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Equivalence structure (ES) extraction focuses on multidimensional temporal patterns that
appear in a multidimensional sequence and in a different multidimensional sequence.
The input of the task is a set of sequences and the output is a set of ESs. An ES is
a set of K-tuples comprising elements of K IDs to specify K sequences, and it shows
which K-dimensional sequences composed of K sequences specified by its K-tuples are
considered equivalent. The standard for determining whether K-dimensional sequences
are equivalent is based on the subsequences of the K-dimensional sequences. ES
extraction can be used for multidimensional temporal feature extraction, as well as
preprocessing for transfer learning or imitation learning. A method called ES incremental
search (ESIS) was recently proposed, which is much faster than brute-force search, but
the proofs necessary to derive it had not been sufficient. Therefore, it has been unclear
why ESIS worked and can be reliable. This paper presents proofs to validate ESIS, as well
as a property of the solution of ESIS that could be useful for developing a faster method.

Keywords: equivalence structure, transfer learning, imitation learning, combinatorial explosion, metarelation
mining

1. INTRODUCTION

Equivalence structure (ES) extraction is conducted for focusing on multidimensional temporal
patterns in a multidimensional sequence that is similar to those in a different multidimensional
sequence (Satoh and Yamakawa, 2017). The extraction is a task, where the input is a set of sequences
and the output is a set of ESs. A K-dimensional ES is a set of K-tuples with elements that are K
IDs for K sequences, and each of the K-tuples specifies a K-dimensional sequence specified by the
IDs of its K-tuple. The K-tuples of an ES indicate which K-dimensional sequences are considered
equivalent. The standard for determining whether K-dimensional sequences are equivalent is based
on the subsequences of the K-dimensional sequences. If we consider a tuple of an ES to represent
a relation among sequences specified by its IDs, then an ES can be seen as an analogous relation of
such relations. In this sense, ES extraction can be consideredmetarelation mining.

ES extraction can be used formultidimensional temporal feature extraction, as well as preprocess-
ing for transfer learning and imitation learning. For examples of imitation learning, in experiments
conducted by Katz et al. (2016) and Delhaisse et al. (2017), the correspondence relation between a
teacher and studentmust be known, or it is necessary to tell key poses to a student before conducting
imitation learning. However, there can be some situations, where these conditions are impossible.
In such situations, ES extraction can be used to find correspondence relations between a student and
teacher.
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Motif discovery techniques (Lonardi and Patel, 2002; Tanaka
et al., 2005; Minnen et al., 2007; Ghoneim et al., 2008; Vahdatpour
et al., 2009; Mueen and Keogh, 2010; Liu et al., 2012) can be con-
sidered similar to ES extraction. The techniques allow for obtain-
ing multidimensional temporal repeated patterns. However, the
patternsmust be repeated in the samemultidimensional sequence.
In other words, the techniques do not reveal multidimensional
temporal patterns that appear in amultidimensional sequence and
in a different multidimensional sequence, whereas ES extraction
focuses on such patterns.

There are two methods to extract ESs (Satoh and Yamakawa,
2017). One is brute-force search (BFS), where all possible K-
tuples are considered. BFS is usually infeasible, since a serious
combinatorial explosion occurs in the process. The other method
is the recently proposed ES incremental search (ESIS) (Satoh and
Yamakawa, 2017). In the process of ESIS, K-dimensional ESs are
obtained from candidates generated from (K − 1)-dimensional
ESs, and ESIS obtained ESs much faster than BFS in experiments.
However, it has been unclear why ESIS worked and can be reli-
able, because the proofs necessary to derive ESIS have not been
sufficiently obtained.

This paper presents proofs to validate ESIS, as well as a property
of the solution of ESIS that could be useful for developing a
faster method. We investigated the property by conducting an
experiment using motion capture datasets. ESIS can be derived
by making an assumption, and a previous study experimentally
confirmed that the assumption was satisfied using only noise-
free artificial data (Satoh and Yamakawa, 2017). Therefore, in
this study, we conducted another experiment to confirm that the
assumption is satisfied when using real datasets with noise.

2. EQUIVALENCE STRUCTURES AND
THEIR SEARCH METHODS

2.1. Equivalence Structures
Figure 1 illustrates ES extraction. Given N sequences, we want to
find sets of tuples that show which multidimensional sequences

are equivalent. A K-tuple specifies a K-dimensional sequence, as
shown in the figure. Such sets of tuples are called ESs. We assign
an ID to each sequence and describe the IDs with a number #.
For example, when the input is a set of seven sequences, their
IDs are #1, . . ., #7. In the figure, the two three-dimensional
sequences specified by tuples ⟨#1, #2, #3⟩ and ⟨#7, #6, #4⟩ are
considered equivalent. We only consider tuples with elements
that are not duplicated, so the number of all possible K-tuples
is NPK. As a standard to determine whether K-dimensional
sequences are equivalent, we use a dissimilarity function where
each of the subsequences of one sequence is compared to
all the subsequences of the other. We describe the details in
Section 5.1.

