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PastVision+: Thermovisual inference 
of recent Medicine intake by 
Detecting heated Objects and 
cooled lips
Martin Cooney* and Josef Bigun

Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden

This article addresses the problem of how a robot can infer what a person has done 
recently, with a focus on checking oral medicine intake in dementia patients. We present 
PastVision+, an approach showing how thermovisual cues in objects and humans can 
be leveraged to infer recent unobserved human–object interactions. Our expectation 
is that this approach can provide enhanced speed and robustness compared to exist-
ing methods, because our approach can draw inferences from single images without 
needing to wait to observe ongoing actions and can deal with short-lasting occlusions; 
when combined, we expect a potential improvement in accuracy due to the extra infor-
mation from knowing what a person has recently done. To evaluate our approach, we 
obtained some data in which an experimenter touched medicine packages and a glass 
of water to simulate intake of oral medicine, for a challenging scenario in which some 
touches were conducted in front of a warm background. Results were promising, with 
a detection accuracy of touched objects of 50% at the 15 s mark and 0% at the 60 s 
mark, and a detection accuracy of cooled lips of about 100 and 60% at the 15 s mark 
for cold and tepid water, respectively. Furthermore, we conducted a follow-up check for 
another challenging scenario in which some participants pretended to take medicine or 
otherwise touched a medicine package: accuracies of inferring object touches, mouth 
touches, and actions were 72.2, 80.3, and 58.3% initially, and 50.0, 81.7, and 50.0% 
at the 15 s mark, with a rate of 89.0% for person identification. The results suggested 
some areas in which further improvements would be possible, toward facilitating robot 
inference of human actions, in the context of medicine intake monitoring.

Keywords: thermovisual inference, touch detection, medicine intake, action recognition, monitoring, near past 
inference

1. inTrODUcTiOn

This article addresses the problem of how a robot can detect what a person has touched recently, 
with a focus on checking oral medicine intake in dementia patients.

Detecting recent touches would be useful because touch is a typical component of many human–
object interactions; moreover, knowing which objects have been touched allows inference into 
what actions have been conducted, which is an important requirement for robots to collaborate 
effectively with people (Vernon et al., 2016). For example, touches to a stove, door handle, or pill 
bottle can occur as a result of cooking, leaving one’s house, or taking medicine, all of which could 
potentially be dangerous for a person with dementia, if they forget to turn off the heat, lose their 
way, or make a mistake. Here, we focus on the latter problem of medicine adherence—whose 
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FigUre 1 | A simplified Petri net process model describing thermovisual 
inference of oral medicine intake: A robot can move to view medicine 
packages and a person’s lips, and infer that medicine intake might have 
taken place if both exhibit signs of recent touching.
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importance has been described in the literature (Osterberg and 
Blaschke, 2005) and which can be problematic for dementia 
patients who might not remember to take medicine—and in par-
ticular on oral medicination, which is a common administration 
route. Within this context, it is not always possible for a robot to 
observe people due to occlusions and other tasks the robot might 
be expected to do; thus, the capability to detect what a person 
has recently touched, from a few seconds to a few minutes ago, 
would be helpful.

Two kinds of touching typically take place during medicine 
intake: touches of a person’s hands to packaging to extract medi-
cine, and touches of a person’s mouth to medicine and liquids to 
carry out swallowing. To detect such intake autonomously, elec-
tronic pill dispensors are being used, which feature advantages 
such as simplicity and robustness to occlusions, and are more 
accurate than administering questionnaires. A downside is that 
pill dispensors can only detect if medicine has been removed, and 
not if a person has actually imbibed; i.e., the first, but not the 
second kind of touching. In our previous work, we proposed a 
different option involving thermovisual inference: namely, that a 
system could combine knowledge of where people have touched 
by detecting heat traces, and what touches signify by detecting 
objects, to infer recent human–object interactions (Cooney and 
Bigun, 2017). In the current work, we propose how this approach 
can be extended by also detecting cooling of a person’s lips, 
thereby detecting both kinds of touch occurring in medicine 
intake, as shown in Figure 1. A challenge was that it was unclear 
how an algorithm could be designed to detect such touches in a 
typical scenario in which both foreground and background can 
comprise regions of similar temperature, for several seconds after 
contact had occurred.

Based on this, the contribution of the current work is explor-
ing the problem of detecting recent touches to objects and people 
in the context of oral medicine intake:

•	 We propose an approach for touch detection on objects and 
humans, PastVision+, which uses some simplified features in 

combining object and facial landmark detection, to handle 
scenarios in which touched objects can be in front of a warm 
background.

•	 We provide a quantitative evaluation of our approach for touch 
detection, in terms of how long touches can be detected on 
objects and people by our algorithm; moreover we also demon-
strate performance of detecting some touches conducted by 
various people pretending to take medicine, while inferring 
actions and identifying individuals.

•	 We make freely available code and a small new dataset online 
at http://github.com/martincooney.

We believe that the resulting knowledge could be combined 
with existing approaches as a step toward enabling monitoring of 
medicine adherence by robots, thereby potentially contributing 
to the well-being of dementia patients.

2. MaTerials anD MeThODs

To detect touches on objects and humans, we proposed an 
approach depicted in Figure 2, implemented a rule-based version 
and a more automatic version of our algorithm, and conducted 
some exploratory tests.

