistant
exploits humans’ tendency to shift their opinion in response to
social information if there is private uncertainty. The natural
expectation is for people with more accurate information to have
less private uncertainty and to be more resistant to social influ-
ence. Wisdom of the resistant methodology consists of a two-
part procedure which takes advantage of this hypothesis about
human microbehavior. In the protocol, people’s private opinions
are elicited first and they are subsequently provided with social
information in the form of a list of guesses or their mean from
other participants to observe how subjects shift their opinion in
response to new information. Subjects are ranked in order of
increasing social responsiveness and a subgroup with the least
flexible opinions is used to calculate a new estimate for the
quantity of interest (the exact size of the subgroup is calculated
using a p-value based statistical technique so as to still make as
much use of the power of averaging as possible). In line with
theoretical expectations, the new estimate often improves relative
to the wisdom of the crowd (Madirolas and de Polavieja, 2015).

Interestingly, several popularmodels of decentralized collective
movement and decision-making use rules which spontaneously
allow the more socially intransigent individuals to have a dispro-
portionately large effect on aggregate group decisions (Couzin
et al., 2005; Becker et al., 2017). Natural collectives might, thus,
implicitly make use of similar methodologies, although the com-
putation implemented by local rules oriented algorithms is more
context dependent (Couzin et al., 2011).

A methodology similar to wisdom of the resistant was recently
proposed (Prelec et al., 2017), which asked subjects to predict both

the correct answer and the answer given by the majority. The final
group decisionwas produced by selecting an answerwhich proved
surprisingly popular (more people chose this answer thanwas pre-
dicted by the crowd). Bothmethodologies leverage the presence of
an informed subgroup in the collective and they provide means of
identifying informed subgroups without historical track records.

Many of the problems where crowd wisdom is most needed
concern areas where there are no known benchmarks or measures
of ground truth against which expertise could be evaluated. Under
such conditions, we can still determine individual expertise levels
by as light reformulation of the problem. Instead of finding the
answer to a single question, we again seek to answers to an
ensemble of questions. For question ensembles, recent advances in
machine learning can be brought to bear on the problem of jointly
estimating which answers are correct and who among the crowd
are likely to be the experts (Raykar et al., 2010).

As an example, consider the case of a crowd IQ test (Bachrach
et al., 2012), where many people fill out the same IQ test in
parallel. Here, a machine learning method known as a graphical
model is applied to the problem of collective decision-making.
The IQ test was an ensemble of 50 questions and IQ was linearly
related to the number of correct answers given by the decision-
maker (the IQ ranges measured on the test were from 60 to
140). Since individual IQ varies, we can characterize each person
with the probability of correctly answering a randomly chosen
question on the test, p. We cannot measure p directly, but since
the average probability of a correct decision is 75% and the crowd
majority will answer most questions correctly most of the time,
then we can get an estimate of p by looking at how well each
persons answers correlate with the majority vote. These estimated
p values can subsequently be used to refine our estimates of which
answers are correct, which in turn can be used to refine our
estimated p values further. Stepping through this iteration mul-
tiple times allows the algorithm to improve on the results of the
majority vote.

In the case of crowd IQ, a majority vote among 15 partici-
pants produces an average crowd IQ of approximately 115 points,
while the machine learning algorithm can be used to boost this
performance by a further 2–3 points. It is also interesting to see
that unlike what would be expected from Condorcet, crowd IQ
effectively plateaus after a group size of 30 is reached. A crowd
of 100 individuals has a joint IQ score of merely 120. Given that a
group of 100 individuals is very likely to contain a few people with
near-genius level (>135) IQ, the study also illustrates why it could
sometimes be well worth the effort to find an actual expert rather
than relying on the crowd.

Is it possible to utilize expertise if we poll the crowd on a
single question rather than on an ensemble? Empirical studies thus
far seem to be lacking. We have built a scenario that shows the
possibility of improving on the majority vote under some special
conditions.

Consider again a crowd of people choosing among some
options, where a fraction 1− kwill choose their answer randomly,
while a fraction of k experts know the correct answer. During
actual voting, we sample randomly N individuals from our very
large crowd and let them vote. If our crowdmembers face a choice
between two alternatives, then a random member of the crowd
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will be correct with probability p = k+ 1
2 (1 − k), and Condorcet

theorem will exactly describe how the crowd performance varies
as a function of N and p. Suppose we now expand the two-way
choice between the correct and incorrect alternative into an K-
way choice between the two original choices and K − 2 irrelevant
distractions. The final opinion is now chosen via a majority vote
between the two relevant alternatives while ignoring all opinions
landing on the distractions. In the appendix, we prove why the
performance of ourmethod forK > 2 is always strictly better than
the performance of traditional majority voting where the crowd
chooses only between 2 alternatives. As is apparent in Figure 2,
the improvements in performance are quite dramatic, particularly
for larger values of K and N. For very large values of K, the
performance of the method tends to the same formula as the
many-eyes model discussed in the next section (see Appendix A3
for proof).

The efficacy of this hypothetical procedure depends on how
closely our assumptions of human micro behavior match with our
model. This example merely illustrates that scenarios might be
constructed and empirically tested for specific problems which
allow investigators to significantly improve performance relative
to the Condorcet procedure. Perhaps the closest practical analog
to this idea is the use of trap questions in crowd sourcing to filter
out people who are insufficiently attentive to their task (Eickhoff
and De Vries, 2011).

4. THE ROLE OF DEPENDENCIES

Before we dive into themost catastrophic failures of averaging, it is
instructive to oncemore considerwhy averaging sometimesworks
very well. As described above, the majority vote was first analyzed

FIGURE 2 | Using irrelevant alternatives to improve group performance- a
simulation study. Group performance curves (calculated from a computer
simulation) as a function of the number of total alternatives K using our new
voting procedure. The percentage of experts in the crowd is fixed at 10% for
this plot. The different colors of curves illustrate how varying the group size N
influences group performance for a fixed K. The green curve gives a
comparison with Condorcet theorem (which is technically equivalent to the
case N= 2). See Appendix A3 for proof of why performance always exceeds
the Condorcet scenario.

in 18th century France, where Marquis de Condorcet proved his
famous theorem demonstrating the efficiency of majority voting
for groups composed of independent members (see Appendix
A1.4 for a mathematical description of Condorcet voting). A
crucial tenet underlying his theorem concerns the assumption of
independence (Condorcet, 1785; Boland, 1989; Sumpter, 2010).
Condorcet theorem requires more than just a group of individuals
who do not interact or influence each other in a social way. It
requires the jury members to be statistically independent. In a
group with statistically independent members, the vote of any
member on a particular issue does not carry any information
about how other members of the group voted. For the particular
case of Condorcet, if an individual has an expected probability p
of producing the correct answer, then we do not need to modify
our estimate of the value of p after we learn whether his partner
voted correctly or incorrectly.

In all the examples covered in the current section, the afore-
mentioned statistical independence property no longer holds and
learning any individual’s opinion now also requires us to modify
our estimate of his partners’ opinions. The lack of statistical inde-
pendence is not just a feature of our examples. Statistical indepen-
dence is difficult to guarantee in a species where most individuals
have a partially shared cultural background and all members
have a shared evolutionary background which constrains how our
senses and minds function (Barkow et al., 1995). Because of that
shared background, the opinions of non-interacting people are
also likely to be correlated in complex ways.