One difficulty in the ES extraction is that we cannot easily
make use of dissimilarities between one-dimensional sequences
in order to calculate the dissimilarity between higher-dimensional
sequences. This is because it is not always true that higher-
dimensional sequences are considered equivalent if all their pos-
sible lower-dimensional sequences are considered equivalent.
Figure 2 shows an example of this difficulty. Another difficulty

FIGURE 2 | An illustration of one type of difficulty in equivalence structure
extraction. There is a pattern for ID #1 that is similar to a pattern for ID #9, as
well as a pattern for ID #2 that is similar to a pattern for ID #8. However, when
we see them as two-dimensional sequences, there are no similar patterns.

FIGURE 1 | An illustration of the input and output of equivalence structure (ES) extraction. The left figure shows the input, and the center figure shows the output.
The right figure shows an example of an ES where the elements are tuples ⟨#1, #2, #3⟩ and ⟨#7, #6, #4⟩. A subsequence of a three-dimensional sequence specified
by one of the tuples closely resembles that by the other tuple.
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is that BFS is usually not feasible, since the number of all possible
K-tuples is NPK.

2.1.1. Properties of a Dissimilarity Function
We use a dissimilarity function as a standard for equivalence
between two K-dimensional sequences specified by two K-tuples,
u(K)
1 and u(K)

2 (̸= u(K)
1 ). It is considered that a dissimilarity

function d(u(K)
1 , u(K)

2 ) usually has the following symmetries:

d
(
u(K)
1 , u(K)

2

)
= d (⟨ui1,p1 , ..., ui1,pK⟩, ⟨ui2,p1 , ..., ui2,pK⟩), (1)

where

u(K)
1 = ⟨u1,1, ..., u1,K⟩, u(K)

2 = ⟨u2,1, ..., u2,K⟩, (2)

⟨p1, ..., pK⟩ ∈ P(K), ⟨i1, i2⟩ ∈ P(2). (3)

We define P(K) as the set of all K-permutations of [K], which in
turn is defined as {1, . . ., K}. This means that if {u1,k}k∈[K] ̸=
{u2,k}k∈[K], then the number of other dissimilarities that are equal
to d(u(K)

1 , u(K)
2 ) is 2K!− 1; otherwise, the number is K!− 1. The

dissimilarity function used in this paper has the symmetries.

2.2. Search Methods
There are two methods for ES extraction (Satoh and Yamakawa,
2017). One is BFS, where all possible K-dimensional sequences
specified by K-tuples are compared to find K-dimensional ESs.
The other is ESIS, which uses (K − 1)-dimensional ESs to find
K-dimensional ESs. Previously, two experiments showed that
ESIS can obtain ESs much faster than BFS (Satoh and Yamakawa,
2017).

2.2.1. Brute-Force Search
The procedure of BFS is very simple, as shown in Algorithm 1.
One option for the stopping condition is one where there are no
K-dimensional ESs. However, it is not guaranteed that there are
no (K + 1)-dimensional ESs if there are no K-dimensional ESs.
We refer to a K-dimensional ES obtained by BFS as a complete
K-dimensional ES S∗(K)

c .

2.2.1.1. Number of Comparisons
If we use a method that simply compares all possible K sequences
in order to obtainK-dimensional ESs, the number of comparisons
is (NPK)2−NPK. However, considering the property of dissimilar-
ity in Equation (1), the number nBFSK can be reduced to:

nBFSK = NPK(K! − 1)
K!

+ NPK(NPK − K!)
2K!

= NCK

(
NPK + K!

2
− 1

)
, (4)

ALGORITHM 1 | Brute-Force Search (BFS).

1: K← 1
2: While a stopping condition is not met do
3: K← K+ 1
4: Obtain K-dimensional ESs from the set of all possible K-tuples to specify

K-dimensional sequences
5: end while

because

2K! = |{⟨ui1,p1 , ..., ui1,pK , ui2,p1 , ..., ui2,pK⟩|
{u1,k}k∈[K] ̸= {u2,k}k∈[K]

}∣∣, (5)
K! = |{⟨ui1,p1 , ..., ui1,pK , ui2,p1 , ..., ui2,pK⟩|

{u1,k}k∈[K] = {u2,k}k∈[K]
}∣∣, (6)

NPK(NPK − K!) =
∣∣∣{⟨u1, u2⟩

∣∣∣ {u1,k}k∈[K] ̸= {u2,k}k∈[K], u1,

u2 ∈ P(K)
}∣∣∣, (7)

NPK(K! − 1) =
∣∣∣{⟨u1, u2⟩

∣∣∣ {u1,k}k∈[K] = {u2,k}k∈[K],

u1 ̸= u2, u1, u2 ∈ P(K)
}∣∣∣. (8)

We use the property in Equation (1) to reduce the number of the
comparisons in the procedure of BFS. However, a combinatorial
explosion still occurs.

