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This work presents a heuristic for describing the next best view location for an
autonomous agent exploring an unknown environment. The approach considers each
robot as a point mass with omnidirectional and unrestricted vision of the environment
and line-of-sight communication operating in a polygonal environment which may contain
holes. The number of robots in the team is always sufficient for full visual coverage of
the space. The technique employed falls in the category of distributed visibility-based
deployment algorithms which seek to segment the space based on each agent’s field
of view with the goal of deploying each agent into the environment to create a visually
connected series of agents which fully observe the previously unknown region. The
contributions made to this field are a technique for utilizing linear programming methods
to determine the solution to the next best observation (NBO) problem as well as a method
for calculating multiple NBO points simultaneously. Both contributions are incorporated
into an algorithm and deployed in a simulated environment built with MATLAB for testing.
The algorithm successfully deployed agents into polygons which may contain holes. The
efficiency of the deployment method was compared with random deployment methods
to establish a performance metric for the proposed tactic. It was shown that the heuristic
presented in this work performs better the other tested strategies.

Keywords: multirobot exploration, visibility-based deployment, art gallery problem, environments with holes,
next-best-view optimization

1. INTRODUCTION

1.1. Motivation
Robots provide solutions for tasks which are too dangerous or too repetitive to be effectively
performed by a human. Robotic agents have been employed on a wide scale in applications which
allow the agent to be mounted in a stationary fashion and repeat certain operations with little or
no change in the series of motions and actions. Single robot systems have been designed to explore
unknown environments in order to expand the number of potential applications for autonomous
agents. Recently, solutions for exploration of unknown environments by systems of autonomous
robots have become a focus in the controls community. Many of the algorithms developed in this
field focus on the problem of finding a next best view location (González-Banos and Latombe,
2002). These algorithms use heuristics to determine the best positions to deploy agents in order
to complete a map of the environment. This work aims to demonstrate the feasibility of using
linear objective functions to describe the next best view problem as an alternative to other available
heuristics.
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1.2. Problem Statement
This work presents a solution to the problem of determining the
next best view location for a team of autonomous agents exploring
an unknown environment. Each robot considered possesses a set
of common traits enabling them to function:

– A unique identifier which describes the agent as unique to its
counterparts.

– Laser scanner with no noise and effectively infinite scan range.
– Limited line of sight communications capabilities with no data

loss.
– GPS system allowing agent to localize.

These automata are tasked with developing a complete map
of an environment which is considered to be an unknown static
polygon which may contain holes. Doors or openings in the envi-
ronment are considered viable paths if they provide an opening
wide enough for the robotic agent to pass through.

2. LITERATURE REVIEW

2.1. Image Segmentation and Feature
Extraction
Tests were run with MATLAB wherein a portable network graph-
ics (PNG) image of an environment was imported and converted
into an occupancy grid. Agents were deployed onto the map,
and it was necessary to design an algorithm capable of extracting
the features using a simulated laser rangefinder. This process of
extracting and simplifying features from a 2-dimensional image is
well explored. Simplistic algorithms such as regular sampling are
very quick, but do not consistently yield accurate results (Heckbert
and Garland, 1997). Voting methods are also used wherein a
number of line segments must agree before a line feature may
be extracted (Fernandes and Oliveira, 2008). Decimation wherein
arcs are split with chords based on arc to chord distance thresh-
olds to extract the environment edges based on combination of
chords (Boxer et al., 1993). One of the most popular algorithms to
accomplish curve simplification is the Ramer-Douglass-Peucker
algorithm (Heckbert and Garland, 1997). This was chosen due to
the method’s low complexity and ability to easily extract features
from the noiseless data provided by the simulated stationary
agent’s laser.