2.1. Detecting Touches to Objects
The core concept of the proposed approach is described in the 
field of forensics by Locard’s exchange principle: “whenever two 
objects come into contact with one another, there is always a 
transfer … methods of detection may not be sensitive enough to 
demonstrate this, or the decay rate may be so rapid that all evi-
dence of transfer has vanished after a given time. Nonetheless, 
the transfer has taken place” (Ruffell and McKinley, 2005). In 
the current case, the property of interest being transferred is 
heat, which can be transferred through conduction, as well 
as through convection and radiation, in accordance with the 
second law of thermodynamics (Clausius, 1854): When a 
human touches cold objects, the objects become warmer, and 
the human becomes colder. Furthermore, after touching, heated 
objects cool in the surrounding air, returning to their original 
temperatures, whereas thermoregulation also works to restore 
human body temperatures. Throughout this time, the objects 
and human emit radiation as a function of their temperatures, 
which can be detected by sensors. Various equations can be used 
to gain some extra insight into this process. For example, flow of 
heat during conduction and convection depends on various fac-
tors such as contact pressure and surface properties, but can be 
approximately described via Newton’s law of cooling. As shown 
in equation 1, this states that thermal energy Q transferred is 
proportionate to a coefficient h, the heat transfer surface area 
A, and the temperature difference, and can be used to predict, 
e.g., when a heated object will reach a specific temperature. 
Furthermore, Wien’s displacement law in equation 2 indicates 
that objects at room temperature and people will mainly emit 
radiation in the long-wave infrared band which can be perceived 
by our camera, and can be used to check the predominant wave-
length, λ max, emitted by some object of interest at temperature T, 
where b is a constant.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://github.com/martincooney


FigUre 2 | PastVision+: process flow.

FigUre 3 | Object touch detection process flow for the rule-based version 
of our approach. Note: the automated version of our approach combines 
steps (e)–(h).
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Within this context, in previous work we investigated the 
first case above, of detecting heat traces on objects (Cooney and 
Bigun, 2017). A simplified context was assumed in which images 
could contain both humans and cool objects, but only in front of 
a cool background; based on this assumption, object detection 
was used to determine where in an image to look for heat traces, 
to ignore confounding heat sources such as nearby humans and 
thermal reflections.

In order to bring our approach a step closer to being used 
in the real world, we required a way to modify our approach so 
that this assumption would not be necessary. In particular, touch 
detection should also operate when an object is situated between 
the robot and a human. A challenge was that simply threshold-
ing to remove image regions at human skin temperature did not 
work. This is because humans typically wear clothes, and the 
surface of clothed body parts can be around the same tempera-
ture as touched objects. As an initial solution to the challenge, 
we adopted the extension shown in Figure  3, of our previous 
algorithm (see examples in Figures 4–5):

 1. Record an RGB and thermal image.
 2. Register the images using a simple mapping determined ahead 

of time.
 3. Detect objects within the RGB image; ignore objects which 

are not of interest for the application, such as dining tables, 
chairs, and sofas.

 4. For each region of interest containing an object, shrink the 
region slightly to avoid extra spaces.

 5. Per foreground region, compare the standard deviation (SD) 
to a parameter θ1, to ignore uniform areas unlikely to have 
been touched.

 6. Per foreground region, threshold to extract pixels with inten-
sity higher than the mean plus a parameter θ2.

 7. Per foreground region, find contours, to reject small noise 
with area less than θ3.
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FigUre 4 | An example of inference from single images in a simple case. (a) RGB image, (B) thermal image, (c) objects detected, with a few false positives and 
negatives, (D) initial mask image from bounding boxes to reduce noise, (e) thermal image with touched region and contour centroid detected, and (F) touched 
object identified.

FigUre 5 | A simple example of inference from a video, extracting heat traces and not humans, via thresholds, morphology, and a basic shape model for touching: 
(a) thermal image and (B) RGB image with heat traces drawn by the algorithm.
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 8. Per foreground region, calculate the arc length of the contour 
and surface to area ratio, to reject long thin contours with a 
surface to area ratio greater than θ4.

 9. Per foreground region, find the center of the touched region 
and set as the touched object the one with the least distance.

Registration in our case can be described by the linear 
transformations in equation  3, where (x′, y′) is a new aligned 
point derived from a point (x,y) in the original image, sx and 
sy are scaling parameters, tx and ty are translation parameters, 
and θ is a rotation parameter. Parameters were found by simply 
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viewing an overlay of the two image streams, visual and thermal, 
and pressing keys to alter parameters until images were aligned. 
Although more robust and complex approaches could be fol-
lowed, such as compensating for intrinsic parameters such as 
lens distortion and calibrating with a thermal mask held in front 
of a heat source (Vidas et al., 2013), we expected our approach 
would be sufficient to consummate our goal of obtaining some 
basic insight regarding the feasibility of thermovisual inference 
of medicine intake.
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The bounding boxes found as a result of object detection 
are used to exclude noise arising from thermal reflections and 
human heat. However, many objects such as medicine bottles are 
not rectangular and cannot be cleanly segmented via bounding 
boxes. For this, the bounding boxes are shrunk slightly. Also, 
the SD is checked to discard thermally uniform regions based 
on an expectation that touched objects will comprise touched 
and untouched regions differing in thermal intensity. The mean 
is used to find relatively warm areas within a region of interest 
based on the assumption that touched areas are typically warmer 
than untouched areas; using a mean to threshold instead of a fixed 
parameter is useful because heat traces cool over time and some 
objects can be warmer than others, e.g., due to warming by the 
sun or heat dissipated by electronic devices. Area and surface area 
are used to discard noisy small contours and long thin contours 
which can arise from the outlines of objects located in front of 
warm backgrounds, based on an assumption that touches with 
fingers and hands will tend to be a certain size and shape.1

For object detection, object classes and locations were calcu-
lated simultaneously using a single convolutional neural network 
with many layers trained on a mixture of detection and recogni-
tion data, in conjunction with some non-maximum suppression 
(Redmon et al., 2016). The architecture consisted of 24 convolu-
tion layers and 2 fully connected layers, with leaky rectified linear 
activation in all but the final layer, and output was optimized in 
regard to the sum of squared error.