2.2.1.2. A Property of Complete ESs
We consider two complete K-dimensional ESs S∗(K)

c′ and S∗(K)
c . If

∃⟨p1, ..., pK⟩ ∈ P(K) : {⟨sp1 , ..., spK⟩ | s(K) ∈ S∗(K)
c′ } = S∗(K)

c ,
(9)

then we call S∗(K)
c permutation-equivalent to S∗(K)

c′ , and vice versa.
For example, if the set {⟨#1, #2, #3⟩, ⟨#4, #5, #6⟩} is a complete
ES, then sets {⟨#1, #3, #2, ⟩, ⟨#4, #6, #5⟩} and {⟨#2, #1, #3, ⟩, ⟨#5,
#4, #6⟩} are also complete ESs and permutation-equivalent to each
other. The number of ESs that are permutation-equivalent to a
completeK-dimensional ES is less than or equal toK!− 1. It is not
necessary to keep ESs that are permutation-equivalent to existing
ESs, since they can be generated from the corresponding ESs. For
the experiments of this study, we discuss ESs after removing ESs
that are permutation-equivalent to one of the other ESs.

2.2.2. ES Incremental Search
ESIS was proposed since BFS is usually not feasible (Satoh
and Yamakawa, 2017). ESIS uses of (K − 1)-dimensional ESs
Ŝ
(K−1)
1 , ..., Ŝ

(K−1)
ĈK−1

to generate candidates for K-dimensional ESs.

A candidate S′′(K)
c,c for a K-dimensional ES from a (K − 1)-

dimensional ES Ŝ(K−1)
c is generated by the following function:

S′′(K)
c,c = g(Ŝ(K−1)

c , c)

≡

⟨s1, ..., sK−1, u⟩

∣∣∣∣∣∣u ∈

u
∣∣∣∣ ∧
k∈[K−1]

⟨sk, u⟩ ∈ S∗(2)
ck

,

⟨s1, ..., sK−1⟩ ∈ Ŝ
(K−1)
c

 (10)

where c ∈ {< c1, ..., cK−1 > |c1 ∈ [C∗
2 ], ..., cK−1 ∈ [C∗

2 ]}.
This function can be derived from Theorem 1, which we prove
in Section 3.

Algorithm 2 shows the procedure of ESIS.
A candidate S′′(K)

c,c can be permutation-equivalent to other can-
didates. Since we do not need ESs that are permutation-equivalent
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ALGORITHM 2 | Equivalence Structure Incremental Search (ESIS).

1: K←2
2: Find complete K-dimensional ESs S∗(K)

1 , ..., S∗(K)
C∗
K

in the same way as BFS

3: Remove ESs that are permutation-equivalent to one of the other ESs and let

the remaining ESs be denoted as Ŝ
(K)
1 , ..., Ŝ

(K)

ĈK
4: While there exist K-dimensional ESs do
5: K← K+ 1
6: for each c ∈ [ĈK−1] do
7: for each c ∈ {⟨c1, ..., cK−1⟩|c1 ∈ [C∗

2 ], ..., cK−1 ∈ [C∗
2 ]} do

8: S′′(K)
c,c ← g(Ŝ

(K−1)
c , c)

9: Find a K-dimensional ES from S′′(K)
c,c

10: end for
11: end for

12: Let found K-dimensional ESs be denoted by Ŝ
(K)
1 , ..., Ŝ

(K)

ĈK
13: end while

to existing ESs. Step 9 ofAlgorithm 2 is not implemented if S′′(K)
c,c

is permutation-equivalent to existing candidates. Furthermore, all
complete two-dimensional ESs S∗(2)

1 , ..., S∗(2)
C∗
2
must be stored for

the function g in Step 8 of Algorithm 2.

3. VALIDITY AND A PROPERTY OF ESIS

This section clarifies the theorem and proof to verify ESIS. To
begin with, we define the following function:

drop
(
U(K), k

)
=

{
⟨u1, ..., uk−1, uk+1, ..., uK⟩| ⟨u1, ..., uK⟩ ∈ U(K)

}
, (11)

which drops the kth elements of all the K-tuples of a set U (K).
The following assumption is necessary to derive ESIS (Satoh and
Yamakawa, 2017).
A 1:

∀k ∈ [K] : ∀c ∈ [C∗
K] : ∃c(k) ∈ [C∗

K−1] :

drop(S∗(K)
c , k) ⊆ S∗(K−1)

c(k) (12)

where S∗(K)
1 , ..., S∗(K)

C∗
K

are complete K-dimensional ESs, and
S∗(K−1)

1 , ..., S∗(K−1)
C∗
K−1

are complete (K − 1)-dimensional ESs.

For example, if S∗(K)
c = {⟨#1, #2, #3⟩, ⟨#7, #6, #4⟩}, then

sets {⟨#2, #3⟩, ⟨#6, #4⟩}, {⟨#1, #3⟩, ⟨#7, #4⟩}, and {⟨#1, #2⟩, ⟨#7,
#6⟩} are all subsets of (K − 1)-dimensional ESs. Figure 3 shows
an illustration of the example. How much this assumption holds
depends on conditions such as the standard for the dissimilarity
between multidimensional sequences and its parameters, but it is
considered that the assumption holds to a certain extent.