It is easy to notice some ways in which correlations retard col-
lective intelligence. Using the abovementioned example of school
children who all learned about mushrooms from a common text-
book, we can conclude that in such a scenario, the group essen-
tially behaves as a single person and no independent cancelation
of errors takes place (Bang and Frith, 2017). But the influence of
opinion dependencies is sometimes even more destructive. We
can imagine a group composed of a very large number ofmembers
who need to answer a series of questions. On any random ques-
tion, the probability of receiving a correct answer from a randomly
chosen group member is p. Similar to Kuncheva et al. (2003),
we can ask what is the worst possible performance of a group
with such properties. In the worst-case scenario, questions come
in two varieties: easy questions, where all group members know
the correct answer, and hard questions, where infinitesimally less
than 50% of the people know the correct answer. On the easy
questions, the majority vote will lead to a correct answer, while
on the hard questions, the majority vote will lead to incorrect
decisions. Intuitively, the 50–50 split on the hard questions will
ensure that the greatest possible number of correct votes will go
to waste since for those questions the correct individual votes do
not actually help the group’s performance. With such a split of
votes, the group will perform as poorly as possible for a given
individual level performance (see Kuncheva et al. (2003) for more
details). In order for the average person to have an accuracy of p,
the proportion of hard questions (t) must satisfy p = 1

2 (1− t) + t
which means that the group as a whole will be correct in only
2p− 1 fraction of cases. The result is quite surprising—a group
where the average individual is correct 75% of the times may as a
whole be correct in only 50% of the questions.
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Dependencies, however, are not necessarily detrimental to per-
formance. Aswe explain in the following two subsections, whether
or not correlations and dependencies help or hurt performance
depends on the problem at hand (Averbeck et al., 2006; Davis-
Stober et al., 2014) and, crucially, on the decision rule used to
process the available data. These general conclusions extend to the
domain of collective decision-making as well.

4.1. Correlations Can Improve
Performance in Voting Models
We begin our discussion of alternative voting procedures with
the important example of collective threat detection. Here, the
majority vote is eschewed in favor of a different decision rule. A
single escape response in a school of fish (Rosenthal et al., 2015) or
some-one yelling fire in a crowded room can transition the whole
collective into an escape response. A collective escape response
begins even though the senses of a vast majority detect nothing
wrong with their surroundings. The ability of an individual to
trigger a panic is treated very seriously. In the US legal system, one
of the few instructions which restricts freedom of speech concerns
the prohibition against falsely yelling fire in a crowded room.

Despite the slightly negative connotation of the word, panics
are a useful and adaptive phenomenon. For example, panics help
herding animals avoid predators after collective detection of a
predator (Boland, 2003). Improved collective predator detection
and evasion is known as the many-eyes hypothesis and it is
thought to be one of the main drivers behind the evolution of
cooperative group behavior (Roberts, 1996).

Why is it rational to ignore the many in favor of the few? Con-
sider a very simple probabilistic model to explain this behavior.
Let us think of a single agent as a probabilistic detector. Let us
also assume that the probability of the agent detecting a predator
where none is present is zero, in other words, there are no false
alarms. The probability of an animal detecting a predator when
one is in fact present is t. The value of t might be much less than
one, because detecting an approaching predator is hard unless
you happen to catch it in motion or look directly at it. Under the
conditions of our scenario, it is clear that other animals will begin
an escape only if a predator is in fact present. It follows that if
others are escaping, you should begin an escape as well.

For the sake of giving a concrete example (a formal mathemati-
cal treatment and derivation of all the formulas related to the panic
models which follow are found in the Appendix), let us analyze
the case where the probability of a predator attacking is 50 h case
makes up 50% of the total incidents. For t= 0.4, it gives a value of
p= 0.7 (Figure 3, value at group size= 1). For group sizes larger
than 1, themajority vote performs worse than this value because if
a predator is indeed attacking, only a minority of the animals will
detect the predator and themajority votes that there is no predator
present (Figure 3, black line). Themajority of a large group is then
only correct in the 50% of the cases in which there is no attack
(Figure 3, black curve for large groups).

In real collectives, the majority vote is rejected as a decision
rule, and even a single detection by a single member is enough
to alert the whole group to the danger. Under such a strategy, the
probability of a group correctly detecting a predator increases very
rapidly as the group size N increases as 1− 0.5(1− t)N (Figure 3,

FIGURE 3 | Following the informed minority vs. majority voting. The red curve
plots the percent of correct threat assessment as a function of group size for
the optimal detection (many eyes) model, where even detection by a single
individual can trigger a collective response. The black curve illustrates how
performance would change with group size if animals used the majority vote.
The green curve plots the performance of a crowd of independent individuals
with same individual competence as for the many-eyes model. See main text
for details and Appendix A2 for the mathematical derivation of the three lines.

red curve; see Ward et al. (2011) for use of the same expression,
known as many-eyes model). The group then detects a predator
much more efficiently than if it was relying on the majority.

What would the performance of the group be like if the animals
were all statistically independent from each other while retaining
the same average individual performance as in the many-eyes
model. Now, instead of analyzing the majority decision for the no
attack and attack cases separately, we simply plug the probability
p= 0.7 into the Condorcet majority formula (Figure 3, green
curve). The plot clearly shows the superiority of the many-eyes
model over the independent group. Inter-animal dependencies
have increased group intelligence.

The idea of harnessing correlations to increase group perfor-
mance appears rarely discussed in the voting literature. For exam-
ple, a recent comprehensive review of group decision-making
and cognitive biases in humans had an extensive discussion of
how inter-individual correlations canhurt groupperformance and
the ways in which encouraging diversity helps overcome some
of the problems (Bang and Frith, 2017). Yet the positive side of
correlations and how theymay help performance was not covered.
Likewise, in another paper on fish decision-making, quorumdeci-
sion rules were compared against Condorcet’s rule as if it was the
optimal possible decision rule (Sumpter et al., 2008), even though
other rules which account for potential correlations are capable of
producing better group performance.

It is also important to note that in the case of applying the
majority vote to estimate the presence of a threat, none of the rea-
sons usually provided to explain away the failures of the majority
vote apply (Surowiecki, 2004; Kahneman, 2011; Bang and Frith,
2017). The initial votes could be cast completely independently
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(without social interaction) and each new vote could add diverse
and valuable new information to the pool of knowledge and yet
the majority vote would still fail. The insight here is that the
majority vote is inappropriate because it does not match with the
distribution of knowledge across the collective: a minority has
the relevant information about the presence of a predator.

If we examine Figure 3 more carefully, we see a region corre-
sponding to large group sizes (N > 45), where themajority vote for
the independent group and the panicmodel both give near-perfect
performance (though the panicmodel always strictly outperforms
the independencemodel for allN > 1, seeAppendixA3 for proof).
It is, therefore, natural to wonder whether encouraging indepen-
dence might be a useful practical rule of thumb if one is sure to be
dealing with very large groups.

The independence-focused line of reasoning runs into diffi-
culty when one considers the costs necessary to make animals
in the group perfectly independent. To guarantee statistical inde-
pendence, it is not sufficient to merely make the animals in our
group weakly interacting. The correlations originate because all
animals experience threat or safety simultaneously. Correlations
only disappear when the probability of any individual making a
mistake is equal in both the threat and the no threat scenario.
Any time, the above condition fails to hold, correlations appear,
which makes it clear why establishing perfect independence is a
precarious task likely to fail in the complexity of the real world. By
contrast, the panic model is a robust decision rule, stable against
variations in probabilities and guaranteed to give a better than
independent performance for small group sizes. It, thus, becomes
more apparent why natural systems have preferred to adapt to
and even encourage correlations rather than fight to establish
independence.

We note that even for the many-eyes model, in practice there is
usually a small probability of a false alarm, and field evidence from
ornithology demonstrates how animals can compensate against
rising false alarm rates by raising the threshold for the minimum
number of responding individuals necessary to trigger a panic
(Lima, 1995). We point the interested reader to Appendix A2 for
a mathematical treatment of the false alarm scenario.

