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The emerging neurocomputational vision of humans as embodied, ecologically embed-
ded, social agents—who shape and are shaped by their environment—offers a golden 
opportunity to revisit and revise ideas about the physical and information-theoretic 
underpinnings of life, mind, and consciousness itself. In particular, the active inference 
framework (AIF) makes it possible to bridge connections from computational neurosci-
ence and robotics/AI to ecological psychology and phenomenology, revealing common 
underpinnings and overcoming key limitations. AIF opposes the mechanistic to the 
reductive, while staying fully grounded in a naturalistic and information-theoretic foun-
dation, using the principle of free energy minimization. The latter provides a theoretical 
basis for a unified treatment of particles, organisms, and interactive machines, spanning 
from the inorganic to organic, non-life to life, and natural to artificial agents. We provide 
a brief introduction to AIF, then explore its implications for evolutionary theory, ecological 
psychology, embodied phenomenology, and robotics/AI research. We conclude the 
paper by considering implications for machine consciousness.

Keywords: free energy, uncertainty, self-organization, embodiment, evolution, affordances, skilled expertise, 
frame problem

1. oVerVieW and GentLe introdUCtion to tHe aCtiVe 
inFerenCe FraMeWorK (aiF)

In this article, we will consider the active inference framework (AIF)—or, more strictly speaking, the 
principle of free energy minimization (FEM)—as a principle, rather than as a hypothesis. This means 
that we do not consider evidence for or against AIF per se. As a principle, AIF cannot be falsified—it 
is just a formal description of dynamics (much like Hamilton’s principle of least action; see below) 
that we apply to sentient agents. The process theories that attend AIF do, clearly, require evidence, 
which we refer to in our discussion.

Following a general overview, this section offers a gentle introduction to AIF, illustrating aspects 
of its instantiation as predictive processing (PP). Subsequent sections unpack the framework in 
greater detail, drawing out its implications for evolutionary theory, ecological psychology, embodied 
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phenomenology, and robotics/AI research. In the final section, 
we directly consider aspects of machine consciousness.

Given the ill-defined concept of consciousness, we endeavor 
to bring onto the same page researchers from physics, biology, 
neuroscience, philosophy, cognitive science, and robotics/AI, by 
reviewing concepts that are sometimes presumed to have unique 
and self-evident meanings. This approach aims to dispel mis-
interpretations and sharpen the cross-disciplinary focus on the 
substance of the claims. Throughout the following exposition and 
argument, there are several deep connections to the possibility 
of machine consciousness, although this topic only emerges as 
central in the concluding section. The preliminary sections are 
a necessary prelude to appreciating the implications of AIF for 
biology and robotics/AI, given that the notion of consciousness 
in robotics is sourced from the human equivalent. It is, therefore, 
important to establish a perspective from which human biology 
is accounted for by a mechanistically grounded, information-
theoretic treatment. This perspective can lend itself to robotic 
implementation; however, without this grounding, any arbitrary 
properties associated with consciousness could be thusly imple-
mented, putting the proverbial cart before the horse in modeling 
the target phenomenon.

Embodied and embedded human cognition has been analyzed 
extensively, not only in cognitive science but also in ecological 
psychology and phenomenological philosophy. Furthermore, all 
three fields have continually engaged with robotics/AI, contribut-
ing insights and critical perspectives, in some cases even effecting 
technological shifts (see, e.g., Brooks, 1999; Dreyfus, 2007; see 
also Chemero and Turvey, 2007; Sahin et al., 2007). More recently, 
there has been a proliferation of fruitful exchanges between 
robotics/AI and neuroscience (Hassabis et al., 2017), especially 
with respect to PP. The generalization of PP in AIF makes it 
possible to bridge connections to ecological psychology and phe-
nomenology, revealing common underpinnings and overcoming 
key limitations inherent to the latter two.

To indicate where this account is headed, our conclusion sup-
ports the idea that there is a fundamental relationship between 
(self-)consciousness and processual recursion, which has been 
suggested in other work (e.g., Maturana, 1995; Seth et al., 2006). 
To reach this conclusion, our discussion of consciousness is 
deferred throughout the paper, which tries to account for the 
emergence of processes and recursive architectures that under-
write a conscious embodied agent. In this light, we set up AIF in 
Section 1 in such a way as to be expanded upon in later sections. 
Sections 2 and 3 take a long view of the emergence of human 
biology that paves the way for the remaining sections. Sections 4 
and 5 address relevant paradigm contrasts in computational 
treatments of perception and action, and their implications for 
both biological and robotics/AI research. Sections 6 and 7 explore 
theoretical implications and practical applications, concluding in 
Section 8 with a consideration of humanoid robot consciousness 
(the theme of this special issue).

1.1. setting Up the Framework
AIF considers a thermodynamically open, embodied, and 
environmentally embedded agent (see, e.g., Friston, 2009, 2010; 
Friston et al., 2010, 2015a,b, 2016, 2017a,b,c). In AIF, the adaptive 

behavior of such a “cybernetic” agent is understood to be regu-
lated by ecologically relevant information, underpinned by a per-
ception/action loop. Taking a broad bio-evolutionary view, AIF 
regards the entire embodied agent as a generative model of the 
organism-relevant thermodynamics of its ecological niche (see 
below), in that the agent is a member of a phylogenetic species 
that is co-stabilized with its niche. This notion encompasses the 
reciprocal organism/niche coevolutionary relationship (Laland 
et al., 2017).

During later evolutionary periods in which organisms with 
neural systems arise, brains come to augment the more funda-
mental embodied agent with a neuronal-connectivity-based 
extension to the generative model that handles more complex 
organism/niche dynamics. Thus, even when discussing PP—the 
human (neuronal) instantiation of active inference—the brain 
should be understood as “taking a back seat” to the body, serving 
the body by facilitating more complex coordination. Such coor-
dination, including the dramatic niche reshaping seen in human 
culture, serves to co-stabilize organism and niche.

For a bacterium or a plant considered as an agent (Calvo and 
Friston, 2017), the embodied biological inheritance (the stable 
species as generative model) can be regarded as an implicit, 
surprise minimizing, familiarity with the niche. Many (if not all) 
of the earliest species inherit all the mechanisms they need for 
responding to and reshaping their niche, to facilitate their own 
survival and development. Such brainless organisms should be 
kept in mind whenever we “skip ahead” to the AIF description 
of human neural architecture—and its role in navigating the 
complexity of our cultural niche.1

1.2. Generative Model Basics
We next introduce the core notion of a neuronally implemented 
generative model. Consider, for example, a first-time visit to a 
university campus. Since a university is a contingent cultural 
entity, no part of our biological inheritance should be expected to 
provide us with any campus familiarity. However, if we have any 
earlier exposure to other universities, from visiting, reading, or 
hearing about them, this experience may contribute to our expec-
tations of familiar features: we could speculatively populate any 
given campus with some lecture halls, administrative buildings, 
cafes, and so on. This mental act of populating, in other words 
generating, amounts to using a generative model of a campus (i.e., 
generating consequences from causes). On a first-time campus 
visit, such a generative model allows us to “predict” (extrapolate 
from the model) that there is a cafe, or, more precisely, that there 
is a high probability of there being a cafe, even if in actuality, there 
is not one there.

If we are visiting a specific campus for the first time, our 
generative model will be rather vague, but as we gain familiar-
ity, we fill in more details. This process of gaining familiarity 
is a form of exploration, which may entail wandering, read-
ing signs, and talking to passers-by. The exploratory process 
amounts to updating or nuancing our generative model for 

1 For a related approach in philosophy of science, see, e.g., Bechtel (2014) and 
Bechtel and Abrahamsen (2007).
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this particular campus, including specific buildings and their 
layout. The exploration fills in the blanks, so to speak, such that 
we can then exploit the model for explicit or implicit purposes, 
whether finding the shortest path to the cafe or aimlessly 
meandering on a leisurely stroll. If, when exploring the campus, 
every sensory impression evinces the right sort of predictions, 
you have effectively inverted your generative model. In other 
words, to update your model of this campus, it has to predict 
the right things in the right place at the right time. This process 
amounts to learning to recognize the causes “out there” in 
relation to their context-dependent sensory consequences, or 
more simply, getting a grip on how sensations are caused by 
attempting to predict them—and then learning how to predict 
in this context.