2.2. Mobile Robot Exploration
The problem of deploying agents to cover a known space was
first posed by Victor Klee to Vaćlav Chvátal in 1973 (Chvatal,
1975). From this, the first upper bound was established, and
the solution was later proved using a 3 coloring technique and
expanded in a number of works (O’rourke, 1987; Kröller et al.,
2012). The problemof placing ormoving agents in a known region
has been solved as an NP hard or APX hard problem in the
number of vertices (Obermeyer et al., 2011). Heuristic methods
for developing trees of agents or Voronoi diagrams are employed
to accomplish agent deployment without exact solutions (Cortés,
2008; Schwager et al., 2011). The problem of exploring unfamiliar
environments is a logical progression from deploying agents in
known spaces. Recently, algorithms have focused on deploying
teams of agents which must concatenate a series of environment

scans into one cohesive map. This has been approached using
occupancy grid and feature-based representations of the known
environment as well as simple behavioral models (Cepeda et al.,
2012; Aguilera et al., 2015). Algorithms acting on occupancy grid
representations employ approximations of whether unexplored
cells are free or occupied to estimate the utility of cells (Stachniss,
2009; Costanzo et al., 2012; Potthast and Sukhatme, 2014). Cell-
based approaches may deploy agents to frontier cells, cells of
high utility, or establish utility gradients or value functions which
may allow for the deployment of multiple agents simultaneously
(Solanas and Garcia, 2004; Bautin et al., 2012; Andre and Bettstet-
ter, 2016). Other works establish a feature-based representation
of the space in order to determine next best viewing position. The
deployment strategy explored in Chvátal’s theory deployed agents
to the vertices of the environment, and some works utilize this
strategy by deploying either to the vertices of the environment
or the visible space (Ganguli et al., 2006, 2007; Obermeyer et al.,
2011). However, many algorithms leverage the properties of con-
vex star-shaped polygonal regions established at each subsequent
viewing location (Ganguli et al., 2007; Obermeyer et al., 2011).
The algorithm we present falls into the latter category.

3. TECHNICAL APPROACH

This work presents a heuristic for determining the next best
viewing location based on a linear program which optimizes the
amount of area uncovered with each action taken by an agent.
These linear programs may be solved in polynomial time for each
automata using the interior pointmethod contained inMATLAB’s
legacy code base (Zhang, 1998; Nguyen et al., 2005). In order
to format the problem of solving for next best view point as a
linear program, both linear objective functions and a set of linear
bounds which provide a convex polytope over which the objective
function can be minimized.

4. NEXT BEST VIEW HEURISTIC

This work presents three formulations for the linear objective
functions and two formulations for the boundaries. The combina-
tion of objective function and bounds is determined by algorithm
and type of agent. Automata are considered to be in one of the
three following states:

• Active and mobile (AM)
• Active and stationary (AS)
• Inactive and stationary (IS)

4.1. Universal Algorithms
Regardless of agent type, a set of universal algorithms are
employed. These processes are divided into sections including
read sensor data, optimize position, deploy additional agents, and
concatenate map. These sections were built using MATLAB and
tested using PNG images of maps as unknown spaces. We define
α to be the tuple that defines the 2-dimensional position of an
agent i. Every robot deployed includes a laser scanner for which
a function mimics a 360° scan of the environment by a robotic
agent at a position, αi, in the environment. Post processing of
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this scan determines map features visible to the agent. The PNG
image produces an array structure in MATLAB wherein each
cell coordinate may be marked as a logical 1 if occupied or 0 if
unoccupied. This entire laser scan process is imitated with the
algorithm outlined in Algorithm 1 wherein angular resolution
may be decided by the user. For this experiment, a fine resolution
was utilized to eliminate the potential for false frontiers. The
postprocessing of these scan data tests each ordered pair of laser
points, [xs, ys], from the set of n tuples for any gaps where√

(xs+1 − xs)2 − (ys+1 − ys)2 > w, for s = 1, 2, . . . , n − 1,
(1)

x = x coordinate of laser scan point
y = y coordinate of laser scan point
w = width of agent(m)

n = number of laser scan tuples
s = unique laser scan tuple

in whichw represents the width of the agent. Robot width acts as a
threshold defining the minimum free space between walls which
an agent may consider as a viable path for exploration. Splitting
the ordered list of scan data at these gaps yields a set of k clusters
and j gaps equal to one less than the total number of clusters.
Since the divisions between each cluster represent viable areas into
which the agent might move to continue exploring the space, the
j gaps observed by the ith agent are defined as frontiers, Fij, which

ALGORITHM 1 | Read Map Data.