The decision rule adopted by vigilant prey could be called a
“full vote.” In order to declare a situation safe, all individuals must
agree with the proposition. A similar rule has been rediscovered
in medical diagnostics. In medical diagnostics, some symptoms
such as chest pain are inherently ambiguous. Sudden chest pain
could signal quite a few possible conditions such as a heart attack,
acid reflux, a panic attack, or indigestion. In order to declare a
patient healthy, she must pass under the care of a cardiologist, a
gastro-enterologist, and a mental health professional. All experts
must declare a patient healthy before he can be released from
an examination. In the case of a panel of experts, their non-
overlapping domains of expertise help insure the effectiveness of
the full vote.

A similar idea has been implemented in the context of using
artificial neural networks (amachine learningmethod, see Section
6 for more details) to detect lung cancer in images of histological
sections (Zhou et al., 2002). An ensemble of detectors is trained
using a modified cost function which heavily penalizes individual
neural networks when they declare a section falsely malignant.

The training procedure makes false alarms rare, so the full vote
procedure can be used to detect cancer more efficiently than if the
networks had been stimulated to be maximally independent.

4.2. Correlations and Continuous Variables
In the case of averaging opinions about a continuous quantity,
correlations also have a profound effect on group performance.
The average error on a continuous averaging task is given by the
sum of the bias and the variance (Hong and Page, 2008). Variance
declines as we average the opinions of progressively larger pools
of opinions (Mannes, 2009). Correlations control how rapidly the
variance diminishes with group size. The speed of decrease is
slowest when correlations are positive. Finding conditions where
errors are independent helps speed up the decrease of variance.
The most rapid decrease occurs when correlations are negative
(Davis-Stober et al., 2014). For large negative correlations, the
errors in pairs of individuals almost exactly cancel and even a very
small group can function as well as a large crowd of independent
individuals. The benefits of negative correlations are exploited in a
machine learning technique termed negative correlation learning
(Liu and Yao, 1999).

Correlations can be leveraged most efficiently when we have
individual historical data. Personalized historical records enable
the researcher to estimate separate correlation coefficients for
every pair and compute the optimal weighting for every indi-
vidual opinion. The benefits of correlation-based weighting are
routinely applied in neural decoding procedures, where the crowd
is composed of groups neurons and opinions are replaced bymea-
surements of neural activity. Averbeck et al. (2006), for example,
study the errors induced in decoding if neural activity correla-
tions are ignored, and find that ignoring correlations generally
decreases the performance of decoders when compared to the
optimal decoder which takes the information present in correla-
tions into account. Similar to Davis-Stober et al. (2014) who study
correlated opinions, they find a range of situations where correla-
tions improve decoding accuracy as compared to independently
activating neurons.

5. THE ROLE OF COST FUNCTIONS

5.1. Measures of Intelligence
Collective intelligence is of course a partly empirical subject. After
the theoretical work of Condorcet, the next seminal work in the
academic history of wisdom of crowds comes from Galton, whose
work we briefly described in the introduction. The conclusion
of his study was that simple averaging of individual estimates is,
as an empirical matter, a more useful way to estimate quantities
than relying on faulty individual opinions. In addition to Galton’s
work, another classic study of crowd intelligence involved subjects
estimating the number of jelly beans or marbles contained in a
jar (Treynor, 1987; Krause et al., 2011; King et al., 2012). The
true number of beans is typically between 500 and 1,000, so exact
counting is not feasible for the subjects. If the crowd is larger than
50 individuals, the crowd median and/or mean opinion typically
comes within a few percent of the true value. The effect is even
somewhat independent of the sensory modality involved. In a
study of somatosensory perception, 56 children estimated the
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temperature of their class room. The average of their 56 guesses
deviated from the true value by just 0.4°(Lorge et al., 1958).

Galton and many others who followed gave empirical
demonstrations regarding the remarkable effectiveness of simple
averaging without any mathematical arguments as to why the
phenomenon occurs. Perhaps because the performance of
the crowd in these early studies was spectacularly good, there
was also a lack of explicit comparison to other ways of making
decisions. In more recent years, there has been more focus on the
failure of crowds. Many examples are known where crowds fail to
come close to the truth (Lorenz et al., 2011; Simmons et al., 2011;
Whalen and Yeung, 2015). Lorenz et al. (2011) report an average
crowd error of nearly 60% (relative to the truth) in a set of tasks
consisting of estimating various geographical and demographic
facts. In psychology, there is a rich literature on the heuristics
and biases utilized in human decision-making (Tversky and
Kahneman, 1974), which can also bias crowd estimates (Simmons
et al., 2011).

Examining collective performance in cases where the crowd
makes practically significant mistakes led to a need to perform
more explicit comparisons between different methodologies. It
is common to compare wisdom of crowd estimates with the
choosing strategy.

In the choosing strategy, we pick one opinion from the crowd
at random and use that opinion as our final estimate. To quantita-
tively compare averaging and choosing, we first measure the error
of a guess as error= |our guess− true value|, where |x| stands
for absolute value of any number x. To assess the impact of an
error, we also have to specify a cost function. A cost function is
a mathematical measure which specifies how damaging an error
is to overall performance. The smaller the overall cost, the better
the performance. Common cost functions found in the literature
are the absolute error (also called the mean absolute deviation)
and the squared error cost functions. If we are using the choosing
strategy, then the error will typically be highly variable from
person to person, because individual guesses are variable. In order
to compare the performance of the choosing strategy with the
performance of the crowd average opinion, we average the costs
of individual guesses and then compare the average cost with the
cost of the mean crowd opinion.

We illustrate the role of a cost function with a numerical
example. In an imaginary poll, we query four people about the
height of a person whose true height is 180 cm. The group
provides four estimates: 178, 180, 182, and 192 cm. The cor-
responding error values are |178− 180|= 2, |180− 180|= 0,
|182− 180|= 2, and |192− 180|= 12. The mean absolute devia-
tion cost is (2+ 0+ 2+ 12)/4= 4. Since the crowd mean is 183,
the crowd opinion induces a cost of 3 only. In this example,
averaging outperformed choosing. Similarly, for the squared error
cost function, the choosing strategy has an expected error of
(22 + 02 + 22 + 122)/4= 37, while the crowdmean causes an error
of (183− 180)2 = 9. The crowd mean again outperforms random
choice.

It has become common practice to emphasize the superiority
of wisdom of crowd estimates over the choosing strategy with per-
formancemeasured through use of themean absolute deviation or
the mean squared error cost function (Hong and Page, 2008; Soll

and Larrick, 2009; Manski, 2016). An unconscious reason behind
the popularity of the comparison might be that it will always
yield a result that casts collective wisdom in a favorable light. A
mathematical theorem known as Jensen’s inequality guarantees
the superiority of the average over the choosing strategy for all
convex cost functions. The mean squared error and the mean
absolute deviation are both examples of convex cost functions.

The exact definition of a convex function is rather technical
(see Appendix A1.1–1.2 for a formal definition of both convexity
and Jensen’s inequality), but we may gain some intuition into the
concept if we examine what happens if we intersect various cost
functions in Figures 1G–I with randomly drawn lines. For each
panel, if we focus on the relationship between the red line and
the blue curve in between the green dots, we see that for panel
G the red line is always above the blue curve, whereas for H and I,
the red line may be either above or below the blue line depending
on which region between the green dots we focus on. In fact, for
function G, the blue curve is always below the red line for any
possible red line we may think of as long as we focus on the region
that is between the two points where the particular line and the
curve intersect. It is this property that makes G a convex function
and allows us to guarantee that the group average error is always
smaller than the average individual error.