Thus, we proposed an approach to deal with scenarios in 
which both humans and objects are visible to the system, using 
some common features in conjunction with object detection.

2.2. Detecting Touches to People
Touches to objects might not always be sufficient to infer what has 
been done. For example, a person with dementia could extract 
medicine from a package and forget to take it, or accidentally 
take someone else’s medicine. In the current article, we propose 
that additional insight can be drawn from also detecting the 
after-effects of touching on a human’s body. For example, cold or 

1 We also tried backprojection based on extracting a histogram from near the 
center of the bounding boxes but encountered difficulty with some objects such as 
packages which contained many different colors, transparent glasses, and reflective 
cups. Other approaches might be to model the shapes of certain objects, consider 
symmetry, or use snakes.

warm lips could indicate liquid intake, which is common for oral 
medicines such as pills and syrups, cold skin could result from 
applying cream, cold around the eyes could come from applying 
eye drops, a warm back could indicate sitting or reclining, and 
cold hands could indicate that some object-related action has 
been performed. Here we focus on a limited scenario involving 
just one indicator, cooling of the lips, as a start for exploration; 
also we note that a robot can move to seek to detect touches on 
objects or humans if they are not visible, but this is outside of the 
scope of the current article.

To detect lip cooling, our approach involved detecting facial 
landmarks and then computing some features from within 
regions of interest to find anomalies. To detect facial landmarks, 
faces were first detected by considering local gradient distribu-
tions over different scales and parts of an RGB image, from 
which regression functions were used to iteratively refine location 
estimates (King, 2009; Kazemi and Sullivan, 2014). Specifically, 
Histogram of Oriented Gradients (HOG) features were derived 
by finding gradient magnitude and orientation information for 
each pixel, gpi as in equation 4, forming histograms within image 
cells, normalizing over larger blocks, and feeding the descriptors 
to a Support Vector Machine classifier with decision function 
f(x), learned parameters αi and b, and a linear kernel K as in 
equation  5, where xi and yi are training data and labels. Then, 
a cascade of regressors was used to iteratively improve initial 
estimates of landmark locations as in equation 6, where ri is the 
ith regressor, I is the image, and Li is an estimate of the landmark 
locations based on regressors ri–1 to r0. Regressors were learned 
via gradient boosting by iteratively combining regression trees, as 
piecewise constant approximating functions, with splits greedily 
chosen from randomly generated candidates to minimize the 
sum of squared error.
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Some minor problems arose with facial landmark detection. 
For example, there was a delay in recording thermal and RGB 
images, which meant that sometimes when a person was moving 
quickly, faces detected in the RGB image did not match the facial 
region in the thermal image. To deal with this we implemented an 
Intersection over Union (IoU)-like metric to check that alignment 
was acceptable: a threshold on thermal pixel intensity was used 
in the vicinity of a detected face and the thermally found contour 
compared with a contour found from the landmarks detected in 
the RGB image, under the assumption that there would be noth-
ing else at the temperature of bare human skin directly behind 
a person’s face. Another problem was that sometimes a person’s 
chin was detected as a mouth. To deal with this we implemented 
a simple check on the length of the face using a threshold param-
eter. And, in some frames faces were not detected. For this we 
implemented some temporal smoothing, combining processing 
results for three frames instead of just one.

http://www.frontiersin.org/Robotics_and_AI
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TaBle 1 | Tools.

component Tool

Thermal data acquisition Pylepton
General image processing OpenCV
Object detection Darknet/YOLO
Facial landmark detection Dlib
Pattern recognition Scikit-learn
Thermal-visual sensing FLIR 80 × 60, 8–14 µm; standard small RGB camera
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From the facial landmarks, we computed some simple statis-
tics based on the intensities of the pixels within the lip region. In 
pretests we noticed problems when incorporating the inside of 
the mouth, which can be hot near folded tissue like the base of 
the tongue or cold due to saliva. Because people often open their 
mouths to talk, this area inside the lips was excluded.

In addition to touch action detection, cropped face rectangles 
were also classified to determine the identity of the person tak-
ing medicine. Local Binary Pattern Histograms were used as 
features, for robustness to global monotonic lighting changes. 
Binary codes were extracted by comparing the intensity of each 
pixel to that of its neighbors and then forming histograms within 
facial regions, which were again passed to a classifier as described 
in equation 5.

2.3. implementation Tools: software  
and hardware
To implement inference, various software and hardware tools 
were used, as summarized in Table 1.

The Pylepton library2 was used to access information from 
our thermal camera. OpenCV3 was used for general functions 
such as thresholding and finding contours. YOLO was used for 
object detection due to ease of use and speed (Redmon et  al., 
2016). The dlib library4 was used with OpenCV trained on the 
300-W face landmark dataset (Sagonas et  al., 2013) to detect 
facial landmarks, likewise due to ease of use and speed (King, 
2009). OpenCV (code by Philipp Wagner5) was used for face 
recognition to identify persons for simplicity, and data were 
prepared in the style of the AT&T Database of Faces, as small 
grayscale images in PGM format. Scikit-learn was used for clas-
sification in the automated version of our approach (Pedregosa 
et al., 2011).

For hardware, we used an off-the-shelf inexpensive thermal 
camera and RGB camera attached to a Raspberry Pi 3, and a 
remote desktop for processing. The thermal camera had a resolu-
tion of 80 × 60 which we felt was sufficient for our purpose and 
was designed to detect temperatures typically present in human 
environments and human bodies (8–14 μm). Some unoptimized 
code we wrote showing various data streams while record-
ing thermal, RGB, and time data ran at approximately 8.6  fps. 
Processing was conducted on a desktop with an i5 2400 CPU @ 
3.1 GHZ.