Input: Load logical map data
Input: Initialize angle θ at 0
While θ ≤360 do

repeat
Initialize r= 0m;
Calculate x and y coordinates;
x= rcos(θ), y= rsin(θ);
if (x, y)==1 then

Wall encountered, save pair (r, θ), and stop;
else
r= r+ s;

end
until stop;
Increment θ;

end

represent the boundary between explored and unexplored spaces
in the environment 2.

The proposed solution leverages properties of star-shaped
polygonal environments to provide a bounding set for the result-
ing linear equations. Isolating the star-shaped region formed by
the visible environment features begins by employing a Ramer
Doublass Peucker algorithm to produce corners, and the clus-
tering performed prior allows for increased performance of this
algorithm (Howard et al., 2002). The technique, outlined in
Algorithm 2, is employed to perform an iterative end point fit line
extraction on each cluster Ck.

This process results in an array of lines defined by their start
and end point coordinates.

The end point coordinates indicate the presence of a corner at
that location, and this provides the basis for the star-shaped poly-
gon. These values are calculated by every agent at each deployment
step.

4.2. Active and Mobile
An active and mobile unit is an agent for which the star kernel is
a region with area greater than zero inside the subset of the envi-
ronment observable by the agent. A set of boundary conditions
and objective functions are fabricated for these agents to facilitate
a transition from the agent’s current position to a more optimal
location for exploring unknown areas of the environment.

4.2.1. Objective Function
The goal of the algorithm is to develop a linear objective function
which may be minimized to yield the next best view. The problem
of exploring can be equated to the discovery of the area beyond
each frontier displayed in Figure 1.

To maximize the area discovered, β, the algorithm attempts
to draw the agent to a position, ai which maximizes the sum of
all angles ∠ BAC formed with each frontier. The combination of
angles is maximized when the area or the length of the side vectors
of each ∆ ABC approach zero. It is well known that the area of a
cross products of its two edge vectors, illustrated by equation (2):

β(∆) =
1
2
|v × w| =

1
2
|(V1 − V0) × (V2 − V0)|

β(∆) = Triangle of unexplored area (2)

v = Triangle edge vector 1
w = Triangle edge vector 2
V = Triangle vertex

ALGORITHM 2 | Iterative End Point Fit.

Input: Load sets of laser data points S= {(x1, y1), (x2, y2), . . ., (xn, yn),}
create subset s1 =S for Each set of points, sj do until no new sets are created do

fit line, l, between (x1, y1) ⊂ sj and (xn, yn) ⊂ sj;
find distance, d between each point, (xi, yi) ⊂ sj and l if max(d)= (xm, ym) ⊂ sj > threshold
then
Split sets at m into two new sets and reset numbering;
sja = {(x1, y1), (x2, y2), . . . , (xm, ym), };
sjb = {(x(m+1), y(m+1)), (x(m+2), y(m+2)), . . . , (x(n−m), y(n−m)), };
sj = sja ;
s(j+1) = sjb ;

end
end
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FIGURE 1 | Maximizing area beyond each frontier.

wherein the vectors v andw represent the edge vectors of a triangle
and the vertices V0, V1, and V2. A 2d triangle’s area may be found
through a combination of its vertices using equation (3):

2β(∆) = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0), (3)

x = Triangle vertex x position
y = Triangle vertex y position

in which the vertices are listed as (x0, y0), (x1, y1), and (x2, y2).
The signed quantity of this area denotes the orientation of the
vertices V1 and V2 from V0. A negative quantity indicates a
clockwise orientation of the vertices, and a positive result indicates
a counterclockwise order. We take V0 to be a test position of the
ith agent, a′

i , and the other vertices as the end points for each jth
frontier, F i

j , to get equation (4):