Some authors have elevated Jensen’s inequality and similar
mathematical theorems to the status of a principle which justi-
fies the effectiveness of collective intelligence (Surowiecki, 2004;
Larrick and Soll, 2006; Hong and Page, 2008). We hold our-
selves closer to the position of authors who have questioned these
and similar conclusions (Manski, 2016). Fundamentally, Jensen’s
inequality is merely a property of functions and numbers. We
might sample 100 random numbers from a computer and use
them to estimate the yearWinston Churchill died. If I measure my
performance using convex cost functions, then the average of my
sample will induce a lower cost than a choosing strategy. Should
I say that the collection of random numbers possesses collective
intelligence?

Furthermore, reporting collective performance on a single
question using a single numerical measure exposes the investiga-
tors to an unconscious threat of cherry-picking. Perhaps the good
performance of the crowd was simply an accidental coinciding of
the crowd opinion with the true value of one of the many possible
questions that many investigators have proposed to crowds over
the years.

Instead, we advocate the study of correlations on ensembles
of questions as was recently also done by Whalen and Yeung
(2015). We illustrate the procedure by reanalysis of a dataset from
the study by Yaniv and Milyavsky (2007), where students were
asked to estimate various historical dates. On Figure 4, we have
plotted the true values versus the wisdom of crowd estimates for
24 questions. Such an analysis gives a good visual overview of
the data. For example, it is immediately clear from the plot that
wisdom of crowd estimates are strongly correlated with the truth
across the ensemble and there is clearly knowledge present in the
collective.We find that on an average question, the crowd wisdom
missed the truth by nearly 30 years. On certain questions, the
crowd error was undetectable, while on others the crowd was off
by nearly 100 years.Overall, the collective performance is ofmixed
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FIGURE 4 | Wisdom of the crowd for historical dates. Mean of 50
independent opinions versus true values for 24 questions concerning
historical dates. The red line marks the ideal performance curve; real
performance frequently strongly deviates from that line. Data from Yaniv and
Milyavsky (2007).

quality, with excellent performance on some questions, mediocre
performance on others, and no clear systematic biases.

5.2. Beyond Convexity
Aside from the fact that Jensen’s inequality may be applied to any
collection of numbers, there is another problem with analysis of
collective performance as they are currently commonly carried
out. There is an exclusive focus on convex cost functions. Yet
many real-world cost functions are non-convex. In a history test,
problems will typically have only a single acceptable answer. A
person who believes the US became independent in 1770 will
receive zero points for his reply, just like a person who believes the
event took place in 1764, even though the first person was twice as
close to the truth. Similarly, an egg which was cooked for 40min
too long is not substantially better than an egg over-cooked for
120min as both are inedible and should induce similar costs for
the cook.

What happens to the performances of the averaging and the
choosing strategies when we change our cost from a convex to a
non-convex function? We will once again make use of our afore-
mentioned example of guessing heights. As our new cost function,
we will use a rule which gives a penalty one to all examples that
deviate from the truth by more than 1 cm and assigns a cost of 0
to answers which are less than 1 cm away from the truth. Our set
of opinions was 178, 180, 182, and 192 cmwith the true value lying
at 180 cm. In this case, the crowd mean has a penalty of 1, because
the crowd mean of 183 misses the true value of 180 by more than
1. Three out of four individual guesses also miss the truth by more
than a year, but one guess hits the truth exactly, so the average cost
of the choosing strategy is (1+ 0+ 1+ 1)/4= 0.75. In this case,
the crowd mean underperforms relative to the choosing strategy.
A similar effect results from using a cost function which penal-
izes guesses according to the square-root of their absolute error.
The square-root cost function penalizes larger errors more than
smaller errors, but the penalty grows progressively more slowly as

FIGURE 5 | Comparison of averaging and choosing strategies for different
cost functions. Cost incurred by the averaging strategy (red curve) and the
choosing strategy (blue curve) as a function of the location of the true value
for four different cost functions. The five opinion values on which the
performance is calculated: −1, −0.5, 0, 0.5, and 1. Quadratic cost is strictly
convex, and mean (red) is then always below choosing (blue). Absolute error
cost function is weakly convex, and mean (red) is then always below or equal
to choosing (blue). Square the third and fourth curves are neither convex nor
concave. The threshold cost function gives a cost of 0 if an opinion is closer
than 0.45 to the truth and a cost of 1 for all other values.

errors increase. The crowd mean has a cost of
√

183 − 180 = 1.7.
The choosing strategy has an expected cost of (

√
2+

√
0+

√
2+√

12)/4 = 1.6. The crowd mean incurred a higher expected cost
than a randomly chosen opinion. Our examples illustrate that the
best strategy for opinion aggregation is highly dependent on the
cost function.

A different way to visualize the same result would be to consider
the cost incurred by the same pool of opinions as the location of
the truth varies. In Figure 5, we consider the cost performance of
a fixed pool of 5 opinions (with values −1, −0.5, 0, 0.5, and 1) as
a function of the location of the true value. As can be seen from
the graph, convex cost functions such as the mean square error
and the mean absolute deviation produce a lower error when the
mean opinion is used independently of where the true value is
located. Non-convex functions such as themean square root of the
absolute deviation reveal a more complex picture. Sometimes it is
better to choose and sometimes it is better to average. No simple
optimal prescription is possible.

If the cost function is not convex, then Jensen’s inequality no
longer applies and averaging is not guaranteed to outperform
choosing. As our last two examples showed, the opposite might
be the case. In that light, it is intriguing to note that when humans
take advice from other people, they often opt for a choosing
strategy rather than an averaging strategy (Soll and Larrick, 2009).
This behavior has been seen as suboptimal (Yaniv, 2004; Mannes,
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2009; Soll and Larrick, 2009), but it may in fact be a rather rational
behavior. The human crowd often contains a substantial fraction
of experts who know the answers to certain questions while other
members of the crowd have less information about the question
at hand. If we assume that advice becomes beneficial only if it
reaches relatively close to the truth, then it becomes rational to
pick a randomopinion in the hopes of hitting expert advice, rather
than relying on the crowdmean, whichmight lie far from the truth
because of distortions by non-expert advice.

To analyze the problem more systematically, we have re-
examined an experiment fromYaniv andMilyavsky (2007), where
150 students were individually presented with questions about
when 24 prominent historical events took place. They were sub-
sequently provided with advice from two, four, or eight other
students. The students had the option of combining their initial
private opinion with further advice (the advice was anonymous
and was not presented in person) from other subjects. They had
financial incentives to provide maximally accurate answers in
both the individual and the advice-taking part of the experiment.
We found that after receiving anonymous advice, in approximately
70% of cases, subjects stayed with their initial private opinion or
chose the opinion of one particular adviser as their final answer.
In Figure 6, we plot the cumulative distribution of errors of the
students initial private estimates (red) and their revised opinions
after hearing advice (blue) from 2 (left), 4 (middle), or 8 advisers
(right). These may be compared against a strategy of averag-
ing the student opinion and all the advisory opinions received
(Figure 6, black). The distribution of errors indicates that students
adopt a strategy that produces a more frequent occurrence of
low error answers than the averaging strategy (though, of course,
as guaranteed by Jensen’s inequality, the mean absolute error of
the averaging strategy is lower than the choosing strategy and
the strategy adopted by the student population as a whole. The
aggregate gains of averaging with respect to squared errors mainly
originate from the reduced occurrence of extreme errors in the
averaging strategy).

