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The aim of statistical relational learning is to learn statistical models from relational
or graph-structured data. Three main statistical relational learning paradigms include
weighted rule learning, random walks on graphs, and tensor factorization. These
paradigms have been mostly developed and studied in isolation for many years, with
few works attempting at understanding the relationship among them or combining them.
In this article, we study the relationship between the path ranking algorithm (PRA), one
of the most well-known relational learning methods in the graph random walk paradigm,
and relational logistic regression (RLR), one of the recent developments in weighted rule
learning. We provide a simple way to normalize relations and prove that relational logistic
regression using normalized relations generalizes the path ranking algorithm. This result
provides a better understanding of relational learning, especially for the weighted rule
learning and graph random walk paradigms. It opens up the possibility of using the more
flexible RLR rules within PRA models and even generalizing both by including normalized
and unnormalized relations in the same model.

Keywords: statistical relational artificial intelligence, relational learning, weighted rule learning, graph random
walk, relational logistic regression, path ranking algorithm

1. INTRODUCTION

Traditional machine learning algorithms learnmappings from a feature vector indicating categorical
and numerical features to an output prediction of some form. Statistical relational learning (Getoor
and Taskar, 2007), or statistical relational AI (StarAI) (De Raedt et al., 2016), aims at probabilistic
reasoning and learning when there are (possibly various types of) relationships among the objects.
The relational models developed in StarAI community have been successfully applied to several
applications such as knowledge graph completion (Lao et al., 2011; Nickel et al., 2012; Bordes et al.,
2013; Pujara et al., 2013; Trouillon et al., 2016), entity resolution (Singla and Domingos, 2006;
Bhattacharya and Getoor, 2007; Pujara and Getoor, 2016; Fatemi, 2017), tasks in scientific literature
(Lao and Cohen, 2010b), stance classification (Sridhar et al., 2015; Ebrahimi et al., 2016), question
answering (Khot et al., 2015; Dries et al., 2017), etc.

During the past two decades, three paradigms of statistical relational models have appeared. The
first paradigm is the weighted rule learning where first-order rules are learned from data and a
weight is assigned to each rule indicating a score for the rule. The main difference among these
models is in the types of rules they allow and their interpretation of the weights. The models in this
paradigm include Problog (DeRaedt et al., 2007),Markov logic (Domingos et al., 2008), probabilistic
interaction logic (Hommersom and Lucas, 2011), probabilistic soft logic (Kimmig et al., 2012), and
relational logistic regression (Hommersom and Lucas, 2011).
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The second paradigm is the random walk on graphs, where
several random walks are performed on a graph each starting at
a random node and probabilistically transitioning to neighboring
nodes. The probability of each node being the answer to a query is
proportional to the probability of the random walks ending up at
that node. The main difference among these models is in the way
they walk on the graph and how they interpret obtained results
from the walks. Examples of relational learning algorithms based
on random walk on graphs include PageRank (Page et al., 1999),
FactRank (Jain and Pantel, 2010), path ranking algorithm (Lao
and Cohen, 2010b; Lao et al., 2011), and HeteRec (Yu et al., 2014).

The third paradigm is the tensor factorization paradigm, where
for each object and relation an embedding is learned. The proba-
bility of two objects participating in a relation is a simple function
of the objects’ and relation’s embeddings (e.g., the sum of the
element-wise product of the three embeddings). The main differ-
ence among these models is in the type of embeddings and the
function they use. Examples of models in this paradigm include
YAGO (Nickel et al., 2012), TransE (Bordes et al., 2013), and
ComplEx (Trouillon et al., 2016).

The models in each paradigm have their own advantages and
disadvantages. Kimmig et al. (2015) survey the models based on
weighted rule learning. Nickel et al. (2016) survey models in all
paradigms for knowledge graph completion. Kazemi et al. (2017)
compare several models in these paradigms for relational aggre-
gation. None of these surveys, however, aims at understanding
the relationship among these paradigms. In fact, these paradigms
have been mostly developed and studied in isolation with few
works aiming at understanding the relationship among them or
combining them (Riedel et al., 2013; Nickel et al., 2014; Lin et al.,
2015).

With several relational paradigms/models developed during
the past decade and more, understanding the relationship among
them and pruning the ones that either do not work well or are
subsets of the other models is crucial. In this article, we study
the relationship between two relational learning paradigms: graph
random walk and weighted rule learning. In particular, we study
the relationship among path ranking algorithm (PRA) (Lao and
Cohen, 2010b) and relational logistic regression (RLR) (Kazemi
et al., 2014). The former is one of the most well-known rela-
tional learning tools in graph random walk paradigm, and the
latter is one of the recent developments in weighted rule learn-
ing paradigm. By imposing restrictions on the rules that can be
included in models, we identify a subset of RLR models that we
call RC-RLR. Thenwe provide a simple way to normalize relations
and prove that PRA models correspond to RC-RLR models using
normalized relations. Other strategies for walking randomly on
the graph (e.g., data-driven path finding (Lao et al., 2011)) can
then be viewed as structure learning methods for RC-RLR. Our
result can be extended to several other weighted rule learning and
graph random walk models.