Thus, the explore/exploit dynamic in relation to a generative 
model of a niche (including any subset thereof) can be understood 
as a process of gaining familiarity and “leveraging” that familiar-
ity to achieve any preferred outcome (Schwartenbeck et al., 2013). 
The generative model itself is augmented and developed through 
a broadly construed learning process that transforms neuronal 
networks. This developmental learning process throughout 
the lifespan is facilitated by, and supplements, the preceding 
evolutionary development of the embodied apparatus. Crucially, 
this learning entails something that gets quite close to conscious 
processing, namely a form of abductive inference that differs from 
standard accounts of perceptual inference, as we will see in later 
sections.

Significantly, in AIF, the gaining and leveraging of familiarity 
with respect to the generative model is not limited to agent-
external (distal) phenomena. While seeing an apple in a tree is 
ordinarily thought of as perception (i.e., perceiving the apple or 
its qualities), AIF radically expands the notion of perception. In 
AIF, vision and the remaining four classical senses are part of 
exteroceptive perception, or exteroception. Beyond exterocep-
tion, however, motor-system-governed biomechanical actions, 
such as plucking an apple from a tree, can be perceived not 
only by exteroception (by sight and touch), but also by what 
is referred to as proprioception. Even in seemingly isolated 
vision, there is continuous interaction between extero- and 
proprioception, as visual sensing interacts with eyeball, head, 
and even whole-body movement. This is a fundamental move 
beyond PP per se; it acknowledges that simply making sense of 
sensory data is only half the problem. You also have to actively 
coordinate your sensory surfaces and, essentially, become the 
author of your own sensations. We will see later that the impera-
tives for the active sampling of the environment, subsequent 
inference, and consequent learning, all comply with the same 
imperative, namely to enhance familiarity or resolve uncertainty 
and surprise.

A further perceptual modality accounts for the sensing of 
hunger and related internal sensations that are not necessarily 
discernible through extero- or proprioception. These internal 
sensations are grouped together as interoception. Here, too, we 
must recognize the continuous interactions between interocep-
tion and the other modalities, whether in bacteria or humans. 
For bacteria, the generative model embodies continuous relation-
ships between extero-, proprio-, and interoception in the form 

of chemotaxis and flagellar movements. For humans, when we 
feel an afternoon lull as a need for a snack, extero-, proprio-, 
and interoception interact, guiding us to the cafe to satisfy our 
hunger. In this light, the expanded notion of perception in AIF 
stretches well beyond the traditional sense of seeing the apple, in 
that it brings all perception and action under the same umbrella 
of ecologically embedded adaptive behavior.

1.3. Further preliminaries
The full scope of the embodied (and optionally neuronally 
augmented) generative model in AIF includes the building and 
leveraging of familiarity with the array of interactions between 
extero-, proprio-, and interoception. This familiarity may be 
gained during the lifespan, as in human development, or it may 
be predominantly biologically inherited, as with bacteria. Across 
all cases, however, the agent seeks to bring about its preferred 
and familiar future (e.g., satisfying hunger) by advancing the 
state under its generative model, through a sequence that begins 
with its present state, and follows a pathway guided by (inherited 
or learned) familiarity. Given the exteroceptive dimension, the 
agent’s state can always be more comprehensively understood as 
the joint state of the agent/environment system.

Despite the relative simplicity of the basis of AIF—an embo-
died generative model with interactive modalities that facilitate 
agent/environment state transitions—the framework elegantly 
scales up from bacteria and plants to humans, even in atypical 
cases: a caring individual who sacrifices their own life for a pre-
ferred or expected future in which someone they rescue survives; 
a psychedelic drug taker who seeks a perpetually exploratory 
series of wild hallucinations over a more stable experience;  
a prisoner on a principled hunger strike who attempts to bring 
about a future, not of sated hunger, but of some greater social 
justice. In all instances, agents are interactively reducing their 
uncertainty in an open-ended self/world relationship (“what will 
happen” or “what would happen if I did that”).

This process of bringing about a preferred future is referred to 
(in AIF) as active inference, a concept that will be further fleshed 
out in the remaining sections. At present, it should already be 
clear why active inference is not continuous with earlier notions 
of perceptual inference, given the role of the three modalities 
accommodated by the generative model—especially when we 
consider that proprio- and interoceptive predictions change the 
sensory evidence for our percepts (via motor and autonomic 
reflexes, as we will see later). Arguably, even the AIF treatment of 
perception itself is not continuous with earlier theoretical treat-
ments of perception, since in AIF, perception is deeply situated 
in the embedded context of the active agent. Moreover (as we will 
also see later), AIF goes beyond established paradigms critical 
of traditional perceptual inference such as ecological psychology, 
which, despite its action-oriented perspective, still exhibits a 
latent exteroceptive-centrism.

A final and highly significant meta-theoretical feature set of 
AIF—one that should appeal to humanities scholars who are 
wary of naturalistic and information-theoretical accounts of 
humanness—is that the framework inherently enshrines the fun-
damental uncertainty and unknowability of the future, along with 
the agent’s fallibility about the present and past. In addition, in 
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contrast to superficially similar accounts, AIF markedly opposes 
the mechanistic to the reductive. These features will emerge more 
clearly throughout the paper. The next section addresses the role 
of the free energy principle, “the other side of the coin” of active 
inference.

2. deMystiFyinG FeM: FroM pHysiCs  
to inForMation tHeory and BaCK 
aGain

In this section, we use a version of Maxwell’s “demon” thought 
experiment to illustrate how concepts such as entropy and 
equilibrium link thermodynamics and information/control theory 
in cybernetics (e.g., Ashby), especially regarding how this link 
pertains to self-organization and the regulation of coupled 
systems. Readers already familiar with these concepts may wish 
to skip this section. In Section 2.1, we provide an introductory 
account of statistical thermodynamics and associated concepts, 
such as FEM, entropy, and uncertainty. We then connect these 
concepts to information theory and cybernetic control theory in 
Section 2.2. Finally, in Section 2.3, we return to thermodynamics, 
with an emphasis on substrate limitations for physically realized 
computational process models.

2.1. thermodynamic FeM, entropy,  
and Uncertainty
It might seem far-fetched to think that the entire universe has 
a direct relationship with a personal computing device. And 
yet, from the standpoint of thermodynamics, your laptop heats 
up because of the work it is doing shunting around subatomic 
particles, which in turn directly increases the total entropy of 
the universe. Of course, cosmologists have little interest in the 
vanishingly insignificant impact of a laptop on the universe. Scale 
matters a great deal in thermodynamics, because any thermody-
namic system is an artificially bounded subsystem of the universe, 
which by stipulation, resides at the largest end of the scale. In 
this sense, the timescale of the universe offers the longest pos-
sible temporal trajectory, into which all other system trajectories 
eventually collapse.

It is a theorem in physics that the total entropy of the universe 
continuously increases (a corollary of the second law of thermo-
dynamics). Thus, for any subsystem, whether a galaxy, organism, 
or even a laptop, if it can in any way reduce entropy within its 
system boundaries, this will only be for a relatively short time2 
until it must yield to the entropy-increasing pressure of the uni-
verse. This relationship can be viewed as a process of maintaining 
a local state equilibrium at the temporary expense of a global 
state disequilibrium; the global state will eventually reclaim its 
equilibrium in the long run by overwhelming the local state.

Thermodynamic entropy can be understood as a measure of 
our ability to predict the position of particles within a system 
over a duration. This is why entropy typically increases with 

2 This, of course, could be millions of years.

heat,3 since generally speaking, faster particle movement gives 
off more heat than slower movement, and faster movement leads 
to more-difficult-to-predict positions. Conversely, cooling slows 
down particles, making their positions more predictable, thereby 
decreasing entropy. Another way to describe the predictability of 
particle positions is in terms of our relative certainty about their 
predicted positions (in relation to the limited set of all possible 
positions). In this sense, higher thermodynamic entropy, greater 
unpredictability, and greater uncertainty are all linked to the same 
underlying quantity.

To bring together the notions of equilibrium states and 
entropy, consider a modern refrigeration unit. Its interior is 
kept cool by the operation of an electrical motor that gives off 
heat outside the unit. The entropy of the room (and indeed the 
universe) that houses the unit, i.e., the global equilibrium state, 
increases by the operation of the motor, while the cool interior, 
i.e., the local equilibrium state, momentarily maintains a lower 
entropy than the exterior. Eventually, of course, over the long run, 
the motor will stop, finally rewarming the unit. For keeping our 
drinks cool, however, it suffices to focus on the local subsystem 
and its corresponding timescale.