The following corollary obviously holds under Assumption 1.
C 1:

∀c(K) ∈ [C∗
K−1] : ∃c ∈ [C∗

K] : S∗(K)
c ⊆ S′(K)

c(K) (13)
where

S′(K)
c(K) ≡

{
⟨s1, ..., sK−1, u⟩|u ∈ [N] \ {sk}k∈[K−1],

⟨s1, ..., sK−1⟩ ∈ S∗(K−1)
c(K)

}
, (14)

drop(S∗(K)
c ,K) ⊆ S∗(K−1)

c(K) . (15)

FIGURE 3 | An illustration of Assumption 1. There is a three-dimensional
equivalence structure (ES) that has tuples ⟨#1, #2, #3⟩ and ⟨ #7, #6, #4⟩ and
a two-dimensional ES that has tuples ⟨#1, #2⟩, ⟨#7, #6⟩, and ⟨ #1, #4⟩. In
the two-dimensional sequences, there is a subsequence that is shown by
blue and red boxes.

PROOF. Under Assumption 1, the following is clear:

∃⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)
c : ∃⟨s1, ..., sK−1⟩ ∈ S∗(K−1)

c(K) :

∀k ∈ [K − 1] : s∗k = sk. (16)

From the definition of K-tuples to specify K-dimensional
sequences, ∀k ∈ [K − 1] : s∗K ̸= s∗k and s∗K ∈ [N] \ {s∗k }k∈[K−1].
Hence, Equation (13) holds. �

The summation of the cardinalities of all candidates
S′(K)

1 , ..., S′(K)
C∗
K−1

for K-dimensional ESs satisfies the following
inequality:∑

c∈[C∗
K−1]

∣∣∣S′(K)
c

∣∣∣ =
∑

c∈[C∗
K−1]

∣∣∣S∗(K−1)
c

∣∣∣ × (N − K + 1)

≤ NPK (17)

where the equality holds if and only if:∑
c∈[C∗

K−1]

∣∣∣S∗(K−1)
c

∣∣∣ =N PK−1. (18)

This means that every possible (K − 1)-tuple belongs to one of
(K − 1)-dimensional ESs, which is unlikely to occur. Therefore,
using Corollary 1, we can usually reduce the number of tuples to
search.

Moreover, we can derive the following lemma under Assump-
tion 1.
L 1:

∀c ∈ [C∗
K] : ∀i ∈ [K] : ∀j ∈ [K] \ i : ∃c({i, j}) ∈ [C∗

2 ] :

drop(S∗(K)
c , [K] \ {i, j}) ⊆ S∗(2)

c({i,j}). (19)

For example, if there is a complete four-dimensional ES {⟨#1,
#2, #3, #4⟩, ⟨#5, #6, #7, #8⟩}, then drop(S∗(4)

c , [4] \ {1, 2}),
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drop(S∗(4)
c , [4] \ {1, 3}), and drop(S∗(4)

c , [4] \ {3, 4}) are sets
{⟨#1, #2⟩, ⟨#5, #6⟩}, {⟨#1, #3⟩, ⟨#5, #7⟩}, and {⟨#3, #4⟩, ⟨#7, #8⟩},
respectively, and they are all subsets of two-dimensional ESs.

PROOF. We use mathematical induction to prove Lemma 1.
Under Assumption 1, we see that

∀c ∈ [C∗
K] : ∃c(pK) ∈ [C∗

K−1] : S∗(K−1)
c(pK)

= drop(S∗(K)
c , pK) ∪ E(K−1)

c,pK , (20)

where ⟨p1, . . ., pK⟩ is a K-permutation of [K], 3<K, and

E(K−1)
c,pK ≡ S∗(K−1)

c(pK) \ drop
(
S∗(K)

c , pK
)
. (21)

Consider a particular complete K-dimensional ES S∗(K)
c and a

particular complete (K − 1)-dimensional ES S∗(K−1)
c(pK) that satisfies

drop(S∗(K)
c , pK) ⊆ S∗(K−1)

c(pK) . If we additionally drop the pK–first
elements of all the tuples of S∗(K−1)

c(pK) , we have

∃c({pK−1, pK}) ∈ [C∗
K−2] : S∗(K−2)

c({pK−1,pK}) ⊇ drop
(
S∗(K−1)

c(pK) , pK−1

)
.