It has been argued that durable real-world systems should
evolve to a point where costs must be concave in the region of
large errors as a robust design against large outliers (Taleb, 2013).
It is interesting to speculate that human advice-taking diverges
from the averaging strategy precisely because it takes advantage
of non-convexity. So far, advice taking on everyday tasks has been
understudied, possibly due to methodological difficulties. In the
future, it will be illuminating to compare performance of choosing
and averaging strategies on more naturalistic problems.

6. EMBRACING COMPLEXITY: A MACHINE
LEARNING APPROACH

Previous research has primarily emphasized how simple rules
of opinion aggregation can often produce remarkable gains in
accuracy on collective estimation tasks. Yet we have also shown
that such simple rules may fail in unexpected ways. We have
outlined many possible sources of failure, which tend to occur if
any of the following conditions are true:

1. The cost function is not convex.
2. The distribution of knowledge within the collective is inhomo-

geneous.
3. The pool of crowd opinions is not composed of statistically

independent estimates.
4. The distribution of opinions has fat tails.
5. The crowd has significant and systematic biases.

One way to deal with these pitfalls is to use domain knowl-
edge to design new estimation heuristics to compensate for the
deficiencies in simpler methods. This approach has been suc-
cessful and we have given several examples of their utility in
practical applications. But these new heuristics often lack the
mechanical simplicity of the averaging prescription and risk lack-
ing robustness against unaccounted factors of variation in crowd
characteristics.

FIGURE 6 | Errors in human advice-taking strategy compared to the averaging strategy. The cumulative distribution of errors of three advice-taking strategies for 2,
4, and 8 advisers. Red curve: initial subject opinion. Blue curve: subject opinions after hearing advice from 2 (left), 4 (middle), or 8 (right) randomly chosen fellows.
Black curve: averaging strategy, which calculates a final estimate mechanically by averaging a subjects initial opinion together with all advisers opinions. Data from
Yaniv and Milyavsky (2007).
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It is the issue of unaccounted characteristics which should be
most troubling to the theoreticians. It is easy to perform mathe-
matical analysis of simple models such as Condorcet voting, but
as we have previously shown, the confidence derived from such
theoretical guarantees has a false allure. Usually, we do not have
complete knowledge of all the complex statistical dependencies
that occur in the real world and, therefore, the behavior of simple
decision rules is liable to unpredictable in practice. The issue of
practical unpredictability motivates us to examine ways to create
collective intelligence in away thatmakesmore direct contact with
the idea of optimizing real-world performance.

An appealing way to deal with greater complexity is to rely
more on methodologies that incorporate complexity into their
foundations. Machine learning is capable of learning decision
aggregation rules directly from data and can be used to design
computational heuristics in a data-driven manner. It can be used
to either verify the optimality or near-optimality of known heuris-
tics on a given task or to design new aggregation methods from
scratch. While machine learning methods may on occasion be
less intuitive for the user, they come with performance guarantees
because they are inherently developed by optimizing performance
on real-world data. The black box nature is a necessary price
which one must pay for the ability to deal with arbitrarily complex
dependencies.

Neural networks are one class of machine learning methods
that allow the aforementioned procedure to be carried out auto-
matically (LeCun et al., 2015). A neural network is composed of
artificial neuron-like elements that transform input opinions into
an output estimate. If the researcher has access to a dataset where
the true value of the estimated quantity as well as the pool of crowd
opinions are known for many groups, then it is possible to find a
very close approximation of the optimal decision rule that brings
the input opinions into desired outputs.

We will next illustrate the application of neural network-based
methods for a simulated dataset, where we find the optimal deci-
sion rule in a data-driven manner, and we also apply the method
to a cancer dataset where we show that a network has a better
performance than the majority vote and previously proposed
heuristics.

In our hypothetical example, we consider a group of 30 people
that have repeatedly answered questions about historical dates. In
our simulated crowd, 50% of individuals will know the answer
approximately (their opinion will have a SD of ±0.1 around the
true value). The other 50% are less informed and present a bias
to lower values (mean bias −1± 0.2). Under this scenario, it
is intuitively clear that an optimal decision rule would look for
clusters within the pool of opinions and the network must also
learn to ignore the opinions coming from the lower cluster. We
examined whether a neural network would be able to learn a
similar decision rule entirely from data. For our scenario, the
crowdmean strategy had an average error of 0.50 whereas a neural
network trained on opinion groups was able to reduce the average
error to 0.04 (see Appendix A4 for details on training and network
architecture), thus demonstrating that neural networks can learn
useful approximations to reduce the average error.

Wehave also examinedwhether neural networks could improve
upon the performance of previously proposed heuristics on a skin

cancer classification dataset (Kurvers et al., 2016). In the dataset,
forty doctors had given their estimations and subjective confi-
dence scores (four point scale) on whether particular patients had
malignant melanoma by examining images of their skin lesions.
As in Kurvers et al. (2016), we used Youden’s index as a mea-
sure of accuracy, given by J= sensitivity+ specificity− 1, with
sensitivity defined as the proportion of positive cases correctly
evaluated and specificity defined as the proportion of negative
cases correctly evaluated. This measure weights equally sensitiv-
ity and specificity and it is, thus, insensitive to the unbalances
of a dataset (in this case, more cases without cancer than with
cancer). We then generated virtual groups of doctors and exam-
ined the accuracy of their aggregated judgments. If all doctors in
the group agreed on a diagnosis, their joint shared opinion was
used as the diagnosis. If there was disagreement, we compared
the performance of the following three heuristics for conflict
resolution:

1. Use the opinion of the more accurate doctor in the group
(“best”).

2. Use the opinion of the more confident doctor (“confident”).
3. Use the opinion held by the majority (“majority”).

In the “best” and “confident” heuristics, if the higher accuracy
or confidence was shared by more than one doctor, the majority
opinion within that subgroup was selected. If in spite of all the
selection rules, there still was a tie, 0.5 was added to the count of
correct answers and 0.5 to the mistakes.

We also fitted a neural network that was given as input the
historical accuracies of the doctors, their diagnosis on each case,
and their declared confidence scores. For any input, the output of
the network gave the probability of the given input being consis-
tent with a cancer diagnosis. If the probability exceeded 50%, then
the network output was counted as giving a cancer diagnosis. We
asked whether a network can find an aggregation decision rule
better than the heuristics. The network (a multilayer perceptron)
trained with backpropagation on 50% of the data. Another 25% of
the data were used as validation dataset. To minimize overfitting,
we used the early stopping procedure, where the weights of our
network are saved during every epoch of training and in our
final testing, we use the version of the weights which gave highest
performance on the validation dataset. Testing of the network was
done in the remaining 25% of the dataset. Figure 7A gives the
learning curve of one network on the test dataset depending on
the number of training epochs. As an example, for groups of five
doctors, we foundmeannetwork performance of J = 0.804 and SD
of 0.060. The different heuristics had the following performance
for the same data: 0.757± 0.060 (“best”), 0.767± 0.067 (“confi-
dent”), and 0.801± 0.061 (“majority”); see Figure 7B for mean
improvement of network over heuristics.

