
METHODS
published: 08 January 2018

doi: 10.3389/frobt.2017.00071

Edited by:
Fabrizio Riguzzi,

University of Ferrara, Italy

Reviewed by:
Nicola Di Mauro,

Università degli studi di Bari Aldo
Moro, Italy
Aline Paes,

Federal Fluminense University, Brazil

*Correspondence:
Andrea Passerini

andrea.passerini@unitn.it

Specialty section:
This article was submitted to
Computational Intelligence,

a section of the journal Frontiers in
Robotics and AI

Received: 12 October 2017
Accepted: 08 December 2017
Published: 08 January 2018

Citation:
Dragone P, Teso S and Passerini A

(2018) Constructive Preference
Elicitation.

Front. Robot. AI 4:71.
doi: 10.3389/frobt.2017.00071

Constructive Preference Elicitation
Paolo Dragone1,2, Stefano Teso3 and Andrea Passerini1*

1DISI, University of Trento, Trento, Italy, 2TIM-SKIL, Trento, Italy, 3Department of Computer Science, KU Leuven,
Leuven, Belgium

When faced with large or complex decision problems, human decision makers (DM)
can make costly mistakes, due to inherent limitations of their memory, attention, and
knowledge. Preference elicitation tools assist the decision maker in overcoming these
limitations. They do so by interactively learning the DM’s preferences through appropri-
ately chosen queries and suggesting high-quality outcomes based on the preference
estimates. Most state-of-the-art techniques, however, fail in constructive settings, where
the goal is to synthesize a custom or entirely novel configuration rather than choosing
the best option among a given set of candidates. Many wide-spread problems are
constructive in nature: customizing composite goods such as cars and computers,
bundling products, recommending touristic travel plans, designing apartments, buildings,
or urban layouts, etc. In these settings, the full set of outcomes is humongous and
can not be explicitly enumerated, and the solution must be synthesized via constrained
optimization. In this article, we describe recent approaches especially designed for
constructive problems, outlining the underlying ideas and their differences as well as their
limitations. In presenting them, we especially focus on novel issues that the constructive
setting brings forth, such as how to deal with sparsity of the DM’s preferences, how to
properly frame the interaction, and how to achieve efficient synthesis of custom instances.

Keywords: structured-output prediction, preference elicitation, recommendation systems, configuration systems,
layout synthesis

1. INTRODUCTION

Consider a tourist planning her upcoming trip to Italy. She has to solve a decision problem involving
several decision variables: what cities to visit and in what order, how to travel from one city to the
next, how long to stay and what activities to enjoy at each location, etc. This is a very complex
decision problem. The set of potential travel plans is naturally delimited by hard requirements, such
as maximum duration and budget, while the tourist’s preferences define a ranking between feasible
alternatives. Analogous decision problems occur in many day-to-day activities: configuring one’s
next car (product configuration (Sabin andWeigel, 1998)), planning the working shifts of employees
(scheduling (Ernst et al., 2004)), designing a pleasant and functional arrangement of furniture pieces
(layout synthesis (Harada et al., 1995)), and many others.

All these tasks boil down to identifying a structured configuration consisting of several interrelated
variables, where the space of configurations is delimited by hard constraints and the ranking
among feasible alternatives is determined by the user’s preferences. When faced with such decision
problems, human decision makers (DM) often fail to choose an optimal, or even satisfactory,
outcome, for several reasons (Boutilier, 2002; Pigozzi et al., 2016). The space of alternatives is
simply too large to search directly. Furthermore, the relationships between variables and the hard
constraints impose an additional burden on the DM’s limited knowledge, memory, and attention.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 711

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00071
https://creativecommons.org/licenses/by/4.0/
mailto:andrea.passerini@unitn.it
https://doi.org/10.3389/frobt.2017.00071
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00071&domain=pdf&date_stamp=2018-01-08
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00071/full
https://loop.frontiersin.org/people/498154
https://loop.frontiersin.org/people/498165
https://loop.frontiersin.org/people/482633
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

Computational aids can assist human DMs in identifying good
quality solutions. Preference elicitation approaches (Boutilier,
2002; Pigozzi et al., 2016) involve interactively learning the DM’s
preferences, which are unobserved, and using them to suggest
progressively better recommendations until a satisfactory one is
found. However, existing approaches are typically conceived for
identifying the most preferred solution from a given collections
of candidates (e.g., movies, books), and they are not directly
applicable to constructive preference elicitation problems, which
involve “synthesizing” the structured configuration from basic
components given feasibility constraints and (an estimate of) the
user’s preferences. Bayesian approaches (Guo and Sanner, 2010;
Viappiani and Boutilier, 2010) rely on expensive routines to com-
pute the expected informativity of candidate queries (Chajewska
et al., 2000) and cannot scale to large configuration scenarios.
Regret-based elicitation strategies (Boutilier et al., 2006; Braziu-
nas and Boutilier, 2007) assume perfect feedback from the user
and cannot handle the occasional inconsistencies which are to
be expected when dealing with human DMs. Finally, standard
recommendation techniques such as collaborative filtering (Koren
andBell, 2015) cannot be straightforwardly applied in this context,
as it will rarely be the case that two users choose the very same
configuration.

In this article, we survey a general framework specifically
designed for constructive preference elicitation. As in standard
preference elicitation, our framework revolves around making
informative queries to the user and collecting preference feedback,
but it integrates structured-output ideas and efficient constrained
optimization techniques to deal with combinatorial search spaces.
The proposed framework offers the following key advantages.
First, queries and recommendations are synthesized on-the-fly
via constrained optimization. This avoids having to enumerate
the space of alternatives and enables to seamlessly handle both
preferences and hard constraints. In addition, our formulation is
very general: it accommodates fully combinatorial applications
like personnel timetabling, and hybrid ones involving also con-
tinuous variables, like layout synthesis. Second, the learning loop
employs structured-output ideas to efficiently deal with the large
number of alternatives. In contrast to regret-based approaches,
it is robust against inconsistencies in the user’s feedback. Third,
our framework can be adapted to different kinds of interaction,
depending on the specific application. In this article, we will
discuss pairwise ranking queries (e.g., “do you prefer a to b?”),
improvement queries (“please improve a, even a little”), and exam-
ple critiques (“why do/don’t you like a?”). Improvement critiques
are more appropriate in tasks like layout synthesis or other design
applications, where configurations can be easily modified by the
user via manipulation, while ranking queries work fine in other
tasks. Example critiques can in principle be combined with either
of the previous.

We showcase the feasibility of our framework by surveying
three concrete implementations. The first one is a setwise general-
ization of max-margin learning (SetMargin or SM for short) (Teso
et al., 2016). It relies on setwise ranking queries, an extension of
pairwise ranking queries to small collections of alternatives, for
increased flexibility. The query selection strategy aims at selecting
an informative, diverse set of high-quality query configurations.

The core optimization step can be cast as a mixed-integer linear
problem and solved directly with any efficient off-the-shelf solver.
A major feature of SM is its ability to handle sparsity in the user’s
preferences. In many cases, the DM will have strong preferences
on some components, while being largely indifferent to the oth-
ers. Contrary to existing approaches, SM employs a sparsifying
regularizer that can effectively exploit this phenomenon.

The second implementation is an application of Coactive
Learning, a recently introduced online preference learning frame-
work (Shivaswamy and Joachims, 2012) designed for learning
from implicit feedback (e.g., click counts). In coactive interaction,
the recommender presents a single candidate recommendation
and the usermodifies it (even slightly) to better fit her preferences.
Here, we show that this paradigm can be naturally adapted to con-
structive preference elicitation. Coactive interaction is especially
well suited to problems where explicit manipulative feedback is
easy to obtain, for instance, layout synthesis. Notably, the theoret-
ical convergence guarantees of Coactive Learning still hold in the
constructive setting.

The third algorithm, the Critiquing Preference Perceptron
(CPP) (Teso et al., 2017a), combines coactive interaction and
example critiquing. CPP stems from the observation that, during
the elicitation procedure, the DM may realize that they care about
some aspect of the configuration that they previously deemed
irrelevant (Slovic, 1995; Lichtenstein and Slovic, 2006). Contrary
to other methods, CPP is designed to dynamically adapt to
these newly discovered preference criteria. To this end, it couples
improvement queries with example critiques, i.e., “why do you
prefer a over b?” questions, to acquire the missing preference
criteria. The critiques are only requested at specific iterations, to
minimize the user effort. We include a theoretical analysis of the
CPP algorithm, derived from Shivaswamy and Joachims (2015),
that elucidates the convergence properties of the algorithm.

While stemming from the same framework, the three
approaches offer complementary advantages. SM is
designed to handle constructive recommendation problems
where the user preference criteria are fixed, but sparse, as is
usually the case for non-expert DMs. On the other hand, PP
and CPP are suited for design problems, where manipulative
interaction is more natural. Furthermore, CPP supports cases
where the preference criteria may change during the elicitation
process, as often happens while the DM is exploring the catalog
of options (Chen and Pu, 2012). All algorithms are extensively
validated on synthetic and realistic constructive tasks, most
of which are too large to be tackled with standard elicitation
procedures. Our evaluation shows that SM, PP, and CPP can
easily solve problems much larger than previously possible,
while still performing as well or better than state-of-the-art
competitors. Please note that, while SM and CPP have previously
been presented in Teso et al. (2016) and Teso et al. (2017a), the
application of PP to layout synthesis is a novel contribution of
this article.

While constructive preference elicitation bears some resem-
blance to active learning and configurator technologies, we stress
that there are significant differences between these tasks. Active
learning approaches (Settles, 2012) aim at learning an accurate
model of some system by interacting with an external oracle

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 712

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

(human or otherwise). Supervision is obtained via membership
queries, e.g., questions like “what is the label of instance x?”
Each label comes at a cost, and therefore interaction is kept at a
minimum. The main differences with preference elicitation are
that membership queries ask for labels rather than preferences,
and that the query selection strategies used in active learning
ignore the quirks of interacting with non-expert human DMs.
For instance, uncertainty sampling selects examples close to the
separation margin (Kremer et al., 2014). Examples chosen this
way may be arbitrarily similar to each other or uninteresting, and
therefore difficult to evaluate for the DM.