(22)

From Equation (20), the right-hand side can be rewritten and we
have

∃c({pK−1, pK}) ∈ [C∗
K−2] : S∗(K−2)

c({pK−1,pK})

⊇ drop
(
drop

(
S∗(K)

c , pK
)
∪E(K−1)

c,pK , pK−1

)
⊇ drop

(
drop

(
S∗(K)

c , pK
)
, pK−1

)
∪ drop

(
E(K−1)
c,pK , pK−1

)
. (23)

Since the left-hand side is a superset of the right-hand side, the
left-hand side is still the superset even after removing the set
drop(E(K−1)

c,pK , pK−1) from the right-hand side. Thus, we obtain:

∃c({pK−1, pK}) ∈ [C∗
K−2] : S∗(K−2)

c({pK−1,pK})

⊇ drop
(
drop

(
S∗(K)

c , pK
)
, pK−1

)
⊇ drop

(
S∗(K)

c , {pK−1, pK}
)
. (24)

Next, we assume:

∀c ∈ [C∗
K] : ∃c({pK−k, ..., pK}) ∈ [C∗

K−k−1] :

drop
(
S∗(K)

c , {pK−k, ..., pK}
)

⊆ S∗(K−k−1)
c({pK−k,...,pK}) (25)

where k ∈ [K − 4]. Under this assumption, it is clear that

∀c ∈ [C∗
K] : ∃c({pK−k, ..., pK}) ∈ [C∗

K−k−1] :

S∗(K−k−1)
c({pK−k,...,pK}) = drop

(
S∗(K)

c , {pK−k, ..., pK}
)
∪ E(K−k−1)

c,{pK−k,...,pK},

(26)

where

E(K−k−1)
c,{pK−k,...,pK} ≡ S∗(K−k−1)

c({pK−k,...,pK}) \drop
(
S∗(K)

c , {pK−k, ..., pK}
)
.

(27)
Consider a particular completeK-dimensional ES S∗(K)

c and a par-
ticular complete (K–k–1)-dimensional ES S∗(K−k−1)

c({pK−k,...,pK}) that

satisfy drop(S∗(K)
c , {pK−k, ..., pK}) ⊆ S∗(K−k−1)

c({pK−k,...,pK}). If we also

drop the pK−k−1th elements of all the tuples of S∗(K−k−1)
c({pK−k,...,pK}),

we have

∃c({pK−k−1, ..., pK}) ∈ [C∗
K−k−2] :

S∗(K−k−2)
c({pK−k−1,...,pK}) ⊇ drop

(
S∗(K−k−1)

c({pK−k,...,pK}), pK−k−1

)
. (28)

From Equation (26), the right-hand side can be rewritten and we
have

∃c({pK−k−1, ..., pK}) ∈ [C∗
K−k−2] :

S∗(K−k−2)
c({pK−k−1,...,pK}) ⊇ drop

(
drop

(
S∗(K)

c , {pK−k, ..., pK}
)

∪E(K−k−1)
c,{pK−k,...,pK}, pK−k−1

)
⊇ drop

(
drop

(
S∗(K)

c , {pK−k, ..., pK}
)
, pK−k−1

)
∪ drop

(
E(K−k−1)
c,{pK−k,...,pK}, pK−k−1

)
. (29)

Since the left-hand side is a superset of the right-hand side, the
left-hand side is still the superset even after removing the set
drop(E(K−k−1)

c,{pK−k,...,pK}, pK−k−1) from the right-hand side. Thus, we
obtain:

∃c({pK−k−1, ..., pK}) ∈ [C∗
K−k−2] :

S∗(K−k−2)
c({pK−k−1,...,pK}) ⊇ drop

(
drop

(
S∗(K)

c , {pK−k, ..., pK}
)
, pK−k−1

)
⊇ drop

(
S∗(K)

c , {pK−k−1, ..., pK}
)
. (30)

From Equations (24) and (30), we obtain:

∀k ∈ [K − 3] :∀c ∈ [C∗
K] : ∃c({pK−k, ..., pK}) ∈ [C∗

K−k−1] :

drop
(
S∗(K)

c , {pK−k, ..., pK}
)

⊆ S∗(K−k−1)
c({pK−k,...,pK}).

(31)
Hence, we see that

∀c ∈ [C∗
K] : ∃c({pK−k, ..., pK}) ∈ [C∗

K−k−1] :

drop
(
S∗(K)

c , {p3, ..., pK}
)

⊆ S∗(2)
c({p3,...,pK}). (32)

�
Lemma 1 tells us that the sets of tuples composed of the ith

and jth IDs of the tuples of a K-dimensional ES are subsets of
a two-dimensional ES. Considering Lemma 1, we can derive the
following theorem.

T 1:

∃c1 ∈ [C∗
2 ] : · · · ∃cK−1 ∈ [C∗

2 ] : S∗(K)
c ⊆ S′′(K)

c(K),c(K−1) , (33)
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where
S′′(K)

c(K),c(K−1)

≡

⟨s1, ..., sK−1, u⟩

∣∣∣∣∣∣u ∈

u
∣∣∣∣ ∧
k∈[K−1]

⟨sk, u⟩ ∈ S∗(2)
ck

,

⟨s1, ..., sK−1⟩ ∈ S∗(K−1)
c(K)

 , (34)

drop
(
S∗(K)

c ,K
)

⊆ S∗(K−1)
c(K) , (35)

c(K−1) ≡ ⟨c1, ..., cK−1⟩, (36)

and S∗(K)
c and S∗(K−1)

c(K) are a particular complete K-dimensional
ES and a particular complete (K− 1)-dimensional ES that satisfy
Equation (35), respectively.