The relationship between weighted rules and graph random
walks has not been discovered before. For instance, Nickel et al.
(2016) describe themas two separate classes ofmodels for learning
from relational data in their survey. Lao et al. (2011) compare their
instance of PRA to a model based on weighted rules empirically,
reporting their PRAmodel outperforms the weighted rule model,

but not realizing that their PRA model could be a subset of the
weighted rule model if they had normalized the relations.

Our result is beneficial for both graph random walk and
weighted rule learning paradigms, as well as for researchers work-
ing on theory and applications of statistical relational learning.
Below is a list of potential benefits that our results provide:

• It provides a clearer intuition and understanding on two rela-
tional learning paradigms, thus facilitating further improve-
ments of both.

• It opens up the possibility of using the more flexible RLR rules
within PRA models.

• It opens up the possibility of generalizing both PRA and RLR
models by using normalized and unnormalized relations in the
same model.

• It sheds light on the shortcomings of graph random walk
algorithms and points out potential ways to improve them.

• One of the claimed advantages of models based on weighted
rule learning compared to other relational models is that they
can be easily explained to a broad range of people (Nickel
et al., 2016). Our result improves the explainability of models
learned through graph random walk, by providing a weighted
rule interpretation for them.

• It identifies a subclass of weighted rules that can be evalu-
ated efficiently and have a high modeling power as they have
been successfully applied to several applications. The evalu-
ation of these weighted rules can be even further improved
using sampling techniques developed within graph random
walk community (e.g., see Fogaras et al. (2005); Lao and Cohen
(2010a); Lao et al. (2011)). Several structure learning algo-
rithms (corresponding to random walk strategies) have been
already developed for this subclass.

• It facilitates leveraging new insights and techniques developed
within each paradigm (e.g., weighted rule models that leverage
deep learning techniques (Šourek et al., 2015; Kazemi and
Poole, 2018), or reinforcement learning-based approaches to
graph walk (Das et al., 2017)) to the other paradigm.

• For those interested in the applications of relation learning, our
result facilitates decision-making on selecting the paradigm or
the relational model to be used in their application.

2. BACKGROUND AND NOTATIONS

In this section, first we define some basic terminology. Then
we introduce a running example, which will be used throughout
the article. Then we describe relational logistic regression and
path ranking algorithm for relational learning.While semantically
identical, our descriptions of these two models may be slightly
different from the descriptions in the original articles as we aim at
describing the two algorithms in a way that simplifies our proofs.

2.1. Terminologies
Throughout the article, we assume True is represented by 1 and
False is represented by 0.

A population is a finite set of objects (or individuals). A logical
variable (logvar) is typed with a population.We represent logvars
with lower case letters. The population associated with a logvar
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x is ∆x. The cardinality of ∆x is |∆x|. For every object, we
assume that there exists a unique constant denoting that object.
A lower case letter in bold represents a tuple of logvars, and
an upper case letter in bold represents a tuple of constants.
An atom is of the form V(t1, . . . , tk), where V is a functor,
and each ti is a logvar or a constant. When range(V)∈ {0,1},
V is a predicate. A unary atom contains exactly one logvar,
and a binary atom contains exactly two logvars. We write a
substitution as θ= {⟨x1, . . . , xk⟩/⟨t1, . . . , tk⟩}, where each xi is
a different logvar and each ti is a logvar or a constant in
∆xi . A grounding of an atom V(x1, . . . , xk) is a substitution
θ= {⟨x1, . . . , xk⟩/⟨X1, . . . ,Xk⟩} mapping each of its logvars xi to
an object in∆xi . Given a setA of atoms, we denote byG(A) the set
of all possible groundings for the atoms inA. A value assignment
for a set of groundings G(A)maps each grounding V(X) ∈ G(A)
to a value in range(V).

A literal is an atom or its negation. A formula φ is a literal,
a disjunction φ1 ∨ φ2 of formulae or a conjunction φ1 ∧ φ2 of
formulae. Our formulae correspond to open formulae in negation
normal form in logic. An instance of a formula φ is obtained by
replacing each logvar x in φ by one of the objects in ∆x. Apply-
ing a substitution θ= {⟨x1, . . . , xk⟩/⟨t1, . . . , tk⟩} on a formula φ
(written as φθ) replaces each xi in φ with ti. A weighted formula
(WF) is a pair ⟨w, φ⟩ where w is a weight and φ is a formula.

A binary predicate S(x, y) can be viewed as a function whose
domain is ∆x and whose range is 2∆y : each X ∈ ∆x is mapped
to {Y :S(X, Y)}. Following Lao and Cohen (2010b), we consider
S−1 as the inverse of S whose domain is ∆y and whose range
is 2∆x, such that S−1 (x, y) holds iff S(y, x) holds. A path
relation PR is of the form x0

R1−→ x1
R2−→ . . .

Rl−→ xl,
where R1, R2, . . . Rl are predicates, x0, . . . , xl are different log-
vars, domain(Ri) = ∆xi−1 and range(Ri) = ∆xi . We define
domain(PR) = ∆x0 and range(PR) = ∆xi . Applying a
substitution θ= {⟨x1, . . . , xk⟩/⟨t1, . . . , tk⟩} on a path relation PR
(written asPRθ) replaces each xi inPRwith ti. Aweighted path
relation (WPR) is a pair ⟨w,PR⟩, where w is a weight andPR is
a path relation.