βi
j(∆) =

1
2

∣∣∣(F i
jx1 − a′

ix

)(
F i
jy2 − a′

iy

)
−

(
F i
jx2 − a′

ix

)(
F i
jy1 − a′

iy

)∣∣∣
βi
j(∆) =

1
2

∣∣∣F i
jx1 F

i
jy2 − F i

jx2 F
i
jy1 + a′

ix

(
F i
jy1 − F i

jy2

)
+ a′

iy

(
Fjx2 − F i

jx1

)∣∣∣,
(4)

i = Robot ID number
j = Frontier number

a′ = Agent position

which is the area captured by the triangle formed by the end points
of a single frontier and a selected agent deployment position.
The agent’s position is always taken to be vertex, V0, and the
ordering of the frontier end points is changed such that the signed
quantity of the area is always positive. In order to transform this
into a linear objective function, Si is segmented by the frontiers
which are currently being evaluated. This creates regions labeled
in Figure 2 as r in which the objective function remains constant.
Each set of frontier end points is tested according to equation (5):

ϕ =
(
F i
jx1F

i
jy2 + a′

ixF
i
jy1 + a′

iyF
i
jx2

)
−

(
F i
jx2F

i
jy1 + a′

ixF
i
jy2 + a′

iyF
i
jx1

)
(5)

ϕ = Vertex ordering test value

FIGURE 2 | Region in which the vertex ordering is constant.

in which the signed quantity for area is determined and equation
(6) to ensure a positive value for area.

βi
j(∆) =

1
2

[
F i
jx1F

i
jy2 − F i

jx2F
i
jy1 + a′

ix

(
F i
jy1 − F i

jy2

)
+a′

iy

(
F i
jx2 − F i

jx1

)] ∣∣∣ϕ > 0

βi
j(∆) =

1
2

[
F i
jx2F

i
jy1 − F i

jx1F
i
jy2 + a′

ix

(
F i
jy2 − F i

jy1

)
+a′

iy

(
F i
jx1 − F i

jx2

)] ∣∣∣ϕ < 0. (6)

Since the only independent variables present are a′
x and a′

y,
it follows that the linear objective function for each frontier, Of
should be given by equation (7):

Oi
f =

∑
j
a′
ix

(
F i
jy1 − F i

jy2

)
+ a′

iy

(
F i
jx2 − F i

jx1

)∣∣∣ϕ > 0

Oi
f =

∑
j
a′
ix

(
F i
jy2 − F i

jy1

)
+ a′

iy

(
F i
jx1 − F i

jx2

)∣∣∣ϕ < 0, (7)

O = Linear objective function
f = Set of all frontiers

which is the linear objective function for each area formed by a
frontier. The negative sum of these objective functions represents
the maximization of the total area contained by all of the regions
formed by agent’s position and any frontiers which are considered.
For the minimization problem, the presence of sliver triangles
along the boundaries formed by the frontiers traps the linear
program in a local minimum at the agent’s position. However, the
maximum formulation, when bounded, produces next best view
estimations which allow the agents to discover new territory, and
may utilize general guard locations rather than solely relying on
vertex deployment.

4.2.2. Bounding Set
In order for the feature-based information to be used in the
heuristic for next best view calculation, a set of linear boundsmust
be established based on the lines forming the visible polygon, Si,
for each agent, ai. These boundaries will be formed based on two
cases, agent movement and agent deployment.
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The requirements for successful deployment include the estab-
lishment of a visibly connected tree. This can be guaranteed for the
process of moving one agent from its current position to a new
position by exploiting the properties of star shaped polygons to
bound the calculation of the next best view location problem. This
work asserts that the visible region for each agent, is a star convex
since there exists at least one point from which the entirety of Si
may be viewed, [axi , ayi ] (Obermeyer et al., 2011). This point or
region is referred to as the kernel of the star convex and is formed
by the intersection of all interior half planes of the star-shaped
polygon which is approximated using an algorithm depicted in
Algorithm 3.