Finally, we reach the notion of FEM. In thermodynamics, 
particle movements count as work, and work has two main ener-
getic effects: it uses some energy to do the work, and it releases 
some energy as light and/or heat. The energy available or “free” 
for the work is, thus, un-mysteriously referred to as free energy, 
in contrast to the available energy already (lawfully) dedicated to 
being released during the work. Returning to the above example, 
in a room with a refrigerator, when the fan has warmed the room 
air, the warm air particles have sufficient free energy to expand 
across the entire room. As long as the refrigerator door is closed, 
those particles cannot penetrate the fridge, so they only expand 
to occupy the room minus the fridge (a disequilibrium between 
the global/room and local/fridge states). However, when the 
fridge door is opened, the warm air particles expend their free 
energy by expanding into the open fridge. In this sense, they 
(lawfully) minimize free energy, i.e., they use the available free 
energy to expand across the full space, including the fridge 
interior. That is, through thermodynamic FEM, the global equi-
librium/high entropy state of the warm room overwhelms the 
local equilibrium/low entropy state of the cool fridge interior.

2.2. FeM, entropy, and Uncertainty in 
information theory and Cybernetics
Imagine that when we open our fridge door, a tiny demon4 
appears, to swat away the incoming warm air particles. If it swats 

3 We specify “typically” here as a nod to the Fluctuation Theorem (that generalizes 
the second law to non-equilibrium systems). In brief, the Fluctuation Theorem says 
that the probability of entropy decreasing vanishes as the observation time or size 
of the system increases (Evans and Searles, 2002). In other words, at a microscopic 
level, it is possible to have transient decreases in entropy, but the probability of this 
occurrence quickly becomes almost zero, over time.
4 Maxwell’s demon is a thought experiment proposed by James Clerk Maxwell to 
account for violations of the Second Law of Thermodynamics (Maxwell, 1871, pp. 
308ff.). Subsequently, it was realized that even Maxwell’s demon complies with the 
Second Law in virtue of Landauer’s principle, namely, that “any logically irreversible 
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away a few particles at a time, it can delay the inevitable process 
of the fridge warming up. The more particles it can swat away, the 
more prolonged the delay. Better still, what if it could swat away 
all incoming particles? This would be as good as leaving the fridge 
door closed, as the local equilibrium of the cool interior would 
be maintained (at least over the short run); anything less, and the 
global equilibrium state (the warm room) would overwhelm the 
cool fridge and spoil the milk.

This demon scenario illustrates what cybernetics pioneer  
W. Ross Ashby (1958) termed “the law of requisite variety.” Requi-
site variety refers to the sufficient available responses by the local 
subsystem to resist the global system, such as the demon’s suf-
ficient responses to all incoming warm air particles to maintain 
the cool fridge. Without requisite variety, the global equilibrium 
is permitted to prevail in the short run.

Now imagine the demon is working as a remote operator, 
controlling the positions of the cool air particles in the fridge, 
and maneuvering them along the plane of the door-opening to 
block any incoming warm air particles. This leads the particles to 
bounce off each other while remaining on their respective original 
sides of the opening, in which case the local subsystem remains 
thermodynamically identical before and after the onslaught of 
repelled particles. Significantly, the average thermodynamic state 
of the entire local subsystem is not concerned with a subset of 
specific particle positions. And yet, in our example, it is precisely 
this subset of particle positions that serve to maintain the local 
equilibrium. In this respect, while differing particle positions 
can result in thermodynamically equivalent systems, the systems 
would be informationally distinct, in that they reflect different 
organizations of the same set of particles. This brings us to 
Shannon (1948) information theory.

For Shannon, the distinct informational notion of entropy 
is borrowed from thermodynamics, as suggested by John von 
Neumann, who noticed the affinity between the concepts 
(Levine and Tribus, 1978). Shannon recognized that a set of 
binary switches has many possible on/off positions that can, 
by stipulation, be assigned any meaning. When transmitting 
a set of positions as a signal over a channel, noise made up of 
the same elements of the signal increases along the length of 
the channel. As this noise increases, it clouds the source signal, 
which in turn must be distinguished from an increasingly 
greater set of possible on/off switch configurations. In this 
sense, the location of the signal in the noise becomes increas-
ingly uncertain.

As with particle positions in thermodynamics, the greater 
the ability to “predict” where the signal is within the noise, the 
greater the certainty. Thus, informational FEM is a reduction 
of uncertainty, i.e., an increased probability of picking out the 
relevant signal from the noise. By analogy to physics, this quanti-
fied uncertainty is termed Shannon entropy. Higher Shannon 
entropy reflects a greater uncertainty in picking out the relevant 
information, so informational FEM amounts to improving the 

manipulation of information, such as the erasure of a bit or the merging of two 
computation paths, must be accompanied by a corresponding entropy increase 
in non-information-bearing degrees of freedom of the information-processing 
apparatus or its environment” (Bennett, 2003).

identification of the relevant information. Technically, Shannon 
entropy is the expected self-information (a.k.a. surprisal) that 
(variational5) free energy aspires to approximate. This means that 
if one minimizes variational free energy at every point in time, the 
time average or expected surprisal is likewise minimized, thereby 
minimizing Shannon entropy via FEM.

Since the signal for Shannon is merely a particular organiza-
tion of a subset of the same elements comprising the noise, the 
organization itself constitutes the relevant information. Of course, 
different organizations of the same source may be relevant under 
different circumstances. In Section 6.3, we will consider this sense 
of variable relevance in relation to the frame problem. Here, we 
focus on a narrow sense of relevance that builds on Ashby’s law 
of requisite variety.

Conant and Ashby (1970) introduced the Good Regulator 
Theorem. This holds that, when two systems are coupled, given 
requisite variety (as with our demon controller), one system 
can remain in its local equilibrium state (cool fridge interior), 
despite the pressure of the system in a global equilibrium state 
(warm room). Without requisite variety, the system with greater 
variety will overwhelm the other, subsuming it into the global 
equilibrium. Requisite variety can be thought of a system having 
sufficient control information—and response parameters—to 
maintain its local equilibrium (the demon re-organizing the 
particles). In this sense, the system is a “good regulator” of the 
global system and on this basis, behaves as a model of the global 
system. We will see later that this translates into an agent with the 
right sort of generative model that can generate the consequences 
of a variety of actions.

Crucially, using this theorem, Shannon entropy can be 
transformed into a sender-free construct. Specifically, for the 
model in local equilibrium resisting the global state, it must not 
only have sufficient parameters, but it must pick out the “cor-
rect” organization of elements from the global system (such that 
“correct” refers to the information that allows the local system to 
resist being overwhelmed). To illustrate the sender-free notion of 
Shannon entropy with the fridge example, note that there is high 
uncertainty concerning which subset of warm air particles and 
their positions will threaten the open fridge door boundary. If the 
demon does not continuously select and re-organize the interior 
particles into the “correct” (blocking) positions, the milk spoils. 
Informational FEM amounts to the reduction of uncertainty 
(sender-free Shannon entropy) concerning the warm air parti-
cles, without there being a sender transmission per se. This will be 
important later (to Gibsonians, among others) for understanding 
that, on the AIF conception, the environment does not transmit 
information to the ostensible sensory-receiver.

2.3. design requirements for a Brain
Finally, we return to thermodynamics, in a slightly different 
role. Imagine replacing our demon with an ordinary laptop run-
ning special software to perform the same role described above 
(identifying and blocking incoming warm air particles), with one 

5 We will use the term of variational free energy (in information theory and Bayesian 
statistics) to distinguish it from thermodynamic free energy in FEM.
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additional constraint: the laptop must be placed inside the fridge. 
Lacking the demon’s thermodynamic law-defying properties, 
the laptop emits heat whenever it computes and controls the 
particle organizations. Thus, it is potentially self-defeating, since 
it threatens to raise the interior temperature despite keeping the 
outside forces at bay. Engineers could in principle redesign and 
reprogram the laptop to achieve efficient blocking by performing 
relatively few computations. A poor design might run too hot 
or too unreliable to be useful, while an ideal design would not 
overheat and block just enough particles to keep the milk cool.

This is why it is not enough to say that a thermodynamic 
system at local equilibrium can be a good regulator of a greater 
system by informational FEM alone. The local system must 
do thermodynamic work to be a good regulator of the greater 
system.6 Thus, the local system architecture must accomplish this 
work without a self-defeating heat increase (which would also 
increase thermodynamic entropy). This points to the fact that 
the means by which informational free energy is minimized must 
simultaneously serve to minimize thermodynamic free energy in 
order for the local system to maintain its equilibrium. We will see 
later that this theme is central to notions of efficiency, simplicity, 
and the elimination of redundancy that is inherent in FEM.