2.2. Running Example
As a running example, we use the reference recommendation
problem: finding relevant citations for a new paper. We consider
three populations: the population of newpapers forwhich relevant
citations are to be found, the population of existing papers whose
citations are known, and the population of publication years.
The atoms used for this problem throughout the article are the
following. WillCite(q, p) is the atom to be predicted and indicates
whether a query/new paper q will cite an existing paper p. Cited
(p1, p2) showswhether an existing paper p1 has cited another exist-
ing paper p2. PubIn(p, y) shows that p has been published in year
y. ImBef(y1, y2) indicates that y2 is the year immediately before y1.
The reference recommendation problem can be viewed as follows:
given a query paper Q, find a subset of existing papers that Q will
cite (i.e., find any paper P such that WillCite(Q, P) holds).

2.3. Relational Logistic Regression
Relational logistic regression (Kazemi et al., 2014) defines condi-
tional probabilities based onweighted rules. It can be viewed as the

directed analog of logistic regression and as the directed analog of
Markov logic (Domingos et al., 2008).

Let V(x) be an atom whose probability depends on a set A of
atoms, ψ be a set of WFs containing only atoms from A, Î be a
value assignment for the groundings in G(A),X be an assignment
of objects to x, and {x/X} be a substitution mapping logvars x to
objects X.

Relational logistic regression (RLR) defines the probability of
V(X) given Î as follows:

Probψ(V(X)=True | Î)=σ

 ∑
⟨w,φ⟩∈ψ

w ∗ η(φ{x/X}, Î)

 (1)

where η(φ{x/X}, Î) is the number of instances ofφ{x/X} that are
True with respect to Î and σ is the sigmoid function. RLR makes
the closed-world assumption: any ground atom that has not been
observed to be True is False. Note that η(True, Î) = 1.

Following Kazemi et al. (2014) and Fatemi et al. (2016), we
assume that formulae in WFs have no disjunction and replace
conjunction with multiplication. Then atoms whose functors
have a continuous range can be also allowed in formulae. For
instance, if a value assignment maps R(X) to 1, S(X) to 0.9 and
T(X) to 0.3, then the formula R(X) ∗ S(X) ∗ T(X) evaluates to
1 ∗ 0.9 ∗ 0.3= 0.27.

E 1: An RLR model may use the following WFs to
define the conditional probability of WillCite(q, p) in our running
example:

WF0 : ⟨w0,True⟩
WF1 :

⟨
w1,PubIn(q, y) ∗ ImBef(y, y′) ∗ PubIn(p, y′)

⟩
WF2 :

⟨
w2,PubIn(q, y) ∗ PubIn(p′, y) ∗ Cited(p′, p)

⟩
WF3 : ⟨w3,Cited(p1, p2) ∗ Cited(p2, p)⟩

WF0 is a bias. WF1 considers existing papers that have been
published a year before the query paper. A positive weight for
this WF indicates that papers published a year before the query
paper are more likely to be cited. WF2 considers existing papers
cited by the other papers published in the same year as the query
paper. A positive weight for this WF indicates that as the number
of times a paper has been cited by the other papers published in
the same year as the query paper grows, the chances of the query
paper citing that paper increases. WF3 considers existing papers
that have been cited by other papers that have been themselves
cited by other papers. Note that the score of the last WF depends
only on the paper being cited not on the paper citing.

Consider the citations among existing papers in Figure 1A, and
let the publication year for all the six papers be 2017. Suppose we
have a query paperQ that is to be published in 2017 andwewant to
find the probability of WillCite(Q, Paper2) according to the WFs
above. Applying the substitution {⟨q, p⟩/⟨Q, Paper2⟩} to the above
four WFs gives the following four WFs, respectively:

WF0 : ⟨w0,True⟩
WF1 :

⟨
w1,PubIn(Q, y) ∗ ImBef(y, y′) ∗ PubIn(Paper2, y

′)
⟩

WF2 :
⟨
w2,PubIn(Q, y) ∗ PubIn(p′, y) ∗ Cited(p′, Paper2)

⟩
WF3 :

⟨
w3,Cited(p1, p2) ∗ Cited(p2, Paper2)

⟩
.
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FIGURE 1 | (A) A relation showing citations among papers (papers on the Y
axis cite papers on the X axis). (B) The relation in part (A) after row-wise count
normalization.

Then we evaluate each WF. The first one evaluates to w0. The
second evaluates to 0 as Q is being published in 2017 and Paper2
has also been published in 2017. The third WF evaluates to w2 ∗ 2
as there are 2 papers that have been published in the same year
as Q and cite Paper2. The last WF evaluates to w3 ∗ 4 as Paper5
and Paper6 (that cite Paper2) are each cited by two other papers.
Therefore, the conditional probability of WillCite(Q, Paper2) is as
follows:

σ (w0 + w2 ∗ 2 + w3 ∗ 4) .

2.4. Path Ranking Algorithm
Let V(s, e) be a target binary predicate, i.e., for a query object
S∈∆s, we would like to find the probability of any E ∈ e having
the relation V with S. Path ranking algorithm (PRA) (Lao and
Cohen, 2010b) defines this probability using a set ofWPRsψ. The
first logvar of each path relation in ψ is either s or a logvar other
than s and e, the last logvar is always e, and the middle logvars are
neither s nor e.