We find the star kernel of the polygon formed by the environ-
ment features viewed by each agent which yields the bounded
region in which the agent can move such that [a′

xi , a
′
yi ] ∈ Si where

[a′
xi , a

′
yi ] is the new position for agent ai. The definition of star

convex states Si S′
i ⊆ S′

i S′
i , where Si is the visible region from

the agent’s new position. The view location selection should be
bounded such that [a′

xi , a
′
yi ] ∈ ki where ki is the kernel of the star

convex of the region visible to the ith agent.

4.3. Active Stationary
Active stationary agents are those for which the star kernel is a
point. It is guaranteed that a star kernel exists for each agent in the
simulation since the definition of the kernel is always satisfied by
at least the robot’s current position. However, bounding a linear
program by the agent’s current position fails to yield deployment
locations or a movement location which would reveal more of
the environment. To overcome this, the bounding functions must
change. The active stationary agents act as static nodes in the
connected tree from which new branches are formed.

4.3.1. Objective Function
The objective function for an active mobile agent uses the same
structure as the active mobile agents where the only independent
variables present are αx and αy, and Oi

Fj is calculated. This is

ALGORITHM 3 | Define kernel.

Input: Load array of wall end points for agent i as w
for All w do

Calculate line ¯wx1,y1wx2,y2 ;
Compare agent position ay to wy at ax;
if ay >wy then

w is a lower bound on the kernel ki;
end
if ay <wy then

w is an upper bound on the kernel ki;
end

end
Input: Load array of frontier end points for an agent i as f
for All f do

Calculate midpoint of each frontier M;
Define test points T1 = {Mx, My + 0.01} and T2 = {Mx, My –0.01};
if T1 is inside polygon then

f is a lower bound on the kernel ki;
end
if T2 is inside polygon then

f is an upper bound on the kernel ki;
end

end

the linear objective function for each area formed by a frontier.
The sum of these positive objective functions results in the min-
imization of the area between the agent and each frontier. In
order to allow for multiple agents to be deployed at a given time,
it is efficient to cluster the frontiers into q groups and perform
this optimization on each cluster yielding a set of agent deploy-
ment locations ai=i+1 ,i+2 ,. . .i+q which describes the set of next best
viewing points calculated from this stationary agent. This work
uses a simplistic frontier clustering approach wherein frontiers are
considered able to be grouped if every point, [x, y], in the region, rf,
is contained such that, [x, y] ∈ Si holds where Si is the visible space
of the stationary agent. This indicates that the region is a subset
of the visible space. Using this strict clustering rule, only pairs of
frontiers may be generated along with any remaining frontiers as
singular clusters.

4.3.2. Bounding Set
The bounding equations for active stationary agents are developed
by collecting frontier pairs for which there exists some region b in
which lines may be cast between the two frontiers which do not
pass through any wall in the environment, i.e., the frontiers are
visible to one another. For this work, the frontier end points were
the only points at which this condition was verified. Therefore,
frontiers which are only partially observable were not paired. This
region, bi, is a subset of the region for which the equation for
area is constant in terms of vertex ordering shown in Figure 3.
The consistent vertex order ensures the objective function remains
constant across the entire evaluated area.

Single frontiers are subject to an equality constraint which
bounds the solution to the frontier itself. Therefore, an agent
deployed to a cluster of frontiers with size 1 is deployed onto the
frontier. Visual connection is maintained as long as the agents are
deployed inside the star convex of an active agent, and each active
agent is restricted tomoving within the kernel of their star convex.

4.4. Inactive Stationary
Agents pass their local maps and position data via the line of
sight communication network at each step of the algorithm. Other

FIGURE 3 | Frontier set bounding zones.
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FIGURE 4 | Frontier combination.

robot’s maps are compared with the current automata’s visible
space. In order to explore the environment without backtracking,
each agent must avoid deploying new automata or moving to
locations which have already been explored. This algorithm seeks
to prevent backtracking through the examination of the frontiers
which represent the boundaries for each agent’s visible region
inside the environment. The frontier end points for each frontier
visible to the current agent are tested against all other robots’
visible regions. If the end point lies inside a visible region, the
frontier is redefined to reflect the boundary between discovered
and undiscovered territory. The new frontier, F ′

ij
lies between

the end point of the previous frontier, Fij , and the intersection
of the frontier visible by the previously deployed agent shown in
Figure 4, ai–n.