Product configurator systems (Sabin and Weigel, 1998; Felfer-
nig et al., 2014) guide the user in searching for a good config-
uration. While sharing the same goal of constructive preference
elicitation, configurators typically do not include a learning com-
ponent. They iteratively ask the user to restrict the potential values
that a component can take, thus progressively trimming away
irrelevant regions from the search space. Component-based inter-
action has its advantages, and it is not impossible to integrate it in
preference elicitation. However, in this article, we will focus on
more customary interaction protocols, like pairwise comparison
queries.

This article is structured as follows. Section 2 overviews some
prerequisite background on preference learning and structured-
output prediction. Section 3 introduces our constructive pref-
erence elicitation framework and some basic learning methods.
We proceed by detailing three implementations of the general
framework: the SM algorithm, which makes use of set-
wise choice queries (in Section 4), the Preference Perceptron,
a Coactive Learning approach based on improvement queries
(Sec. 5), and the Critiquing Perceptron, which also exploits exam-
ple critiques (Sec. 6). We conclude by discussing some open issues
in Section 7.

2. BACKGROUND

In this section, we overview some prerequisite literature on pref-
erence and structured prediction, starting from our notation.
We indicate scalars and tuples x in italics, column vectors x in
bold, and sets χ in calligraphic letters. Important scalar constants
N, M, T are upper-case. The inner product between vectors is
written as ⟨w, x⟩ =

∑
i wixi, the Euclidean (ℓ2) norm as ||x|| :=√∑

i x2
i , and the ℓ1 norm as ||x||1 :=

∑
i |xi|. Finally, we

abbreviate the set {1, . . . , n} as [n]. Table 1 summarizes the most
frequently used symbols.

2.1. Preferences
Modeling and eliciting preferences is a long standing interest
in AI (Domshlak et al., 2011; Pigozzi et al., 2016) and related
fields like decision theory, psychology, and econometrics (Von
Neumann and Morgenstern, 1947; Slovic et al., 1977; Kahneman
and Tversky, 1979). The first and probably most critical issue is
how to appropriately represent preferences. There exist various
alternative representations, which differ in terms of expressive-
ness and compactness. In addition, the choice of representation

TABLE 1 | Notation used throughout the article.

N, M, T Number of attributes, features, and iterations
Y= {y1, y2, . . . , yc} Set of feasible configurations
ϕ(y) Feature representation of y
w* True, unobserved preferences of the DM
u*(y)= ⟨w*,ϕ(y)⟩ True, unobserved utility of configuration y
wt or wt

1, . . . , wt
K Estimate(s) of w* at iteration t ∈ [T]

K≥2 Size of query sets in SM

heavily impacts the computational complexity of query answer-
ing, e.g., selecting a candidate recommendation to present to
the user.

The most general way to represent the preferences of a DM
over a set of choices Y is to employ a binary preference rela-
tion<⊆Y×Y . The statement y< y′ reads “y is at least as good as
y′.” The relation< induces a partial preorder over the outcomes in
Y . This, in turn, can be used to reason over the preferences, e.g.,
to answer ordering queries like “is y better than y′?” or dominance
queries like “which are the most preferred outcomes?” Being able
to answer these queries is a critical component of decision support
systems. However, this encoding becomes impractical when the
set Y contains more than a handful of outcomes: an arbitrary
preference relation over c choices requires c2 parameters. Elicit-
ing this many parameters becomes infeasible even for moderate
values of c.

It is customary to introduce additional assumptions on the
relation< to represent the DM preferences more compactly and
make the elicitation task more tractable. The basic assumption
of multi-attribute decision theory (Keeney and Raiffa, 1976) is
that the options y∈Y are composed of multiple attributes yi
and can therefore be mapped to points in a multi-dimensional
space. In this case, the options can be represented as tuples
y= (y1, . . . , yN), where N is the number of attributes and each
yi takes values in some domain Y i. The set of all possible out-
comes can be seen as the Cartesian product of the attributes
domains Y =Y1×, . . . ,×YN. Under this assumption, graphical
model representations (such as conditional preference networks)
and utility functions can be employed.

Conditional preference networks—CP-nets for short—(Boutilier
et al., 2004; Allen, 2015) represent a multi-attribute preference
relation with a directed graph. The graph encodes the condi-
tional preferential independences between attributes. Each node
of a CP-net represents an attribute yi, whose parents are all the
attributes that impact the user preferences with respect to yi. Each
node is then associated with a conditional preference table (CPT)
that encodes how preferable each possible value of yi is given
the value of the parent nodes. In this way, CP-nets compactly
represent the structure of a preference relation and can be used
to efficiently answer dominance queries (when the network is
acyclic). One major problem of CP-nets is that they require com-
plete preference information to properly represent a preference
relation over a domain Y . If a CPT is incomplete, configurations
included in the uncovered cases of the CPT are not represented by
the CP-net and cannot be reasoned over, not even approximately.
Obtaining complete preference information, however, is infeasible
when the outcome domain Y has more than a dozen attributes.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 713

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

Contrarily to CP-nets, utility functions can encode an (approx-
imate) preference model over the full domain Y , and thus they
canworkwith partial utility information. By reasoningwith utility
functions, we can provide recommendations of increasing quality
as the estimated utility model improves throughout the elicita-
tion process, as will be discussed Section 2.2. A utility function
is a mapping u : Y→R from outcomes y∈Y to utility val-
ues u(y)∈R. The utility values provide a numerical estimate of
the preferability of a configuration and are meant to mimic the
(qualitative) preferences encoded by <: for all configurations y,
y′ ∈Y , u(y)≥ u(y′) if and only if y< y′. Utility functions offer
varying degrees of expressivity and ease of manipulation.Additive
independent utilities are the simplest (and least expressive) class
of utility functions. They work based on the assumption that the
overall utility of a configuration y can be decomposed into n
independent subutilities, one for each attribute yi:

u(y) =
N∑
i=1

ui(yi).

Here, the subutilities ui depend exclusively on the i-th attribute.
Under additive independence, utility elicitation is especially con-
venient, as each attributes provides an independent contribution
to the overall utility and thus the corresponding subutility may be
elicited separately from other attributes. Once all the subutilities
have been elicited, answering dominance queries is also quite
convenient, by selecting for each attribute the value maximizing
the corresponding subutility.

One problem with additive independent models is that
attributes are typically interrelated, especially in the structured set-
ting. This entails that the utility can not be broken down into inde-
pendent, per-attribute components. A much less restrictive struc-
tural assumption is the generalized additive independence (GAI)
(Fishburn, 1967). Given M attribute subsets I1, . . . , IM⊆ [N], a
GAI utility has the form:

u(y) =
M∑

k=1

uk(yIk)

where yIk is a partial outcome on the attributes Ik. A GAI utility is
a combination of M subutilities, each one dependent only on the
attributes in Ik. The subsets Ik may, however, overlap. This model
is very general and includes the linear functions over arbitrary
feature spaces used in structured-output prediction tasks (see
Section 2.3), which are the natural choice for our constructive
preference elicitation scenario.

As a final remark, we note that the preferences of human
DMs exhibit specific structure, which must be dealt with while
designing the elicitation mechanism. First, in domains with many
attributes, users often exhibit strong preferences on a few selected
aspects of the candidate configurations (e.g., fuel consumption
or trunk size for a car) while being indifferent about others (e.g.,
top speed, wheel covers). This entails that human preferences are
sparse. For linear and GAI utilities, this translates into most of
the subutilities ui(·) being close to zero. Second, human DMs are
unaware of most of their preference criteria and tend to discover
or refine them while browsing the available options (Chen and

Pu, 2012). In other words, the subutilities deemed relevant may
change during elicitation. Models that do not account for this fact
may fail to learn accurate representations of the user’s preferences
and may end up providing suboptimal recommendations.

2.2. Preference Elicitation
Preference elicitation is the process of interactively learning a
model of the DM’s preferences, with the goal of providing a
high-quality recommendation with the least cognitive effort. The
difficult part is that decision makers have trouble stating their
preferences upfront and may not even be fully aware of them
(Lichtenstein and Slovic, 2006; Pigozzi et al., 2016). Elicitation
strategies focus on asking suitably chosen queries to the DM, and
learning from the obtained feedback; see below for more details.
The number of questions should be kept low, not to overload or
annoy the user. The key insight here is that even partial preference
information is often enough to suggest satisfactory recommenda-
tions, avoiding the need for eliciting all of the DM’s preferences
(Viappiani and Boutilier, 2011).

The elicitation process proceeds iteratively for some reasonable
number of iterations T, which depends on the task at hand. Let
u* : Y→ R denote the true, unobserved utility function of the
DM. The algorithm maintains an internal estimate ut of the true
utility, where t∈ [T] is the iteration index. At each iteration, the
algorithm selects a query Qt to be posed to the user, typically
by exploiting the current estimate ut and potentially additional
information (e.g., Bayesianmethods (Guo and Sanner, 2010; Viap-
piani and Boutilier, 2010) maintain a full probability distribution
over the space of candidate utility functions, and use it extensively
during query selection). For instance, in pairwise ranking queries
the algorithm chooses two configurations y and y′ and asks the
DM which one is better. The DM’s feedback is then used (possibly
along with all the feedback received so far) to compute a new
estimate ut+1 of the utility function. An algorithmic template of
this procedure is listed in Algorithm 1. A preference elicitation
algorithm also provides a recommendation yt at each iteration t.
Typically, the highest utility configuration yt = argmaxy∈Y ut(y)
is recommended. In some cases, as in Coactive Learning (see
below) the query Qt and the recommendation yt coincide. The
elicitation procedure terminates when the user is satisfied with
the recommendation yt or after a finite number T of steps, after
which, the best configuration according to the final estimate uT is
provided as final recommendation. Notice that to effectively deal
with human users, the algorithm should be robust to occasional
inconsistencies in DM feedback.