2 https://github.com/groupgets/pylepton.
3 http://opencv.org.
4 http://dlib.net/.
5 http://www.bytefish.de/dev/libfacerec/.

Thus, although our approach is not dependent on any of these 
tools—there are many options available for each component 
module—we found that they worked for our application.

Additionally, we implemented two versions of our approach, 
the first rule-based, and the second more automatic. The rule-
based version is easier for humans to interpret and can be struc-
tured more easily, e.g., to have a low rate of false positives. The 
automatic version requires less work to find parameters.

2.4. evaluation 1: Touch Detection
The system we had implemented needed to be evaluated to clarify 
basic feasibility. Touch detection, the heart of the current system, 
was selected as the focus of evaluation: How long could traces be 
detected on objects and people by the algorithm or by a human 
observer, and how often will the system correctly/incorrectly 
guess that an object/person was touched? Also, for detecting 
touches on people we were curious to see which features would 
perform well. To answer these questions, we first conducted a 
basic check, observing how long touches could be seen in the 
thermal feed with the naked eye on both objects and body parts 
as shown in Figures 6–8. The basic check was promising so we 
proceeded to check the performance of our rule-based algorithm 
for (a) objects and (b) people.

 (a) An experimenter sitting on a sofa in front of a table with 
some objects touched the objects one at a time, and the 
algorithm was invoked to detect touches. Thermal and RGB 
data, as well as times for each frame tuple, were recorded. 
Objects were touched one at a time, for approximately 5 s, 
with a 2-min waiting period afterward for each. Five objects 
were touched four times each: a labeled PET pill bottle, a 
labeled HDPE lotion bottle, a paper box, a glass cup, and a 
ceramic cup. Afterward, the recorded videos were used to 
manually identify frames just before and after touches. Then 
frames were extracted automatically at 5, 10, 15, 30, 60, and 
90 s after touches ended. Furthermore, as described in the 
previous section, the system chose three frames for each time 
period for robustness. This resulted in 480 images extracted 
for analysis.

Objects were touched one at a time to simplify evaluation. 
Touches were made to last 5 s as we expected people would 
touch medicine packages and cups this long. Two minutes was 
chosen based on a pretest indicating touches were hardly vis-
ible after this time. The longest time period, 90 s, was chosen to 
fall within the 2-min period. The objects were chosen to each 
represent a different material and to cover some typical medi-
cine packages relating to oral intake and topical application. 
We chose a challenging scenario in which there can be similar 
thermal patterns in both foreground and background because 
we felt this is a fundamental scenario which our algorithm 
should be able to handle.

 (b) To evaluate system performance in recognizing touches on 
people, the experimenter drank water, and the algorithm 
was invoked to detect touches to the experimenter’s mouth. 
Two cases were investigated for the water’s temperature: 
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FigUre 7 | Heat trace decay over time for PET. After 2 min the heat trace 
was difficult to see.

FigUre 6 | Heat trace decay over time for some typical materials for medicine intake: for (a) PET, (B) HD-PE, (c) paper, (D) glass, and (e) ceramic; RGB data (left), 
thermal data soon after touching (center), and thermal data after 30 s (right).

FigUre 8 | Cooling lips after drinking cool and room-temperature water. 
Consent has been obtained from the individual depicted (the first author) for 
the publication of this image.
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cold (refrigerated), and room temperature. For each case, 
the experimenter drank five times. Afterward, the recorded 
videos were used to manually identify frames just before and 
after touches. Then frames were extracted automatically at 5, 
10, 15, and 30 s after touches ended. Furthermore, as described 
in the previous section for each time, the system chose three 
frames for robustness. This resulted in 180 (5 × 6 × 3 × 2) 
images extracted for analysis. Some features were also 
checked along the way: means, medians, SDs, and “deltas” 

were calculated based on the intensities of the thermal-image 
pixels within the lip area, where deltas compared the mean 
thermal intensity within the lip area to that of the area from 
the bottom lip to the chin.

http://www.frontiersin.org/Robotics_and_AI
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http://www.frontiersin.org/Robotics_and_AI/archive


FigUre 9 | Detecting drinking. (a) RGB image of setup with a human and some objects. (B) Thermal image before drinking (c) Thermal image after drinking,  
(D) Thermal image 30 s after drinking, (e) processed thermal image, indicating face rectangle (red), face outline (green), lips area (blue), and area below the lips 
(cyan), and (F) a model for normal face length was used to avoid some failed detections which detected a mouth at the person’s chin. Consent has been obtained 
from the individual depicted (the first author) for the publication of this image.
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The longest time of 30 s was chosen based on our expectation 
that after 30 s cooling is not easily detected, which came from 
a pretest we conducted, and also because the area inside the 
lips is quite small and thus noise effects could be quite strong 
when there is little contrast. The two temperatures of water were 
chosen because we expected that this would be common for oral 
intake; we also wanted to know how different the results would 
be and if detection is feasible only with cold water, or also with 
tepid water. We chose a challenging scenario in which both 
objects and human are seen and the sensor is not close because 
we feel this is a fundamental scenario which our algorithm 
should be able to handle. Also, we selected some typical features 
to check because we expected them to perform well: Means 
were expected to capture when touches occur without knowing 
exactly where or which pixels will change in intensity, because 
we know that heat flow will occur during medicine intake in 
some portion of objects and a person’s lips due to the difference 
between body and room temperature. SDs were expected to be 
low in the absence of touches due to thermal diffusion within 
objects and a person’s lips, and high immediately after touches 
due to the difference in temperatures in touched and untouched 
regions. Medians are less susceptible to outliers than means. 
Deltas were selected because in pretests we sometimes observed 
some global monotonic temperature changes, which absolute 
means and medians would not be robust to; these might have 
been due to breezes or cooling from the person waiting without 
moving.

