
ORIGINAL RESEARCH
published: 08 March 2018

doi: 10.3389/frobt.2018.00018

Edited by:
Thomas Nowotny,

University of Sussex, United Kingdom

Reviewed by:
Hussein Abbass,

Canberra, University of
New South Wales, Australia

Andre Gruning,
University of Surrey, United Kingdom

*Correspondence:
Masayuki Okabe

okabe@pu-hiroshima.ac.jp

Specialty section:
This article was submitted to
Computational Intelligence,

a section of the journal
Frontiers in Robotics and AI

Received: 22 September 2017
Accepted: 06 February 2018
Published: 08 March 2018

Citation:
Okabe M and Yamada S (2018)

Clustering Using Boosted
Constrained k-Means Algorithm.

Front. Robot. AI 5:18.
doi: 10.3389/frobt.2018.00018

Clustering Using Boosted
Constrained k-Means Algorithm
Masayuki Okabe1* and Seiji Yamada2

1Faculty of Management and Information Systems, Prefectural University of Hiroshima, Hiroshima, Japan, 2Digital Content
and Media Sciences Research Divsion, National Institute of Informatics, The Graduate University for Advanced Studies
(SOKENDAI), Tokyo, Japan

This article proposes a constrained clustering algorithmwith competitive performance and
less computation time to the state-of-the-art methods, which consists of a constrained
k-means algorithm enhanced by the boosting principle. Constrained k-means clustering
using constraints as background knowledge, although easy to implement and quick, has
insufficient performance compared with metric learning-based methods. Since it simply
adds a function into the data assignment process of the k-means algorithm to check for
constraint violations, it often exploits only a small number of constraints. Metric learning-
based methods, which exploit constraints to create a new metric for data similarity, have
shown promising results although the methods proposed so far are often slow depending
on the amount of data or number of feature dimensions. We present a method that
exploits the advantages of the constrained k-means and metric learning approaches.
It incorporates a mechanism for accepting constraint priorities and a metric learning
framework based on the boosting principle into a constrained k-means algorithm. In the
framework, a metric is learned in the form of a kernel matrix that integrates weak cluster
hypotheses produced by the constrained k-means algorithm, which works as a weak
learner under the boosting principle. Experimental results for 12 data sets from 3 data
sources demonstrated that our method has performance competitive to those of state-
of-the-art constrained clustering methods for most data sets and that it takes much less
computation time. Experimental evaluation demonstrated the effectiveness of controlling
the constraint priorities by using the boosting principle and that our constrained k-means
algorithm functions correctly as a weak learner of boosting.

Keywords: constrained clustering, metric learning, boosting, constrained k-means algorithm, kernel matrix
learning

1. INTRODUCTION

Constrained data clustering produces desirable clusters by using two types of pairwise constraints:
must-link and cannot-link (Basu et al., 2008). Constraints are ameans of supervision that constrain a
pair of data points to belong to the same cluster (must-link) or different clusters (cannot-link) or that
simply describe whether a pair of data points are similar or dissimilar. In certain applications such as
the clustering of faces in videos (Wu et al., 2013) and the assessing of interpatient similarity (Wang
et al., 2011) when class labels are not available, constraints are particularly important for enhancing
performance.

The constrained clustering algorithms developed so far mainly use these constraints in two
ways (Davidson and Basu, 2006). One way is to use them as background knowledge during data

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 181

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00018
https://creativecommons.org/licenses/by/4.0/
mailto:okabe@pu-hiroshima.ac.jp
https://doi.org/10.3389/frobt.2018.00018
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00018&domain=pdf&date_stamp=2018-03-08
http://www.frontiersin.org/Journal/10.3389/frobt.2018.00018/full
http://www.frontiersin.org/Journal/10.3389/frobt.2018.00018/full
http://loop.frontiersin.org/people/475297
http://loop.frontiersin.org/people/420370
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

partitioning and integration. For example, the COP-k-means con-
strained k-means algorithm (Wagstaff et al., 2001) uses constraints
as knowledge to restrict the data assignment process of the original
k-means algorithm. That is, a data point is assigned to a cluster
for which the members are constrained to be a must-link with
the data point or every member is not constrained as a cannot-
link with the data point even if there is another cluster for which
the centroid is closer to the data point. Thus, in the COP-k-
means algorithm, data are not always assigned to the nearest
centroid if the assignment violates a certain constraint. Although
the COP-k-means algorithm is quick like the k-means algorithm
and completely satisfies the constraints if it only considers must-
link constraints, it often fails to satisfy constraints if it has to
consider a number of cannot-link constraints.

The other way is to use metric learning, in which a distance
measure or a kernel matrix of a data set is learned. Once a metric
is learned, it can be used with clustering algorithms instead of
a general metric such as the Euclidean distance. In this type of
algorithm, a metric is learned as the value of each constrained
data pair for the metric comes closer to the preset value of a
must-link or cannot-link constraint. For example, if a distance
measure is learned in the form of the Mahalanobis distance, a
covariance matrix is learned as the value of each constrained
data pair. It is small for a must-link constraint and large for a
cannot-link one (Davis et al., 2007; Kulis et al., 2009; Liu et al.,
2010). With kernel matrix learning, the learned kernel metric is
large for must-link and small for cannot-link (Hoi et al., 2007; Li
et al., 2008). Although several studies have indicated that metric
learning ismore effective than theCOP-k-means approach,metric
learning algorithms can be slow if the number of data points or
the data dimension is large (Wu et al., 2009; Jain et al., 2010). The
time complexity of metric learning algorithms is often more than
O(N2) in contrast to about O(kN) for COP-k-means ones, where
N and k are the number of data points and clusters, respectively.

We have developed a constrained clustering algorithm that
exploits the computation time advantage of the COP-k-means
algorithm and that uses metric learning based on the boosting
principle to enhance performance (Dietterich, 2000; Schapire
and Freund, 2012). Boosting is a technique for creating a strong
hypothesis from an ensemble of weak ones by controlling data pri-
orities.With our algorithm, a hypothesis is a data similaritymetric
that is represented by a kernel matrix.

We first focused on the fact that the COP-k-means algorithm
produces unstable clustering results because the constraints to be
satisfied are implicitly decided on the basis of the data assignment
order of the k-means process. We modified it so that the con-
straints are explicitly satisfied in accordance with their priorities.
Once the constraint priorities are set, our modified constrained
k-means algorithm tries to satisfy the constraints in order of their
priorities. We introduced a framework for deciding the priorities
on the basis of the boosting principle. This framework controls
the constraint priorities in accordance with the boosting principle
andmakes our constrained k-means algorithm function as a weak
learner that iteratively produces weak cluster hypotheses in the
form of kernel matrices. These kernel matrices are integrated into
a single kernel matrix representing a strong cluster hypothesis that
reflects not only pre-given must-link and cannot-link constraints
but also latently constrained data pairs.

The proposed metric learning framework is shown in Figure 1.
Once given a set of data and constraints (upper left in figure),
the framework initiates a boosting process aimed at learning a
data similarity metric in the form of kernel matrix K. In the
boosting process, our constrained k-means algorithm works as a
weak learner and produces a weak cluster hypothesis by changing
the data assignment order of the k-means process in accordance
with the constraint priorities, which are updated in each boosting
round t. Each cluster hypothesis is converted into a kernel matrix
Kt, and the hypotheses are integrated into a single matrix with

FIGURE 1 | Outline of the proposed metric learning framework under the boosting process. The process starts from the left top and finish in the right bottom.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 182

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

importance value αt. The main contributions of our research are
as follows.

1. We propose a constrained clustering method with clustering
performance competitive to that of state-of-the-art methods
and with less computation time. It combines a new constrained
k-means algorithm with the boosting principle.

2. We propose a constrained k-means algorithm that considers
the priorities of the constraints and functions as a weak learner
of boosting and that has computation time competitive to that
of the conventional k-means algorithm.