For groups of 2, 3, 5, and 7 doctors, we trained 50 networks
using different 50− 25− 25% partitions of the data into training,
validation, and test. We found that both the network and the
three heuristics proposed improved their performance over the
test cases for increasing group sizes (Figure 7C). The networks
not only were more accurate than the rest of the heuristics for
every group size (except against the majority voting for groups
of 3 doctors) but also consistently better in every single partition
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FIGURE 7 | Network learning how to combine the opinions and confidence scores of three doctors into a cancer/no cancer classification rule. (A) Example of the
training of one network for a particular partition of the data into 50% for training and 25% each for validation and test, for groups of 5 doctors. Shown is the evolution
of the performance for the test data (Youden’s index, J= sensitivity+ specificity−1) of the network (blue line), and the performance of the best doctor heuristic
(yellow line), the more confident heuristic (green line), and the majority heuristic (red line). (B) Mean improvement in Youden’s index of the network over the heuristics
for groups of 5 doctors. Error bars are SEM. (C) Average performance of network and heuristics over all the validation sets, for groups of 2, 3, 5, and 7 doctors.
Colors as in panel (A).

of the cases into training, validation, and test (“best” and “confi-
dent”: p< 10−5 for all group sizes; “majority”: p= 0.0098, 0.027
for n= 5, 7. Wilcoxon signed-rank test). Overall, the difference
between the optimal decision rule found by the network and the
majority rule is small in this dataset and another way to view the
results would be to say that the analysis through use of neural
networks gives the user confidence that the majority rule is near-
optimal for the present dataset. Note that wewere unable to extend
our analysis above the case of n= 7, because the permutation
procedure we used to create pseudo-groups contains progressively
greater overlaps for higher n since we are sampling from a limited
pool of 40 doctors, and the statistical independence of our pseudo-
groups is no longer guaranteed for larger n, which prevents reliable
calculation of p-values.

7. DISCUSSION

The collection ofmethodologies grouped under the umbrella term
wisdom of crowds (WOC) has found widespread application and
continues to generate new research at a considerable pace. As the
number of real-world domains where WOC methods have been
applied increases, researchers are beginning to appreciate that
each new domain requires considerable tuning of older methods
in order to reach optimal performance. Early focus on universal
simple strategies (Condorcet, 1785; Surowiecki, 2004; Hastie and
Kameda, 2005) has been replaced with a plethora of methods that
have sought to find a better match between the problem and the
solution and by doing so have shown increases in performance
relative to the averaging baseline (Goldstein et al., 2014; Budescu
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and Chen, 2015; Madirolas and de Polavieja, 2015; Whalen and
Yeung, 2015).

Many new avenues of research remain to be explored. Machine
learning tools and improved ability to gather data provides the
opportunity to learn more sophisticated WOC methods in a data-
driven fashion (Rokach, 2010; Bachrach et al., 2012; Polikar, 2012;
Sun et al., 2017). We are likely to learn much more about effec-
tive strategies of opinion aggregation through their widespread
adoption. It will also be important to explore whether machine
learning rules can be made intelligible to the end user. Tech-
niques such as grammatical evolution (O’Neil and Ryan, 2003),
symbolic regression (Schmidt and Lipson, 2009), and the use of
neural networks withmore constrained architecturesmay provide
a potential approach to the problem.

Hopefully, a synergistic interaction will also continue to take
place between the study of collective wisdom and the field of
swarm robotics, which seeks to find better ways to coordinate
the activities of small independent robots who work together
to achieve joint tasks (Bonabeau et al., 1999). One particular
area where synergy might be achieved concerns finding a better
integration between the methods of task allocation and consensus
achievement (Brambilla et al., 2013). It will be interesting to see
whether within-swarm task allocation methods could be com-
bined with methods of consensus achievement to simultaneously
encourage both diversity of expertise and cooperative action,
similar to how crowd intelligence methods benefit from context-
dependent reliance on experts (Zhou et al., 2002;Ward et al., 2011;
Goldstein et al., 2014). Similar ideas have already borne fruit in
the training of expert ensembles of neural networks (Zhou et al.,
2002).

Looking toward other unexplored directions, perhaps the least
explored avenue in the field of collective wisdom concerns the
formulation of the question itself. When human beings describe
their choices, they leave a lot of assumptions unstated (Kahneman,
2011). For example, both Alice and Mark may say that they enjoy
vacations in France, but once we specify that Mark spent his
time in museums while Alice spent her time in the mountains,
it becomes obvious that the phrase “liking France” means very
different things for the two people. This problemposes a challenge
for collective decision-making. Let us suppose that on a scale of
1–10, Mark and Alice give the following rating to his personal
experiences: hiking in France is 1(M), 7(A), museums in France
7(M), 1(A) and diving in Egypt: 5(M), 5(A). If Alice and Mark are
now planning a joint trip and decide just between going to France
or Egypt without beingmore specific, then theymight decide to go
to France. After all, if each spent all their time in France engaged in
their privately preferred activity, then the expected value of their
experience would be 7. But when they actually go to France, they
suddenly discover that their preferences conflict and whatever
activity they attempt as a group, their average enjoyment of France
only has a rating of 4, which would be lower than the joint rating
for Egypt.

Note that despite superficial similarity of our example to the
problems studied in the literature on social choice (Sumpter, 2010;
List, 2011), the dilemma here is in fact caused by an entirely
different phenomenon which is more psychological than mathe-
matical in nature. Humans make temporally local decisions based

on expected future plans. Sometimes those plans may be implicit
rather than explicit, which will lead to hidden conflict even if
the two parties appear in agreement at present moment. If the
formulation of the alternatives does not take this complexity into
account, thenwemay find ourselvesmaking suboptimal collective
decisions. One promising approach, known as the wiki-surveys
(Salganik and Levy, 2015), has opened up the formulation of
alternatives to the crowd as well. In wiki-surveys, responders are
allowed to not just rate alternatives but to provide new alternatives
as well, which presumably allows alternatives to be formulated in
a more naturalistic manner. On the theoretical side, an integra-
tion between the fields of reinforcement learning (which studies
temporally extended decision-making) and collective intelligence
may provide a fruitful theoretical framework in which to further
explore these problems (Biro et al., 2016).

Another potentially exciting and under-explored question con-
cerns research into howandwhy the distribution of humanknowl-
edge comes to have a variety of different classes of distributions in
different domains. Related to this, it is crucial to study the shaping
of collective knowledge as well. Social and educational policies
can presumably direct the distribution and development of human
expertise. It could be useful to examine what kind of policies
will be most cost-effective in facilitating group intelligence. For
some domains, the answer will probably rely on encouraging
wide and diverse participation (Page, 2008), whereas for other
domains, selective filtering and resource investment into a small
group of experts (Goldstein et al., 2014; Budescu and Chen, 2015)
might provide a more cost-effective way to increase collective
knowledge. As an example, we point the reader to the recent article
about reward schemes that encourage holding a correct minority
and how such schemes improve collective performance (Mann
and Helbing, 2017).

We attempted to demonstrate that far from being a mostly
solved problemwithwell-established standardmethodologies, the
field of collective intelligence is rather in a state of rapid innova-
tion, with new context-specific heuristics being rapidly developed
and many exciting questions remaining under explored. We hope
to have shown how to integrate currentmethodologies into a com-
mon framework, which can potentially further stimulate research
into the open problems on both the empirical and theoretical sides
as well.
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APPENDIX

1. Formal Definition of Key Mathematical
Terms
1.1. Convexity
A convex function of a variable x which we denote as f (x) with
derivative f (x)′ is convex if

f(x) ≥ f(y)′(x − y) + f(y), (A1)

for all closed intervals [x, y] (Kuczma and Gilányi, 2009).

1.2. Jensen’s Inequality
Let f (x) be a convex function of x and let p(x) be a probability dis-
tribution of the values of x. Jensen’s inequality states that (Kuczma
and Gilányi, 2009)

f(E(x)) ≤ E(f(x)). (A2)

Here, E is the expected value operator and the expectation is
with respect to probability distribution p(x).

1.3. Bias and Variance
Let p(x) be the probability distribution of some continuous vari-
able x. Samples from the distribution p(x) are used to estimate the
value of some quantity with the true value y. Let us first deal with
the case of simple averaging. If the mean of the distribution p(x)
is given as µ =

∫
xp(x)dx = E(x), then bias in given by b=µ − y

and the variance is given byσ2 =
∫

(x − µ)2p(x)dx (Geman et al.,
2008).