Algorithm 1 | Template algorithm for preference elicitation.

1: procedure E (T)
2: D1←∅, u1← initial utility estimate
3: for t= 1, . . . ,T do
4: compute recommendation yt based on ut

5: if user satisfied with yt then
6: return yt

7: select a query Qt based on ut, Dt

8: ask query Qt to the user and get feedback F t

9: Dt+1←Dt ∪ F t

10: compute ut+1 based on ut and Dt+1

11: return argmaxy∈YuT(y)

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 714

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

There exist many types of queries, like lotteries, pairwise or
setwise rankings, improvements, which all share the goal of being
easy to answer to and as informative as possible. Queries involving
comparisons and rankings have come to be predominant in the
literature with respect to quantitative evaluations. Indeed, users
are typically more confident in providing qualitative judgments
like “I prefer configuration y over y′” than in specifying how
much they prefer y over y′ (Conitzer, 2009; Carson and Louviere,
2011). In this article, we experiment with three different types of
feedback:

• Choice set feedback: the DM is queried with a set of candidate
solutions (typically two to five) and asked to pick the best one,
according to her preferences. This type of feedback is usually
deemed to be the best trade-off between informativeness and
user cognitive effort (Guo and Sanner, 2010; Viappiani and
Boutilier, 2010). Larger sets of alternatives can be more infor-
mative, at the cost of a potentially higher cognitive cost for the
user, as detailed in Section 4.

• Coactive feedback: this was recently proposed by Shivaswamy
and Joachims (2015) as an alternative to comparative feedback.
It is a type ofmanipulative feedback, where the system provides
a single recommendation and the user is asked to (slightly)
improve it to better match her preferences. Shivaswamy and
Joachims (2015) argue that coactive feedback is often implicitly
attainable from the user interaction with a system. However,
we also suggest that explicit coactive interaction comes handy
in constructive decision tasks, such as design or planning, as
discussed in Section 5.

• Example critiquing: a “critique” is, broadly speaking, a sort of
explanation about why the user may like or dislike a certain
configuration. Many types of critiquing-based system, or con-
versational recommenders, have been devised (McGinty and
Reilly, 2011; Chen and Pu, 2012), but they usually boil down to
employing the user critiques to refine the recommended objects
by imposing more constraints on their attributes, and do not
use them to learn an explicit model of the user’s preferences.
In our Critiquing Perceptron, detailed in Section 6, we instead
employ a specific type of critiques that allows us to improve
the underlying utility model by expanding the set of relevant
features for the user.

Finally, the performance of a preference elicitation algorithm
is measured via the quality of the recommendations yt it delivers.
Recommendation quality is measured with the regret (or utility
loss):

REG(yt) = u∗(y∗)− u∗(yt) y∗ = argmax
y∈Y

u∗(y) (1)

that is, the difference in true utility between the best possible
configuration y* and the recommended one yt. Depending on the
type of interaction, however, different definitions of regret may be
used. In some cases, we are also interested in the average regret:
REGT = 1

T
∑T

t=1 REG(yt), indicating the overall performance of
the system throughout the elicitation process. Thesemeasures will
be used in our theoretical and empirical analyses.

2.3. Structured-Output Prediction
Ordinary supervised learning algorithms predict one or more
categorical or continuous output labels. When the output labels
are structures—such as sequences, trees, graphs, and other com-
posite objects—ordinary supervised methods cannot be applied.
Structured-output prediction refers to a class of techniques explic-
itly designed to predict such objects (Tsochantaridis et al., 2005;
Bakir et al., 2007; Joachims et al., 2009b).

Let X and Y be the set of input and output structures, respec-
tively. In structured-output prediction, the goal is to learn a
function f :X →Y mapping inputs x∈X to their corresponding
output y∈Y . The function f is defined in terms of a numerical
scoring function F : X ×Y→ R that evaluates the “compatibil-
ity” F(x, y) of an input–output pair. Given an input x, prediction
amounts to searching for the most compatible output y by solving
the following inference problem:

f(x) = argmax
y∈Y

F(x, y). (2)

As is common in the structured-output prediction literature
(Joachims et al., 2009b), we will restrict ourselves to linear scoring
function of the formF(x, y)= ⟨w, ϕ(x, y)⟩ defined over some joint
feature representation ϕ(x, y) of the input–output pair. The weight
vector w∈ RM is a parameter controlling the importance of the
various features and is learned from data. In this section, we will
cover two learning algorithms most closely related to our con-
tribution: the structured-output support vector machine (SSVM)
(Tsochantaridis et al., 2004) and the Structured Perceptron (SP)
(Collins, 2002).

The SSVM is an offline learning approach, but serves as a basis
for our interactive preference elicitation schemes. Given a dataset
of examples D= {(xi, yi)}, SSVMs learn a weight vector w that
scores correct input–output pairs higher than all incorrect ones,
that is ⟨w, ϕ(xi, yi)⟩ − ⟨w, ϕ(xi, y)⟩ ≥ µ(yi, y) − ϵi for all
examples (xi, yi)∈ D and all incorrect outputs y∈Y , y ̸= yi. Here,
µ(yi, y) is a structured loss that captures how bad it would be
to predict the “wrong” output y in place of the correct one yi
and is application dependent. The slacks ∈i take care of possible
inconsistencies in the dataset. As in othermax-margin approaches
(Joachims, 2002), learning aims at maximizing the separation
margin between correct and incorrect predictions while mini-
mizing slack variables and is cast as a quadratic programming
(QP) problem. The resultingQP includes a potentially exponential
number of large margin constraints (namely, one for each exam-
ple in D and candidate output in Y), and therefore can not be
solved directly. However, since only a small subset of constraints
is usually active, the QP can be solved via constraint generation
strategies. Please see Joachims et al. (2009a,b) for a more detailed
description, and Shah et al. (2015) and Osokin et al. (2016) for
some recent developments.

Contrary to the SSVM, the Structured Perceptron is an online
learning algorithm. The training algorithm is straightforward. The
procedure involves iteratively inferring the best prediction for
the current example using equation (2), and then adjusting the
weights whenever the predicted label does not match the true
one. More formally, at each iteration t, the SP receives an input
structure xt and predicts the corresponding structured label yt.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 715

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

Next, it compares the true label yt∗ with the predicted one and
computes an updated weight estimate using a simple Perceptron
update, that is wt+1 = wt + ϕ(xt, yt∗) − ϕ(xt, yt). Despite its
simplicity, the SP comes with solid theoretical guarantees (Collins,
2002) (so long as the dataset is linearly separable) and works
well in practice. An advantage of SP with respect to max-margin
formulations is that the update rule is trivial to compute, at the
cost of a less robust handling of inconsistencies in the data.

A major advantage of structured-output prediction approaches
is that inference and learning are reasonably decoupled. So long
as the inference problem (equation (2)) can be solved, learning
in SSVMs and the SP is guaranteed to work. This allows to
encode arbitrary inference problems using arbitrary modeling
frameworks, e.g., constraint programming in our case, to solve
various constructive applications, as shown in the next sections.

3. CONSTRUCTIVE PREFERENCE
ELICITATION

Constructive preference elicitation (CPE) extends standard pref-
erence elicitation to settings where the configurations to be
recommended are structured object, e.g., car or PC configu-
rations, travel plans, layouts, etc. Our framework mixes ideas
from structured-output prediction and constraint satisfaction
(and optimization) to the standard PE approach, as follows.

As in multi-attribute preference elicitation (see Section 2.1),
in our framework the candidate structures y∈Y are defined by
N attributes y= (y1, . . . , yN)∈ Y1×, . . . , ×YN. The attributes
represent the low-level components of the configuration. For
instance, in a car configuration scenario, they may encode the
choice of engine, tires, body color, etc. The DM’s preferences are
over features ϕ(y) of the configuration, which may include both
simple attributes (“is the color red?”) and more complex state-
ments (“is the gas consumption low?”). The rationale is that non-
domain experts usually do have no preferences on the particular
engine or tires, but rather care about speed and gas consumption,
which are functions of the individual attributes. The user’s utility
function is assumed to be a linear combination of the features,
i.e., u*(y)= ⟨w*,ϕ(y)⟩. This representation is analogous to the
one used in structured-output prediction (see Section 2.3) and it
is expressive enough to encode various real-world constructive
problems, as shown by our experiments. The only difference
with respect to the standard formulation of structured-output
learning is that here the input x is missing. Indeed, the goal of
CPE in general is to synthesize an optimal configuration from
scratch, rather than predicting the best (structured) output for
a given input. There are actually applications in which we want
to generalize a learned preference vector to several instances of
the same problem. In these cases, the preference model can be
trivially extended including an input object x representing given
contextual information about the current task. In layout synthe-
sis, for instance, after learning an interior designer’s preferences
over a certain house, we may want to apply the same learned
preferences to another house with a different shape. The shape of
the house could therefore be given as an input context x to our
model, to generalize the learned weights over different contexts.
In this article, we omit the context for notational simplicity, but

all algorithms can be straightforwardly applied in the presence of
contextual information: it suffices to add the contextual compo-
nent x to the feature map (as in structured-output models) and
drop the stopping criterion, as the learning task and satisfactory
recommendations change with different contexts.

The CPE framework follows closely Algorithm 1. At each
iteration, a query is presented to the DM, and the feedback
received is used to update the weights. The update step (line 10)
depends on the actual algorithm. With SSVM, feedback is turned
into additional constraints and the updated parameters wt+1 are
learned from the entire datasetDt+1. Pairwise ranking queries, for
instance, generate feedback in the form of binary preferences Ft =
yt+ ≻ yt−, which are turned into pairwise ranking constraints
⟨w, ϕ(yt+)⟩ > ⟨w, ϕ(yt−)⟩. Other interaction protocols can be
dealt with similarly, e.g., improvements and example critiques (see
Sections 5 and 6). In SP, weights are updated according to the latest
feedback Ft only. For pairwise preference queries, the update rule
is simply wt+1 ← wt + ϕ(yt+)− ϕ(yt−).