The reminder of this article is structured as follows: Section 2
describes the related work. Section 3 first introduces the COP-k-
means algorithm, pointing out that the constraints to be satisfied
are randomly decided and then presents our constrained k-means
algorithm that considers constraint priorities. Section 4 explains
the boosting framework used to control the constraint priorities
and describes how our constrained k-means algorithm functions
as a weak learner in the framework. Section 5 demonstrates
the effectiveness of our algorithm compared with other state-of-
the-art constrained clustering algorithms. Section 6 analyzes the
experimental results. Finally, Section 7 summarizes the key points
and mentions the future work.

2. RELATED WORKS

The COP-k-means algorithm (Wagstaff et al., 2001) is the first
implementation of the constrained k-means method to use
pairwise constraints as background knowledge to constrain the
k-means data assignment process. Application of the algorithm to
the problem of road lane detection from GPS data showed that its
performance is dramatically better than that of the conventional
k-means algorithm.

Metric learning has been used to exploit pairwise constraints.
Basu et al. (2008) proposed a semi-supervised clustering method
that combines a constrained k-means approach with a metric
learning method that relies on hidden random Markov fields
(HMRFs). Davis et al. (2007) proposed a metric learning method
based on the information theory. It learns a Mahalanobis metric
that distorts the distance between data points on the basis ofmust-
link and cannot-link constraints so as to minimize the relative
entropy between multivariate Gaussian distributions parameter-
ized by the initial covariance matrix and the learned matrix. Its
performance is better than that of methods using HMRFs. Li et al.
(2008) proposed another metric learning approach in which a
kernel matrix is learned as a metric that reflects given constraints.
They formulated the learning as an optimization problem in
which the distance between data points in a high-dimensional
space is minimized in accordance with the constraints. Although
it needs much computation time since the problem is formulated
as a semidefinite programming problem, it outperformed other
related methods.

As for the boosting-based metric learning methods, Hertz et al.
(2004, 2006) proposed a boosting-based method called DistBoost
for learning a distance function. It uses a Gaussian mixture model
(GMM) as a weak learner of boosting that learns a hypothesis to
be output as a signed confidence measure representing whether

a pair of data points originate from the same or different Gaus-
sian sources. This hypothesis is used as a distance function for
unlabeled data pairs. Although this approach is similar to ours, its
weak learner and the use of constraints are different. Constraints
are used for data sampling in the expectation maximization (EM)
algorithm to learn GMM parameters. Training a GMM is not
easy and generally time consuming, especially when the data
dimension is large. Liu et al. (2007) proposed a boosting-based
constrained clustering method called BoostCluster. It uses an
original boosting framework that creates a feature vector in each
round and that can use any type of weak learner. The performance
thus depends on the weak learner used. It can be time consuming
depending on the data set since it uses eigenvalue decomposition
for the square matrix of size n2, where n is the number of data
points. Crammer et al. (2002) proposed a boosting-based method
for learning a kernel matrix. Although its approach is similar to
those of Hertz and ours, the target task is a classification problem
that requires labeled data, not constrained data pairs. Thus, it is
difficult to use for clustering.

As described above, our algorithm uses a different weak learner
for boosting, uses constraints in a unique manner, and is not
time consuming compared to other state-of-the-art constrained
clustering algorithms.

3. CONSTRAINED k-MEANS ALGORITHM
AND DATA ASSIGNMENT ORDER

In this section, we first explain the COP-k-means algorithm and
show that it produces unstable clustering results depending on the
data assignment order even if the initial k-means cluster centers
are fixed. Then we present our modified constrained k-means
algorithm that can control the assignment order of constrained
data points in accordance with their pre-given priorities. We
design it to work as a weak learner of boosting introduced in the
next section.

3.1. Cop-k-Means Algorithm
The COP-k-means algorithm is based on the k-means algorithm
(MacQueen, 1967), which is widely used for various clustering
problems because it is easy to implement and quick (Han et al.,
2011). The COP-k-means algorithm simply adds a constraint
violation checking process to the k-means algorithm.Algorithm1
shows the COP-k-means procedure (Wagstaff et al., 2001). It satis-
fies constraints by assigning each data point to the nearest cluster
center for which the assignment does not violate a constraint (see
line 2 inAlgorithm 1). Since this is the only procedural difference
from the original k-means algorithm, it is as quick as the original.

However, this algorithm fails and returns nothing if there is no
cluster to which it can assign a data point, which can happen when
using cannot-link constraints. For example, consider the case of
assigning a data point di that is constrained by cannot-links (di, dc)
∈ Con̸=(c= 1∼ k). If every cluster has a data point dc(c= 1∼ k),
there is no cluster to which di can be assigned because any
assignment would violate a cannot-link constraint. Constrained
clustering using cannot-link tends to be an NP-complete problem
(Davidson and Ravi, 2005), and it is difficult for the COP-k-means
algorithm, which is based on a simple depth-first search without

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 183

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

ALGORITHM 1 | COP-k-means algorithm.

COP-k-means (data set D, must-link constraints Con= ∈ D×D, cannot-link constraints Con̸= ∈ D×D)
1: Let C1,. . .,Ck be the initial cluster centers.
2: For each point di in D, assign it to the closest cluster Ci such that VIOLATE-CONSTRAINTS(di, Cj, Con=, Con̸=) is false.
3: If no such cluster exists, fail and return.
4: For each cluster Ci, update its center by averaging all of the points di that have been assigned to it.
5: Iterate between step 2 and step 4 until convergence.
6: Return C1, . . . , Ck.

VIOLATE-CONSTRAINTS(d, C, Con=, Con̸=)
7: For each (d, dm)∈Con=: If dm /∈ C, return true.
8: For each (d, dc)∈Con=: If dc ∈ C, return true.
9: Otherwise, return false.

a backtracking mechanism, to solve such a complex problem.
One way to overcome this problem is to give up on satisfying
all constraints. Since the performance of constrained clustering
depends on the constraint set used (Davidson et al., 2006; David-
son, 2012), the constraints to be satisfied should be prioritized if
all the constraints cannot be satisfied. Ignoring for the moment
the question of which constraints to satisfy, we first modified
the COP-k-means algorithm to accept prioritized constraints and
then tried to satisfy them on the basis of their priorities.

3.2. Constrained k-Means Algorithm with
Variable Data Assignment Order
The objectives for modifying the COP-k-means algorithm are
summarized as follows.

1. To return a clustering result permitting a partial constraint
violation.

2. To enable the constraints to be satisfied in accordance with
their given priorities.

Since there are many constrained clustering problems that the
COP-k-means algorithm cannot solve, especially when using
cannot-link constraints, we formulated our constrained k-means
algorithm so that it never aborts even if a constraint violation
occurs. We also added a mechanism for satisfying the constraints
in order of their pre-given priorities because the constraints to be
satisfied should be selected carefully since clustering performance
depends on the selection.

The formulated algorithm is shown in Algorithm 2. To ensure
that the constraints with higher priorities are satisfied first, we
modified the procedure used in the COP-k-means algorithm to
assign each data point to a cluster center. In our algorithm, the
data pairs related to the constraints are first sorted on the basis of
their priorities and then assigned to cluster centers in a descending
priority order. Only for the initial assignments is the order ran-
domly decided. Since our algorithm assigns a data pair and not a
data point at a time, it has many conditional branches for avoiding
constraint violations as much as possible. A data point may be
related to more than one constraint, so a data pair may include
a data point that has already been assigned in the previous data
pair assignment. There are three main branching patterns:

1. Both components of a data pair have not yet been assigned
(steps 6–23).

2. One component of a data pair has not yet been assigned (steps
24–35).

3. Both components of a data pair have already been assigned
(steps 36–37).

For patterns 1 and 2, more conditional branching is needed
depending on whether and how the data pair are constrained
(must-link or cannot-link). For pattern 1 and the must-link con-
straint, both data points are assigned to the cluster center with a
distance to the nearest data point less than that of another cluster
center (steps 9–13). For pattern 1 and the cannot-link constraint,
the data point closest to the nearest cluster center is assigned to
that center, and the other data point is assigned to the second
nearest cluster center (steps 14–23). For pattern 3, constraint
violations are ignored (step 35). The algorithm assigns uncon-
strained data after the constrained data have been assigned. This
assignment procedure is repeated until the cluster set becomes
stable.