More generally, if we use an estimator g(x) to estimate the
value of y, then bias is given by the combination of equations
µ =

∫
g(x)p(x)dx and b=µ − y. The variance is given by σ2 =∫

(g(x) − µ)2p(x)dx. For quadratic cost function, the expected
squared error ϵ2 =E((g(x)− y)2) is given by the equation

ϵ2 = b2 + σ2. (A3)

The above equation makes it clear that low errors occur only
when both bias and variance are low.

1.4. Condorcet Voting
We consider a group of N individuals (N an odd number to
avoid ties), where each individual votes independently and has
probability p of producing the correct answer. The probability that
the majority vote produces a correct answer is given as:

p(correct) =
N∑

m=(N+1)/2

N!
m!(N − m)!

pm(1 − p)N−m. (A4)

The formula can be understood as a weighted sum of binomial
coefficients, where N!

m!(N−m)! counts the total number of distinct
ways to achieve m correct answers out N opinions and the term
pm(1− p)N−m calculates the probability of any individual occur-
rence with m correct answers. Condorcet theorem proves that if
p> 0.5, then p(correct) tends to 1 as N tends to infinity. Modern
proofs of the claim usually rely on the central limit theorem
(Sumpter, 2010), but with electronic computers it is also easy
to just calculate the numerical value of each term in the sum

and analyses are no longer restricted to focusing on asymptotic
behavior.

2. Derivation of the Many-Eyes Model
In the many-eyes model, a crowd of N individuals can only be
wrong if all N people fail to detect an approaching predator. The
probability of a single individual missing the predator (condi-
tioned on the predator being present) is given by (1− t). The
probability of all N individuals being wrong is (1− t)N. Since the
predator attacks in only 50% of the cases, then the rate of errors
is given by 0.5(1− t)N. Therefore, the rate of correct decisions for
the group is given by 1− 0.5(1− t)N.

Under the majority vote decision rule, the majority correctly
detects a predator only if the number of people detecting a
predator exceeds (N + 1)/2 (assuming odd N). The probability
of a correct detection if predator is present is given by y =

N∑
i=(N+1)/2

N!
(N−i)!i! t

i(1− t)N−i. In the 50% of cases where no preda-

tor attacks, the crowd is always correct. Therefore, the overall rate
of correct decisions in the case of applying majority vote to the
panic scenario is pcorrect = 0.5+ 0.5y (black curve in Figure 3). If
t< 0.5 then y tends to zero asN increases, whichmeans that pcorrect
tends to 0.5 at high N.

When we compare the many-eyes model with independent
Condorcet voting, we need to ensure that it is the group decision
mechanisms and correlation which cause the differences and that
expected individual performance is the same for bothmodels. The
probability of an individual being correct in the panic model is
p= p(attack)p(correct|attack)+ p(no attack)p(correct|no attack)
= 1

2 t + 1
21 = 1+t

2 , where the convention p(correct|x) stands for
the probability of making a correct decision under condition x.
To calculate the green curve in Figure 3, we ensured that p had
the same value for the red and the green curve and then applied
Condorcet theorem to that p value.

Let us now relax the assumption of no false alarms. We define
two probabilities, p1 and p2, which specify the probability of any
given individual thinking that it detected a predator for the case
of no predator present and for the case of a predator present,
respectively. In the left panel of Figure A1, we illustrate how
performance decays as we raise the value of p1 given that the group
continues to use the full vote procedure. As we can see, rising
values of p1 clearly diminish group accuracy, especially at large
group size values. The rate at which performance deteriorates may
be reduced if we adapt our decision threshold together with the
value of p1 and N. For any given scenario, the group now only
declares a predator present if the number of animals detecting the
predator is greater than some value T (the full vote corresponds to
the case T= 0), with T a function of N and p1.

If the threshold value was T, then the probability of a correct
decision was given as p(correct) = 1

2 sumP(T,N, p1) + 1
2 (1 −

sumP(T,N, p2)), where sumP(T,N, p) =
∑T

m=0
N!

m!(N−m)!p
m(1−

p)N−m. For the adaptive threshold method, the value of T was

calculated as T =
⌊(

N
ln 1−p1

1−p2

ln (1−p1)p2
(1−p2)p1

)⌋
, where N is again the group

size and ⌊x⌋ indicates the floor value of x. This expression for
T was derived from the condition that sumP(T, N, p1)> sumP
(T, N, p2).
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FIGURE A1 | The effect of false alarms. Left panel: The effect of varying false alarm probability p1 on performance of the full vote method (p2 was fixed at 0.3 for all
curves on the panel). Right panel: performance can be restored if we allow the decision threshold T to vary as group size N changes. Black curve demonstrates how
even with false alarm probability p1 = 0.05, we can rescue performance if we choose the optimal T for each N. The yellow curve gives the performance of the group if
all members were statistically independent (Condorcet) so as to show that small false alarm probabilities do not disrupt the ability to make gains as compared to the
independent agent scenario.

3. Modeling the Influence of Distracting
Alternatives
In this section, wemap both our distractermethod andCondorcet
voting onto a diffusion process. We then show that the distracter
scenario is a generalization of Condorcet theorem which also
guarantees higher performance for all values of N > 1 and K > 2.

Let us first restate our assumptions. Our decision-makers are
randomly sampled from an infinite crowd, where a fraction k
of individuals are experts who always vote correctly no matter
how many alternatives they face. The remaining fraction 1− k
of uninformed individuals each choose one option among the
K alternatives at random. The uninformed individuals choose
independently from each other. Out of the K alternatives, two
are credible candidates for the correct option while K − 2 are
distracting alternatives. Only the central decision-maker knows
which alternatives are the irrelevant distracters, the voters remain
ignorant of their existence.

During each round, we sample N individuals and have them
vote. After the vote, we discard all the opinions that landed on the
K − 2 distracting alternatives. Our final decision will be chosen
according to which of the two alternatives that we considered
realistic candidates for an answer received more votes. If both
alternatives receive equal support, then we toss a fair coin to
determine our final opinion.

First, it is clear that for the case of K = 2, the probability that
a randomly chosen individual gives the correct answer is p =
k + 1

2 (1 − k). The voting under this scenario is equivalent to
regular Condorcet voting since we have no irrelevant alternatives.
This scenario will act as our baseline. We now show that as we
increaseK to values larger than 2, we outperform this baseline (for
any value of N > 1).

We can view our voting procedure as a diffusion process.We are
interested in the value δx, which measures the difference between
the number of votes casted for the correct alternative relative to

the number of votes casted for the incorrect alternative. After N
votes have been cast, if δx> 0 then we have made the right choice.
If δx= 0, we choose correctly with probability 1

2 . Otherwise we
make a mistake.

During a single round of voting, δx acts as a random variable.
With probability k, we sample an expert and δx increases by 1. In
the 1− k cases, where we miss the expert, we have two mutually
exclusive alternatives. With probability 2

K (1 − k), we add to δx
a random variable s which has value 1 with probability 1

2 and
value −1 also with probability 1

2 . This corresponds to a case where
one of the uninformed individuals lands a vote among one of the
two credible alternatives. With probability K−2

K (1 − k), the value
of δx remains the same as the vote of an uninformed individual
lands on one of the distracters.

We can see that δx evolves as the sum of three mutually exclu-
sive variables: the signal variable, the noise variable and the neutral
variable. The probability of sampling the signal variable remains
the same for all values of K. But the probability of sampling the
noise variable decreases as a function ofK. This gives the intuition
why Condorcet scenario of K = 2 gives the worst performance. It
happens because the signal-to-noise ratio is at its lowest value. We
next give a more formal proof of our statements.