3. eVoLUtion tHroUGH a CyBernetiC 
Lens: seLF-orGaniZinG systeMs, 
eMBodiMent, and eCoLoGiCaL 
adaptation

Building on the previous section, we show how FEM can be 
used to make sense of self-organization and embodiment. We 
first show how physical chemistry models build on statistical 
thermodynamics, and how biological models build on a chemical 
conception of metabolic processes. We then show why physical 
and informational requirements are relevant to understanding 
embodied biological agents in relation to the coevolutionary 
development of species and their ecological niches.

3.1. self-organization and system 
Boundaries
The multiscale self-similarity of thermodynamic FEM comes into 
clear focus in physical chemistry. In a chemical system, predicting 
the behavior of individual particles can be intractable, but we can 
use the same mathematical models for particle aggregations as for 
individual particles. A transparent example of this is the process 
of crystal formation, called nucleation (Auer and Frenkel, 2001). 
In a pool of solute, many particles are distributed throughout. 
Typically, the behavior of the liquid is such that, for the particles 
to minimize (thermodynamic) free energy, they simply follow the 
liquid flow patterns (i.e., the paths of least resistance, in other words, 
the least surprising trajectories). However, if the right subset of 
particles comes into proximity, their thermodynamic FEM will in 

6 Note that this is an instance of Landauer’s principle described in Footnote 4, 
speaking to the fact that there is no free lunch when it comes to trading information 
for energy—in any process, the two are essentially the same.

fact lead them to aggregate together. This particle aggregation will 
continue to swirl around in the pool and, at various points, more 
particles will begin to follow a pathway that affords greater FEM by 
joining the aggregation than by swirling around apart from it. The 
aggregation becomes the nucleus of an emergent crystal forma-
tion, which reaches a critical tipping point that leads an increasing 
number of particles to join up with it in a crystalline structural  
arrangement—all this mandated by simply following the path of 
least resistance at each point in time.

In virtue of this pattern, the crystal is distinct from the pool: 
it is an emergent self-organizing system with sharp boundaries. 
Specifically, the crystal is a free-energy-minimized molecular 
arrangement which has a lower-entropy local equilibrium than 
the contrasting higher-entropy global equilibrium of the pool. Of 
course, the crystal is merely an inanimate rock. Consider, how-
ever, another equivalent self-organizing criticality system, a forest 
fire (Drossel and Schwabl, 1992; Malamud et al., 1998). There is 
a critical tipping point at which the chemical process of the fire 
gains the capacity to spread according to a pattern of available 
fuel, to continue the chemical catalytic process. The forest fire, 
like the crystal, has clear system boundaries that emerge. Unlike 
the crystal, however, the nature of the fire’s metabolic process 
means its system boundaries will not be maintained without 
additional fuel, in which case the fire will “die out.”

This metaphor of fire “dying” aptly reflects the fact that biologi-
cal systems also exhibit self-organized criticality, with a parallel 
metabolism that demands fuel to maintain system boundaries. A 
bacterium must obtain fuel from beyond its system boundaries 
to burn within those boundaries, in order to maintain them. 
Hence, there is a direct continuity and self-similarity across self-
organizing aggregations-as-embodied systems from physics to 
chemistry to biology (Sengupta et al., 2013; Friston et al., 2015a,b; 
cf. Chemero, 2008; Bruineberg and Rietveld, 2014).

3.2. ecological Context
At the biological level of description, the theoretical vantage 
point of ecology becomes relevant to understanding how organ-
isms keep a positive balance in their metabolic bank account, 
so to speak. The cybernetic evolutionary lens described above 
reveals the connection of the embodied organism to the AIF 
notion of a generative model. Specifically, the embodied agent 
has a “do or die” to-do list to maintain its system boundaries, or 
more comprehensively, to survive and thrive. This list includes 
the agent obtaining fuel from its niche (to sustain its metabo-
lism), avoiding active existential threats (e.g., predators), and 
also remaining within its embodied-apparatus-relative niche 
boundaries by not being a fish out of water, a land mammal falling 
down a ravine, or indeed any organism exceeding atmospheric 
thresholds of high and low temperatures and surface pressures.

Broadly, this set of agentive processes can be understood as an 
active engagement in a homeostasis/allostasis dynamic (Pezzulo 
et al., 2015), which more broadly still, can be regarded as adaptive 
behavior. For adaptive behavior to succeed, that is, for the organ-
ism to survive and thrive, it must have inborn and/or acquired 
familiarity with itself and its niche. In other words, the agent 
must be able to act on control information concerning its self/
niche relationship (Friston, 2014). This control information can 
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be understood as embodied system-boundary-internal adaptive 
behavioral guidance information, with the sole requirement that 
it is good enough for facilitating the agent’s ability to survive and 
thrive, akin to satisficing (Simon, 1957).

Notice, however, that despite foregrounding the importance 
of boundaries, the picture is one in which living organizations 
are themselves changeable in ways that minimize the free energy 
of an evolving process (see, e.g., Clark, 2017). Notice also that, 
despite the sometimes-grim connotations of cybernetics and 
control theory, the notion of “control” is here synonymous with 
regulation, in the sense that you control, i.e., regulate, your own 
appetite simply by eating. In this sense, for the organism to be a 
good regulator, it must have a satisficing degree of certainty about 
itself and its niche to pick out what is relevant to its “to-do” list, 
such as responding to perceived hunger or danger, e.g., by seek-
ing food or shelter. In logically equivalent terms, the agent must 
reduce its uncertainty, i.e., minimize (variational) free energy for 
a thermodynamic payoff.

To achieve this FEM, on an evolutionary timescale, organisms 
may mutate and potentially become an embodied generative 
model of a new niche. On a lifespan timescale, they may explore 
their niche to learn its contours, find new sources of suste-
nance and shelter, and new threats to avoid, i.e., augment their 
inborn generative model. In the interplay of evolutionary and 
lifespan trajectories, organisms transform their niches, bringing  
about higher-certainty correspondences to some aspects of their 
embodied generative model (e.g., tunneling underground to 
cushion light sensitivity). Indeed, some perspectives in theore tical 
biology speak to evolution itself as a FEM process, for instance, 
generalizing Darwinian processes as physical implementations  
of Bayesian inference (Frank, 2012; Lammert et al., 2012; Camp-
bell, 2016).

Early lineages of organisms including bacteria and plants 
respond to self and environmental regularities even without a 
neural system, whereas later lineages including humans have the 
further support of a neural system to respond to more statistically 
complex regularities. Such complexity is reflected by increasing 
neuronal connectivity throughout the evolution of stable species. 
The ability to identify regularities in control information that 
reflect (self and niche) thermodynamic regularities can thus be 
viewed as an ecological adaptation requirement. By attaining 
effectively low uncertainty concerning adaptively relevant niche 
information—that is, by continuously minimizing (variational) 
free energy—the embodied agent is able to maintain a stable 
local (thermodynamic) equilibrium. The agent thereby resists the 
potentially overwhelming pressures of the environmental global 
equilibrium (the second law of thermodynamics) for the limited 
duration of its lifespan.

3.3. Complexity and spatiotemporal 
integration
Given our account thus far, it should be clear why, from a “good 
regulator” perspective, the more informationally complex the 
niche, the more complex the embodied (and eventually brain-
augmented) generative model must be to facilitate effective 
adaptive behavior. The basic reflexive behavior, from bacterial 

chemotaxis to some plant and even insect behaviors, indicates 
that the preponderance of adaptive “work” can be done at a deeply 
embodied level, with low-level connectivity requirements (see, 
e.g., Mann et al., 2017). This is why for Gibsonian ecological psy-
chology and Brooksian robotics, the bulk of relevant regularities 
are regarded as being wholly external to the embodied (natural 
or artificial) agent.

However, the theoretical framing device positing that “the 
world is its own best model” (Brooks, 1999) ultimately does not 
scale up to account for more complex agent/niche interaction 
dynamics. From the AIF perspective, it might be said simply 
that the world is its own best world, while the embodied agent 
itself is the best model of those aspects of the world relevant to 
its surviving and thriving—a familiar econiche that it has largely 
constructed for itself (Laland et al., 2017). Arguably, in relation 
to evolutionary natural selection pressure arising from niche 
saturation, mutants will only survive to stabilize as a new species 
under one of two conditions: expanding into a new niche that 
is spatially beyond the saturated niche, or expanding into one 
that is spatially coextensive with it, but presents a different set 
of relevant regularities (see Ito and Ikegami, 2006). In the latter 
case, the corresponding increasing informational complexity of 
the niche plausibly relates to increasing organismic complexity 
(coevolution).7 Once neural systems emerge, this coevolutionary 
pattern continues with increasing neuronal connectivity (Yaeger, 
2009; see also Seth and Edelman, 2004; Yaeger and Sporns, 2006; 
Yaeger, 2013).