In PRA, each path relation PR = x0
R1−→ x1

R2−→ . . .
Rl−→ e

defines a distribution over the objects in∆e. This distribution cor-
responds to the probability of following PR and landing at each
of the objects in ∆e and is computed as follows. First, a uniform
distributionD0 is considered on the objects in∆x0 , corresponding
to the probability of landing at each of these objects if the object
is selected randomly. For instance, if there are α objects in ∆x0 ,
D0 for all objects is 1

α . Then, the distribution D1 over the objects
in ∆x1 is calculated by marginalizing over the variables in D0
and following a random step on R1. For instance, for an object
X1 ∈ ∆x1 , assume R1 (x0, X1) holds only for two objects X0 and
X′

0 in∆x0 . Also assumeX0 andX′
0 have the R1 relationwithβ and

γ objects in x1, respectively. Then the probability of landing at
X1 is 1

α ∗ 1
β + 1

α ∗ 1
γ . The following distributions D2, . . . ,Dl can

be computed similarly. Dl gives the probability of landing at any
object in ∆e.

Let θ= {⟨s, e⟩/⟨S, E⟩}. To find Prob(V(S, E)), for each path
relation PR ∈ ψ, PRA calculates the probability of landing at E
according toPRθ (denoted by h(PRθ)) and calculates Prob(V(S,
E)) by taking the sigmoid of the weighted sum of these probabili-
ties as follows:

Prob(V(S, E)) = σ

 ∑
⟨w,PR⟩∈Ψ

w · h(PRθ)

 (2)

ALGORITHM 1 | h(PR).

Input: Relation path PR = x0
R1−−→ x1

R2−−→ . . .
Rl−→ xl

Output: Probability of landing at any object in ∆xl when starting randomly at any
object in ∆x0 and walking on PR.

1: if l= 0 then
2: return uniform(∆x0)

3: PR′ = x0
R1−−→ x1

R2−−→ . . .
Rl−1−−−→ xl−1

4: pLandl −1 = h(PR′)
5: for E ∈ range(PR)do
6: pLandl (E)= 0

7: for E
′

∈ range(PR′) do
8: CRl

(E′) = #E ∈ range(PR) s.t. Rl(E′, E) = 1
9: for E ∈ range(PR) do

10: pWalk(E′, E) = Rl(E
′,E)

CRl
(E′)

11: pLandl(E)+=pLandl−1(E′) ∗ pWalk(E′, E)
12: return pLandl

Algorithm 1 shows a recursive algorithm for calculating
h(PR) for a path relation PR. The first if statement specifies
that the walk starts randomly at any object in ∆x0 . uniform (∆x0 )
indicates a uniform probability over the objects in ∆x0 . This is
the termination criterion of the recursion. When PR = x0

R1−→
x1

R2−→ . . .
Rl−→ xl is not empty (l ̸= 0), first the probability

of landing at any object E′ in the range of PRl = x0
R1−→

x1
R2−→ . . .

Rl−1−−→ xl−1 is calculated using a recursive call to
h(PR′) and stored in pLandl − 1. The probability of landing at
any object E in range of PR by randomly walking on PR can
then be calculated as the sum of the probabilities of landing at
each object E

′
by randomly walking on PR

′
multiplied by the

probability of reaching E from E
′
by a random walk according to

the predicate Rl. The two nested for loops calculate the probability
of landing at any object E ∈ range(PR) according to Rl. Rl (E′,
E) indicates whether there is a link from E′ to E (otherwise the
probability of transitioning from E′ to E according to Rl is 0), and
CRl is a normalization constant indicating the number of possible
transitions from E′ according to Rl. pWalk(E′, E) indicates the
probability of walking from E′ to E if one of the objects connected
to E′ through Rl is selected uniformly at random, which equals
Rl(E′, E)

CRl
. pLandl stores the probability of landing at any object E in

the range of (PR) following PR and is returned as the output of
the function.

E 2: A PRA model may use the following WPRs to
define the conditional probability of WillCite(q, p) in our running
example:

WPR0 : ⟨w0, p⟩

WPR1 :
⟨
w1, q

PubIn−−−→ y ImBef−−−→ y′ PubIn−1

−−−−−→ p
⟩

WPR2 :
⟨
w2, q

PubIn−−−→ y PubIn−1

−−−−−→ p′ Cited−−−→ p
⟩

WPR3 :
⟨
w3, p1

Cited−−−→ p2
Cited−−−→ p

⟩
WPR0 is a bias, WPR1 considers the papers published a year

before the query paper, WPR2 considers papers cited by other
papers published in the same year as the query paper, and WPR3
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mimics PageRank algorithm for finding important papers in terms
of citations (cf. (Lao andCohen, 2010b) formore detail). Consider
the citations among existing papers in Figure 1A, and let the
publication year for all the six papers be 2017. Suppose we have
a query paper Q, which is to be published in 2017 and we want to
find the probability of WillCite(Q, Paper2) according to the PRA
model above. Applying the substitution {⟨q, p⟩/⟨Q, Paper2⟩} to the
above WPRs gives the following WPRs, respectively:

WPR0 :
⟨
w0, Paper2

⟩
WPR1 :

⟨
w1,Q

PubIn−−−→ y ImBef−−−→ y′ PubIn−1

−−−−−→ Paper2

⟩
WPR2 :