Our algorithm is based on the assumption that the earlier the
assignment of a constrained data pair, the greater the probability
of the constraint being satisfied. Although constraint satisfaction
is guaranteed only for data pairs with the first or second highest
priority,1 the constraints with higher priorities should still be
easily satisfied because constraint violations tend to occur more
frequently as the number of constraints to be considered increases.
Since an attempt is made to satisfy constraints with higher pri-
ority before the other constraints, there are fewer constraints to
be considered. The experimental relationship between constraint
priority and the satisfaction rate is discussed in Section 6.

As described in this section, while the COP-k-means algorithm
runs fast, it produces unstable clustering results depending on
the data assignment order. To complement the drawback, we
introduced a modified constrained k-means algorithm that has a
mechanism to satisfy constraints in order of their priorities.

4. BOOSTED CONSTRAINED K-MEANS
ALGORITHM

In this section, we introduce amechanism to automatically decide
the data assignment order of our constrained k-means algo-
rithm. It is based on the boosting principle and controls the
order appropriately using constraint priority. We first describe
why we use boosting and then explain a concrete algorithm that

1The proof is in Appendix B.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 184

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

ALGORITHM 2 | Constrained k-means algorithm with variable data assignment order.

INPUT: Data set D, must-link constraints with priorities Con∗
=, cannot-link constraints with priorities Con∗

̸=)
OUTPUT: Clusters C1, . . . , Ck

1: Let C1, . . . , Ck be the initial cluster centers.
2: Let Con∗

all = Con∗
= ∪ Con∗

̸=.

3: While Con∗
all ̸= ∅ do

4: Select the constrained data pair (di, dj) that has the highest constraint priority.
5: Remove it from Con∗

all.
6: if Both di and dj are not assigned to cluster centers yet then
7: Let ci and cj be the nearest cluster centers for di and dj, respectively.
8: Let dist(d, c) be the distance between a data point d and a cluster center c.
9: if di and dj are constrained as must-link then
10: if dist(di, ci)≤dist(dj, cj) then
11: Assign di and dj to ci
12: else
13: Assign di and dj to cj
14: else if di and dj are constrained as cannot-link then
15: if ci ̸= cj then
16: Assign di and dj to ci and cj, respectively
17: else if ci = cj then
18: if dist(di, ci)≤dist(dj, cj) then
19: Assign di to ci.
20: Assign dj to the second nearest cluster center after cj.
21: else
22: Assign dj to cj.
23: Assign di to the second nearest cluster center after ci.
24: else if di is already assigned and dj is not assigned yet then
25: Let ci be the cluster center where di is assigned
26: if di and dj are constrained as must-link then
27: Assign dj to ci
28: else if di and dj are constrained as cannot-link then
29: Assign dj to the nearest cluster center other than ci
30: else if di is not assigned yet and dj is already assigned then
31: Let cj be the cluster center where dj is assigned
32: if di and dj are constrained as must-link then
33: Assign di to cj
34: else if di and dj are constrained as cannot-link then
35: Assign di to the nearest cluster center other than cj
36: else if both di and dj are already assigned then
37: Do nothing regardless of whether the constraint between di and dj is satisfied.
38: Assign all unconstrained data points to their nearest cluster centers.
39: For each cluster Ci, update its center by averaging all of the points di that have been assigned to it.
40: Iterate between step 3 and step 39 until convergence.
41: Return C1, . . . , Ck.

integrates our constrained k-means algorithm into the boosting
framework.

The constrained k-means algorithm described in the previous
section attempts to satisfy the constraints in accordance with their
pre-given priorities. The problem remaining is how to decide
the priorities. A higher priority should of course be given to a
constraint that is expected to be more effective for clustering.
However, it is not easy to estimate the effectiveness. Moreover,
even if the effectiveness could be accurately estimated, the number
of constraints that can be satisfied in a single run is limited. Given
these considerations, we use a boosting technique to enhance
the performance of our constrained k-means algorithm. Boosting
(Schapiro, 2013) is a method for ensemble learning that produces
a better hypothesis from a single weak learner. It enables a weak
learner to produce weak hypotheses by adaptively controlling
the probability distribution of data occurrence and integrates the
hypotheses into a strong hypothesis. Boosting is generally used for

classification problems, not for clustering. However, constrained
clustering can be viewed as a kind of classification problem in
which each data pair is classified into one of two classes (must-
link and cannot-link). This means that boosting can be applied to
constrained clustering. Since our constrained k-means algorithm
can be a weak learner that produces a weak cluster hypothesis,
boosting is suitable for our purpose.

Our boosting-based constrained clustering algorithm is shown
in Algorithm 3. Its operating principle follows that of AdaBoost
(Schapire and Singer, 1999). Unlike the conventional AdaBoost
application, our constrained k-means algorithm is used as a
weak learner. A weak hypothesis is thus a result of constrained
clustering. The priorities of the constraints are assigned and
controlled following the conventional AdaBoost procedure since
a training data set is a set of constraints in the case of con-
strained clustering. A weak hypothesis is created in step 3 of
our constrained k-means algorithm, which attempts to satisfy

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 185

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

ALGORITHM 3 | Boosted constrained k-means algorithm.

INPUT: Data set D, Constraint set Con∗
all = {(is, js, ys, p

t
s)|s = 1 ∼ S}

i and j are the indexes of a constrained data pair (di, dj).
y ∈ {+1, −1} is the constraint type label.
y takes 1 or −1 if (di, dj) is constrained as must-link or cannot-link,
respectively.

pt is the priority of a constrained data pair (di, dj) at boosting round
t(t= 1∼ T)

OUTPUT: Clusters C1,. . . , Ck

1: For each constraint in Con∗
all, p

0
s ← 1

S

2: for t= 1 to T do
3: Run our constrained k-means algorithm in Algorithm 2 using Con∗

all.
4: In accordance with the clustering result, create a kernel matrix Kt as follows.

Kt(a, b) =

{
1 : (da, db) belongs to the same cluster
0 : (da, db) belongs to a different cluster

5: Calculate error rate ϵt using Kt.

ϵt =
1
2

∑S
s=1 pts

{
1−ys(2K

t(is, js)−1)
}

∑S
s=1 pts

6: if ϵt = 0 then
7: Let αt =α* and go to step 14.
8: else if ϵt ≥ 0.5 then
9: Let αt = 0 and go to step 14.
10: else
11: Calculate importance αt of Kt using ϵt.

αt = 1
2 ln

{
1−ϵt

ϵt

}
12: Update priority of each constraint pt+1

l .
pt+1
s = pts exp

{
−αtys(2K

t(is, js)− 1)
}

13: Integrate Kt into K.

K =
T∑

t=1
αtKt

14: Run kernel k-means using K and output clusters C.

the constraints with higher priorities. A cluster hypothesis is
represented using a kernel matrix in which each element corre-
sponds to the state of a data pair in the clustering result. The
state is represented by 1 or 0, indicating whether the data pair
belongs to the same cluster or different clusters. Thus, the ker-
nel matrix is an N×N semidefinite matrix in which N is the
number of data points. The proof of semidefiniteness is given in
Appendix A.