Given an estimate wt, choosing a single recommendation yt
is analogous to performing structured inference (equation (2)).
Choosing the query set Qt depends on the specific query strategy
used (e.g., pairwise, choice set, improvement), recalling that the
goal is to select queries that are easy to answer and convey as
much information as possible. Leaving the specifics to Sections 4
and 5, here we merely note that, just like inference, query selec-
tion in structured domains can be interpreted as a constrained
optimization problem. The complexity of this problem depends
on the type of variables (Boolean, integer, or continuous) and
the type of features and hard constraints (linear, quadratic, etc.).
The CPE framework is generic and can be combined with any
optimization technology which is suitable for the type of problem
at hand. In this article, we focus on scenarios where numeric
features and constraints are linear in the attributes. Inference and
query selection in this case can be cast as (mixed) integer linear
programs (MILP). Despite being NP-hard in the general case,
off-the-shelf solvers do optimize practical MILP instances very
efficiently, as shown by our experiments on a number of relevant
application scenarios.

In the following, we describe three CPE algorithms which rely
on different forms of interaction with the DM. Setwise max-
margin (Sec. 4) is conceived for comparative feedback in the
form of preferences within a choice set of candidates. Coactive
Learning (Sec. 5) employs manipulative feedback in the form
of (slight) user improvements over a candidate configuration.
Coactive Critiquing (Sec. 6) extends Coactive Learning by further
requiring explanations for theDM feedbackwhen deemed needed
to incorporate it into the model.

4. SETWISE MAX-MARGIN

SM (or SM) (Teso et al., 2016) is an implementation of
our CPE framework which generalizes the max-margin principle
to sets to recommend both high-quality and maximally diverse
configurations to the DM.

During interaction, the algorithm builds K≥ 2 configurations
and presents them to the user, asking for her most preferred one.
Here, K is a small constant, usually 2–5. When K = 2, queries

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 716

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

reduce to pairwise comparisons. Larger values of K can increase
the potential informativeness of interaction: the user has more
options to choose from, and her choice induces K− 1 pairwise
ranking constraints. Of course, if K is too large the user may have
trouble picking the absolutely best option. The value of K should
be chosen to trade-off between these two aspects in an application
specific manner. There are two caveats, however. If the query
configurations are too similar, they may look undistinguishable
to the DM, who may not know what to answer. Furthermore, low-
quality or random configurations may be difficult to evaluate for
the user. Both issues may lead to potentially uninformative or
inconsistent answers. To avoid them, SM is explicitly designed to
select K query configurations that are diverse between each other,
and that have high utility with respect to the current preference
estimates.

In SM the features ϕ(·) are restricted to be 0–1 only, a common
choice in preference elicitation (Guo and Sanner, 2010; Viappi-
ani and Boutilier, 2010). The set of feasible configurations Y is
implicitly defined by hard constraints. This setup is rather gen-
eral, and naturally allows to encode both arithmetical and logical
constraints. Categorical features can be handled by using a one-
hot encoding, while numerical attributes that depend linearly on
the categorical ones can be dealt with too. In addition, SM assumes
without loss of generality that the preference weights wi are non-
negative. User dislikes can be encoded by adding negated features
to ϕ(·), if needed. We refer the reader to Teso et al. (2016) for a
more extensive discussion.

4.1. The Algorithm
As can be seen from the pseudo-code listed in Algorithm 2,
the SM algorithm follows the standard preference elicitation loop
(Algorithm 1). At each iteration t, SM selects K query configura-
tions yt1, . . . , ytK ∈ Y based solely on the collected feedback Dt.
The configurations are chosen to be diverse and high-quality,
to facilitate acquiring preferences from the user, while inconsis-
tencies in the user preferences are handled by the mathematical
formulation, as discussed later on. The DM is invited to select
her most preferred configuration yt+ among the K alternatives.
Her choice implicitly definesK− 1 ranking constraints:1 for every
configuration yt− that was not chosen, SM extracts a pairwise
preference yt+ ≻ yt− and adds it to Dt, obtaining Dt+1. The

1The algorithm presented in Teso et al. (2016) uses a slightly different strategy,
where the user is asked to rank the set of alternatives, and pairwise preference
constraints are generated from this ranking. This variant is simpler and has similar
performance in practice.

Algorithm 2 | The Setwise Max-margin algorithm.

1: procedure SM(K, T, α)
2: D1←∅
3: for t= 1, . . . ,T do
4: obtain yt1, . . . , ytK by solving OP2 with K and α

5: the user chooses yt+ from yt1, . . . , ytK
6: Dt+1 ← Dt ∪{yt+ ≻ yt− : yt−was not selected}
7: obtain yt by solving OP2 with K= 1 and α

8: If user is satisfied with yt then
9: return yt

10: return yT

algorithm terminates when the user is satisfied with the suggested
configuration or the maximum number of iterations is reached.

The SMquery selection strategy encourages diversity and high-
quality of the query set by employing max-margin ideas, as
follows. The algorithm jointly learns a set of K weight vectors,
each representing a candidate utility function, and a set of K
candidate configurations, one for each weight vector. The weights
and configurations are mutually constrained so that (i) each
configuration has high utility with respect to the corresponding
weight vector, therefore encouraging their subjective quality, and
(ii) each configuration has low utility with respect to the other
weight vectors, to encourage diversity. All weight vectors are
further required to be consistent with the feedback acquired so
far (modulo inconsistencies in the data).

More formally, letDt be the set of pairwise ranking constraints
collected so far. The user preference models are represented by K
weight vectorsw1, . . . , wK ∈ RM

+. Eachwi is chosen as to provide
the largest possible separation margin for the pairs in Dt, i.e., for
all i∈ [K] and pairwise ranking (yt+ ≻ yt−) ∈ Dt the utility
difference ⟨wi, ϕ(yt+) − ϕ(yt−)⟩ should be as large as possible.
Non-separable pairs are dealt with through slack variables ε, as
customary. The query configurations yt1, . . . , ytK ∈ Y are chosen
to be high-quality and diverse: each yti is required to havemaximal
utility ⟨wi, ϕ(yti)⟩ with respect to the associated weights wi and
large separation from the other configurations ytj , ∀j ̸= i. The
latter constraint is implemented by requiring the difference in
utility ⟨wi, ϕ(yti) − ϕ(ytj)⟩ to be at least as large as the margin.
A visualization for K = 2 can be found in Figure 1.

The previous discussion leads directly to the quadratic version
of the SM optimization problem over the non-negative margin µ
and the variables {wi}, {yi}, and {εi}:

max µ− α
K∑

i=1
∥ϵi∥1 − β

K∑
i=1
∥wi∥1 + γ

K∑
i=1
⟨wi, ϕ(yi)⟩ (3)

s.t. ⟨wi, ϕ(ys+)− ϕ(ys−)⟩ ≥ µ− εis

∀i ∈ [K], ys+ ≻ ys− ∈ D (4)

FIGURE 1 | Setwise max-margin optimization. The red points are weight
vectors w1 and w2; the black lines correspond to preference constraints Dt,
and the red line corresponds to the hyperplane ⟨w, ϕ(yt1)− ϕ(yt2)⟩ = 0. The
arrows represent the separation margins.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 717

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

⟨wi, ϕ(yi)− ϕ(yj)⟩ ≥ µ ∀i, j ∈ [K], i ̸= j (5)

µ ≥ 0, w⊥ ≤ wi ≤ w⊤, yi ∈ Y, ϵi ≥ 0 ∀i ∈ [K]. (6)

Thew⊤ andw⊥ refer to theminimumandmaximumattainable
weights and can be arbitrary non-negative vectors.We refer to this
optimization problem as OP1.

The objective has four parts. The first part drives the maxi-
mization of the margin µ. The second minimizes the total sum of
the ranking errors {εi}. The third one introduces an ℓ1 regularizer
encouraging sparsity in the learned weights. It copes with the
common scenario in which the user has strong preferences about
some attributes, but is indifferent to most of them. The ℓ1 penalty
is frequently used to improve the sparsity of learned models
(Tibshirani, 1996; Zhang andHuang, 2008; Hensinger et al., 2010),
with consequent gains in generalization ability and efficiency. The
fourth part encourages the configurations to have high utility with
respect to the associated weight vector. The hyperparametersα, β,
γ≥ 0 modulate the contribution of the various parts. Constraint
4 enforces consistency of the learned weights with respect to the
collected user feedback through a ranking loss. Ranking mistakes
are absorbed by the slack variables {εi}. Constraint 5 enforces the
generated configurations to be as diverse as possible with respect
to the corresponding weight vectors. Finally, Constraint 6 ensures
that all variables lie in the corresponding feasible sets.

Unfortunately, Constraint 5 renders OP1 a mixed-integer
quadratic optimization problem, and therefore difficult to solve
directly. However, so long as the weights are non-negative (as
assumed by SM), it is possible to linearize it, obtaining a (tight)
mixed-integer linear approximation [please see Teso et al. (2016)
for the details]. The MILP formulation, which we refer to as
OP2, can be readily solved by off-the-shelf MILP solvers, and in
practice it performs as well or better than state-of-the-art Bayesian
approaches, while scaling to much larger configuration problems.

4.2. Empirical Evaluation
We implemented SM using Python, leveraging Gurobi 6.5.0 for
solving OP2.2 SM was compared against three state-of-the-art
Bayesian approaches: (1) the Bayesian approach of Guo and
Sanner (2010), which selects queries according to an efficient

2The full experimental setup is available at: https://github.com/stefanoteso/
setmargin.

heuristic approximation of the Value of Information (VOI) cri-
terion (namely the restricted informed VOI or) (2) the
Bayesian framework of Viappiani and Boutilier (2010) using
Monte Carlo methods (with 50,000 particles) for Bayesian infer-
ence and askingK-way choice queries selected using a greedy opti-
mization of Expected Utility of a Selection (a tight approximation
of EVOI, hereafter just called); (3)Query Iteration (referred as
 below), also fromViappiani and Boutilier (2010), an even faster
query selection method based on sampling sets of utility vectors.