⟨
w2,Q

PubIn−−−→ y PubIn−1

−−−−−→ p′ Cited−−−→ Paper2

⟩
WPR3 :

⟨
w3, p1

Cited−−−→ p2
Cited−−−→ Paper2

⟩
WPR0 evaluates to w0.WPR1 evaluates to 0.WPR2 evaluates to

w2 ∗ ( 1
6 ∗ 1

4 + 1
6 ∗ 1

2 ) = w2 ∗ 0.125 as for the path y PubIn−1

−−−−−→ p′,
there is 1

6 probability for randomly walking to either Paper5
or Paper6 and then there is 1

4 probability to walk randomly
from Paper5 to Paper2 and 1

2 probability to walk randomly from
Paper6 to Paper2 according to Cited relation. WPR3 evaluates to
w3 ∗ 1

6 ∗ ( 1
2 ∗ 1

4 + 1
3 ∗ ( 1

4 + 1
2 )+

1
4 ∗ 1

2 ) ≈ w3 ∗ 0.083. The 1
6 outside

parenthesis is the probability of randomly starting at any paper,
1
2 ∗ 1

4 is the probability of transitioning from Paper3 to Paper5 and
then toPaper2, and so forth. Therefore, the conditional probability
of WillCite (Q, Paper2) is as follows:

σ(w0 + w2 ∗ 0.125 + w3 ∗ 0.083).

3. RLR WITH NORMALIZED RELATIONS
GENERALIZES PRA

To prove that RLR with normalized relations generalizes PRA, we
first define relation chains and describe some of their properties.

3.1. Relations Chain
D 1:We define a relations chain as a list of binary atoms
V1(x0,x1),. . ., Vm(xm− 1, xm) such that for each Vi and Vi+1, the
second logvar of Vi is the same as the first logvar of Vi+1, x0,. . .,xm
are different logvars, and Vi and Vj can be the same or different
predicates.

E 3: V1(x, y), V2(y, z) is a relations chain, and V1(x, y),
V2(z, y) and V1(x, y), V2(y, z), V3(z, x) are not relations chains.

D 2: A first-order formula corresponds to a relations
chain if all its literals are binary predicates and non-negated, and
there exists an ordering of the literals, i.e, a relations chain.

E 4: The first-order formula V1(x1, x2) ∗ V2(x3, x1)
corresponds to a relations chain as the order V2(x3, x1), V1(x1, x2)
is a relations chain.

It follows from RLR definition that re-ordering the literals
in each of its WFs does not change the distribution. For any
WF whose formula corresponds to a relations chain, we assume
hereafter that its literals have been re-ordered to match the order
of the corresponding relations chain.

D 3: Let V(x, y) be a target atom. Relations chain RLR
(RC-RLR) is a subset of RLR for defining a conditional probability
distribution for V(x, y), where:

ALGORITHM 2 | Eval(φ).

Input: Formula φ= R1(x0, x1) ∗ R2(x1, x2) ∗ . . . ∗ Rl (xl−1, xl).
Output: Evaluation of φ.

1: if l= 0 then
2: return ones(|∆x0 |)
3: φ ′ = R1(x0, x1) ∗ R2(x1, x2) ∗ . . . ∗ Rl −1(xl − 2, xl − 1)
4: evall − 1 =Evall (φ

′)
5: for E ∈ ∆xl do
6: evall(E)= 0
7: for E′ ∈ ∆xl−1 do
8: for E ∈ ∆xl do
9: canWalk(E′, E)=Rl(E

′, E)
10: evall(E)+= evall− 1(E

′) ∗ canwalk(E′,E)
11: return evall

• formulae of WFs correspond to relations chains,
• for each WF, the second logvar of the last atom is y,
• xmay only appear as the first logvar of the first atom,
• ymay only appear as the second logvar of the last atom.

For RLR models, to evaluate a formula, one may have nested
loops over logvars of the formula that do not appear in the target
atom or conjoin all literals one by one and then count. WFs of
RC-RLR, however, can be evaluated in a special way. To evaluate
a formula in RC-RLR, starting from the end (or beginning), the
effect of each literal can be calculated and then the literal can be
removed from the formula. Algorithm 2 indicates how a formula
corresponding to a relations chain can be evaluated. This eval-
uation grows with the product of the number of literals in the
formula and the number of observed data, which makes it highly
scalable.

When l= 0, the formula corresponds to True and evaluates to
1 for any X0 ∈ x0. Therefore, in this case, the algorithm returns a
vector of ones of size |∆x0 |. Otherwise, the algorithm first evalu-
atesφ′ = R1(x0, x1) ∗ R2(x1, x2) ∗ . . . ∗ Rl− 1(x1− 2, xl− 1) using a
recursive call to the Eval function. The resulting vector is stored in
evall− 1, such that for aE′ ∈ ∆xl−1 , evall− 1[E′] indicates the result
of evaluating φ′ = R1(x0, x1) ∗ R2(x1, x2) ∗ . . . ∗ Rl− 1(xl− 2, E′).
Then to evaluate φ for some E ∈ ∆xl , we sum evall− 1[E′]
s for any E′ ∈ ∆xl−1 such that Rl(E′, E) holds. canWalk
in the algorithm is 1 if Rl(E′, E) holds and 0 otherwise, and
evall(E)+= evall− 1(E′) ∗ canwalk(E′, E)+= adds evall− 1[E′] to
eval1[E] if canWalk is 1.