PROOF. From Equation (35), it is clear that

∀⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)
c : ∃⟨s1, ..., sK−1⟩ ∈ S∗(K−1)

c(K) :
∧

k∈[K−1]

sk = s∗k .

(37)
From Lemma 1, we see that

∀k ∈ [K − 1] : ∃ck ∈ [C∗
2 ] : ∀⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)

c :

drop
(
⟨s∗1 , ..., s∗K⟩, [K] \ {k,K}

)
∈ S∗(2)

ck . (38)
Let c∗k be a ck that satisfies

∀⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)
c : drop

(
⟨s∗1 , ..., s∗K⟩, [K] \ {k,K}

)
∈ S∗(2)

ck .
(39)

We then see that
∀k ∈ [K − 1] : ∀⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)

c : ⟨s∗k , s∗K⟩ ∈ S∗(2)
c∗k

. (40)

From this equation, we find that

∀⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)
c : s∗K ∈

u

∣∣∣∣∣∣
∧

k∈[K−1]

⟨s∗k , u⟩ ∈ S∗(2)
c∗k

. (41)

Therefore, we have
∃c1 ∈ [C∗

2 ] : · · · ∃cK−1 ∈ [C∗
2 ] : ∀⟨s∗1 , ..., s∗K⟩ ∈ S∗(K)

c :

⟨s∗1 , ..., s∗K⟩ ∈ S′′(K)
c(K),c. (42)

�
The number of possible IDs for each s∗K in Equation (41) is less

than or equal to N − K + 1. It follows that∑
c∈C(K−1)

∣∣∣S′′(K)
c(K),c

∣∣∣ ≤
∣∣∣S′(K)

c(K)

∣∣∣, (43)

where c(K) ∈ [C∗
K−1],

C(K−1) ≡
{
⟨c1, ..., cK−1⟩ | c1 ∈ [C∗

2 ], ..., cK−1 ∈ [C∗
2 ]

}
. (44)

The equality holds if and only if the number of possible val-
ues for u in Equation (33) is (N −K+ 1). This is unlikely to
occur. Therefore, we can usually reduce the number of tuples to
search more than just by using Corollary 1. From Equations (17)
and (43),∑

c(K)∈[C∗
K−1]

∑
c∈C(K−1)

∣∣∣S′′(K)
c(K),c

∣∣∣ ≤
∑

c(K)∈[C∗
K−1]

∣∣∣S′(K)
c(K)

∣∣∣ ≤N PK. (45)

4. A PROPERTY OF THE SOLUTION
OBTAINED BY ESIS

In this section, we consider ESs obtained by ESIS (simply referred
to as ESs in this section). We denote a K-dimensional ES by Ŝ(K)

c
and let K̂max be the number of the dimensions of the highest-
dimensional ES. Since ESIS was derived under Assumption 1, if
3 ≤ K̂max, there are (K–k)-tuples in (K–k) -dimensional ESs that
can be expressed in the following form:

d(K−k) ∈ drop
(
Ŝ
(K)
c , {p1, ..., pk}

)
, (46)

where ⟨p1, . . ., pk⟩ is a k-permutation of [K], 2≤K–k, K ≤ K̂max,
and 1≤ k. We call such a K-tuple a derivative tuple.

The number of derivative tuples that can be derived from a
K-dimensional ES Ŝ(K)

c is∣∣∣Ŝ(K)
c

∣∣∣ ×
K−2∑
k=1

KCk. (47)

The existence of derivative tuples may cause a substantial increase
in the processing time of ESIS when K̂max is large. Therefore,
solving this problem may lead to the development of a faster ES
search method.

5. EXPERIMENTS

Experiments were previously conducted using a noise-free arti-
ficial dataset and two motion capture datasets (Satoh and
Yamakawa, 2017). The former experiment confirmed that ESIS
can obtain the same ESs as those obtained by BFS, which is
possible if Assumption 1 holds. The latter experiment confirmed
that ESIS can obtain ESs that are considered plausible as a cor-
respondence relation between two motion capture datasets, but
BFS was stopped because the processing time exceeded one day
when K was only three. However, no previous investigation has
examined whether ESIS can obtain the same ESs as BFS while
using real datasets with noise.

This section describes two experiments conducted using the
same motion capture datasets used in a previous study (Satoh and
Yamakawa, 2017). Themain aim in the first experiment is to inves-
tigate derivative tuples described in Section 4. Themain aim in the
second experiment is to investigate whether or not ESIS can obtain
the same ESs as those obtained by BFS while using real datasets.
Section 5.1 first describes the dissimilarity function used as a
standard for equivalence between multidimensional sequences.