An agent is considered IS if all frontier end points for that agent
lie inside the visible space of any other deployed robot. When
agents are considered IS, the program terminates.

5. RESULTS AND DISCUSSION

Experiments were run utilizing MATLAB as a testing platform.
Images of maps were supplied to MATLAB as portable network
graphics (PNG) files and read into an occupancy grid based on
the pixel count in the image. For the purposes of experimentation,
an arbitrary scaling factor was chosen to reflect the true size of
the room in meters. Two images were used for testing, “sim-
ple_rooms.png” and “autolab.png” from the set of stock images for
the player project stage program (Mehrotra, 1992; Vaughan and
Gerkey, 2007). The algorithm was run for “simple_rooms.png”
from a set of randomly selected starting positions within the
empty space. The solution for one such run is depicted in Figure 5
wherein the room was completely covered with 9 agents.

The number of agents sufficient to completely explore a polyg-
onal environment with no holes, such as “simple_rooms.png,” is
always equal to or less than n/3 where n is the number of vertices.
In the case of “simple_rooms.png” the total number of vertices

FIGURE 5 | Simple rooms solution from 2 starting points.

is 52 due to the thickness of each wall which indicates that 18
agents are always sufficient to cover the space. This sets a baseline
“worst case” scenario for intelligent deployment of agents using
the 3-coloring method to determine vertex guard placement. Full
summary statistics of the trials presented in Table 1 which reveal
a mean number of 10 agents covering the space with a maximum
value 27% under worst-case.

The number of deployment steps is the number of individ-
ual robot requests for additional agents needed before the algo-
rithm concluded. These values are much closer, but the algorithm
still outperforms random placement by 24%. These values are
expected to be closer together due to agent behavior. The number
of agents deployed by the random frontier exploration at each
deployment step is equal to the number of exploration boundaries
visible to an agent which are not in another agent’s field of view.
Therefore, the number of agents deployed should be much larger,
while exploration speed improves due to the sheer number of
robots being deployed. Both the proposed linear program and
randomdeployment suffer due towall thickness. The star-convex-
based deployment techniques ensure visual connectivity, but if an
agent is in doorway or close to a wall, the bounding region for
deployment becomes very small, thus limiting the utility gain for
that deployment cycle. Allowing an agent to reposition improves
this, but does not entirely offset that limitation of the star polygon
method. In the case of “autolab.png” the proposed solution also
ran to a state of complete coverage. A selected iteration from
one starting location provided complete coverage with a set of 11
agents illustrated in Figure 6.

Holes in the environment, such as the wall segment in the
center of “autolab.png” present a number of challenges to an agent
exploring the space. One prominent issue is that of agent overlap.
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TABLE 1 | Comparison results.

Algorithm Deploy randomly along frontiers

Agents Calculation time Deployment steps % agent reduction Deployment steps Agents

Simple rooms Max 13.00 0.18 6.00 83.75 63.00 80.00
Min 8.00 0.01 3.00 33.33 3.00 12.00
Mean 10.34 0.05 4.36 41.33 5.76 17.63
Median 10.50 0.05 4.00 30.00 5.00 15.00

Auto lab Max 15.00 0.48 8.00 16.67 29.00 18.00
Min 9.00 0.00 2.00 25.00 3.00 12.00
Mean 11.78 0.06 4.72 18.08 5.16 14.38
Median 12.00 0.04 5.00 14.29 4.00 14.00

FIGURE 6 | Autolab solution.