Continuing with this account, a significant meta-theoretical 
feature of AIF can be noted, namely, that the human individual 
is re-contextualized as emerging naturally from the social group. 
There has been increasing interest in socially grounded neurosci-
ence (e.g., Dumas et al., 2010; Dumas, 2011) and social robotics 
(Leite et  al., 2013). Yet, some accounts largely consistent with 
AIF (e.g., Butz, 2016) only consider the social as an afterthought 
to the individual. Under the above considerations, however, 
given the upper bound on individual brain capabilities from a 
thermodynamic perspective, for humans to stabilize as a species, 
social cooperation offers the greatest advantage for establishing 
an adequate niche to sustain a stable population (see Yoshida 
et  al., 2008). Indeed, identifying evolutionary stable strategies 
in multi-agent games, within AIF, can lead to some counter-
intuitive yet compelling conclusions, particularly in terms of 
the degree of sophistication agents require in relation to others  
(see Devaine et al., 2014).

At the same time, as human culture emerges, introducing 
even greater niche complexity, the very same cooperative dis-
tributed information dynamics can lead to inherent difficulties. 
It is intrinsic to the underlying mathematical model of AIF that 
an apparatus which evolved for reducing uncertainty is equally 
sufficient for increasing uncertainty under particular circum-
stances. This is evident in social misunderstandings, such as 
mistaking the attributed motivation of a facial expression (Clark, 

7 Note that we are again appealing to the good regulator theorem. In other words, 
there is a homology between the complexity of the world being regulated and the 
good regulator that must embody a model of that world.
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2015b, Section 2.9). The potential for the system to backfire, so to 
speak, is a consequence of the fact that human niche complexity 
includes social and cultural relationships, artifacts, language, 
and so on, which corresponds to substantially more complex 
neuronal connectivity in humans as compared to our evolu-
tionary predecessors (Street et  al., 2017). Even within human 
groups, a narrower, more predominantly physical, interpersonal 
local niche engagement (e.g., a stag hunt) requires considerably 
less informational complexity than the vast distributed neural/
environmental information dynamics across a broad integrated 
physical and sociocultural niche. In the latter, agents face a 
greater challenge in leveraging more radically limited partial 
information (Ramamoorthy et al., 2012).

As neural complexity increases on an evolutionary timescale, 
the AIF model of the neural architecture is described in terms 
of an increasing number of interconnected hierarchical layers. 
These layers facilitate more extended spatiotemporal integra-
tion, with a growing set of nested local scales of time and space, 
ranging from the immediacy of the reflex arc, to ecologically 
situated behavior, to the lifespan. For instance, a beaver building 
a dam must be able to handle more extended time and space 
than a bacterium. Primates (including humans) exhibit nested 
spatiotemporal integration when interactively engaged in a 
dynamic situation or observing a visual sequence, as do humans 
when following along with speech or writing by integrating 
syllables into words, words into sentences, and sentences into 
a narrative (Hasson et al., 2008; Kiebel et al., 2008; Chen et al., 
2015; Friston et al., 2017c; Yeshurun et al., 2017). This complex 
nesting, which has been implemented in robotics (Modayil 
et al., 2014), corresponds to a neural architecture that instanti-
ates active inference in humans as PP, with growing empirical 
evidence of neurobiological substrate correspondences (Friston 
and Buzsáki, 2016; see also Clark, 2013, 2015b).

4. UnVeiLinG tHe WorLd, UpendinG 
tHe inpUt/oUtpUt ModeL oF 
perCeption (and aCtion)

With a focus on brains, this section shows how AIF upends the 
input/output model of perception (and action) still prevalent in 
embodied cognition and ecological psychology research, and 
perhaps even more prominently so in robotics/AI. As the full 
implications of this upending unfold, two major theoretical 
problems—the inverse problem and the frame problem—are 
revealed to be artifacts of the input/output model, such that 
AIF does not merely solve, but in fact dissolves these problems. 
Moreover, the philosophical concern raised against PP (and by 
extension, AIF), namely, that it entails or implies a solipsistic 
agent, hermetically sealed off from the world by an evidentiary 
boundary (or “veil”), is shown to be unfounded.

4.1. the poverty of indirect and direct 
perception
Is the embodied generative model stuck behind an “evidentiary 
boundary” (or “veil”), with no direct access to an outer world that 

is merely inferred? This is the notion of indirect perception that 
Hohwy (2013, 2016) advocates (cf. Clark, 2016). What Hohwy 
misses is a relevant distinction between phenomenal sensation 
and control information (elaborated in this section). Follow ing 
the AIF account outlined above, control information provides 
the possibility for the agent being a good regula tor. However, this 
remains distinct from phenomenal sensation of the world. At 
the same time, phenomenal sensation can itself be harvested 
for control information, in addition to information beneath the 
awareness threshold (Kang et al., 2017).8

Consider, for example, a video conference call apparatus. In 
an efficient design, the data flowing from one call participant 
to another will serve two simultaneous roles: a qualitative 
(content-relevant) role, in that the data underpin the audiovisual 
streams by which the parties can converse; and, at the same time, 
the data will serve a quantitative (content-irrelevant) role as 
control information, in that the data transfer rate will modulate 
the audiovisual resolution to compensate for bandwidth varia-
tion. In a parallel sense, in AIF, there is direct thermodynamic 
engagement between the agent’s sensory surfaces and the world. 
This is precisely why we wear special glasses to view an eclipse, 
or earplugs at a loud concert: the direct engagement can be so 
powerful as to be biologically destructive. At lower intensities, 
light and sound contribute to a variety of enjoyable phenomenal 
sensations, and yet, they serve a dual role as control information. 
Under situations of acute existential threat, the control informa-
tion may be the only relevant signal, whereas under presumed 
existential comfort (e.g., at the cinema), the control informa-
tion may be largely dampened while (by cultural convention) 
phenomenal sensations are experienced for their own sake. Most 
quotidian cases lie somewhere in between these two extremes, 
such as eating to satisfy hunger while simultaneously savoring 
the sensory delights.

Given the broadly Helmholtzian inference tradition that 
Hohwy draws on, it is notable that this is precisely the kind of 
inference that Gibson (1979/1986) criticizes in his elaboration 
of ecological psychology, finding fault in theories in which “the 
outer world is deduced”:

The traditional theories of perception take it for granted 
that what we see now, present experience, is the sensory 
basis of our perception of the environment and that 
what we have seen up to now, past experience, is added 
to it (pp. 251ff.).

This critique motivates Gibson’s positive account of “direct 
perception,” also referred to as “information pickup” (Gibson, 
1979/1986, pp. 147ff.). And yet, upon closer analysis, his positive 
account results in many of the same theoretical shortcomings as 

8 See Yahiro et  al. (2017) for preliminary empirical support of this premise; 
their experimental findings point to different physiological pathways, e.g., low 
environmental temperature leading to involuntary shivering vs. the phenomenal 
sensation of coldness leading to voluntary warmth-seeking behavior. On the 
complex interplay between phenomenal sensation and preconscious information, 
see Sergent et al. (2013).
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the inferential model he criticizes, as we will see below (cf. Fodor 
and Pylyshyn, 2002).

Both Helmholtz and Gibson ultimately inherit the same 
problems from the classical input/output model of perception. 
What Gibson criticizes in traditional inferential theories is the 
notion of passive input, which he replaces with active input—but 
it is still input! The active component in Gibson hints at the 
significance of proprioception, but ultimately, he assigns it an 
exteroceptive-centric role (Gibson, 1979/1986, p. 141). To make 
this argument, we first present the classical input/output model 
shared by computational perceptual theory (conventional in biol-
ogy and robotics/AI) and contrast it with AIF.

4.2. Classical Computation vs. active 
inference
The classical input/output model of perception (and action) is 
the predominant model used in psychological, neuroscientific, 
and robotic explanations; this model also typically underlies the 
notion of neural computation and information processing, and it 
is ripe for retirement (Clark, 2014). AIF implies a vastly different 
conception of the relationship between perception, action, and 
the world, that also points to a different sense of computation 
and indeed perception itself. To understand AIF’s ontological 
commitments and implications for perceptual theory generally, 
and for robotics/AI, we must examine the assumptions and 
implications of the predominant model.