Following the experimental protocol in Guo and Sanner (2010)
and Viappiani and Boutilier (2010), we simulated 20 users in each
experiment. Their true preferences w* were drawn at random
from each of two different distributions: (1) a normal distribution
withmean 25 and SD 25

3 , (2) a sparse versions of the normal distri-
butionwhere 80%of theweights are set to zero, simulating sparsity
in the user’s preferences. We set a maximum budget of 100 itera-
tions for all methods for simplicity. As in Guo and Sanner (2010),
user responses were simulated using the Bradley–Terry model
(Bradley and Terry, 1952) extended to support indifference. More
formally, the probability that a simulated user prefers configu-
ration y over y′ was defined as 1/(1+ exp(−λ(u*(y)− u*(y′)))),
while the probability of her being indifferent was defined as
exp(−λ2|u*(y)− u*(y′)|). The parameters λ1 and λ2 were set to
one for all simulations. Finally, SM was instructed to
update the hyperparameters α, β, and γ every 5 iterations by
minimizing the ranking loss over D via cross-validation. α was
selected from {20, 10, 5, 1}, while β and γ were taken from {10, 1,
0.1, 0.001}.

In the first experiment, we evaluated the behavior of the pro-
posed method on artificial problems of increasing size. Each
problem includes r categorical attributes, each taking values in [r],
and no hard constraints. As an example, for r= 3 the feasible space
Y is [3]× [3]× [3], for r= 4 it is [4]× [4]× [4]× [4], and so on.
The cardinality of Y is rr, which for r≥ 4 is much larger than
the datasets typically used in the Bayesian preference elicitation
literature. As such, this dataset represents a good testbed for
comparing the scalability of the various methods. The problem
space was encoded in SM with MILP constraints, while the other
methods require all datasets to be explicitly grounded.

We report the regret and cumulative runtime of all algorithms,
forK = 2 and r= 3, 4, in Figures 2 and 3. The curves are averaged
over the 20 users; the shaded area represents the SD. For the

FIGURE 2 | Comparison between SM (orange), VOI (blue), (green), and (gray) on the r= 3 (left) and r= 4 (right) synthetic problems on users with dense
preferences. Best viewed in color.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 718

https://github.com/stefanoteso/setmargin
https://github.com/stefanoteso/setmargin
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

FIGURE 3 | Comparison between SM (orange) and the Bayesian competitors on users with sparse preferences.

FIGURE 4 | Results for SM for K= 2 (red), K= 3 (blue), and K= 4 (green) on the PC dataset for the sparse uniform distribution. Regret and time are plotted
against number of iterations (left) and number of acquired constraints (right).

dense weight distribution (Figure 2), SM performs comparably to
the Bayesian competitors, but at a fraction of the computational
cost. For sparse weight distribution (Figure 3) SM, in addition to
being substantially faster on each iteration, requires less queries
to reach optimal solutions. This is an expected result as the spar-
sification norm in our formulation (||w||1) enforces sparsity in the
learned weights, while none of the other approaches is designed to
do this.

In a second experiment, we ran SM on a realistic PC
recommendation problem. Here, PC configurations are defined
by eight attributes: type (laptop, desktop, or tower), manufacturer
(8 choices), CPU model (37), monitor size (8), RAM amount (10),
storage (10) size, and price. The latter is a linear combination of
the other attributes, as it can be well approximated by the sum of
the price of the components plus a bias due to branding. Interac-
tions between attributes are modeled as 16 Horn clauses (e.g., a
certain manufacturer implies a set of possible CPUs) and encoded
as MILP constraints. The search space Y includes hundreds of
thousands of candidate configurations and is far beyond reach of
standard preference elicitation approaches.

Figure 4 reports results of SM with K = 2, 3, 4 using
the sparse uniform distribution, the more complex of the sparse
ones, dense distributions being unrealistic in this scenario. To
evaluate the effect of the query set size K, the curves are plotted
both against the iteration index (which is independent of K) and
the number of acquired constraints |D| (which depends on K).
Overall, between 50 and 70 queries on average are needed to
find a solution which is only 10% worse than the optimal one,
out of the more than 700,000 thousands available. Note that a
vendor may ensure a considerably smaller number of queries

by cleverly constraining the feasible configuration space; since
our primary aim is benchmarking, we chose not to pursue this
direction further. Please see Teso et al. (2016) for a more detailed
discussion.

5. COACTIVE LEARNING

Coactive Learning (Shivaswamy and Joachims, 2015) is an online
structured prediction framework for learning utility functions
through user interaction. In this case, user interaction is done via
coactive feedback: the algorithm presents a single configuration to
the user, who is asked to produce a slightly improved version of
that object.

The Coactive Learning framework can be readily applied to
constructive preference elicitation tasks. Query selection here
boils down to suggesting the currently best solution, which is
obtained by solving structured inference (equation (4)). To apply
Coactive Learning to constructive problems, it suffices to define
an appropriate inference procedure based on constraint optimiza-
tion. The improved solution received as feedback from the user
is then combined with the presented solution into a pairwise
preference.

The coactive protocol is well suited for tasks where the user is
actively involved in shaping the final recommended object. Coac-
tive interaction can be seen as a form of “cooperation” between the
system and the user to achieve the shared goal of producing a good
recommendation. This is especially useful when considering large
configuration tasks like the ones addressed in the CPE framework,
provided that manipulation is sufficiently natural in the appli-
cation at hand (as in design tasks) and that the user is willing

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 719

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

to stand the required cognitive effort. The rest of this section
outlines a particular Coactive Learning algorithm, the Preference
Perceptron, and details our experiments on a prototypical layout
synthesis problem. To the best of our knowledge, using Coactive
Learning for solving a constructive design problemhas never been
proposed before and represents an original contribution of this
article.

5.1. The Algorithm
The Coactive Learning paradigm encompasses a variety of dif-
ferent algorithms. Perhaps the simplest (but quite effective)
algorithm is the Preference Perceptron (PP) (Shivaswamy and
Joachims, 2015), a generalization of the Structured Perceptron
(Collins, 2002) (see Sec. 2.3) where the supervision is provided
by weak user feedback, i.e., pairwise ranking constraints. Algo-
rithm 3 show a slightly simplified version of the PP.3 The algo-
rithm first initializes the weightsw1 to a reasonable guess and then
performs T iterations, interacting with the user to learn a better
estimate of the user weights. The initial weights may be chosen
to be either all zero (a safe, unbiased choice) or estimated offline
from data collected during past interaction with other users, as
is usually done when bootstrapping recommender systems. A
smart initialization speeds up the learning process and reduces
the cognitive effort on the user side. At each iteration t∈ [T], the
algorithm solves an inference problem to obtain a configuration
yt that is optimal with respect to the current weight estimate wt

(line 4). The object yt is presented to the user, who then replies
with an improved version ȳt. The improvement implicitly defines
the ranking pair ȳt ≻ yt, which is exploited to learn a better
estimate wt+1 of the user weights. The PP computes the new
weights wt+1 using a structured perceptron update (line 8).

Coactive Learning assumes that the DM is α-informative: given
any recommendation yt, she will provide an improvement ȳt
whose true utility is larger than that of yt by at least a fraction
α of the regret, modulo a slack term ξt. More, formally, a user if
α-informative if she satisfies:

u∗(ȳt)− u∗(yt) = α
(
u∗(y∗)− u∗(yt)

)
− ξt (7)

for all possible recommendation yt. Here, α∈ (0,1] and ξt ∈ R
are constants. Note that this formulation is very general and can
represent feedback of any quality, given appropriate values of α
and X t.

3The original formulation included contextual information xt in the inference
procedure. This is still possible in our CPE formulation, as previously explained,
but we prefer to drop this term throughout the article for the sake of readability.

Algorithm 3 | The Preference Perceptron algorithm (Shivaswamy and Joachims,
2015).

1: procedure PP (T)
2: initialize w1

3: for t= 1, . . . , T do
4: yt←argmaxy∈Y⟨wt, ϕ(y)⟩
5: if user satisfied with yt then
6: return yt

7: receive improvement ȳt

8: wt+1 ← wt + ϕ(ȳt)− ϕ(yt)
9: return argmaxy∈Y⟨wT + 1, ϕ(y)⟩

Shivaswamy and Joachims (2015) provide a theoretical frame-
work to analyze the behavior of Coactive Learning algorithms
under the above assumption. As mentioned in Section 2.2, prefer-
ence elicitation algorithms are usually evaluated by means of their
attained regret or average regret (equation (1)). From a theoretical
perspective, Coactive Learning algorithms aim specifically atmin-
imizing the average regret REGT = 1

T
∑T

t=1 REG(yt). The main
theorem of Shivaswamy and Joachims (2015) provides an upper
bound on the average regret incurred by the configurations sug-
gested by PP, which holds for all α-informative users, regardless of
their actual preferences w*. More specifically, the theorem is the
following:

 (Shivaswamy and Joachims, 2015). For an
α-informative user with preference vector w* and bounded feature
vector ||ϕ(y)||≤R, the average regret incurred by the PP algorithm
after T iterations is upper bounded by

REGT ≤
2R||w∗||
α
√
T

+
1

αT

T∑
t=1

ξt. (8)

The proof can be found on Shivaswamy and Joachims (2015).
The above bound tells us that the average regret decreases as
O(1/

√
T), and therefore that, given enough iterations T, the

algorithm eventually converges to a true optimal solution.