The lip region and not the entire mouth region was selected 
because we observed noise in preliminary tests when people 
opened their mouths to talk, as areas where tissues touch such as 
under the tongue can be warm, whereas other areas can be wet 
and cool.

For deltas, the lip region was compared to a region between the 
lips and chin because the latter region seemed stable in pretests, 
and other options seemed problematic: the nose region is tricky 

due to breathing, eye temperatures cannot be detected for people 
wearing glasses, the forehead region can be occluded by hair, with 
much variance in people’s haircuts, and left or right cheeks vanish 
when a face is turned sideways and have large borders, where 
inconsistencies can occur. Figure  9 shows the data acquisition 
setup and the system detecting drinking.

2.5. evaluation 2: general Feasibility
The experiment described in the previous section was intended 
to provide some exploratory insight into a core question for 
thermovisual inference of medicine intake by assessing how 
long touches could be detected on different materials and at 
some different temperatures; but, the general significance of the 
results and performance of the other parts of the algorithm were 
unclear due to the simplified context. For example, touches to 
objects had involved merely pressing a hand against the front of 
a container, which might be different from touches arising from 
medicine intake. Also, touches had only been performed by a 
single person, which might be different from touches performed 
by other people. And, some manually found parameters were 
used in the rule-based version of our algorithm, but parameters 
might change in different contexts. Moreover, the feasibility of 
discriminating actual medicine intake from similar confounding 
touches, and of identifying individuals taking medicine, had not 
been addressed.

Thus, to gain some further insight into the general significance 
and feasibility of the proposed approach, an additional simpli-
fied check was conducted. To investigate if touches arising 
from medicine intake can be detected, ten participants at our 
university (five females and five males; average age = 31.6 years, 
SD  =  5.7  years) were asked to pretend to take medicine while 
seated in front of our camera; touches were then detected by the 
automatic version of our algorithm. To assess the other parts of 
our approach, participants were also asked to absent-mindedly 
touch a medicine package, which might be difficult to distinguish, 
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TaBle 2 | Cases per pair of participants (A and B).

Person Touch type

A Pretended to take medicine from a bottle and drank water from a cup
A Absent-mindedly touched the bottle
B Pretended to take medicine from a bottle and drank water from a cup
B Absent-mindedly touched the bottle

FigUre 10 | Experiment setup for second evaluation.
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and to sit together in pairs, to check if the algorithm could cor-
rectly identify who had pretended to take medicine.

At the start of sessions, each pair of participants was seated at 
a table in front of our camera, a medicine package, and two cups 
filled with water, as shown in Figure 10. After reading a short 
description of the data acquisition session indicating that the 
task would be to pretend to take medicine and touch a container 
absent-mindedly, participants provided written consent; partici-
pants were not given instructions on how to take medicine or how 
to otherwise touch, and did not receive monetary compensation 
for participating. Next, the experimenter started recording data, 
and also filmed a monitor which showed the output of the ther-
movisual feed next to a clock, to be able to calculate how long 
participants took to perform actions. Then the experimenter 
read aloud instructions in a pregenerated random order which 
was different for each pair of participants. Thus, the independent 
variables manipulated were the type of action (medicine intake 
or absent-minded touch), and participant (A or B), which were 
grouped to form four cases per pair, two per participant, as shown 
in Table 2, for five pairs of participants. Participants then con-
ducted actions using containers for medicine and water with some 
typical shapes and materials: a plastic medicine bottle and two 
glass tumblers. Two cups were used for hygienic reasons, so that 
each participant could drink from their own. After each action, 
a 2-min wait was scheduled, to allow temperatures to return to 
their previous levels and to be able to compare accuracies at dif-
ferent times after an action. During this time participants were 
allowed to talk and move during the session. In total, each session 
took approximately 15 min.

After the sessions, frames for 18 actions were extracted as 
in the previous experiment—before actions, immediately after, 
and at 5, 10, 15, 30, and 60  s after—yielding seven frames per 
action, and 126 frames in total; for person identification, face 

detection was applied to these frames to automatically extract 245 
face images. Then the automatic version of our algorithm was 
applied to the extracted frames. Features were chosen based on 
those reported in the last section for the rule-based version of 
our system: For detecting touches to objects, we used the mean, 
SD, median, minimum, and maximum intensities, as well as the 
area of the maximum detected contour and minimum surface to 
area ratio, within the segmented region of the thermal image cor-
responding to the medicine package. And for detecting touches 
to lips, we used the mean, SD, median, minimum, and maximum 
intensity of the lip region, and the mean and SD of the intensities 
of the thermal image in the region below the lips. For person 
identification, along the way we also explored the possibility of 
using some simple thermal features to detect characteristics such 
as glasses, haircuts and beards, and a person’s size, which could 
facilitate recognition: the mean and SD of thermal intensities in 
the eye regions which might be blocked by glasses or hair, the 
area of the thermal contour at the top of the face which might 
describe the person’s haircut, the mean of thermal intensity for 
the area below the lips where a beard would be, and the area and 
height of the thermal face contour. The features were then input 
to a classifier which was used to conduct leave-one-out crossvali-
dation to compute accuracies, defined as the number of correct 
predictions divided by the number of samples. For this, k-nearest 
neighbors (k-NN) was used as a simple check, as it is easy to use 
and provides consistent results, with an error rate not worse than 
twice the minimal Bayes error rate as the number of training data 
approaches infinity (Cover and Hart, 1967). This algorithm finds 
the distance from a test case to the training data, and associates 
the label of the closest found training data to the test case. For 
action inference, rules were used: If an object touch was not 
detected, the system output that an action had not occurred. If 
an object touch was detected but no lip touch was detected, the 
system output was set to absent-minded touch. If both kinds of 
touches were detected, the system output that medicine intake 
had occurred.