P 1: Algorithm 2 is correct.
P: Let φ= R1(x0, x1) ∗ R2(x1, x2) ∗ . . . ∗ Rl (xl − 1,

xl) ∗ evall(xl) (evall(xl) can be initialized to a vector of ones at the
beginning of the algorithm. Since by definition of relations chain
xl only appears in Rl and evall (xl), for any Xl−1 ∈ ∆xl−1 we
can evaluate evall−1(Xl−1) =

∑
Xl∈∆xl Rl(Xl−1,Xl) * evall(Xl)

separately and replace R1(xl−1, x1) ∗ evall(xl) with evall−1 (xl−1),
thus getting φ′ = R1(x0, x1) ∗ R2(x1, x2) ∗ . . . ∗ Rl − 1(xl − 2,
xl − 1) ∗ evall − 1 (xl − 1). The same procedure can compute φ′.

3.2. From PRA to Relation Chains
P 2: A path relation corresponds to a relations chain.

P: Let PR = x0
R1−→ x1

R2−→ . . .
Rl−→ xl be a path relation.

We create a relation atom Ri(xi−1, xi) for any subpath xi−1
Ri−→ xi

resulting in relations R1(x0, x1), R2(x1, x2), . . . ,Rl(xl − 1, xl). By
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definition of path relations, the second logvar of any relation Ri is
the same as the first logvar of the next relation. Since by definition
the logvars in a path relation are different, the second logvar of
any relation Ri is only equivalent to the first logvar of the next
relation.

E 5: Consider the path relation q PubIn−−−→ y PubIn−1

−−−−−→
p′ Cited−−−→ p from Example 2. This path relation corresponds to
a relations chain with atoms PubIn(q, y), PubIn−1(y, p′), and
Cited(p′, p).

3.3. Row-Wise Count Normalization
Having a binary predicate V(x, y) and a set of pairs of objects
for which V holds, one may consider the importance of these
pairs to be different. For instance, if a paper has cited only 20
papers, the importance of these citations may be more than the
importance of citations for a paper citing 100 papers. One way to
take the importance of the pairs into account is to normalize the
relations. A simple way to normalize a relation is to normalize it
by row-wise counts. For some X∈∆x, let α represent the number
of Y′ ∈∆y , such that V(X, Y′) holds. When α ̸= 0, instead of
considering V(X, Y)= 1 for a pair ⟨X, Y⟩, we normalize it to
V(X,Y) = 1

α . After this normalization, the citations of a paper
with 20 citations are 5 times more important than the citations of
a paper with 100 citations overall. Note that when α= 0, we do
not change any values. We refer to this normalization method as
row-wise count (RWC) normalization. Figure 1B shows the result
of applying RWCnormalization to the relation in Figure 1A. Note
that there may be several other ways to normalize a relation; here,
we introduced RWC because, as we will see in the upcoming
sections, it is the normalization method used in PRA.

3.4. Main Theorem
T 1: Any PRA model is equivalent to an RC-RLR model
with RWC normalization.

P: Let Ψ= {⟨w0, PR0⟩, . . . , ⟨wk, PRk⟩} represent a set
of WPRs used by a PRA model. We proved in Proposition 2 that
any path relation PRi in Ψ corresponds to a relations chain.
By multiplying the relations in the relation chain, one gets a
formula φi for each PRi , and this formula is by construction
guaranteed to correspond to a relations chain. We construct an
RC-RLRmodelwhoseWFs areψ= {⟨v0,φ0⟩, . . . , ⟨vk,φk⟩}. Given
that the relations (and their order) used in PRi and φi are the
same for any i, the only differences between the evaluation of
PRi and φi according to Algorithm 1 and Algorithm 2 are: (1)
Algorithm 1 divides Rl(E′, E) by CRl(E′),while Algorithm 2 does
not, and (2) in the termination condition, Algorithm 1 returns
a uniform distribution over objects in ∆x0 , while Algorithm 2
returns a vector of ones of size |∆x0 |. Dividing Rl(E′, E) by CRl(E′)
is equivalent to RWC normalization, and the difference in the
constant value of the function in the termination condition gets
absorbed in the weights that are multiplied to each path relation
or formula. Therefore, the RC-RLRmodel withWFsψ is identical
to the PRA model with WPRs Ψ after normalizing the relations
using RWC.