5.2. Empirical Evaluation
We apply Coactive Learning to the task of automated, preference-
based layout synthesis. Layout synthesis refers the task of creating
new “layouts,” i.e., arrangements of objects in space, subject to
feasibility constraints. This is customary in interior and archi-
tectural design, urban planning, and other tasks involving the
placement of objects in some constrained space (Merrell et al.,
2011; Yu et al., 2011; Yeh et al., 2012). We argue that many of
these tasks are intrinsically “preference-driven,” meaning that the
final result should reflect the customer or designer taste. They
are also quite involved from an optimization perspective, given
the combination of (partially unknown) continuous and discrete,
soft and hard constraints. Layout synthesis can be readily cast as a
constructive preference elicitation problem, and coactive feedback
seems like a natural choice in this domain. For instance, a designer
would take advantage of the learning system to speed her work up,
while still being able to use her expertise to incrementally reshape
the layout to her taste. We tested coactive learning based CPE
on furniture arrangement, a prototypical layout synthesis task in
which the goal is to arrange furniture in a room. We focused on a
table arrangement problem, in which layouts y∈Y consist in the
coordinates of the tables in the room and their sizes. We assumed
the size and the shape of the room and the position of the entrance
doors to be given in advance. The feature vectors include formulas
encoding high-level properties of the layouts, for instance, the
maximum and minimum distance between the tables. See Table 2
for a summary of the encoding.

We first performed a quantitative evaluation to show qual-
ity of recommendations and computational cost of CPE in this
domain. We simulated 20 users by randomly sampling their true
preference models w* from a standardized normal distribution.
Improvements were generated according to theα-informativeness

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7110

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

assumption, with α= 0.2. The top row of Figure 5 shows the
median of the average regret over all users (left plot) and the
corresponding median cumulative inference time (right plot), for

TABLE 2 | Summary of the table arrangement encoding.

Given Layout y

– Size of bounding box – Position of each table t: (ht, vt)
– Inaccessible areas – Size of each table t: (dht, dvt)
– Position of doors
– Number of tables

Features ϕ(y)

– Max and min distance of maxt∈Tablesbbdist(t)
tables from bounding box: mint∈Tablesbbdist(t)
– Max and min distance of maxt∈Tableswdist(t)
tables from inaccessible areas: mint∈Tableswdist(t)
– Max and min distance maxt1,t2∈Tablesdist(t1, t2)
between tables: mint1,t2∈Tablesdist(t1, t2)
– Number of tables |{t∈Tables |dht +dvt≤2}|
per type (1×1 and 1×2): |{t∈Tables |dht +dvt≤3}|

Tables is the set of tables, bbdist(t) is the distance of table t from the bounding box, wdist(t)
is the distance of table t from the inaccessible areas (walls), dist(t1, t2) is distance between
tables t1 and t2. All distances considered are Manhattan distances (to keep linearity of
constraints).

problems of increasing complexity (i.e., increasing number of
tables). The results show that the average regret decreases quite
rapidly, reaching a value of 0.04 in around 50 iterations in all
problems. Computational complexity, on the other hand, grows
substantially with the problem size, making real-time interaction
with exact inference infeasible for the larger problems. The bot-
tom row of Figure 5 compares median average regret (left) and
cumulative time (right) of exact inference with the ones obtained
setting a cutoff to the underlying solver and reporting the best
solution found so far, for different cutoff values. The results indi-
cate a clear trade-off between the inference time and performance
loss, with linear cumulative time achieved at the cost of a slight
to moderate degradation of solution quality. We briefly discuss
some alternative ways to speed up inference in the conclusion of
the article.

We also made a qualitative experiment by simulating two pro-
totypical cases, a user interested in arranging tables in a café
and another one who needs to furnish an office. A typical table
arrangement in a café is made by tightly packed small tables,
usually along the walls tomakemore space for the people standing
by the bar. An office, instead, contains mostly desks, distributed
around the room in an ordered way. The two user prototypes
were sampled according to the above criteria. We simulated the

FIGURE 5 | Comparison of median average regret (left) and median cumulative time (right) of the system in the furniture arrangement setting with exact inference on
6, 8, and 10 tables (top); exact and approximate inference on 10 tables (bottom). Best viewed in color.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7111

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

FIGURE 6 | Two use cases of our system. The images are 3D renderings of configurations recommended by our system when interacting with users whose goal is to
furnish a cafe (top) and an office (bottom). Horizontally, the figures show different stages of the elicitation process. In the cafe, 1×1 and 1×2 tables are seen as
dining tables of different sizes, whereas in the office 1×2 tables represent desks while 1×1 tables contain utilities such as printers. Best viewed in colors.

interaction of the system with these users and we collected all
the recommended configurations. Figure 6 shows three snapshots
of the recommendations produced by the algorithm. The initial
configuration produced by the algorithm was random in both
cases, as no prior information was given to the algorithm. After
few iterations, in the intermediate stage, the algorithm started
predicting interesting patterns. In the cafe, the algorithm chose
mostly small tables and it started placing them along the walls
of the room. In the office case, instead, some order started to
appear by the intermediate stage but the type of tableswere still not
right. In the final step, the algorithm produced recommendations
matching the desiderata of the users. This experiment shows that
the learning algorithm is able to adapt to very different types of
users reaching high-quality recommendations.

6. COACTIVE CRITIQUING

Different users reason with different sets of preference criteria
(i.e., features). This is especially true in complex recommenda-
tion tasks where features can be arbitrary combinations of basic
attributes. Selecting only relevant features for a user is critical in
this setting. It improves the quality of the learned models that
can focus on learning the weights of the relevant features, and
substantially speeds up computational time for both inference
and learning. One possible approach is the one employed in the
SM algorithm (Section 4), in which many different features are
defined and then a sparsifying regularization is introduced to
select only the relevant ones (Teso et al., 2016). A possible alter-
native consists of discovering relevant features by interacting with
the DM. Asking the user to pre-specify the whole set of relevant
features in advance is infeasible for most human DMs. However,
querying the user about the reason for a certain feedback, espe-
cially a manipulative one, can be more feasible: it is well known
thatDMs become aware of their preference criteria during the elic-
itation process, when confronted with concrete examples (Chen
and Pu, 2012). In this section, we describe Coactive Critiquing
(Teso et al., 2017a), which combines manipulative feedback as in
coactive learning with occasional requests for critiques explaining
the given feedback. Critiques are user-issued explanations about

pairwise preferences, answering a query of the type “why is y better
than y′?”

In the following we formalize the notion of critique used in
this setting, we describe the Critiquing Perceptron algorithm,
highlight its theoretical convergence properties, and evaluate it on
different constructive problems.

6.1. The Algorithm
The Critiquing (Preference) Perceptron algorithm is an extension
of the Preference Perceptron (Algorithm 3) that performs feature
elicitation via user critiques when needed. More precisely, the
Critiquing Perceptron asks a critique to the user when, for some
iteration t, the (yt, ȳt) pair produces a ranking constraint ȳt ≻ yt
that is inconsistent with all the previously collected ones. The
user replies with a critique ρ that is a formula “explaining” the
improvement ȳt ≻ yt, i.e., such that ⟨w∗

ρ, ρ(ȳt) − ρ(yt)⟩ > 0.
Intuitively, such a formulamay be elicited using a simple web form
or even from raw text (e.g., reviews).

Algorithm 4 shows the pseudo-code of the Critiquing Prefer-
ence Perceptron algorithm (CPP). As in PP (Algorithm 3), CPP
keeps an estimate wt of the weight vector of the utility function.
In addition, CPP keeps a feature map ϕt which gets updated
each time the user provides a critique. At each iteration t, CPP
produces the recommendation yt maximizing the utility estimate
⟨wt, ϕt(y)⟩. When the user replies with an improvement ȳt, CPP
adds it to a dataset D which is then used to check whether a
critique is needed. The NC procedure checks whether
the dataset D is separable, i.e., whether all the improvements are
representable with the current set of features.4 If the dataset is not
separable, then the user is queried for a critique. Upon receiving a
critique ρ from the user, CPP concatenates ρ to the feature vector
and appends an additional weight to the weight vector. After that,
the weight vector is updated using the (yt, ȳt) pair as usual.

4It could also be the case that the dataset is non-separable because of an occasionally
inconsistent (noisy) feedback from the user (e.g., a≻b≻a). Allowing the user to
manipulate an object to provide an improvement should minimize the risk of
such inconsistencies. Nonetheless, the algorithm works also in the presence of
inconsistent feedback, at the cost of an increase of the number of critiques elicited.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7112

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

Algorithm 4 | The Critiquing Preference Perceptron.

1: procedure CPP (ϕ1)
2: w1←0, D ← ∅
3: for t= 1, . . . ,T do
4: yt←argmax y ∈ Y⟨wt, ϕ(y)⟩
5: If user satisfied with yt then
6: return yt

7: receive improvement ȳt

8: D ← D ∪ (yt, ȳt)
9: if NC(D,ϕt) then

10: receive critique ρ

11: ϕt←ϕ t
°[ρ]

12: wt ← wt ◦ [0]
13: wt+1 ← wt + ϕt(ȳt)− ϕt(yt)
14: ϕt+ 1← ϕt

15: return argmaxy∈Y⟨wT+1ϕT+1(y)⟩

The CPP algorithm comes with theoretical guarantees which
are similar to the ones of PP, with an additional term due to the
uncertainty in the set of relevant features. We assume the user
reasons with a true utility function u*(y)= ⟨w*,ϕ*(y)⟩, where w*
is the true unknown parameter vector of the user andϕ* is the true
unknown vector of relevant features for the user. Let the initial
set of features of CPP (ϕ1) be missing some of the features ϕ*.
By working on a smaller feature space than the one used by the
user, the Critiquing Perceptron “misses-out” some of the utility
information provided by the improvements, so the utility gain of
each weight update is smaller than that of a normal Preference
Perceptron. More precisely, the amount of missing utility gain is
quantified as5:

ζ t = ⟨w∗, ϕ∗(ȳt)− ϕ∗(yt)⟩ − ⟨w∗, ϕt(ȳt)− ϕt(yt)⟩

This discrepancy ζ t between the true feature vector and the less
informed one used by CPP decreases as more critiques are col-
lected. Assuming the user is α-informative (equation (7)), CPP
enjoys the following regret upper bound.