5.1. Dissimilarity Function
We used the same dissimilarity as in a previous study (Satoh
and Yamakawa, 2017), which utilizes all the mean-square val-
ues (MSVs) of Euclidean distances between subsequences of
each sequence. GivenN sequences {xi = (x(1)i , ..., x(T)i )}i∈[N], we
denote a subsequence by:

z(t)k =
(
z(t,1)k , ..., z(t,τ)

k

)tr
=

(
x(t)k , ..., x(t+τ−1)

k

)tr

− 1
τ

τ∑
t′=1

x(t+t′−1)
k , (48)
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where t is time, k is an ID, τ is the length of the subsequence, and
ctr is the transposition of a vector c.

Next, we consider the followingMSVof the Euclidean distances
between a subsequence of a K-dimensional sequence specified by
a K-tuple u1 and that by a different K-tuple u2

MSV(t1,t2)
u1,u2 =

1
τK

K∑
k=1

∣∣∣∣∣∣z(t1)u1,k − z(t2)u2,k

∣∣∣∣∣∣2 , (49)

where u1,k and u2,k denote the kth elements of u1 and u2, respec-
tively. Then, we define the following quantity MSV(t1)

u1,u2 , which is
the smallest ofMSV(t1,1)

u1,u2 , ...,MSV(t1,T−τ+1)
u1,u2 ,

MSV(t1)
u1,u2 = min

(
MSV(t1,t2)

u1,u2 |t2 = 1, ...,T − τ + 1
)
. (50)

Next, we define the following quantity, which is 1 ifMSV(t1)
u1,u2 <

θMSV or 0 ifMSV(t1)
u1,u2 > θMSV:

h(t1)
u1,u2 = h

(
θMSV − MSV(t1)

u1,u2

)
, (51)

where h is the Heaviside step function. Using these quantities, the
following dissimilarity function du1,u2 is calculated as:

du1,u2 = 1 − 1
β

T−τ+1∑
t=1

w(t)
u1 h

(t)
u1,u2 + w(t)

u2 h
(t)
u2,u1 , (52)

where

β =
T−τ+1∑
t=1

w(t)
u1 + w(t)

u2 , (53)

w(t1)
u1 =

1
τ

τ∑
t′=1

√√√√ K∑
k=1

{
z(t1,t

′)

u(1)k

}2
. (54)

w(t1)
u1 is used as a weight for a subsequence. This means that the

greater w(t1)
u1 is, the more likely the two K-dimensional sequences

FIGURE 4 | Processing times for Experiment 1.

are to be considered equivalent when h(t1)
u1,u2 = 1. β ensures that

the range of values of the dissimilarity function is in the interval
[0,1].

Based on values of the dissimilarity function in Equation (52),
we used hierarchical clustering in the Statistics and Machine
Learning Toolbox version 10.1 in the MATLAB R2015b to obtain
ESs. θhc denotes the threshold for the clustering.

5.2. Experiment 1
We used two motion capture datasets obtained from two dif-
ferent people who were walking. We obtained the two datasets
(file names 07 01.c3d and 07 02.c3d) from mocap.cs.cmu.edu,
which were the same datasets used in the previous study (Satoh
and Yamakawa, 2017). We refer to the two datasets as dataset 1
and dataset 2. It can usually be determined that each sequence
of a motion capture dataset corresponds to which part of the

FIGURE 5 | Numbers of comparisons for Experiment 1.

FIGURE 6 | Sums of cardinalities of ESs obtained by ESIS and numbers of
derivative tuples in the ESs for Experiment 1.
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TABLE 1 | Highest-dimensional ES obtained by ESIS for Experiment 1.

S∗(8)
1 {⟨#3, #5, #6, #15, #16, #17, #18, #19⟩,

⟨#3, #5, #6, #17, #16, #15, #18, #19⟩,
⟨#3, #5, #21, #15, #16, #17, #18, #19⟩,
⟨#3, #5, #21, #17, #16, #15, #18, #19⟩,
⟨#3, #6, #5, #15, #16, #17, #18, #19⟩,
⟨#3, #6, #5, #17, #16, #15, #18, #19⟩,
⟨#3, #6, #21, #15, #16, #17, #18, #19⟩,
⟨#3, #6, #21, #17, #16, #15, #18, #19⟩,
⟨#3, #21, #5, #15, #16, #17, #18, #19⟩,
⟨#3, #21, #5, #17, #16, #15, #18, #19⟩,
⟨#3, #21, #6, #15, #16, #17, #18, #19⟩,
⟨#3, #21, #6, #17, #16, #15, #18, #19⟩,
⟨#20, #5, #6, #15, #16, #17, #18, #19⟩,
⟨#20, #5, #6, #17, #16, #15, #18, #19⟩,
⟨#20, #5, #21, #15, #16, #17, #18, #19⟩,
⟨#20, #5, #21, #17, #16, #15, #18, #19⟩,
⟨#20, #6, #5, #15, #16, #17, #18, #19⟩,
⟨#20, #6, #5, #17, #16, #15, #18, #19⟩,
⟨#20, #6, #21, #15, #16, #17, #18, #19⟩,
⟨#20, #6, #21, #17, #16, #15, #18, #19⟩,
⟨#20, #21, #5, #15, #16, #17, #18, #19⟩,
⟨#20, #21, #5, #17, #16, #15, #18, #19⟩,
⟨#20, #21, #6, #15, #16, #17, #18, #19⟩,
⟨#20, #21, #6, #17, #16, #15, #18, #19⟩,
⟨#24, #40, #28, #36, #32, #37, #23, #39⟩,
⟨#24, #40, #28, #37, #32, #36, #23, #39⟩}

body, but we assumed that it was unknown in order to test the
performance of ES extraction (Satoh and Yamakawa, 2017). The
ESs to be obtained can be considered to indicate correspondence
relations between the positions of the two different people in the
datasets.