Once a weak hypothesis is created, it is used to calculate the rate
of unsatisfied constraints, i.e., error rate ϵt in step 5. Since ys and
Kt(is, js) indicate the correct and learned state of a data pair in the
clustering result, that is,+1 and−1 indicate whether the data pair
components should be in the same cluster or different clusters,
respectively, ϵt is the sum of the priorities for the unsatisfied
constraints. From steps 6 to 12, the importanceαt of kernelmatrix
Kt is calculated in accordance with the value of ϵt. There are two
exceptional cases depending on the value of ϵt : ϵt = 0 means
all constraints are satisfied, and ϵt ≥ 0.5 means the weak learner
violates a weak learning condition (Schapiro, 2013). Thus, in both
cases, the boosting process is stopped, and the final result is cre-
ated in accordancewith each condition. In other cases, the priority
of each constraint is updated following step 12. The priorities of
the constraints unsatisfied in round t of boosting are increased,
while the priorities of the satisfied constraints are kept the same.
After T rounds of the boosting process have been completed, each
kernel matrix Kt is integrated into a single matrix K in step 13.
This matrix is also semidefinite (see Appendix A). We can use

the kernel k-means algorithm (Girolami, 2002) or other kernel-
based clustering algorithms with K to obtain the final clustering
result.

We use our constrained k-means algorithm as the weak learner
for boosting. The probability distribution of the constraints is
used to set the data assignment order. In general, boosting can
be interpreted as an optimization process for finding a hypothesis
that minimizes a loss function. In the case of boosting, the loss
function is

ΣS
s=1 exp (−ysK(is, js)) ,

where kernel K minimizes the function for use as an optimal
hypothesis. Although the function considers only constrained
data pairs, unconstrained pairs are also involved in the learning
process. This boosting process can thus be viewed as transductive
learning in which prediction is executed in conjunction with
learning.

The boosting process introduced in this section is an approach
to enhance the performance of our constrained k-means algo-
rithm. Since it is difficult for the constrained k-means algo-
rithm to satisfy all constraints by itself, we use an ensemble
approach that tries to satisfy as many constraints as possible by
majority vote of diverse clustering results. The boosting process
produces the diversity by controlling the constraint priority to
decide the data assignment order of the constrained k-means
algorithm. While kernel matrix is a representation of a clustering
result, it is suitable to represent the aggregation of data pair
relationships.

5. EVALUATION

In this section, we evaluate the performance of our method
by comparing it with other state-of-the-art methods on various
data sets. We first describe about details of experiments such as
data sets, the evaluation metric, methods to be compared, and
other settings. We then show the clustering performance and the
computation time of each method.

We used 12 data sets from 3 data sources (see Table 1).
We used six data sets from the UCI repository,2 a well-known
data source for supervised and unsupervised learning, that had
different numbers of data points, classes, and attributes. We used
three from CLUTO,3 a data source for evaluating clustering algo-
rithms with high-dimensional text data sets. We used three from
Shape,4 a data source providing data sets of two-dimensionally
scattered data consisting of characteristically shaped clusters.
Since the data sets from CLUTO were text data, we transformed
each data item into a unit feature vector by using the term fre-
quency–inverse document frequency (tf-idf) method (Salton and
McGill, 1983).

Each data set had a set of class labels, and we assumed that a
group of data with the same class label was a cluster. We used the
normalized mutual information (NMI) metric (Strehl and Ghosh,
2003) to evaluate the clustering results. LetN and k be the number

2http://archive.ics.uci.edu/ml/.
3http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
4http://cs.joensuu.fi/sipu/datasets/.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 186

http://archive.ics.uci.edu/ml/
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://cs.joensuu.fi/sipu/datasets/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

TABLE 1 | Data sets.

Data set UCI

Iris Ecoli Wdbc Sonar Glass Libras

No. of data points 150 336 569 208 214 360
No. of clusters 3 7 2 2 6 15
No. of attributes 4 8 30 60 9 90

Data set CLUTO Shape

Tr11 Tr12 Tr23 Flame Pathbased Spiral

No. of data points 414 313 204 240 300 312
No. of clusters 9 8 6 2 3 3
No. of attributes 6,429 5,804 5,832 2 2 2

of data points and clusters, C be the set of produced clusters, and
T be the set of correct clusters.

NMI =

∑k
i=1

∑k
j=1 nC,T

i,j log
(

N·nC,T
i,j

nCi nTj

)
√(∑k

i=1 nCi log nCi
N

) (∑k
j=1 nTj log

nTj
N

) ,

where nCi is the number of data points belonging to the ith cluster
in C, nTj is the number of data points belonging to the jth cluster
in T, and nC,T

i,j is the number of data points belonging to both
the ith cluster in C and the jth cluster in T. NMI represents
the consistency between C and T, giving a value between 0 and
1. The clustering result is assumed to be better if the value is
larger.

5.1. Methods
We compared our boosted constrained k-means (BCKM) algo-
rithm5 with seven algorithms. For our algorithm, we set the
number of rounds of boosting to 100, ϵt = 0, and α*= 100 for
all data sets.

• KBST This algorithm is an alternative version of the DistBoost
algorithm (Hertz et al., 2004) and is referred to as KernelBoost
(Hertz et al., 2006). It creates a kernel matrix from pairwise
constraints. The source code6 was provided by the authors. We
first created a kernel matrix using this algorithm and then used
the kernel k-means algorithm with the kernel matrix to create
the final clustering results. We set the number of models for
GMM to the number of clusters for each data set. We used the
default values for the other parameters. We set the number of
rounds of boosting to 100.

• BSTC This is the BoostCluster algorithm (Liu et al., 2007).
We used the k-means algorithm for the basic clustering and
the kernel k-means algorithm with the kernel matrix cre-
ated by BoostCluster to create the final clustering results. We
set the number of dimensions for new feature vectors that
the BoostCluster algorithm created in each boosting round

5The source code is available at https://github.com/mokabe1567/bckm.
6http://www.scharp.org/thertz/code.html.

to the same number of dimensions for the original feature
vectors. We again set the number of rounds of boosting
to 100.

• ITML This algorithm is called the information theoretic met-
ric learning algorithm (Davis et al., 2007), a state-of-the-art
distance learning algorithm. The source code7 was provided by
the authors. We used the k-means algorithm with a distance
matrix created by ITML to create the final clustering results.We
used the default values for the parameters of ITML.

• PCPThis is a state-of-the-art algorithm for kernelmatrix learn-
ing that is based on the semidefinite programming (Li et al.,
2008).We used the kernel k-means algorithm to create the final
clustering results. For the semidefinite programming solver, we
used SDPT38 for which the parameters were set to the default
values.

• SPCL This is a spectral clustering algorithm proposed by Kam-
var et al. (2003). We set the number of dimensions for new
feature vectors created after Eigen decomposition to the same
number of dimensions for the original feature vectors.

• CKM This algorithm uses the constrained k-means algorithm
described in Section 3 as a standalone algorithm. We used it to
evaluate the effectiveness of ensemble learning. We randomly
set the data assignment order.

• RCKM This is an alternative of our proposed algorithm in
which the data assignment order is randomly set. We used it
to evaluate the effectiveness of using boosting to control the
data assignment order.We set the number of rounds of boosting
to 100.

We used the k-means++ algorithm (Arthur and Vassilvitskii,
2007) to set the initial cluster centers in the k-means algorithm.
For the Shape data sets, we used the kernel k-means algorithm and
the radial basis function (RBF) kernel with local scaling (Zelnik-
Manor and Perona, 2005). We created an initial affinity matrix for
the PCP and SPCL algorithms by using a linear kernel for the UCI
and CLUTO data sets and an RBF kernel with local scaling for the
Shape data sets. For the RBF kernel, we set the number of the nth
neighbor to 7. Each algorithm was implemented as a MATLAB

7http://www.cs.utexas.edu/~pjain/itml/.
8http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 187

https://github.com/mokabe1567/bckm
http://www.scharp.org/thertz/code.html
http://www.cs.utexas.edu/~pjain/itml/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

TABLE 2 | Clustering performance (NMI metric).