 . For an α-informative user with true preference
vector w* and bounded length feature vector ||ϕ*(y)||≤R, the
average regret incurred by Critiquing Preference Perceptron after
T iterations is upper bounded by

REGT ≤
2R

α
√
T
∥w∗∥+

1
αT

T∑
t=1

(
ξt + ζ t)

where the additional
∑T

t=1 ζ t term reflects the utility gain which
is lost throughout the iterations because of the missing features.
The proof is provided in Teso et al. (2017a) and is based on the one
of the Preference Perceptron (Shivaswamy and Joachims, 2015)
but considering only the current subset of elicited features.

Crucially, CPP is guaranteed to eventually converge to an opti-
mal solution as the standard PP algorithm. Moreover, in our
experiments, we found that CPP is also able to converge without
the need of eliciting the complete feature vector of the user.

5Here, the vector ϕt is projected into the same space of w* by including “zero”
features 0(y) = 0 in place of all the not yet elicited features.

6.2. Empirical Evaluation
We evaluated the CPP algorithm over two constructive settings,
a synthetic task and a travel plan recommendation problem.
All experiments were run by sampling 20 complete user weight
vectors from a standardized normal distribution and simulating
their behavior according to these vectors. Improvements were
simulated using the α-informative feedback model as in Coactive
Learning (Section 5). Critiques were simulated by selecting the
most discriminative feature for a given pair (yt, ȳt), accounting for
some noise in the selection. Please refer to Teso et al. (2017a) for
a complete description of the experimental setup.

The first experimental setting we considered is a synthetic con-
structive problem, in which configurations are represented by all
points in a 100× 100 lattice (104 feasible configurations). Features
are represented as rectangles inside the lattice, and 50 of themwere
sampled uniformly at random. The corresponding formula in the
feature vectorϕ is an indicator function (ϕ(y)= {–1,1}) ofwhether
the point corresponding to the configuration y is included in
the rectangle. A positive weight wi associated with a feature ϕi
corresponds to a preference of the user for points inside the
corresponding rectangle, whereas a negative weight corresponds
to the user disliking points inside the rectangle.

The synthetic setting was used for two experiments. We first
tested the performance of our formulation for the function N-
C, which, as said, consists in querying the user for a
critique when the current feature space cannot represent all the
ranking pairs inD. This strategy was compared against a random
strategy consisting in asking critique queries at random iterations,
according to a binomial distribution with p∈ {0.25, 0.5, 0.75, 1}.
The left plots of Figure 7 show the regret (top) and the acquired
features (bottom) of CPP using the different possible criteria for
NC. The results show that the separability criterion is
a good trade-off, performing almost as well as asking a critique
at each iteration, while asking for roughly 25% less critiques. We
employed this criterion in all the following experiments.

In the second experiment, we compared CPP to PP. CPP started
with 2 randomly selected user features and acquired the others
throughout the elicitation process, whereas PPp started with a
fixed percentage p% of (randomly selected) user features and
did not acquire more. The middle plots in Figure 7 report the
regret and the acquired features of CPP and PPp, with p∈ {20,
40, . . . , 100}. The plots show that PP100 clearly converges much
faster than all other settings, which was expected given that it
uses all the user features. CPP also converges, albeit in a few more
iterations, while PP does not converge at all if not provided with
the entire set of features. Notice that CPP manages to converge
to an optimal solution by eliciting only roughly 60% of the user
features.

The same experimental setting was used for a more realistic
(and complicated) scenario consisting of an interactive travel
plan problem. A trip is represented as a sequence of time slots,
each one fillable with some activity in some city or by traveling
between cities. The algorithm is in charge or recommending a
trip y between a subset of the cities, along with the activities
planned for each time-slot in each city. A subset of activities is
available in each city. The trip has a maximum of usable time-
slots. In our experiments, the trip length was fixed to 10. User

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7113

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

FIGURE 7 | Left: Comparison of CPP for different choices of NC procedure; median utility loss at the top, average number of acquired features at the
bottom. Middle: Comparison between CPP and PP on the synthetic problem. Right: Comparison between CPP and PP on the trip planning problem. Best viewed in
color.

features include, e.g., the time spent in each city and the time
spent doing each activity, the number of visited cities, etc. The
total number of acquirable features is 92. As for the synthetic
experiment, we ran CPP and PPp, averaging the results over 20
randomly selected users. The results are shown in the right plots
of Figure 7. Even in this complex scenario CPP outperforms PP40

and is competitive against the much more informed PP60 and
PP80, by converging in roughly the same amount of iterations.
This experiment shows that CPP is very effective despite using a
fraction of the user information. Indeed, it ends up using less than
20% of the acquirable user features, even less of PP20 and PP40 that
fail to converge after 100 iterations.

7. CONCLUSION AND OPEN ISSUES

In this article, we introduced a general framework for constructive
preference elicitation. It targets structured prediction problems
over several interrelated variables where the set of feasible config-
urations is defined by hard constraints and the ranking between
alternatives is determined by the user’s preferences. The latter
are estimated by interactively making queries to the user. Our
framework combines ideas from the preference elicitation, online
learning, and structured-output prediction literatures for estimat-
ing the DM’s preferences and employs efficient constraint solvers
for synthesizing the queries and recommended configurations on-
the-fly. The framework is very general and allows to deal with
substantially different applications and interaction protocols.

We showcased the flexibility of our framework by presenting
three implementations tailored to different kinds of construc-
tive applications: (1) SM, an elicitation algorithm that employs
setwise choice queries. It leverages max-margin techniques to

select diverse, high-quality query configurations to maximize the
informativeness of queries. Furthermore, it uses a sparsifying
norm to natively handle sparsity in the user’s preferences, which
is very common in practice. (2) PP, a approach taken straight
from the Coactive Learning literature (Shivaswamy and Joachims,
2015), originally intended for click data. Here, we show how it can
be applied to solve constructive preference elicitation problems.
Contrary tomost PEmethods, it uses improvement queries, which
are especially suited for applications where manipulative interac-
tion is most natural, such as layout synthesis and similar design
problems. Furthermore, its theoretical guarantees keep holding in
the constructive case. (3) CPP, a theoretically sound approach that
extends PP to cases where the user’s preference criteria change
over time. By allowing the user to explain the reasons behind
her choices, CPP dynamically adjusts the feature space to better
represent the target user’s preferences. The results of our empirical
analysis show that our algorithms perform comparably or better
than state-of-the-art Bayesian methods, but scale to constructive
problems beyond the reach of non-constructive approaches.

Of course, these approaches are not without flaws. The first
major limitation is still efficiency. Our experiments show that
current constraint programming solvers can deal with relatively
large synthesis and query selection problems. However, there is a
limit to the size of problems that can be solved in real-time. This is
especially true when dealing with non-linear constraints (e.g., to
reason over areas or angles in layout synthesis problems). Oneway
to surpass this limitation is to infer partial structures rather than
complete ones and interact with the user over those. The drawback
is that partial configurations may convey less information than
full ones. How to appropriately solve this issue is an open research
question.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7114

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

A second issue is related to the interaction protocol itself. If the
candidate configurations are too large, the DM may have trouble
understanding them entirely or telling them apart, compromising
the reliability of the feedback (Ortega and Stocker, 2016). Intrigu-
ingly, this limitation can also be solved by working with partial
configurations.More generally, constructive preference elicitation
calls for innovative interaction mechanisms, possibly combined
with Bayesian optimization approaches (Brochu et al., 2010) to
synthesize maximally informative partial queries.

The correct identification of relevant features is another critical
aspect. Automatically identifying the subset of relevant features by
sparsification strategies, as in SM, cannot scale to com-
plex combinations of basic attributes. Querying users for expla-
nations, as in Coactive Critiquing, should be done sparingly not
to annoy them too early. Learning critiques from user feedback is
a promising direction to complement critiquing and alleviate the
burden on the user.

Finally, a key ingredient which allows recommender systems
to reduce the cost of user modeling is recommendation propa-
gation between users. Standard collaborative filtering approaches
cannot be straightforwardly applied in the constructive set-
ting, as configurations are synthesized from scratch and will
rarely be identical for different users. However, similarity-based

approaches can be adapted to this setting by, e.g., defining
similarity between users in terms of similarity between their
learned utility models. Promising results have been obtained
by extending the SM algorithm along these lines
(Teso et al., 2017b).

AUTHOR CONTRIBUTIONS

PD implemented the CL and CC approaches, contributed to their
design, and ran the corresponding experiments. ST implemented
the SM algorithm, ran the SM experiments, and contributed to
the design of the CL and CC approaches. AP contributed to the
design of the different algorithms and supervised the experimental
validations. All authors contributed to writing the manuscript.

FUNDING

PD is a fellow of TIM-SKIL Trento and is supported by a TIM
scholarship. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No.
[694980] SYNTH: Synthesising Inductive Data Models).

REFERENCES
Allen, T. E. (2015). “Cp-nets: from theory to practice,” in International Conference

on Algorithmic Decision Theory (Lexington, KY: Springer), 555–560.
Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan,

S. V. N. (2007). Predicting Structured Data. Cambridge, MA: MIT Press.
Boutilier, C. (2002). “A POMDP formulation of preference elicitation problems,” in

Eighteenth National Conference on Artificial Intelligence Organization, American
Association for Artificial Intelligence, 239–246.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole, D. (2004).
Cp-nets: a tool for representing and reasoning with conditional ceteris paribus
preference statements. J. Artif. Intell. Res. 21, 135–191.

Boutilier, C., Patrascu, R., Poupart, P., and Schuurmans, D. (2006). Constraint-
based optimization and utility elicitation using the minimax decision criterion.
Artif. Intell. 170, 686–713. doi:10.1016/j.artint.2006.02.003

Bradley, R. A., and Terry, M. E. (1952). Rank analysis of incomplete block designs:
I. The method of paired comparisons. Biometrika 39, 324–345. doi:10.1093/
biomet/39.3-4.324

Braziunas, D., and Boutilier, C. (2007). “Minimax regret based elicitation of gen-
eralized additive utilities,” in Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence (UAI-07) (Vancouver), 25–32.

Brochu, E., Cora, V.M., and de Freitas, N. (2010). A Tutorial on Bayesian Optimiza-
tion of Expensive Cost Functions, with Application to Active UserModeling and
Hierarchical Reinforcement Learning. Eprint arXiv:1012.2599, arXiv.org.