E 6: Consider the PRA model in Example 2. For the
four WPRs in that model, we create the following corresponding

WFs for an RC-RLRmodel bymultiplying the relations in the path
relations:

⟨v0,True⟩⟨
v1,PubIn(q, y1) ∗ ImBef(y1, y2) ∗ PubIn−1(y2, p)

⟩
⟨
v2,PubIn(q, y1) ∗ PubIn−1(y1, p′) ∗ Cited(y1, p)

⟩
⟨v3,Cited(p1, p2) ∗ Cited(p2, p)⟩

Consider computing WillCite (Q, Paper2) according to an
RC-RLR model with the above WFs, where all existing papers
and Q have been published in 2017 and the relations have been
normalized using RWC normalization (e.g., as in Figure 1B for
relation Cited). Then the first formula evaluates to v0. The second
WF evaluates to 0. The third WF evaluates to v2 ∗ 1

6 ∗ ( 1
4 + 1

2 )
as the values in relation PubIn−1 have been normalized to 1

6 for
year 2017 and the values in relation Cited have been normalized
to 1

4 and 1
2 for Paper5 and Paper6 as in Figure 1B. The last WF

evaluates to v3 ∗ ( 1
2 ∗ 1

4 + 1
3 ∗ ( 1

4 + 1
2 ) + 1

4 ∗ 1
2 ). The

1
2 ∗ 1

4 comes
from Cited(Paper3, Paper5) ∗ Cited(Paper5, Paper2), 1

3 ∗ ( 1
4 + 1

2 )
comes from Cited(Paper4, Paper5) ∗ Cited(Paper5, Paper2) and
Cited(Paper4, Paper6) ∗ Cited(Paper6, Paper2), and 1

4 ∗ 1
2 comes

from Cited(Paper5, Paper6) ∗ Cited(Paper6, Paper2). As it can be
viewed from Example 2, after creating the equivalent RC-RLR
model and normalizing the relations using RWC normalization,
all WPRs evaluate to the same value as their corresponding WF,
except the last WF. The 1

6 before the parenthesis in Example 2
is missing when evaluating the last WF. This 1

6 , however, is a
constant independent of the query (it is the constant value of
the uniform distribution in the if statement corresponding to the
termination criteria in Algorithm 1). Assuming v3 = w3 ∗ 1

6 and
all other vis are the same as wis, the conditional probability of
Cited(Q, Paper2) according to the RC-RLR model above will be
the same as the PRA model in Example 2.

3.5. From Random Walk Strategies to
Structure Learning
The restrictions imposed on the formulae by path relations in
PRA reduce the number of possible formulae to be considered
in a model compared to RLR models. However, there may still
be many possible path relations, and considering all possible path
relations for a PRA model may not be practical.

Lao and Cohen (2010b) allow the random walk to follow any
path, but restrict the maximum number of steps. In particu-
lar, they only allow for path relations whose length is less than
some l. The value of l can be selected based on the number of
objects, relations, available hardware, and the amount of time
one can afford for learning/inference. This strategy automatically
gives a (very simple) structure learning algorithm for RC-RLR
by considering only formulae whose number of relations are less
than l.

Lao et al. (2011) follow a more sophisticated approach for
limiting the number of path relations. Besides limiting the max-
imum length of the path relations to l, Lao et al. (2011) impose
two more restrictions: for any path relation to be included, (1)
the probability of reaching the target objects must be non-zero
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for at least a fraction α of the training query objects, and (2) it
should at least retrieve one target object in the training set. During
parameter learning, they impose a Laplacian prior on theirweights
to further reduce the number of path relations. In an experiment
on knowledge completion for NELL (Carlson et al., 2010), they
show that these two restrictions plus the Laplacian prior reduce
the number of possible path relations by almost 99.6 and 99.99%
when l= 3 and l= 4, respectively. Therefore, their random walk
strategy is capable of taking more steps (i.e., selecting a larger
value for l) and capture features that require longer chains of
relations. This random walk strategy is called data-driven path
finding.

Both restrictions in data-driven path finding can be easily veri-
fied for RC-RLR formulae and the set of possible formulae can be
restricted accordingly. Furthermore, during parameter learning,
a Laplacian prior can be imposed on the weights of the weighted
formulae. RC-RLRmodels learned in this way correspond to PRA
models learned using data-driven path finding. Therefore, data-
driven path finding can be also considered as a structure learning
algorithm for RC-RLR. With the same reasoning, several other
random walk strategies can be considered as structure learning
algorithms for RC-RLR, and vice versa. This allows for faster
development of the two paradigms by leveraging ideas developed
in each community in the other.

4. PRA VS. RLR

An advantage of PRAmodels over RLRmodels is their efficiency:
there is a smaller search space for WFs, and all WFs can be
evaluated efficiently. Such efficiency makes PRA scale to larger
domains where models based on the weighted rule learning such
as RLR often have scalability issues. It also allows PRA models to
scale to and capture features that require longer chains of relations.
However, the efficiency comes at the cost of losing modeling
power. In the following subsections, we discuss such costs.

4.1. Shortcomings of Relations Chains
Since PRA models restrict themselves to relations chains of a
certain type, they lose the chance to leverage many other WFs. As
an example, to predictCites(p1,p2) for the reference recommenda-
tion task, supposewewould like to recommendpapers published a
year before the target paper that have been cited by the papers pub-
lished in the same year as the target paper. Such a feature requires
the following formula: PubIn (p1, y) ∗Before(y, y′) ∗ PubIn (p2,
y′) ∗ Cites(p′, p2) ∗ PubIn(p′, y). It is straightforward to verify that
this formula cannot be included in RC-RLR (and consequently in
PRA) as p2 (the second logvar of the target atom) is appearing
twice in the formula, thus violating the last condition inDefinition
3. While restricting the formulae to the ones that correspond to
relations chain may speed up learning and reasoning, it reduces
the space of features that can be included in a relational learning
model, thus potentially decreasing accuracy.