3. resUlTs

3.1. results 1: Touch Detection
 (a) Accuracies for each material over time can be seen in 

Figure 11, and averages in Table 3. At 15 s, half or less of 
touches were detected. At 60 s the touch detection rate was 
approximately 0%, with a slightly higher rate of 5% for the 
glass cup which we expect might have been due to noise. 
Thus, touches to objects appeared to be best detected within a 
short time of 0–10 s. However, we note that our scenario was 
highly challenging; if there is no human in the background 
we expect better accuracies and longer detection times. Also, 
as expected, touches no longer detected by the algorithm 
could still be seen with the naked eye, suggesting that bet-
ter performance can be expected in the future; the problem 
was segmenting the objects from the warm background. For 
materials, all the materials tested allowed some detection 
of touches. The PET pill bottle appeared to allow easiest 
detection of touches, and the ceramic cup was most difficult. 
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TaBle 3 | Detection accuracies of heat traces on objects over time.

Time (s) accuracy (%)

0 76.4 ± 14.2
5 66.0 ± 20.0
10 51.6 ± 15.2
15 33.0 ± 10.5
30 18.0 ± 4.8
60 1.0 ± 2.2
90 0.0 ± 0.0

FigUre 11 | Accuracy of detecting touches to objects, by material and time.
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Some examples of correctly and incorrectly identified cases 
are shown in Figure 12. The result was not perfect due to the 
difficulty of the problem: the additional processing required 
to exclude warm background areas also removed true posi-
tives at longer time periods.

 (b) Results shed light on which features might be useful to detect 
touches on human body parts, and on the system’s accuracy 
in detecting touches due to drinking liquids of different 
temperatures.

Figure 13 shows the performance of some features we com-
pared. Delays seemed to exist in the responses for the mean and 
median for cold water, and the mean, median, and deltas for tepid 
water. This is possibly because the physical activity of drinking 
or closer distance to the camera when leaning forward to drink 
also affected detected temperatures. Also, there appeared to be 
little difference between means and medians, suggesting that 
drinking does not generate a small number of cold outlier pixels, 
but rather many cool pixels emerge. Thus, all the features seemed 
to be potentially useful, with the usefulness of SD features in 
particular suggested, which appeared to capture the changes in 
temperature quickly.

System accuracy, in detecting drinking cold versus tepid 
water, is depicted in Figure 14. In general, the results appeared 
to be in line with our expectation: the algorithm had less trouble 
discriminating touches caused by drinking cold water (91.7 
versus 83.3%). The results were not perfect due to the difficulty 
of accurately detecting of the lip region. At 30 s the rate for tepid 
water seemed slightly better, but we expect this might have been 
due to noise. We also note that to compute the accuracy of our 
approach, frames for which a correct face was not detected were 
not considered. Factoring in such frames results in an unintuitive 
result where accuracy is lower in the cold water case (73.3 versus 
83.3%) because faces were not detected in some frames for the 
cold water, but this was unrelated to the coldness of the water, as 
the thermal data is not used for detecting faces. Also in both cases 
drinking was sometimes detected at 30 s, which was longer than 
we expected, possibly because it was difficult to judge visually 
based on the small area of the mouth.

Thus, we confirmed our algorithm could detect heat traces on 
objects and people over several seconds in settings comprising 
both objects and people, for some typical object materials, in a 
simplified context. The data used for evaluation has been made 
freely available online with code for others, toward expediting 
progress in this promising area of near past inference.

3.2. results 2: general Feasibility
The actions participants performed were complex and varied 
greatly. Medicine intake involved multiple touches with one or 
both hands, as shown in Figure 15, during which objects were 
moved around the table, and participants moved their lips while 
talking, smiling, or turning their heads. Eight of ten participants 
first extracted medicine then drank, but one filled her mouth 
with water before extracting medicine, and another drank while 
still holding the medicine bottle; some participants also smacked 
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FigUre 13 | Comparison of features over time while drinking water.

FigUre 12 | Some examples of detecting touches to medicine packages. (a) Time −5 s: a true negative before touching, (B) time 0 s: a true positive immediately 
after touching (touch shown in blue by the algorithm), (c) time 30 s: the same touch after 30 s, where a decrease in area of the touch can be seen, (D) time 60 s: a 
false negative, the same touch is no longer detected, (e) time 60 s: the touch can still be seen by the naked eye in the thermal image, and (F) different touch: a rare 
false positive, caused by the black sofa in the background being mistaken as a TV monitor, and part of the experimenter’s leg as a touch. Consent has been 
obtained from the individual depicted (the first author) for the publication of this image.

FigUre 14 | Comparison of accuracies for cold and tepid water.
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their lips after drinking. Likewise, absent-minded touches were 
sometimes complex, for example in picking up an object and 
rotating it in various directions, and ranged from quick squeezes 
to longer touches.

Average touch durations were also calculated using the 
video footage. Touches to the medicine package took 8.0 ± 3.0 s 
(maximum 13 s, minimum 4 s), touches to cups took a similar 
amount of time, 7.9 ±  3.1  s (max. 15  s, min. 4  s), and absent-
minded touches were typically shorter, 4.8 ± 2.6 s (max. 8 s, min. 
1 s). Thus, medicine intake took about 15 s, suggesting that our 
previous estimate that people would touch for about 5 s to take 
medicine had been conservative, also because we estimate that 
elderly persons with dementia might require more time than 
our participants. Absent-minded touching was faster than the 
two touches for medicine intake, possibly because typical inter-
pretations such as moving the bottle a short distance or visually 
inspecting could be accomplished quickly.