Method Iris (UCI) Ecoli (UCI)

1% 5% 10% 1% 5% 10%

BCKM 0.81±0.08 0.99±0.01 0.99±0.00 0.66±0.03 0.81±0.05 0.81±0.05
KBST 0.86±0.04 0.89±0.01 0.91±0.04 0.63±0.01 0.65±0.02 0.67±0.01
BSTC 0.75±0.10 0.75±0.07 0.70±0.08 0.49±0.03 0.49±0.03 0.48±0.04
ITML 0.91±0.02 0.92±0.01 0.92±0.01 0.57±0.02 0.59±0.02 0.59±0.02
PCP 0.71±0.03 0.98±0.01 0.99±0.03 0.54±0.02 0.65±0.02 0.77±0.03
CKM 0.78±0.04 0.75±0.02 0.75±0.01 0.60±0.03 0.62±0.06 0.63±0.08
RCKM 0.81±0.03 0.88±0.03 0.88±0.03 0.62±0.02 0.61±0.01 0.61±0.01

Method Wdbc (UCI) Sonar (UCI)

1% 5% 10% 1% 5% 10%

BCKM 0.90±0.07 0.96±0.03 0.99±0.00 0.37±0.23 0.97±0.03 0.99±0.00
KBST 0.80±0.00 0.80±0.00 0.85±0.02 – – –
BSTC 0.43±0.03 0.43±0.03 0.45±0.02 0.03±0.03 0.09±0.04 0.11±0.03
ITML 0.49±0.01 0.61±0.02 0.63±0.02 0.20±0.05 0.36±0.04 0.38±0.05
PCP 0.90±0.02 1.00±0.00 1.00±0.00 0.03±0.02 0.99±0.01 1.00±0.00
CKM 0.42±0.24 0.62±0.23 0.73±0.30 0.05±0.05 0.18±0.20 0.51±0.30
RCKM 0.89±0.04 0.96±0.02 0.98±0.01 0.04±0.04 0.27±0.17 0.47±0.22

Method Glass (UCI) Libras (UCI)

1% 5% 10% 1% 5% 10%

BCKM 0.36±0.04 0.73±0.05 0.82±0.05 0.54±0.02 0.71±0.02 0.84±0.02
BSTC 0.28±0.04 0.30±0.04 0.31±0.04 0.51±0.05 0.56±0.02 0.57±0.02
ITML 0.35±0.02 0.34±0.01 0.30±0.04 0.61±0.03 0.63±0.03 0.60±0.03
PCP 0.30±0.02 0.56±0.04 0.69±0.04 0.32±0.02 0.17±0.01 0.21±0.01
CKM 0.35±0.02 0.46±0.10 0.54±0.11 0.56±0.01 0.57±0.01 0.58±0.01
RCKM 0.35±0.03 0.36±0.02 0.36±0.02 0.57±0.01 0.57±0.01 0.57±0.01

Method Tr11 (CLUTO) Tr12 (CLUTO)

1% 5% 10% 1% 5% 10%

BCKM 0.70±0.03 0.86±0.03 0.87±0.04 0.68±0.06 0.90±0.03 0.95±0.03
PCP 0.66±0.02 0.58±0.03 0.75±0.02 0.72±0.04 0.44±0.03 0.68±0.05
CKM 0.05±0.05 0.18±0.20 0.51±0.30 0.60±0.03 0.62±0.06 0.63±0.08
RCKM 0.64±0.03 0.64±0.03 0.64±0.03 0.64±0.06 0.64±0.07 0.64±0.07

Method Tr23 (CLUTO) Flame (Shape)

1% 5% 10% 1% 5% 10%

BCKM 0.38±0.05 0.75±0.07 0.83±0.07 0.98±0.03 1.00±0.00 1.00±0.00
PCP 0.42±0.03 0.57±0.04 0.69±0.06 0.99±0.01 1.00±0.00 1.00±0.00
SPCL – – – 0.92±0.01 0.97±0.02 0.99±0.01
CKM 0.56±0.01 0.57±0.01 0.58±0.01 0.78±0.38 0.91±0.28 0.80±0.39
RCKM 0.37±0.04 0.39±0.04 0.39±0.03 0.98±0.02 1.00±0.00 1.00±0.00

Method Pathbased (Shape) Spiral (Shape)

1% 5% 10% 1% 5% 10%

BCKM 0.85±0.14 0.87±0.14 0.91±0.13 0.96±0.09 0.93±0.11 0.95±0.10
PCP 0.95±0.07 0.97±0.09 0.97±0.08 0.88±0.13 0.97±0.08 0.99±0.05
SPCL 0.86±0.07 0.93±0.03 0.97±0.02 0.64±0.14 0.98±0.05 0.99±0.03
CKM 0.46±0.22 0.74±0.07 0.76±0.04 0.17±0.13 0.58±0.00 0.58±0.00
RCKM 0.72±0.21 0.91±0.15 0.93±0.12 0.05±0.05 0.07±0.07 0.09±0.09

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 188

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

TABLE 3 | Computation time (s).

Method Iris (UCI) Ecoli (UCI)

1% 5% 10% 1% 5% 10%

BCKM 0.02 0.27 0.49 1.72 14.71 13.96
KBST 134.71 172.94 122.15 469.88 337.49 232.19
BSTC 0.68 1.22 1.73 3.95 5.00 6.08
ITML 0.23 2.01 2.21 4.41 4.47 4.50
PCP 0.59 1.38 2.45 3.68 28.62 131.93
CKM 0.01 0.01 0.02 0.02 0.09 0.24

Method Wdbc (UCI) Sonar (UCI)

1% 5% 10% 1% 5% 10%

BCKM 13.35 47.52 30.60 1.30 4.41 6.12
KBST 551.49 117.36 39.36 – – –
BSTC 4.31 6.19 8.51 1.68 1.94 2.24
ITML 3.56 3.86 4.18 1.02 7.45 8.67
PCP 24.92 354.22 1870.17 1.44 3.85 14.15
CKM 0.04 0.06 0.09 0.01 0.01 0.01

Method Glass (UCI) Libras (UCI)

1% 5% 10% 1% 5% 10%

BCKM 1.29 4.51 7.47 1.04 13.26 48.36
BSTC 3.11 5.02 6.74 4.98 5.48 6.40
ITML 1.41 4.09 4.33 25.34 30.56 33.96
PCP 1.19 7.02 23.71 5.69 67.90 147.37
CKM 0.01 0.02 0.03 0.04 0.08 0.11

Method Tr11 (CLUTO) Tr12 (CLUTO)

1% 5% 10% 1% 5% 10%

BCKM 8.21 21.86 23.00 3.68 13.51 20.85
PCP 9.47 103.37 268.57 3.41 23.79 80.62
CKM 0.12 0.15 0.20 0.08 0.09 0.11

Tr23 (CLUTO) Flame (Shape)

Method 1% 5% 10% 1% 5% 10%

BCKM 0.81 4.75 6.31 0.03 0.07 0.17
PCP 1.70 4.51 22.94 1.34 3.94 16.00
SPCL – – – 0.12 0.13 0.11
CKM 0.03 0.03 0.04 0.02 0.03 0.02

Method Pathbased (Shape) Spiral (Shape)

1% 5% 10% 1% 5% 10%

BCKM 0.26 0.65 2.01 0.91 1.00 2.15
PCP 2.64 11.52 80.48 2.27 12.99 83.55
SPCL 0.15 0.15 0.16 0.16 0.16 0.17
CKM 0.02 0.05 0.05 0.04 0.02 0.03

program and executed on the same PC (CPU Core i7, 3.40GHz,
16GB memory).