4.2. Non-Binary Atoms
One issue with PRA models is the difficulty in including unary
atoms in such models. As an example, suppose in Example 2, we
would like to treat conference papers and journal papers differ-
ently. For an RLR model, this can be easily done by including

Conference(p) or Journal(p) as an extra atom in the formulae.
For PRA, however, this cannot be done. The way unary atoms
are currently handled in PRA models is through isA and isA−1

relations (Lao et al., 2011). For instance, a path relation may
contain paper isA−−→ type, but the only next predicate that can be
applied to this path is isA−1 giving the other papers with the same
type as the paper in the left of the arrow. However, this is limiting
and does not allow for, e.g., treating conference and journal papers
differently.

Atoms with more than two logvars are another issue for PRA
models because they restrict their models to binary atoms. While
any relation with more than two arguments can be converted into
several binary atoms, the random walk strategies used for PRA
models (and the probabilities for making these random steps)
make it unclear how atoms with more than two logvars can be
leveraged in PRA models.

4.3. Continuous Atoms
For any subpath x R−→ y in a path relation of a PRA model, R
typically has a range {0, 1}: for any object X∈∆x, this subpath
gives the objects in ∆y participating in relation R with X. PRA
models can be extended to handle some forms of continuous
atoms. For instance for the reference recommendation problem,
suppose we have an atom Sim (p, p′) indicating a measure of
similarity between the titles of two papers. The higher the Sim
(p, p′), the more similar the titles of the two papers. A sensible
WF for an RLR model predicting Cites (p1, p2) may be Sim (p1,
p′) ∗ Cites(p′, p2). To extend PRA models to be able to leverage
such continuous atoms, one has to change line 8 in Algorithm 1
to sum the values of Rl(E′, E) instead of counting howmany times
the relation holds.

Formany types of continuous atoms, however, it is not straight-
forward to extend PRA models to leverage them. As an example,
suppose we have an atom Temperature(r, d) showing the temper-
ature of a region in a specific date. It is not clear how a random
walk step can be made based on this atom as the temperature can,
e.g., be positive or negative.

4.4. Relational Normalization
Normalizing the relations is often ignored in models based on
weighted rule learning. For the most part, this ignorance may
be because several of these models cannot handle continuous
atoms. Given that PRA is a special form of weighted rule learning
models such as RLR with RWC normalization, not normalizing
the relations may be the reason why in Lao et al.’s (Lao et al.,
2011) experiments, PRA outperforms the weighted rule learn-
ing method FOIL (Quinlan, 1990) for link prediction in NELL
(Carlson et al., 2010).

The type of normalization used in PRA (RWC) may not be the
best option in many applications. As an example, suppose for the
reference recommendation task we want to find papers similar to
the query paper in terms of the words they use. Let Contains−1

(w, p) show the relation for words in each paper. It is well known
in information retrieval that words do not have equal importance
and a normalization of Contains−1 (w, p) is necessary to take such
importance into account. PRAmodels consider the importance of
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each wordW as Score1(W) = 1
f(W) , where f(W) is the number of

papers containing the wordW (see, e.g., Lao and Cohen (2010b)).
However, it has been well known in information retrieval com-
munity for several decades, and information theoretically justified
more than a decade ago (Robertson, 2004), which Score2(W) =
log(#papers

f(W) ) provides a better importance score. Most TF-IDF
based information retrieval algorithms (Salton and Buckley, 1988)
currently rely on Score2. It is straightforward to include the latter
score in an RLR model: one only has to multiply the formulae
using word information by Score2(W), without normalizing the
Contains−1 (w, p) relation [see, e.g., Fatemi (2017)]. However,
it is not straightforward how such a score can be incorporated
into PRA models as they do not include unary or continuous
atoms.

4.5. Evaluating Formulae
Evaluating the formulae in models based on weighted rule learn-
ing is known to be expensive, especially for relations with lower
sparsities and for longer formulae. In practice, approximations
are typically used for scaling the evaluations. Since formulae in
RC-RLR correspond to path relations, these formulae can be
approximated efficiently using sampling techniques developed
within graph random walk community such as fingerprinting
(Fogaras et al., 2005; Lao and Cohen, 2010a), weighted particle
filtering (Lao and Cohen, 2010a), and low-variance sampling (Lao
et al., 2011), without noticeably affecting the accuracy. Extend-
ing sampling ideas to other formulae is an interesting future
direction.

5. CONCLUSION

With abundance of relational and graph data, statistical rela-
tional learning has gained great amounts of attention. Three
main relational learning paradigms have been developed dur-
ing the past decade and more: weighted rule learning, graph
random walk, and tensor factorization. These paradigms have
been mostly developed and studied in isolation with few works
aiming at understanding the relationship among them or com-
bining them. In this article, we studied the relationship between
two relational learning paradigms: weighted rule learning and
graph random walk. In particular, we studied the relationship
between relational logistic regression (RLR), one of the recent
developments in weighted rule learning paradigm, and path rank-
ing algorithm (PRA), one of the most well-known algorithms
in graph random walk paradigm. Our main contribution was to
prove that PRA models correspond to a subset of RLR models
after row-wise count normalization. We discussed the advan-
tages that this proof provides for both paradigms and for sta-
tistical relational AI community in general. Our result sheds
light on several issues with both paradigms and possible ways to
improve them.
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