This was definitely an issue regarding deployment with the pro-
posed algorithm. One limitation set by the chosen solution was
the inability to deal with pseudo-wall clusters of more than 2. The
hole provided situations in which multiple exploration frontiers
may have been serviced by a conservative single-agent deploy-
ment, but the pairing limitation prevented this from occurring.
Exploration frontier pairing did, however, allow for the agents
to completely explore the environment with an 18% reduction in
total robots used over randomly deploying along frontiers. The
issue of number of agents deployed resulting in faster coverage
time was exacerbated by the hole in the environment. It more than
halved the improvement in average number of deployment cycles
from 24.3% in “Simple_rooms.png” to 9% in “autolab.png.” This
reduction is likely due to the breadth-first deployment of agents
in the new method causing a number of low-utility deployments
first followed by higher value deployments in strings later in the
execution. As each wave of agents is requested, their ID numbers
increment. In “Simple_rooms.png,” The first agent either deployed
agents to each doorway if it was randomly started in the hallway,
or deployed a single agent into the hallway if it was initialized in a
room. This means that the ID number of the highest utility agent
was either 1 or 2. Since agents evaluate and deploy sequentially,
this means that the highest value agent usually was allowed to
request robots first. In the case of “autolab.png” the complexity of
the environmentmeant that agents were assigned tomany frontier

pairs from any starting agent’s position. Only by happenstance,
then, did the highest utility agents receive ID numbers low enough
to ensure efficient deployments following the initial spread. In
both cases, the algorithm only requested that the initial agent
deployed in the environment move. No other agent repositioning
was observed as the optimization for active and immobile agents
always deployed new robots to location for which the new agents’
star-kernels were points, or the agents were immediately inactive
stationary due to a lack of unexplored frontiers. This means that,
aside from the first agent, all deployments were one-shot with no
need to reposition.

6. CONCLUSION

The presented algorithm provides a decentralized solution to the
problem of determining the next best observation point for each
agent in a team of autonomous robots engaged in exploring a pre-
viously unknown environment. Each automata seeks to maximize
the area revealed by their next action through observation of the
geometric features in the agent’s observable space as well as the
discovered area transmitted via line-of-sight communication to
the currently acting robot. The proposed algorithm was able to
ensure complete coverage of both a simple polygonal environ-
ment and a complex environment with a hole while reducing the
number of agents used y an average of 41 and 18%, respectively,
over randomly deploying agents along the exploration boundaries.
Even though agent count was significantly reduced, the total num-
ber of deployment cycles and robot movements was kept to an
average of 4.36 for the simple and 4.71 for the complex environ-
ment. This translates to a 24.3% decrease in deployment cycles
over random deployment to each available frontier for simple
environments and 9% reduction for the complex environment. It
should be noted that the limitations of this work are significant as
only simulation was performed to validate the performance of the
algorithm, and specific environmental factors such as size, shape,
and number of holes were not addressed. The algorithm appears
to be applicable to any static polygonal environment in which it is
possible to collect both localization data and a detailed scan of the
walls and features of the space. That said, the proposed algorithm
successfully reduced the number of agents used in comparison to
random deployment without relying on any agent repositioning
other than the first robot deployed. Since the calculations of
next-best-view only took a maximum of 0.48 s to complete, the
primary time sink in the deployment process would be agent
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movement. The one-shot deployment observed in the execution
of the proposed solution has the potential to significantly reduce
total deployment time while also reducing the total number of
robots required to complete the exploration.

FUTURE WORK

This algorithm could be improved through the inclusion of a
more comprehensive strategy for field-of-view overlap preven-
tion which could both reduce superfluous agent deployment
and improve algorithm termination accuracy. Additionally, agent
deployment order needs to be addressed such that agents with a
higher probability of discovery or a maximal utility are serviced
before agents of lower value. Furthermore, more simulation is
required in order to characterize the algorithm based on number
of holes in the environment as “autolab.png” only contains one
hole, number of walls, average width of hallways, etc. Following

this study, a major step for future work is to move the strategy
from pure simulation onto a physical robot platform for testing.
This will require an extension of the deployment constraints to
cope with sparse or noisy laser scan data which has been shown to
produce false pseudo walls.
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