As can be seen from previous discussions, the probability of
sampling an expert’s opinions remains unchanged as K varies. In
what follows next, the values of k and N will be fixed. Therefore,
for all values of K, we can write

pw(K) =
N∑

qe=0
p(w|qe,K)p(qe), (A5)

where pw(K) is the overall probability of the group making an
incorrect decision for a fixed value of K, p(qe) is the probability
that a sample of N opinions will contain qe expert opinions, and
p(w|qe, K) gives the probability of making an incorrect decision
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given that the sample of N opinions contained qe experts. Note
that the quantity p(w|qe, K) depends on K.

The next step in our proof is to show that p(w|qe,
K= 2)≥ p(w|qe, K> 2) for all values of qe. Essentially, we
will show that no matter how many experts a particular sample
contained, adding more irrelevant alternatives always reduces
or leaves the probability of error the same. The conclusion then
follows immediately from considering equation (A2).

For K = 2 and qe, we know that the number of noise opinions
is fixed at qn =N − qe. Therefore, p(w|qe, K= 2)= p(w|qe,
qn =N − qe). For values of K larger than 2, the number of noise
variables for any given sample containing qe experts is not fixed,
but varies between 0 and N − qe depending on how many of
the variables were neutral variables because the opinions landed
among the irrelevant distracters. Therefore, for K > 2, we may
write

p(w|qe,K) =
N−qe∑
qn=0

p(qn|qe,K)p(w|qn, qe). (A6)

From equation (A3), we can see that the inequality p(w|qe,
K= 2)≥ p(w|qe, K> 2) holds as long as p(w|qn, qe) is a non-

decreasing function of qn since
N−qe∑
qn=0

p(qn|qe,K) = 1.

The last step of our proof is to show that p(w|qn, qe) is indeed a
non-decreasing function of qn. Let us compare the value of p(w|qn,
qe) with p(w|qn + 1, qe). We can write p(w|qn, qe) as

p(w|qn, qe) =
1
2
p(sn = −qe|qn) +

−qe−1∑
sn=−qn

p(sn|qn), (A7)

where sn is a random variable that is calculated as the sum of qn
randomly and independently sampled noise variables which each
take the values 1,−1with probability 0.5. This equation is a simple
application of the idea that in order to overturn the correct signal
induced by the qe experts, the qn noise variables must have a sum
equal to or lower than the value −qe. The term p(sn =− qe|qn)
contributes half its value because ties are broken by a coin toss.

We can relate p(w|qn, qe) to p(w|qn + 1, qe) by noting that in
any random sample, when moving from qn to qn + 1, we are
simply adding a number −1 or a number +1 to the value of sn
already present in the sum. If the value of sn was already lower
than −qe − 2, then the addition of even a +1 is not enough to
overwhelm the destructive influence of the noise. Also, if sn was
already higher than −qe + 2 then even sampling a −1 is not
enough to overturn the signal. Therefore, the only terms that
may have any effect concern the boundary cases of sn =− qe + 1,
sn =− qe, and sn =− qe − 1. Putting all this together,

p(w|qn + 1, qe) =
1
4
p(sn = −qe + 1|qn) +

1
2
p(sn = −qe|qn)

+
3
4
p(sn = −qe − 1|qn)

+
−qe−2∑
sn=−qn

p(sn|qn) = p(w|qn, qe)

+
1
4
p(sn = −qe + 1|qn)

− 1
4
p(sn = −qe − 1|qn). (A8)

We are left to examine the term 1
4p(sn = −qe+1|qn)− 1

4p(sn =
−qe − 1|qn), which turn out to be non-negative for all values
of qe, qn. If qe = 0, then the term is obviously zero because the
distribution of sn is symmetric and p(w|qn, qe)= p(w|qn + 1, qe).
A similar conclusion holds if qe > qn because then both proba-
bilities of the difference term are zero. The more interesting case
concerns 0< qe < qn + 1. In that case 1

4p(sn = −qe + 1|qn) >
1
4p(sn = −qe − 1|qn), because the distribution of sn peaks at
zero and decreasesmonotonically as sn decreases away from0. The
combination of the three cases gives us the proof that p(w|qn, qe)
is non-decreasing in qn which concludes our proof.

For the limit of K tends to infinity, we can give a surprising and
compact expression for how performance varies with group size.
For large K, nearly all uninformed opinions land on the distracter
alternatives. Therefore, the only way a mistake will occur is if no
experts happen to be selected into the group and the coin flip
favors the wrong alternative. The probability of such an event is
1
2 (1 − k)N and, therefore, the probability of getting the correct
answer is 1 − 1

2 (1 − k)N which is the same equation as we had
for the many-eyes model but with k replaced by t.

4. Training Neural Networks
The neural networks were trained in Tensorflow (Abadi et al.,
2016). For the first task, we used an input layer of size 30 and
two hidden layers of size 75 with rectified linear activation. The
cost function optimized was the mean square error. We created
a simulated dataset as described in main text with 5,000 training
examples. The network was trained with ADAM using learning
rate of 0.01.

For the case of doctor’s estimations of presence of skin cancer,
we used a dataset comprised of evaluations of 40 doctors on 108
different cases of potential melanomas from Kurvers et al. (2016).
We split these cases into 54 training, 27 validation, and 27 test
cases. For each groups size, we trained 50 different networks using
50 different randompartitions of the data into 54, 27, and 27 cases.

Accuracy of each doctor was determined computing her
Youden’s index (J= sensitivity+ specificity− 1) over the training
cases. We then produced all 780 combinations of 2 doctors, and
1,000 random combinations of 3, 5, and 7 doctors, and computed
the accuracy of each group using the different heuristics proposed
over the test cases. The performance of the heuristics for each
group size was then determined by averaging its value across all
groups.

To train each network, we generated 54 training instances
combining judgments, accuracies, and confidence ratings of each
random group on each particular case. For example, for groups
of 2 doctors each input was then composed of accuracy of first
doctor, confidence of first doctor, accuracy of second doctor, and
confidence of second doctor. Accuracies were multiplied by −1 if
the doctor had judged the case as negative. We used the training
cases to train the network and the validation cases to select the
state of the network that produced the best performance. Then
this particular state was applied to make predictions over the test
cases and to compare its performance with the heuristics applied
to the pairs.

The network architecture was different for each group size. For
groups of 2 and 3 doctors, two hidden layers were used; and for
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groups of 5 and 7, only one hidden layer was used. The size of each
layer was 250 for groups of 2, 5, and 7 doctors, and 100 for groups
of 3 doctors. All hidden layers had rectified linear activation. The
network was trained with ADAM using learning rate of 0.0001 for
groups of 2 doctors and 0.00001 for groups of 3, 5, and 7.

The cost function was selected to match the accuracy
measured by the Youden index. This index is of the form
J =TP/(TP+ FN)+TN/(TN+ FP)− 1, with TP standing for
true positives, FN for false negatives, TN for true negatives, and

FP for false positives. As the output of the network was the prob-
abilities p and 1− p that the case fed was a positive or a negative,
the expected value of the Youden’s index would be of the form

E[J] =
np∑
i=1

pi
np +

np+nn∑
i=np+1

1−pi
nn − 1, where np (nn) is the number of

positives (negatives) and the first (second) sum is over the positive
(negative) cases. The cost function optimizedwas then of the form
0.5(1−E[J]), which is 0 at themaximum expected Youden’s index
(E[J]= 1) and 1 at the minimum Youden’s index (E[J]=− 1).
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