Performance of our approach on the data is shown in 
Figure  16. Lip touch detection accuracy was 80.3% initially, 

in part because lips were usually visible to the camera; a slight 
increase in accuracy after some seconds could be partly due to 
participants still moving, noise, or a cooling effect as the lips 
dried and water evaporated. Object touch detection accuracy 
was lower, at 72.2% initially, decreasing to the random chance 
level at 15 s. We think there were several reasons for this: First, 
for some touches the heat trace was not clearly visible from 
the front, possibly due to the variance in participants’ actions 
with respect to bottle placement, touch duration, temperature, 
and pressure. Second, our simplified approach for registration 
and segmentation did not always completely remove areas of 
warm background which could be mistaken for touches. Third, 
at the start for measuring, an average of 8 s had already passed 
since touching the bottle because time was taken for drink-
ing water. Action detection was 58.3% initially, and remained 
higher than random chance (33%) until the 60  s mark. For 
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FigUre 15 | An example of the complexity of medicine intake. The participant raises his left arm from his lap to allow him to reach forward while picking up  
the bottle with his right hand, opens the bottle with a spherical grip using the left hand, extracts a pill onto his left hand, replaces the bottle on the table and takes 
the medicine with the right hand to the mouth, reaches out for the water with his left hand while pushing down on the table with his right wrist, replaces the bottle 
and returns both hands to his lap. As a result of this action, the medicine bottle is in a new location and not fully closed.

FigUre 16 | Accuracies for touch detection on objects and lips, as well as action inference, over time.
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person identification in our scenario, the thermal features 
yielded an accuracy of 89.0%, which was less than the off-the-
shelf camera solution using only the RGB features and linear 
binary patterns (95.5%), possibly because illumination was not 

a problem; nevertheless the usefulness of thermal features has 
been described for some situations, e.g., involving low illumi-
nation or adversarial situations to identify makeup, masks, or 
computerized images.
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We feel that these exploratory results, while highlighting 
some of the difficult challenges of inference of recent medicine 
intake, also suggest the promise of adding inferential capability 
to current systems, which do not detect lip touches and have no 
capability to detect touches conducted in the near past.

4. DiscUssiOn

The current article described an approach, PastVision+, which 
uses thermovisual information from objects and humans to 
infer recent unobserved human–object interactions, in the 
context of medicine intake. PastVision+ allows quick inference 
from single images, which can be processed in several seconds, 
and requires only inexpensive components: a small thermal 
camera, costing approximately two hundred US dollars, a 
regular camera, and a computer. In our evaluation, we observed 
that our approach could be used in a challenging scenario in 
which some touches occurred in regions where the background 
was also warm, with about 50% detection accuracy of touched 
objects and 100% detection accuracy of cooled lips 15 s after a 
touch. Moreover, touches to typical objects used in medicine 
intake were visible in the thermal data for longer than 30  s, 
suggesting that improvement will be possible in the future. We 
also observed that some people’s touches seemed to be easier 
to detect than others: an automatic version of our algorithm 
could detect touches conducted by various people pretending to 
take medicine at 72.2% accuracy for objects, 80.3% for lips, and 
58.3% for action inference just afterwards, with a rate of 89.0% 
for person identification.

Performance was often not perfect due to the highly challeng-
ing scenarios and the exploratory nature of the current work. 
To compensate, we think such a system can be combined with 
existing methods like pill dispensors to improve the robustness 
of object touch detection, which seems to be important for 
improving accuracy; second, inference could be used, not just 
for humans to make decisions, but also by a robot to remind 
or investigate further, for which perfect accuracy might not be 
required. For combination with pill dispensors, we advise the use 
of plastic rather than metal dispensors, which allow longer touch 
detection durations; also individuals to be monitored could be 
provided with plastic cups rather than metal, or ceramic, cups, 
with shapes conducive to detection.

4.1. related Work
Our work builds on various research that has been conducted on 
healthcare robots, past inference and thermal touch sensing, and 
intention inference.

Robot and intelligent assistive devices have been built to per-
form useful healthcare tasks like helping patients to move, fetch 
objects, or monitor people’s health. Robots can pick patients up 
(Mukai et al., 2010), support their movements (Kawamoto et al., 
2010), bring medicine and offer reminders (Pollack et al., 2002; 
Graf et al., 2009; Dragone et al., 2015), and monitor (Noury, 2005; 
Takacs and Hanak, 2008). In our own previous work we devel-
oped a robot which used ambient sensors to monitor falls and 
then moved to a fallen person to ask if they were okay (Lundstrom 

et al., 2015); another robot was built to detect and visualize fallen 
persons on a map also employing thermal means, as a pre-step for 
conducting first aid (Hotze, 2016). However, these robots cannot 
infer people’s intentions.

One robot could infer a person’s intentions to press buttons 
by observing the person’s motions visually and adapting a model 
of itself to the person (Gray et al., 2005). Another robot was able 
to infer the intentions of other robots in a game of hide-and-
go-seek, by correlating their motions (Crick and Scassellati, 
2008). In our previous work we explored how to infer underly-
ing motivations for social behavior directed to a small robot in 
interactions (Cooney et al., 2015). These systems were designed 
to infer based on observing current actions, and cannot infer past 
actions.