The basic elements and processes of the classical/computa-
tional model can be generalized as follows: un-encoded (“raw”) 
data from the environment (“world”) is selectively sampled by 
the agent and encoded as input (“reading” the raw data). This 
raw data input, once encoded into the system, is then processed 
(beginning with “early perception”). This processing chain pro-
duces a decoded output, terminating as a percept (and potentially 
entering into a secondary stage related to concepts). After this 
discrete stage, as this story goes, an executive controller may 
then retrieve the percept (or concept) from storage and engage 
it in further action-relevant computations or reflexively issue a 
reactive action command.

Significantly, two major problems arise as mere artifacts of 
this model—the inverse problem and the frame problem. Both 
have given rise to countless accounts of how to bypass or solve 
them. Most famously, Marr (1982) produces a highly influential 
and elaborate account of how to solve the inverse problem, to 
get from the input stage to meaningful experience of the world. 
His solution comprises an elaborate series of “early” perceptual 
processing stages for disambiguating apparent equivalen-
cies, implemented in subsequent decades of computer vision 
research. Marr was in part responding critically to Gibson’s 
account, although some readings offer a middle ground between 
the two theories (Ullman, 1980; see also Shagrir, 2010). Gibson 
(1979/1986) and later analysts of ecological psychology argue that 
the inverse problem is bypassed without appealing to the kinds of 
processes Marr introduces (e.g., Hatfield, 2003; Chemero, 2009; 
Orlandi, 2017), for instance, by bodily movements (exploring or 
swaying) that reveal constant proportions in three-dimensional 
situatedness, in contrast to two-dimensional sources of optical 

projections. Like Marr, however, these ecological accounts still 
treat (what is regarded as) exteroceptive input as primary, even 
when the necessity of proprioceptive coupling is acknowledged.

Those who accept the classical/computational input/out put  
model of perception must also face the frame problem (McCarthy 
and Hayes, 1969; Minsky, 1974), which can be generalized as a 
problem of knowing when and what raw sampling is needed for 
updating beliefs about the world (e.g., in relation to an isolated 
local action that only modifies a small subset of the environ-
ment9). It also concerns how to handle an input encoding from 
one context following a change of context. Thus, the frame 
problem is also known as the “relevance” (or “significance”) 
problem, based on the premise that there is no obvious means 
of ascertaining what is cognitively relevant or significant under 
changing circumstances. The frame problem has led to elaborate 
logic-based solutions (Shanahan, 1997) and critical accounts of 
robotic AI based on embodied phenomenological philosophy 
(Dreyfus, 1992, 2007; cf. Wheeler, 2008).

4.3. Upending the input/output Model  
of perception (and action)
Building on the previous sections, we briefly show how AIF  
re-arranges the picture to dispense with the classical/computa-
tional model of input and output. Recall that above, we noted that 
there is direct thermodynamic engagement between the agent’s 
sensory surfaces and the world, which requires protection from 
high intensities (e.g., earplugs at a loud concert). For an intui-
tive example of lower intensity engagement, consider a game of 
tennis. It would take some mental gymnastics to make sense of 
the idea that an arm is input to a racket, and a racket input to a 
ball—on this view, what would count as output? Instead, using 
basic physics, we regard the action of hitting the ball as a transfer 
of energy, from the arm to the racket to the ball. This same sense 
of thermodynamic energy transfer occurs between an organism’s 
environmental niche and its sensory surfaces.

In AIF, the embodied agent learns the regularities of the sen-
sory surface perturbations, much like what Gibson (1979/1986) 
refers to as invariants. Moving beyond Gibson, in AIF, the invari-
ants extend across interactive regularities in extero-, proprio-, 
and interoception, in the form of the generative hierarchical 
model. The more regular covariance that is learned, such as how 
invariant proprioceptive hand-grasping patterns covary with 
invariant racket-swinging, ball-hitting patterns, the more reliable 
the generative model is as control information across a variety of 
conditions to which the model is adapted (see Kruschke, 2008). 
In PP, this adaptive process proceeds by a feedback loop with 
prediction error, i.e., minimizing prediction error amounts to 
adapting the generative model to the present conditions (Clark, 
2013, 2015a,b).

The continuous embedding in the niche, which the agent 
explores to learn the covariance regularities, allows the agent 
to develop and update the generative model (akin to Gibson’s 
notions of “tuning” and “resonance”). This goes beyond the exter-
oceptive-centric notion that minor proprioceptive alterations 

9 For discussion, see Sprevak (2005).
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bypass the inverse problem. In AIF, the generative model links 
all reliably invariant information in a deeply situated way, such 
that perception and action enable the embodied agent to propel 
itself through a temporal succession of generative model modula-
tions, for instance, approaching a distal food source to eventually 
alleviate hunger.

Under such situated embedding, the frame problem never 
presents itself, because the relevant aspects of the niche are ther-
modynamic perturbations, while engagement with the niche is 
facilitated by continuous control information. In the preponder-
ance of ecologically valid conditions, there is never a temporally 
suspended slice of un-embedded input to be processed, nor is 
there an isolated (i.e., non-deeply situated) encounter with an 
exteroceptive input stimulus that is lightly probed through 
proprioception. That is, in real-world embodied and embedded 
cognition, there are no disconnected moments of perception of 
the world, since the world wholly envelops the agent throughout 
its lifespan. (We return to the frame problem in Section 6.3.)

Ambiguities arising from thermodynamically relevant niche 
details can indeed fail to be disambiguated, as they do during 
contrived experiments and illusions. However, in AIF, ambiguity 
is not an “early perception” input processing challenge, but rather 
a matter of the precision-weighting of layers of the hierarchical 
architecture (Friston, 2008). Many situated perceptual ambigui-
ties can be accommodated by the precision-weighting of higher 
or lower layers: higher layers provide broad continuities to previ-
ous situations, such that ambiguities closer to the sensory surface 
can be ignored or recognized as illusory (as when the magician’s 
assistant seems to disappear into thin air), while ambiguities 
at higher levels can be suspended pending further lower-level 
evidence (as when it is unclear if a friend entered the theater or 
joined the crowd outside). In addition, perceptual disambigua-
tion is facilitated by the nested multiscale dynamics described 
above (Brascamp et al., 2008).

5. GiBson reConFiGUred: Beyond  
re-desCription

Notably, AIF carries forward Gibson’s core critique of his behav-
iorist and cognitivist predecessors; however, AIF also addresses 
the fundamental inadequacies of his positive account, as we 
illustrate in this section. We begin with an initial re-description 
or translation of some Gibsonian concepts into AIF. At relevant 
points throughout, we also highlight connections to robotics.

5.1. initial Mappings
Recall from above Gibson’s objection to theories (e.g., Helmholtz’s) 
in which the present perception of the world is inferred by an 
additive process that uses the past (memory) to supplement 
missing details. Here, a technical clarification will be useful to 
distinguish traditional perceptual inference from AIF/PP. Shortly, 
we will flesh out what the actual process of “active inference” 
entails, but for now, it can be stated that in PP, the prediction 
of the present is fundamentally non-inferential in the traditional 
sense (see below for the specialized sense of surprisal-reducing 
model inference). Instead, perceiving the present is facilitated by 

an extrapolation from the environmentally embedded generative 
model. The model develops through biological inheritance and 
lifespan experience, based entirely on invariant covariance of 
modalities from past interactions.

Perception in AIF is thus not an additive process, but a gen-
erative one, which matters here for an important class of cases, 
namely, those in the cultural (as opposed to natural) domain. 
The cultural domain has physically bound cases with no natural 
equivalent, such as the operation of a door with a doorknob. We 
see many naturalistic examples in Gibson’s writings, concerning, 
e.g., tunnels (which may occur in nature), but he also wishes to 
extend his theory to the human cultural environment (Gibson, 
1966). Moreover, he wants to allow for a concept of learning 
(at best, coarsely defined), while simultaneously objecting to a 
model of mental storage and retrieval (Gibson, 1979/1986). How 
then, should it be possible to learn how a doorknob works such 
that “direct perception” of one (via ambient optical arrays) is at 
once the perception of a means for opening the door, without 
any specified mechanism for establishing this correspondence? 
If the correspondence is merely a conditioned association, then 
how can he avoid the claim (as he intends) that past experience is 
added to the present?

Despite Gibson’s professed aversion to computation and 
traditional perceptual inference, the deeper problem here is that 
his theory recapitulates and is thus still bound by the classical/
computational input/output model (cf. Bickhard and Richie, 
1983). To better understand this issue, we must turn to his con-
cept of affordances. For clarity, we will first establish how AIF 
re-describes aspects of Gibson’s ecological framework in terms of 
the generative model.