Carson, R. T., and Louviere, J. J. (2011). A common nomenclature for stated
preference elicitation approaches. Environ. Res. Econ. 49, 539–559. doi:10.1007/
s10640-010-9450-x

Chajewska, U., Koller, D., and Parr, R. (2000). “Making rational decisions using
adaptive utility elicitation,” in Proceedings of AAAI’00, Austin, 363–369.

Chen, L., and Pu, P. (2012). Critiquing-based recommenders: survey and emerging
trends. User Model. User-adapt. Interact. 22, 125–150. doi:10.1007/s11257-011-
9108-6

Collins, M. (2002). “Discriminative training methods for hidden Markov
models: theory and experiments with perceptron algorithms,” in Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, 10, 1–8.

Conitzer, V. (2009). Eliciting single-peaked preferences using comparison queries.
J. Artif. Intell. Res. 35, 161–191.

Domshlak, C., Hüllermeier, E., Kaci, S., and Prade, H. (2011). Preferences in AI: an
overview. Artif. Intell. 175, 1037–1052. doi:10.1016/j.artint.2011.03.004

Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., and Sier, D. (2004). An
annotated bibliography of personnel scheduling and rostering. Ann. Oper. Res.
127, 21–144. doi:10.1023/B:ANOR.0000019087.46656.e2

Felfernig, A., Hotz, L., Bagley, C., and Tiihonen, J. (2014). Knowledge-Based Con-
figuration: From Research to Business Cases. Newnes. Waltham, MA: Morgan
Kaufmann.

Fishburn, P. C. (1967). Interdependence and additivity in multivariate, unidimen-
sional expected utility theory. Int. Econ. Rev. 8, 335–342. doi:10.2307/2525541

Guo, S., and Sanner, S. (2010). “Real-timemultiattribute Bayesian preference elicita-
tion with pairwise comparison queries,” in International Conference on Artificial
Intelligence and Statistics, 289–296.

Harada,M.,Witkin, A., and Baraff, D. (1995). “Interactive physically-basedmanipu-
lation of discrete/continuous models,” in Proceedings of the 22nd Annual Confer-
ence on Computer Graphics and Interactive Techniques (Los Angeles, CA: ACM),
199–208.

Hensinger, E., Flaounas, I. N., and Cristianini, N. (2010). “Learning the preferences
of news readers with SVM and lasso ranking,” in IFIP International Confer-
ence on Artificial Intelligence Applications and Innovations (Larnaca: Springer),
179–186.

Joachims, T. (2002). “Optimizing search engines using clickthrough data,” in Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 133–142.

Joachims, T., Finley, T., and Yu, C.-N. J. (2009a). Cutting-plane training of structural
SVMs. Mach. Learn. 77, 27–59. doi:10.1007/s10994-009-5108-8

Joachims, T., Hofmann, T., Yue, Y., and Yu, C.-N. (2009b). Predicting structured
objects with support vector machines. Commun. ACM 52, 97–104. doi:10.1145/
1592761.1592783

Kahneman, D., and Tversky, A. (1979). Prospect theory: an analysis of decision
under risk. Econometrica 47, 263–291. doi:10.2307/1914185

Keeney, R. L., and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences
and Value Tradeoffs, IEEE. doi:10.1109/TSMC.1979.4310245

Koren, Y., and Bell, R. (2015). “Advances in collaborative filtering,” in Recommender
Systems Handbook (Springer), 77–118.

Kremer, J., Steenstrup Pedersen, K., and Igel, C. (2014). Active learning with
support vector machines. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4,
313–326.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7115

https://doi.org/10.1016/j.artint.2006.02.003
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1007/s10640-010-9450-x
https://doi.org/10.1007/s10640-010-9450-x
https://doi.org/10.1007/s11257-011-9108-6
https://doi.org/10.1007/s11257-011-9108-6
https://doi.org/10.1016/j.artint.2011.03.004
https://doi.org/10.1023/B:ANOR.0000019087.46656.e2
https://doi.org/10.2307/2525541
https://doi.org/10.1007/s10994-009-5108-8
https://doi.org/10.1145/1592761.1592783
https://doi.org/10.1145/1592761.1592783
https://doi.org/10.2307/1914185
https://doi.org/10.1109/TSMC.1979.4310245
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dragone et al. Constructive Preference Elicitation

Lichtenstein, S., and Slovic, P. (2006). The Construction of Preference. Cambridge
University Press.

McGinty, L., and Reilly, J. (2011). “On the evolution of critiquing recommenders,”
in Recommender Systems Handbook, eds F. Ricci, L. Rokach, B. Shapira, and P.
Kantor (Boston, MA: Springer), 419–453.

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. (2011). “Interactive
furniture layout using interior design guidelines,” in ACM Transactions on
Graphics (TOG), Vol. 30 (ACM), 87.

Ortega, P. A., and Stocker, A. A. (2016). “Human decision-making under limited
time,” in Advances in Neural Information Processing Systems, 100–108.

Osokin, A., Alayrac, J.-B., Lukasewitz, I., Dokania, P., and Lacoste-Julien, S.
(2016). “Minding the gaps for block Frank-Wolfe optimization of structured
SVMs,” in Proceedings of the 33rd International Conference onMachine Learning,
Vol. 48, eds M. F. Balcan and K. Q. Weinberger (New York, NY: PMLR),
593–602.

Pigozzi, G., Tsoukiàs, A., and Viappiani, P. (2016). Preferences in artificial intelli-
gence. Ann. Math. Artif. Intell. 77, 361–401. doi:10.1007/s10472-015-9475-5

Sabin, D., and Weigel, R. (1998). Product configuration frameworks-a survey. IEEE
Intell. Syst. Appl. 13, 42–49. doi:10.1109/5254.708432

Settles, B. (2012). Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–114.
doi:10.2200/S00429ED1V01Y201207AIM018

Shah, N., Kolmogorov, V., and Lampert, C. H. (2015). “A multi-plane block-
coordinate Frank-Wolfe algorithm for training structural SVMs with a costly
max-oracle,” inThe IEEEConference onComputerVision andPattern Recognition
(CVPR), Boston, MA.

Shivaswamy, P., and Joachims, T. (2012). “Online structured prediction via coactive
learning,” in Proceedings of the 29th International Conference on International
Conference on Machine Learning, 1431–1438.

Shivaswamy, P., and Joachims, T. (2015). Coactive learning. J. Artif. Intell. Res. 53,
1–40.

Slovic, P. (1995). The construction of preference. Am. Psychol. 50, 364. doi:10.1037/
0003-066X.50.5.364

Slovic, P., Fischhoff, B., and Lichtenstein, S. (1977). Behavioral decision theory.
Annu. Rev. Psychol. 28, 1–39. doi:10.1146/annurev.ps.28.020177.000245

Teso, S., Dragone, P., and Passerini, A. (2017a). “Coactive critiquing: elicitation of
preferences and features,” in Thirty-First AAAI Conference on Artificial Intelli-
gence, 2639–2645.

Teso, S., Passerini, A., and Viappiani, P. (2017b). “Constructive preference elicita-
tion for multiple users with setwise max-margin,” in International Conference on
Algorithmic Decision Theory, 3–17.

Teso, S., Passerini, A., and Viappiani, P. (2016). “Constructive preference elicitation
by setwisemax-margin learning,” inProceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 2067–2073.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
B Methodol. 58, 267–288.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). “Support
vector machine learning for interdependent and structured output spaces,” in
Proceedings of the Twenty-First International Conference on Machine Learning
(Banff: ACM), 104.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin
methods for structured and interdependent output variables. J. Artif. Intell. Res.
6, 1453–1484.

Viappiani, P., and Boutilier, C. (2010). “Optimal Bayesian recommendation sets
and myopically optimal choice query sets,” in Advances in Neural Information
Processing Systems, 2352–2360.

Viappiani, P., and Boutilier, C. (2011). “Recommendation sets and choice queries:
there is no exploration/exploitation tradeoff!,” in Twenty-Fifth AAAI Conference
on Artificial Intelligence.

Von Neumann, J., and Morgenstern, O. (1947). Theory of Games and Economic
Behavior. Princeton University Press.

Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. (2012).
Synthesizing open worlds with constraints using locally annealed reversible
jump MCMC. ACM Trans. Graphics 31, 56. doi:10.1145/2185520.2185552

Yu, L. F., Yeung, S. K., Tang, C. K., Terzopoulos, D., Chan, T. F., and Osher, S. J.
(2011). “Make it home: automatic optimization of furniture arrangement,” in
ACM Transactions on Graphics (TOG)-Proceedings of ACM SIGGRAPH 2011,
Vol. 30 (New York, NY: ACM), 86.

Zhang, C.-H., and Huang, J. (2008). The sparsity and bias of the lasso selection in
high-dimensional linear regression. Ann. Stat. 36, 1567–1594. doi:10.1214/07-
AOS520

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Dragone, Teso and Passerini. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 7116

https://doi.org/10.1007/s10472-015-9475-5
https://doi.org/10.1109/5254.708432
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1037/0003-066X.50.5.364
https://doi.org/10.1037/0003-066X.50.5.364
https://doi.org/10.1146/annurev.ps.28.020177.000245
https://doi.org/10.1145/2185520.2185552
https://doi.org/10.1214/07-AOS520
https://doi.org/10.1214/07-AOS520
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Constructive Preference Elicitation
	1. Introduction
	2. Background
	2.1. Preferences
	2.2. Preference Elicitation
	2.3. Structured-Output Prediction

	3. Constructive Preference Elicitation
	4. Setwise Max-Margin
	4.1. The Algorithm
	4.2. Empirical Evaluation

	5. Coactive Learning
	5.1. The Algorithm
	5.2. Empirical Evaluation

	6. Coactive Critiquing
	6.1. The Algorithm
	6.2. Empirical Evaluation

	7. Conclusion and Open Issues
	Author Contributions
	Funding
	References