5.2. Other Settings
The constraints were first created by randomly selecting a pair of
data points and assigning to it a must-link or cannot-link label
in accordance with whether the pair components had the same

or different class labels. For each data set, testing was done using
three different numbers of constraints: 1, 5, and 10% of the total
number of data pairs. That is, if the number of data points was
150 and the percentage was 1, we created 111(; 0.01 ∗ 150C2)
constraints. In addition, we created 10 different sets of constraints
for each percentage because clustering performance suffers from
ill combinations of constraints. For our k-means algorithm, we

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 189

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

created 10 different sets of initial cluster centers for each data
set. One hundred trials were conducted for each algorithm and
percentage of constraints.

5.3. Results
5.3.1. Clustering Performance
The clustering performance (i.e., the NMI metric) for each
method is summarized in Table 2, with the best performance
shown in bold. We provide the average and the SD of nmi values,
each of which was calculated for a clustering result with a certain
set of constraints. Note that results could not be obtained for
some combinations of methods and data sets. KBST could not
produce results for the Sonar, Glass, and Libras data sets because
the program crashed during the creation of the GMMmodels. We
eliminated the results for KBST, BSTC, and ITML for the CLUTO
and Shape data sets because the results were significantly worse
than for the other data sets.We also eliminated the results for SPCL
for all UCI and CLUTO data sets for the same reason. Thus, the
algorithms compared with our proposed BCKM algorithm for all
data sets were PCP, CKM, and RCKM.

The BCKM algorithm had the best results in most cases, par-
ticularly for 6 of the 12 data sets when the constraint percentage
was 1(hereafter “6/12(1%)”). It similarly had the best results for
5 and 10%: 8/12(5%) and 8/12(10%). Even when it missed the
top rank, its results were competitive in most cases. The second
best method was PCP: 4/12(1%), 4/12(5%), and 6/12(10%). The
performance of BCKM stably improved with an increase in the
number of constraints, especially for the Sonar, Glass, Libras,
Tr11, Tr12, and Tr23 data sets. In addition, only BCKM showed
improvement for the Libras and Tr12 data sets, whereas the others
showed no gain or even a reduction. Compared with CKM and
RCKM, BCKM was significantly better for the Sonar and Spiral
data sets.

5.3.2. Computation Time
The average computation times for one trial for each algorithm
are summarized in Table 3. The computation time for the BCKM
algorithm was proportional to the number of constraints. BCKM
was much faster than KBST. Although BSTC and ITML were
faster or competitive for the UCI data sets, for which the number
of attributes was relatively small, their computation times were
significantly higher for the CLUTO data sets, which had a large
number of attributes. BCKM was faster than PCP for most data
sets, especially for the Wdbc and Tr11 data sets, in which the
number of data points was relatively large.

In summary, experimental results shows that our method
has competitive clustering performance relative to the other
state-of-the-art ones and its computation time is proportional to
the number of constraints. We further discuss about the property
of our method in the next section.

6. DISCUSSIONS

In this section, we analyze the behavior of our method in more
detail. We first verify the effectiveness of data assignment order
mechanism of our method by showing the relationship between
the number of boosting rounds and the clustering performance

and between data assignment order and constraint satisfaction
rate. We then discuss the property of our method from both the
performance and computation time points of views. We finally
compare the behavior of our method with others by visualizing
clustering results.

6.1. Effectiveness of Data Assignment
Order
As shown by our evaluation, the BCKM algorithm outperformed
the CKM and RCKM algorithms for most of the data sets. RCKM
is a kind of bagging method (Breiman, 1996) in which CKM
is a weak learner. Since it outperformed or showed competi-
tive performance against CKM for 10 of the 12 data sets, we
can conclude that the data assignment order of the constrained
k-means algorithm affects clustering performance. While there
may be some assignment orders that are better in terms of creating
clusters, the boosting-based data assignment method of BCKM is
a promising way to enhance the performance of the constrained
k-means algorithm as the results showed that BCKM significantly
outperformed RCKM for 9 of the 12 data sets. We thus focus the
rest of the discussion in this section on BCKM.

The BCKM algorithm can cope with exceptional cases such
as when a weak learner satisfies all the constraints or fails to
satisfy more than half the constraints, as shown in steps 6–9 of
Algorithm 3. We identified instances of the former case in our
evaluation, where BCKM terminated the boosting process before
the number of rounds reached the preset value of T (100). Table 4
shows the average number of boosting roundswhenBCKMtermi-
nated the process. The 1, 5, and 10% again indicate the percentage
of constraints for all data pairs. The average number was less
than 100 in many cases. For some data sets, such as Iris, Flame,
Pathbased, and Spiral, the number was less than around 20. For
those data sets, BCKM showed high performance (NMI value
close to 1). Interestingly, the average number for 5% was less than
the value for 10% for half the data sets. Although it would be
reasonable to think that BCKM needs more boosting rounds as
the number of constraints increases, this is not necessarily true
depending on the task.

Since BCKM needs less computation time due to fewer boost-
ing rounds, we can adjust parameter T to optimize the trade-off
between an acceptable computation time and the performance
necessary for the target task. Figure 2 shows typical relationships
between the number of boosting rounds and NMI for three data
sets Ecoli, Glass, and Tr11. The graphs plot the NMI values
calculated by tentatively obtaining a kernel matrix K (step 13 in

TABLE 4 | Number of rounds before boosting was terminated for BCKM algorithm.

Iris Ecoli Wdbc Sonar Glass Libras

1% 3.57 54.66 99.07 92.57 73.21 22.47
5% 13.85 65.86 83.17 98.79 100.00 100.00
10% 13.82 34.06 26.50 73.00 92.13 100.00

Tr11 Tr12 Tr23 Flame Pathbased Spiral

1% 61.75 46.01 29.26 1.23 6.40 20.26
5% 92.26 100.00 99.30 1.09 5.86 8.15
10% 59.16 99.37 70.80 1.39 9.95 9.80

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1810

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

FIGURE 2 | NMI at each round of boosting.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1811

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

FIGURE 3 | Rate of satisfied constraints with nth priority.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1812

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

FIGURE 4 | Visualization of clustering results for the Ecoli data set: the constraint ratio is 10%. The title of each graph is the name of method. The graph with title
“TRUE LABEL” shows the correct clustering result. The color of each point shows the cluster group.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1813

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

Algorithm 3) and using it to execute kernel k-means clustering
at each boosting round t. In most cases, NMI sharply increased
by the 30th boosting round, while in some cases, such as 5 and
10% for Ecoli and Glass, NMI temporarily dropped for a few
rounds before increasing again. This illustrates the advantage of
ensemble learning in which a few bad weak hypotheses do not
significantly affect the overall performance. Unlike CKM, BCKM
does not depend on a single randomly set data assignment order
that may or may not work and can recover even if the initial data
assignment order does not work.

As described in the last paragraph of Section 3, our algorithm
is based on the assumption that the earlier the assignment of a
constrained data pair, the greater the probability of the constraint
being satisfied. Proofs that the first and second constraints in the
data assignment order are guaranteed to be satisfied are given
in Appendix 2. Here, we consider how many of the subsequent
order constraints are satisfied. The relationships between the data
assignment order and the satisfaction rates for all data sets are
plotted in Figure 3. The rates for the constraints with first or
second data assignment orders were 100% in all cases. The rates
for the other constraints gradually decreased with the assignment
order for most data sets. While some data sets such as Iris and
Flame showed unstable patterns, our assumption was valid for
most data sets. Thus, the BCKM algorithm should work well for
most data sets.

6.2. Computation Time
Finally, we compare the BCKM and other algorithms from
both the performance and the computation time points of view.
Although BCKM is based on an approach similar to that of
KBST, it was better from both points of view. Since the boosting
frameworks used in bothmethods are quite similar, the advantage
must be due to the quality of our original weak learner. From
the performance point of view, our weak learner, a constrained
k-means method with variable data assignment order, utilizes
not only must-link but also cannot-link constraints, while the
KBST weak learner, a constrained GMM, basically considers only
must-link constraints. From the computation time point of view,
our weak learner is much quicker than the KBST one since the
EM algorithm used to estimate the GMM parameters generally
needs more calculation time compared with that of the k-means
algorithm.