In some AIF contexts (FitzGerald et al., 2014), it is more useful 
to treat the generative model as a model space populated with an 
ensemble of plausible generative models. For instance, consider 
a proprioceptive model of hand configurations: grasping, wrist 
rotation, peripersonal reach, and so on. To be clear, this sense 
of generative model is not an imagistic mental representation, 
but rather, a mathematical model of a set of invariant synaptic 
firing patterns that reliably correspond to bodily movements. 
These proprioceptive models (subsets of the complete generative 
model) are equivalent to Gibson’s notion of organismic capacities. 
Within the model space, there are also exteroceptive models that 
reliably correspond to sensory perturbations caused by, e.g., trees 
and branches, doors and doorknobs, and so on, which relative 
to proprioception, re-describe Gibson’s notion of environmental 
action opportunities (a branch affords climbing a tree, relative 
to the bodies of certain organisms). In his theory of affordances, 
Gibson also notes the relevance of the organism’s wants and 
needs. These are incorporated into AIF as prior beliefs or prefer-
ences constituted by the generative model. Key among these are 
the priors over interoceptive predictions, by which we reliably 
come to recognize internal sensations such as hunger, fatigue, 
lack of fresh air, and so on (Seth et al., 2012).

Each of these models interact within a hierarchical model 
space, such that single modality invariants intersect and interact 
with each other, resulting in invariant covariance relationships: 
(interoceptive) hunger is reduced by eating fruit from a tree, which 
can be (exteroceptively) seen and (proprioceptively) reached 
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by climbing branches. In a cultural context, the (interoceptive) 
need for fresh air can be met by (exteroceptively) transitioning 
from indoors to outdoors, as facilitated by a (proprioceptive) 
action sequence involving turning the doorknob and walk-
ing out of the room. The action sequence itself can be further 
broken down, in that even the doorknob interaction is a result 
of invariant covariance between exteroceptive control informa-
tion and proprioceptive reaching, grasping, and turning; this 
principle has been successfully robotically simulated (Pio-Lopez 
et al., 2016). In brief, AIF offers a fundamentally embodied and 
embedded account of situated perception and action, rather than 
an exteroceptive-centric input/output model. The latter requires 
traditional perceptual inference based on early (perception) input 
processing of an impoverished stimulus; or, as Gibson has it, such 
inference is replaced by a woefully underspecified “direct percep-
tion” mechanism that fails to explain learned cultural affordances.

To summarize this initial re-description of Gibson’s frame-
work in AIF, and more importantly, the underlying shift in 
emphasis, we have seen that Gibson’s affordances concern the 
perception of (a) environmentally specified information as 
action opportunities in relation to the organism’s (b) embodied 
capacities and (c) needs and wants. In AIF, all three are integrated 
into the embodied (and neuronally augmented) hierarchical 
generative model, with correspondences to Gibson in terms of 
(a) exteroception, (b) proprioception, and (c) interoception. This 
allows us to make sense of a common ecologically valid scenario, 
such as the interoceptive need for fresh air, and the extero- and 
proprioceptive interactions that lead to turning the doorknob, 
opening the door, and walking outside. We are now in a position 
to flesh out what “active inference” itself refers to, which requires 
the introduction of a specialized concept: policies.

5.2. affordances and policies
The notion of policies highlights how the generative model can 
be temporally deployed over possible future states. Once this is 
understood, the full implications of embedded spatiotemporal 
nesting and its relationship to agent/environment dynamics can 
be brought into view. Policies are means of transitioning between 
states of the generative model, which can only be in one (actual-
ized) state at a time.10 The conventional sense of actions (e.g., 
reaching for the doorknob) “fall out” of policies, as we will see 
next.

A theoretician seeking to define a policy in propositional 
terms might define one (in the following example) as “go 
outside to get fresh air.” The underpinnings of the policy are 
in effect a possible transition between two states of the genera-
tive model: the current state (at time t0) and a preferred future 
state (at time t1). At t0, the agent is inside a room with a door 
to the outside. In the exteroceptive modality (in addition to 
phenomenal sensation), there is control information present 
concerning walls, doors, doorknob mechanisms, and so on. There 
is also proprioceptive (control) information available concerning,  

10 Our description of active inference here will be based largely upon discrete time 
and state space generative models (e.g., Markov decision processes). These are 
simpler to handle in terms of their numerics (and possibly conceptually); however, 
the same principles apply to the continuous state space models usually considered 
in Bayesian filtering and predictive coding formulations of active inference.

e.g., hand-grasping and leg-walking abilities. In the interoceptive 
modality, there is information concerning a sensed lack of fresh 
air and its presumed contribution to fatigue.

In this case, the preferred future outcome is having fatigue 
alleviated by getting fresh air. This would mean that if this 
outcome were attained, at t1, the generative model would be 
altered, such that the exteroceptive information would pertain 
to an outdoor rather than indoor scene, and the interoceptive 
information would pertain to breathing fresh rather than stale 
air. To realize the preferred outcome, the agent actively infers the 
(t0 to t1 state transition) policy. Working backwards in a sense, to 
facilitate this transition, a series of actions “fall out,” unfolding 
without requiring the planning of a sequence of action commands 
(Adams et al., 2013), in stark contrast to the robotics paradigm of 
sense-plan-act. Instead, the reliable covariance with propriocep-
tion and the other modalities of the generative model leads to 
reaching, grasping, and turning the doorknob, to open the door, 
to walk outside, to get fresh air, given that this set of covariances 
has been empirically established (i.e., learned).

The bottom line here is that if an agent entertains a generative 
model of the future, the agent must have beliefs (i.e., expectations) 
about future or counterfactual states under each allowable policy. 
Put simply, we have in mind here an agent whose generative 
model transcends the present and is continuously predicting the 
future (and past). Crucially, each prediction—at different times 
in the future—is subject to the same policy-dependent transition 
probabilities as apply to the here and now, thereby “connecting 
the dots” in a path to preferred and familiar outcomes. On this 
view, the present simply provides sensory evidence for one of 
several (counterfactual) paths into the future, where the path 
(or policy) with the greatest evidence gets to determine the next 
action. Notice again how we return to the path of least resistance 
or minimum (expected) free energy (i.e., maximizing model 
evidence over possible pathways).

Through a continuous series of perception/action loops, the 
embodied agent remains in open exchange with the world by 
actively probing its environment (Kruschke, 2008) and leveraging 
the control information of the generative model to alter the ther-
modynamic substrate (its physical position and condition). Even 
Gibson could not object to this sense of inference: there can be 
no “direct perception” of the future! Here, however, is where the 
uncertainty and unknowability of the future can be understood as 
a feature of AIF that is lacking in ecological psychology, namely, 
concerning conditional future outcomes. Even on the most chari-
table reading of Gibson, assuming we can explain (without magic) 
that one could “directly” perceive that “the doorknob affords 
opening the door” based on the ambient optical array, conven-
tional affordance theory is left stranded in the face of an invisibly 
locked or broken doorknob. That is, when the doorknob fails to 
open the door, the exteroceptively ascertained ambient optical 
array remains identical before and after the attempt. Thus, within 
Gibson’s framework, the doorknob forcibly remains an apparent 
affordance even with prior information that it does not open the 
door in this case. In such ecologically valid scenarios commonly 
faced by human cognition, it is a severe meta-theoretical weak-
ness if they cannot be adequately addressed.

In contrast to ecological psychology, AIF elegantly handles 
conditional outcomes in terms of probabilities. This is why it uses 
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a Bayesian model of neural processing, given that empirical priors 
derived from experience influence the generative model compu-
tations of probability,11 a significantly different sense of computa-
tion than that used in input/output model descriptions (which 
hold that sampled input is computed/processed). Reconfigured 
by AIF, a typical affordance is merely a high likelihood, such 
that “affords” amounts to “offers a relatively sure bet.” Thus, “the 
doorknob affords opening the door” is more accurately rendered 
as “the doorknob offers a relatively sure bet for opening the door,” 
thereby accounting for the conditional outcomes in which the 
doorknob is locked or broken, unknowable by exteroception 
alone. In addition, when a source of information indicates a 
locked or broken state (such as a performed or observed attempt 
to open it, or by word of mouth), the doorknob ceases to be an 
apparent affordance, since it no longer offers the agent a relatively 
sure bet for opening the door, despite the fact that the ambient 
optical array is unaltered.

AIF is consistent with the view that “affordances are relations.” 
More precisely, “affordances must belong to animal/environment 
systems, not just the environment,” in that perceiving affordances 
is perceiving “the relation between the perceiver and the environ-
ment” (Chemero, 2003, pp. 185–6; see also Chemero, 2008). By 
adding the extended temporal dimension of AIF, the affordance 
relationality can be further understood as being between a 
presently given agent/environment relational state and probable 
future agent/environment relational states.