Past inference is common in many fields, such as astronomy, 
geology, archeology, and forensics, but has received little atten-
tion from the perspective of monitoring and robotics. One 
modality which allows past inference at time scales useful to 
humans in homes is thermal sensing, which has been explored 
from a different perspective as a user interface. For example, 
Benko et al. described a simplified strategy for how touches to a 
spherical display could be detected; normalizing was conducted 
to compensate for different intensities at different heights along 
the sphere, followed by thresholding and finding contours (Benko 
et al., 2008). Furthermore, some properties of heat traces on differ-
ent materials—glass, tile, MDF, aluminum—were investigated by 
Abdelrahman et al. (2015). The paper most similar to the current 
article could be argued to be one by Larson and colleagues, which 
proposed various mechanisms and explored various properties 
of thermal sensing, also for a user interface application (Larson 
et al., 2011). In their approach, HeatWave, a person’s hands were 
detected to reduce the search space for heat traces; per-pixel 
temperatures, temperature changes over time, and temperature 
differences to a background were used to identify heat traces. 
Additionally the authors explored multiple finger touches, hover-
ing, shapes, pressures, and reflections. This resulted in much new 
knowledge, but this knowledge did not indicate how to conduct 
past inference: e.g., to detect touches to objects in front of warm 
backgrounds from single images, or to detect touches to specific 
parts of people’s bodies.

We also noted some alignment between our results and theirs, 
in that touches to objects appeared to be best detected within 
a short time of several seconds, although reasons differed. In 
their study, it was assumed that an appropriate surface would be 
available to write on; therefore, challenges other than segmenting 
foreground touches from warm backgrounds were addressed, 
such as detecting quick or light touches. In our case, such touches 
were not expected because opening packages and drinking 
requires several seconds; therefore, we addressed the different 
challenge of warm backgrounds which was important for our 
context. Likewise, different features were used in our studies, but 
it is unclear if duration of touch detection would be lengthened 
by changing these, as selection was motivated by the context; for 
example, computing contour length to area ratios might not be 
useful for drawing heat traces with a finger, if there are no arti-
facts in front of a warm background generating long thin noise. 
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However, if we had considered a simple background or Larson 
et al. had considered touches lasting several seconds, we expect 
touches would have been detected longer, also because we could 
see the result of touching for longer times in the thermal image 
during a pretest we conducted. Regardless, we feel that, given a 
typical robot locomotion speed of 1 m/s which is slightly slower 
than human walking speed, several seconds could be enough in 
some cases for a robot to move to avoid an occlusion and infer 
what a person has done.

4.2. limitations
The results of this feasibility investigation are limited by the 
simplified scenario, and it should not be interpreted that our 
approach is ready to be applied in the wild. Human environ-
ments typically contain various warm objects, from computers 
and cell phones to pets; temperatures constantly fluctuate; and 
heat reflections and heat contamination of frequently touched 
surfaces complicate thermal touch sensing. Likewise, illumina-
tion and occlusions are problems for RGB cameras; object detec-
tion against complex backgrounds, facial landmark detection for 
extreme or occluded poses, and person identification are also 
highly challenging. Objects can occlude one another, such as in 
cluttered medicine cabinets, flat objects can be hard to see, and 
touches to metals or warm objects are hard to detect. People also 
constantly move, conducting adapter gestures like scratching 
themselves or licking lips, exercising, opening or closing windows 
or refrigerators, or taking off or putting on clothes which can 
affect body temperatures. Additionally, detection of drinking can 
differ for hot liquids, for which steam can rise in front of a person’s 
face, affecting perceived temperatures. Such limitations will be 
addressed in future work.

4.3. Future Work
Next steps will focus on extending and improving PastVision+, as 
well as investigating other modalities for inference.

 1. Improved segmentation of detected objects will enhance 
performance in challenging scenarios with warm background 
regions.

 2. Body part heat trace dissipation will be explored over longer 
time periods and in various contexts, such as when people 
have been moving or idle.

 3. Segmentation of multiple co-occurring heat traces and 
material-based modeling of sequential thermal touch activi-
ties will yield more powerful inference.

 4. Tracking strategies will be used for detected objects, indi-
viduals, and heat traces in videos, also when a robot itself is 
moving.

 5. Methods such as process models will be used for activity 
prediction based on thermovisual inference.

 6. As well, additional evaluation of features, rules, and preproc-
essing will improve performance.

 7. Problem cases and countermeasures will be identified, such 
as if a user touches more than one medicine bottle, more 
than one user is taking medicine, or one user is feeding 
another, like a parent and child; anomaly detection could 

be used to detect some unusual cases like putting a pill in 
one’s mouth but then removing it; moreover, heat traces 
cannot be seen while a person holds an object; thus, ability 
to detect holding, possibly based on hand proximity and 
detecting if an object seems to be “floating,” will be use-
ful, in addition to detecting other potentially adversarial 
behavior, like hiding lips.

 8. And, methods of inference targeting other routes of medicine 
administration will be explored.

 9. As well, human science aspects such as the balance of camera 
resolution versus peace of mind can be investigated.

We believe there is much potential also in other modalities 
for useful inference.

 1. Visually, using a UV camera lens will let robots assess skin 
health and evaluate if topical lotions have been applied cor-
rectly; radar will allow inference through walls and objects.

 2. Aurally, much inference will be possible; e.g., laser micro-
phones could be used to detect coughing remotely.

 3. Not least, the amazing abilities of some animals to track 
smells and determine by smell “who has touched what” sug-
gest that olfaction, although highly complex, will open the 
door to many possibilities. We believe that for example future 
systems will learn to identify individuals based on mixes of 
low-molecular-weight fatty acids contributing to body odor, 
and will also be able to track changes in compounds such as 
2-nonenal to assess aging (Yamazaki et al., 2010).

In this way, by better being able to infer what humans have 
done, we believe robots will be better able to estimate how humans 
are feeling and what they are planning to do and will be able to 
use this knowledge to better care for humans, toward supporting 
their well-being.
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