BCKM showed better performance than BSTC, which is also
based on the boosting framework. Since BSTC creates a new
feature vector in each boosting round by Eigen decomposition,
it is not suitable for data sets with a small or sparse feature space.
Furthermore, it needs much computation time for data sets with
a large feature space. Similarly, ITML is not suitable for data
sets with a sparse feature space and needs much computation
time if the feature space is large because ITML needs to learn
a Mahalanobis distance matrix that has F× F elements, where
F is the number of features. SPCL is also not suitable for data
sets that have a sparse feature space and needs much computa-
tion time if the feature space is large because it also uses Eigen
decomposition.

PCP worked well for all data sets and showed performance
competitive to that of BCKM for some data sets. However, it

needs a semidefinite programming solver, which requires more
computation time than BCKM if the number of data sets is
large.

In summary, our method is well balanced in terms of both
performance and computation time since it achieves competitive
performance with less computation time against other methods
for many data sets. However, it needs a certain number of con-
straints because, if only a small number of constraints are given,
the weak learner can satisfy all the constraints in the first boosting
round, which results in the same performance as that of CKM.
Thus, the number of constraints should exceed the number that
CKM can satisfy all by itself.

6.3. Visualization
Finally, we visualize the clustering result of each method on a
data set. Figure 4 shows the results on the Ecoli data set where
the constraint ratio is 10%. Since the dimension is more than
two, we used the principle component analysis (PCA) to visu-
alize (Nguyen et al., 2008). Axes PC1 and PC2 in each graph
corresponds to the first and the second component, respectively.
The graph with title “TRUE LABEL” shows the correct clustering
results. The color of each point shows the cluster group. The Ecoli
data set has 8 clusters. As shown in the graphs, BCKM and PCP
are similar to the correct result, while other methods even failed
to make the largest cluster (left lower cluster with purple color).

In this section, we first showed that the clustering performance
of our method increases according to the number of boosting
rounds, and we can choose an appropriate number depending on
the required performance. We then experimentally verified the
assumption that the earlier the assignment of a constrained data
pair, the greater the probability of the constraint being satisfied.
This is the reason why our method works well. We also discussed
that our method has well-balanced properties in terms of cluster-
ing performance and computation time. We finally compared the
actual behavior of eachmethod by visualizing clustering results on
a data set.

7. CONCLUSION

Our proposed constrained clustering algorithm balances the per-
formance and computation time. We focused on the computation
time advantage of the COP-k-means algorithm and improved
its performance by incorporating a mechanism for accepting
constraint priorities and a framework of kernel matrix learning
that is based on the boosting principle. In this framework, our
constrained k-means algorithm works as a weak learner that iter-
atively produces a weak hypothesis in the form of a kernel matrix
by changing the data assignment order of the k-means process,
which is set on the basis of constraint priorities controlled by the
boosting principle.

Evaluation results showed that our method is better or com-
petitive to other state-of-the-art methods in terms of clustering
performance and computation time. They also showed that the
number of boosting rounds can be adjusted to optimize the trade-
off between clustering performance and computation time and
that our constrained k-means algorithm correctly works as a
weak learner of the boosting to satisfy constraints in accordance
with their priorities. Our algorithm works well regardless of the

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1814

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

fraction of must-link and cannot-link constraints, while it needs
a certain number of constraints to bring out the strength of
boosting.

Boosting is an ensemble learning approach. Although we tested
a bagging approach, another promising approach is random
forests. Its use remains for future work.

AUTHOR CONTRIBUTIONS

MOand SY contributed tomaking the idea of the research, imple-
menting the proposed method and other ones to be compared,
analyzing the results of the experiments, writing the paper, and
final approval of the version to be published.

REFERENCES
Arthur, D., and Vassilvitskii, S. (2007). “K-means++: the advantages of careful

seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, New Orleans, 1027–1035.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained Clustering: Advances in
Algorithms, Theory, and Applications. Chapman & Hall/CRC.

Breiman, L. (1996). “Bagging predictors,” inMachine Learning, 24, 123–140.
Crammer, K., Keshet, J., and Singer, Y. (2002). “Kernel design using boosting,”

in Proceedings of the 16th Annual Conference on Neural Information Processing
Systems, Vancouver and Whistler, 537–544.

Davidson, I. (2012). “Two approaches to understanding when constraints help
clustering,” in Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Beijing, 1312–1319.

Davidson, I., and Basu, S. (2006). “Clustering with constraints: theory and practice,”
in Proc: Tutorial at the Int. Conf. on Knowledge Discovery in Databases and Data
Mining, Philadelphia.

Davidson, I., and Ravi, S. S. (2005). “Clustering with constraints: feasibility issues
and the k-means algorithm,” in Proceedings of the 5th SIAM Data Mining
Conference, Newport Beach.

Davidson, I., Wagstaff, K. L., and Basu, S. (2006). “Measuring constraint-set utility
for partitional clustering algorithms,” in Proceedings of the 10th European Con-
ference on Principle and Practice of Knowledge Discovery in Databases, PKDD’06,
Berlin, 115–126.

Davis, J. V., Julis, B., Jain, P., Sra, A., andDhillon, I. S. (2007). “Information-theoretic
metric learning,” in Proceedings of the 24th International Conference on Machine
Learning, Corvallis, 209–216.

Dietterich, T. G. (2000). An experimental comparison of three methods for con-
structing ensembles of decision trees: bagging, boosting, and randomization.
Mach. Learn. 40, 139–157. doi:10.1023/A:1007607513941

Girolami, M. (2002). Mercer kernel-based clustering in feature space. IEEE Trans.
Neural Netw. 13, 780–784. doi:10.1109/TNN.2002.1000150

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd
Edn. Morgan Kaufmann.

Hertz, T., Bar-Hillel, A., andWeinshall, D. (2004). “Boosting margin based distance
functions for clustering,” in Proceedings of the 21st International Conference on
Machine Learning, Banff, 393–400.

Hertz, T., Hillel, A. B., and Weinshall, D. (2006). “Learning a kernel function for
classification with small training samples,” in Proceedings of the 23rd Interna-
tional Conference on Machine Learning, Pittsburgh, 401–408.

Hoi, S. C. H., Jin, R., and Lyu, M. R. (2007). “Learning nonparametric kernel
matrices from pairwise constraints,” in Proceedings of the 24th International
Conference on Machine learning, Corvallis, 361–368.

Jain, P., Kulis, B., and Dhillon, I. S. (2010). “Inductive regularized learning of kernel
functions,” in Proceedings of the 24th Annual Conference on Neural Information
Processing Systems, 946–954.

Kamvar, K., Sepandar, S., and Klein, K. (2003). “Spectral learning,” in Proceedings
of the 18th International Joint Conference on Artificial Intelligence, Acapulco,
561–566.

Kulis, B., Sustik, M., andDhillon, I. (2009). Low-rank kernel learning with Bregman
Matrix Divergences. J. Mach. Learn. Res. 10, 341–376.

Li, Z., Liu, J., and Tang, X. (2008). “Pairwise constraint propagation by
semidefinite programming for semi-supervised classification,” in Proceedings

of the 25th International Conference on Machine learning, Helsinki,
576–583.

Liu, W., Ma, S., Tao, D., Liu, J., and Liu, P. (2010). “Semi-supervised sparse
metric learning using alternating linearization optimization,” in Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Washington, DC, 1139–1147.

Liu, Y., Jin, R., and Jain, A. K. (2007). “Boostcluster: boosting clustering by pairwise
constraints,” in Proceedings of the 13rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Jose, 450–459.

MacQueen, J. (1967). “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, Vol. 1, Berkeley, 281–297.