We set the threshold θMSV in Equation (51) to 0.06, while the
threshold θhc for the hierarchical clustering is 0.2, and the length
τ of a subsequence is 10. For preprocessing, we first normalized
each of the sequences so that the means and standard deviations
would be 0 and 1, respectively. Next, we used the simple moving
average technique as a low-pass filter, which uses the mean of
n points of a sequence. We set n to six, so that all of the mean
squared errors between original sequences and sequences after the
filtering process would be less than 0.01. Then, we down sampled
the sequences by six. Since we used two motion capture datasets,
we restricted the elements of a tuple to IDs corresponding to only
one of the two datasets.

Figure 4 shows the processing time for BFS and ESIS. BFS
could not obtain three-dimensional ESs within one day, but ESIS
could obtain K-dimensional ESs within 68min for K = 2, . . ., 8.
The total processing time of ESIS was 167min.

Since all possible K-tuples to specify K-dimensional sequences
are considered in BFS, we can calculate the number comparisons

A B

C D

FIGURE 7 | Equivalence structures obtained by ES incremental search: (A) eight-dimensional ES, (B) seven-dimensional ES 1, (C) seven-dimensional ES 2, and
(D) seven-dimensional ES 3. Black points and cross marks represent dataset 1 at t = 1, while blue points represent dataset 2 at t = 150. Cross marks represent
sequences that were merged in preprocessing. The elements at each position in the tuples are connected with red lines.
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FIGURE 8 | Processing times for Experiment 2.

FIGURE 9 | Numbers of comparisons for Experiment 2.

of K-dimensional sequences for BFS in the following form
obtained from Equation (4):

n′BFS
K = (N1CK +N2 CK)

(
N1PK +N2 PK + K!

2
− 1

)
, (55)

where N1(= 22) is the number of sequences for dataset 1 and
N2(= 18) is that for dataset 2. Figure 5 shows the numbers
n′BFS

2 , ..., n′BFS
9 and the numbers of comparisons for BFS and ESIS.

The number of comparisons for ESIS was significantly lower than
that for BFS when K = 3, . . ., 9.

The numbers of two- to eight-dimensional ESs obtained by
ESIS were 27, 49, 72, 59, 32, 10, and 1, respectively. Figure 6
shows the sums of the cardinalities of ESs obtained by ESIS
and the numbers of derivative tuples in the ESs. The number of
derivative tuples was much greater than that of the other tuples
for K = 2, . . ., 7.

The highest ES obtained was an eight-dimensional ES with
26 tuples, as shown in Table 1. The elements in their origi-
nal space are shown in Figure 7A. Figures 7B–D show three
seven-dimensional ESs that do not have any derivative tuples.
Although the three seven-dimensional ESs do not have the
highest-dimension, the ESs appear to be useful for matching the
dimensions of datasets 1 and 2.

5.3. Experiment 2
To ensure that the BFS procedure would finish within one day
when K > 2 in the second experiment, we used only sequences
corresponding to the IDs in the highest-dimensional ES obtained
by ESIS for Experiment 1 (Table 1). The relevant sequences were
#3, #5, #6, #15, #16, #17, #18, #19, #20, #21, #23, #24, #28, #32, #36,
#37, #39, and #40.

Figures 8 and 9 show the processing time and the numbers
of comparisons, respectively. Nine two-dimensional ESs were
obtained by both BFS and ESIS. However, 14 three-dimensional
ESs were obtained by BFS, whereas ESIS obtained 15. The sum
of the cardinalities of the three-dimensional ESs for BFS was 257,
whereas that for ESIS was 168. This means that Assumption 1 did
not hold in this experiment and ESIS could not obtain the same
ESs as BFS. However, we cannot say which solution was better in
this case, because we do not have anymeasure to tell which ES was
better.

6. CONCLUSION

This paper has presented proofs to validate ESIS and investigated
derivative tuples, which are the subtuples of the tuples of an ES
that can slow down the process of ES extraction. In addition, we
have shown a case where ESIS did not obtain the same ESs as those
obtained by BFS using real datasets.

In the future, we plan to determine whether or not it is neces-
sary to obtain exactly the same ESs as those obtained by BFS. To
do this, a measure of the usefulness of an ES will be necessary.
We also plan to develop a method to obtain ESs faster than ESIS
does in consideration of the findings in this paper, especially the
property of ESIS for derivative tuples.
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