Nguyen,M. H., Abbass, H. A., andMcKay, R. I. (2008). Analysis of CCME: coevolu-
tionary dynamics, automatic problem decomposition, and regularization. IEEE
Trans. Syst. Man Cybern. C 38, 100–109. doi:10.1109/TSMCC.2007.905847

Salton, G., andMcGill, M. (1983). Introduction toModern Information Retrieval, 3rd
Edn. McGraw-Hill.

Schapire, R. E., and Freund, Y. (2012). Boosting: Foundations and Algorithms. The
MIT Press.

Schapire, R. E., and Singer, Y. (1999). “Improved boosting algorithms using
confidence-rated predictions,” inMachine Learning, 37, 80–91.

Schapiro, R. E. (2013). “Explaining adaboost,” in Empirical Inference, eds B.
Scholkopf, Z. Luo, and V. Vovk (Springer), 37–52.

Strehl, A., and Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617.

Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S. (2001). “Constrained k-means
clustering with background knowledge,” in Proceedings of the 18th International
Conference on Machine Learning, Williamstown, 577–584.

Wang, F., Sun, J., and Ebadollahi, S. (2011). “Integrating distance metrics learned
frommultiple experts and its application in inter-patient similarity assessment,”
in Proceedings of the Eleventh SIAM International Conference on Data Mining,
SDM 2011 (Mesa, AZ), 59–70.

Wu, B., Zhang, Y., Hu, B.-G., and Ji, Q. (2013). “Constrained clustering and its
application to face clustering in videos,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Columbus, 3507–3514.

Wu, L., Jin, R., Hoi, S., Zhu, J., and Yu, N. (2009). “Learning Bregman distance
1958 functions and its application for semi-supervised clustering,” in Proceed-
ings of the 23rd Annual Conference on Neural Information Processing Systems,
2089–2097.

Zelnik-Manor, L., and Perona, P. (2005). “Self-tuning spectral clustering,” in Pro-
ceedings of the 18th Annual Conference onNeural Information Processing Systems,
Vol. 2, 1601–1608.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018Okabe and Yamada. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1815

https://doi.org/10.1023/A:1007607513941
https://doi.org/10.1109/TNN.2002.1000150
https://doi.org/10.1109/TSMCC.2007.905847
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Okabe and Yamada Boosted Constrained k-Means Algorithm

APPENDIX

A. Proof That Kt and K Are Semidefinite
To prove that Kt is semidefinite, we have to show that xKtx′ ≥ 0 x′

is the transposed matrix of x for any vector x= {x1, · · · , xN}.
Suppose we obtain a set of k clusters at step 5 in Algorithm 4

and let dki (i = 1, · · · , nk) be data that belongs to the kth cluster.
If we replace rows (or columns) of Kt with data in the same

cluster to serially align as follows:

d11, · · · , d1n1︸ ︷︷ ︸
cluster1

, d12, · · · , d2n2︸ ︷︷ ︸
cluster2

, · · · , d1k, · · · , dknk︸ ︷︷ ︸
clusterk

,

where nk is the number of data points in the kth cluster, we can
represent Kt as

Kt =

A1 O O O
O A2 O O

O O
. . . O

O O O Ak

 ,

where Ak is an nk × nk matrix for which the elements are all 1 and
O is a zero matrix. Then we can represent xktx′ as follows:

xKtx′ =

= xA1x′ + xA2x′ + · · · + xAkx′

=

{ n1∑
i=1

xi

}2

+

{ n1+n2∑
i=n1+1

xi

}2

+ · · ·

+

{ N∑
i=N−nk+1

xi

}2

≥ 0.

Thus Kt is semidefinite.
Furthermore, for K, we can transform

xKx′ = x

{ T∑
t=1

αtKt

}
x′

=
T∑

t=1
αtxKtx′,

where αt > 0, and xKtx′ ≥ 0, meaning that xKx′ ≥ 0. Thus, K is
also semidefinite.

B. Proof That Constraints with First or
Second Priority Are Guaranteed to Be
Satisfied
We assume that the constraints are consistent each other and
guaranteed to be satisfied theoretically.

B.1. Constraint with First Priority
This constraint is guaranteed to be satisfied since there are no
other constraints when it is being satisfied.

B.2. Constraint with Second Priority
Let a constrained data pair be assignedwith the first order (d1, d2).

There are two patterns for a combination of constrained data
pairs to be assigned with the second order.

• If the first and second pairs have the same data points, let the
second pair be (d1, d3) or (d2, d3).

• If the first and second pairs do not have the same data points,
let the second pair be (d3, d4).

For each case, we show how to satisfy the constraint.

• For (d1, d3) or (d2, d3)
We here describe the case of (d1, d3).

• If (d1, d2) and (d1, d3) are bothmust-link pairs, we can satisfy
the must-link constraint of (d1, d3) by assigning d3 to the
same cluster as d1 and d2.

• If (d1, d2) is a must-link pair and (d1, d3) is a cannot-link
pair, we can satisfy the cannot-link constraint of (d1, d3) by
assigning d3 to a different cluster than d1 and d2.

• If (d1, d2) is a cannot-link pair and (d1, d3) is a must-link
pair, we can satisfy the must-link constraint of (d1, d3) by
assigning d3 to the same cluster as d1

• If (d1, d2) and (d1, d3) are both cannot-link pairs, we can
satisfy the cannot-link constraint of (d1, d3) by assigning d3
to a different cluster than d1.

• For (d3, d4)

• If (d1, d2) and (d3, d4) are bothmust-link pairs, we can satisfy
the must-link constraint of (d3, d4) by assigning (d3, d4) to
the same cluster as (d1, d2).

• If (d1, d2) ismust-link pair and (d3, d4) is cannot-link pair, we
can satisfy the cannot-link constraint of (d3, d4) by assigning
d3 and d4 to different clusters.

• If (d1, d2) is cannot-link pair and (d3, d4) ismust-link pair, we
can satisfy the must-link constraint of (d3, d4) by assigning
d3 and d4 to the same cluster.

• If (d1, d2) and (d3, d4) are both cannot-link pairs, we can
satisfy the cannot-link constraint of (d3, d4) by assigning d3
and d4 to different clusters.

Thus, we can satisfy the constraint with the second priority in
any case.

B.3. Constraint with Third Priority
For example, a constraint cannot be satisfied in the following
case.

There are three data points, d1, d2, and d3. Let the nearest cluster
for each data point be a, b, and c, respectively. Suppose there are
three constraints with priorities as follows.

• Constraint with first priority: (d1, d3) is a cannot-link pair
• Constraint with second priority: (d2, d3) is a cannot-link pair
• Constraint with third priority: (d1, d2) is a must-link pair

After the data pair with the second priority is assigned, each
data pair is assigned in the order d1 → a, d2 → b, d3 → c, so the
constraint with the third priority cannot be satisfied in any way.

Thus, in our constrained k-means algorithm, constraints with
the first and second priorities are guaranteed to be satisfied.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 1816

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Clustering Using Boosted Constrained k-Means Algorithm
	1. Introduction
	2. Related Works
	3. Constrained k-Means Algorithm and Data Assignment Order
	3.1. Cop-k-Means Algorithm
	3.2. Constrained k-Means Algorithm with Variable Data Assignment Order

	4. Boosted Constrained k-Means Algorithm
	5. Evaluation
	5.1. Methods
	5.2. Other Settings
	5.3. Results
	5.3.1. Clustering Performance
	5.3.2. Computation Time

	6. Discussions
	6.1. Effectiveness of Data Assignment Order
	6.2. Computation Time
	6.3. Visualization

	7. Conclusion
	Author Contributions
	References
	Appendix
	A. Proof That Kt and K Are Semidefinite
	B. Proof That Constraints with First or Second Priority Are Guaranteed to Be Satisfied
	B.1. Constraint with First Priority
	B.2. Constraint with Second Priority
	B.3. Constraint with Third Priority