This move also allows AIF to account for conditions in a 
more distant future, such as dinner plans next week, which 
some theorists view as beyond the scope of ecological (and 
enactive) explanation. Here, such planning ability is seamlessly 
accounted for in the process of active inference. The plan sets 
into motion a series of intermediary interactions (actively 
inferred state transition policies) that propel the embodied 
agent toward the preferred future outcome. These interac-
tions are based on experience and are, thus, deemed reliable 
(in a satisficing sense) with reasonably high probability, while 
(simultaneously) suggesting a low-probability capacity to fail. 
Put simply, all I need to do to determine my next action is to 
choose the most probable action under the prior belief: “I will 
not miss next week’s dinner party.” This prior belief generates 
a hierarchical cascade of empirical priors, each providing con-
textual guidance to accumulate the sensory evidence for the 
particular path I am pursuing. If everything goes well, this path 
would end successfully with arrival at the dinner party. Note 
that not only is there a deep generative model in relation to time 
in play here (Dehaene et al., 2015), there is also a hierarchical 
depth in terms of short and long-term policies, i.e., trajectories 
of states (see Friston et al., 2017c).

5.3. Free energy, revisited
What does all this have to do with the free energy principle? 
The policies the agent infers, as transitions from present to 

11 See Albrecht et  al. (2016) for an implemented reinforcement-learning-based 
decision-making model defined in terms of such probabilities (expectations).

preferred future state, are those that minimize (variational) free 
energy expected on actualizing the preferred future state. This 
contextualizes the notion of reward motivations (that policies 
increase expected future reward) and even problem-solving 
itself, in that the reward or the solutions are part of the preferred 
future outcome as viewed from a present state (Friston et al., 2009, 
2010; Friston, 2011; cf. Newell et al., 1959). Technically speaking, 
the expected free energy ensures that the prior probability of a 
policy maximizes reward (i.e., prior preferences) in the future, as 
in machine learning, under the constraint that it also minimizes 
uncertainty and ambiguity. Moreover, in the agent’s relationship 
to the niche, expected free energy is minimized—uncertainty or 
disequilibrium is reduced (see Sections 2 and 3)—as the agent 
strives to select the relevant control information in the face of 
the densely rich informational environment (high Shannon 
entropy). This is an important point which takes affordances into 
the epistemic realm.

In other words, by trying to infer the FEM path of least 
resistance into the future (even for a challenging task), there is 
a necessary component of uncertainty that combines with prior 
preferences to determine the best policy. This means that the most 
probable policies or paths are those that resolve uncertainty when 
navigating the lived world (Berlyne, 1950; Schmidhuber, 2006; 
Baranes and Oudeyer, 2009; Still and Precup, 2012; Barto et al., 
2013; Moulin and Souchay, 2015). To achieve this, agents engage 
in some interactions that serve an epistemic rather than prag-
matic purpose, i.e., epistemic actions (Kirsh and Maglio, 1994). 
In AIF, we can place such epistemic actions in the general context 
of physical or mental epistemic foraging (Pezzulo, 2017), and 
further specify what facilitates such epistemic actions, namely, 
epistemic affordances. The latter concept brings with it the notions 
of salience—epistemic affordances that will reduce uncertainty 
about future states of the world—and novelty—epistemic affor-
dances that will reduce uncertainty about the contingencies or 
parameters of my generative model. (The next section furthers 
this account of affordances.)

In summary, one’s preferred future state is realized by 
exploiting high likelihoods in the sequence of state transitions 
of the generative model that underpins the agent/environment 
relationship (e.g., my relatively high certainty that my hand turns 
a doorknob, which opens a doorway, which I can walk through 
to get outside, to get fresh air, and to alleviate my fatigue). 
Exploiting high likelihoods refers to the probabilistic Bayesian 
decision-making computations that play out on a dynamic, 
neurobiological substrate (Pezzulo et al., 2015). In this context, 
it can be said that local minima of uncertainty (in the projected 
model state transitions) provide the critical points that can be 
leveraged to facilitate a preferred future (or avoid an undesired 
future). At the ecological “behavior” scale (policies), these local 
minima provide a comprehensive re-description of affordances 
that unites the exteroceptive with the proprio- and interoceptive 
dimensions (Pezzulo and Cisek, 2016). They also generalize to the 
sub-ecological “action” scale, as reflex arcs, grounded in the phys-
ics of nerve electricity (Friston et al., 2010; Sengupta et al., 2013), 
and the supra-ecological “activity” scale, as extended active and 
resting states, grounded in physiological homeostasis/allostasis 
dynamics (Ashourvan et al., 2017).
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6. sKatinG UnCertainty: GeneraLiZed 
aFFordanCe tHeory, sKiLLed 
eXpertise, and tHe FraMe proBLeM

This section considers how local minima of uncertainty in the 
projected temporal sequence of generative model states serve to 
unify developmental theory and the underspecified (by Gibson) 
notion of learned affordances. We then show concrete applica-
tions in skilled practical and cultural activities. Finally, drawing 
on robotics studies, we connect spatiotemporal nesting and 
agent/environment dynamics to adaptive policy reuse.

6.1. Generalized affordance theory
Here, we generalize affordances to every available reliable regu-
larity in the agent/environment relationship, including basic 
objects. While this level of generality may seem meta-theoretically 
undesirable, it is worth bearing in mind that Gibson extended 
affordances to this high level of generality in explaining that 
air affords breathing, the ground affords standing on, cliffs are 
negative affordances for bipedal locomotion, and so on (Gibson, 
1979/1986). On our account, affordances encompass the entirety 
of intuitive physics (see Clark, 2016).

As Franz and Triesch (2010) argue, a number of purported 
Gestalt percepts have only been considered in relatively late peri-
ods of individual (lifespan) human development, as even within 
the first several months after birth, there is a tremendous amount of 
densely rich environmental information encountered. The inborn 
apparatus (as suggested by AIF) for discerning regular covariance 
and leveraging that in  situated activity can be computationally 
simulated with only a limited construct that yields a number of 
Gestalt-like phenomena. The limited construct—foreground and 
background differentiation—is a minimal mechanism that would 
be plausibly selected for on an evolutionary timescale.

In addition, there appears to be another plausibly selected for 
(inborn) minimal mechanism for differentiating inanimate from 
animate entities, with the latter possibly extending to finer-grained 
differentiations between conspecifics and other animals. There 
is evidence of this mechanism in brain scans of primates (Sliwa 
and Freiwald, 2017) and human infants (de Haan and Nelson, 
1999, Southgate et al., 2008), and from human in utero behavioral 
experiments (Reid et al., 2017). This mechanism would plausibly 
underpin the fundamentality of social cooperation to human 
cognition (Barrett et al., 2010, Cortina and Liotti, 2010); a related 
point has been made about language, noting the fundamentality 
of dialog from which monolog is derived (Pickering and Garrod, 
2004).

The above suggests that early developmental learning pro-
ceeds through interactive exploration (Stahl and Feigenson, 
2015), which makes possible a high-level generative model of 
intuitive physics that augments inborn capacities with empirical 
priors. This is especially evident from the gradual development 
of coordinated bodily movement, ranging from basic crawling, 
walking, and stacking blocks, also explored in robotics (Pierce 
and Kuipers, 1997, Modayil and Kuipers, 2008, Ugur et  al., 
2011, 2012), all the way up to more elaborate activities such as 
interpersonally coordinated dancing and playing sports (Boyer 

and Barrett, 2005). Based on reliable covariance from empirical 
priors and inborn minimal mechanisms for differentiating fore-
ground and conspecifics, the present state and future projections 
of the generative model facilitate (via actively inferred policies) 
the realization of preferred outcomes through the exploitation 
of local minima of uncertainty, i.e., generalized affordances. It 
is in this context that epistemic affordances play a key role and 
can be associated with intrinsic motivation, exploration, “motor 
babbling” and artificial curiosity in developmental neurorobotics 
(Schmidhuber, 2006, Baranes and Oudeyer, 2009). Put simply, 
being compelled to pursue FEM, uncertainty-reducing epistemi-
cally enriched policies ensure that agents quickly come to discover 
“what would happen if I did that.”

Consider an example that works both literally and as a broad 
analogy to this generalized affordance process: the crossing of 
a roaring rapids via stepping stones. The rapids are in constant 
flux, but the fluctuations of the water also momentarily expose 
surface regions of the stones. In this sense, despite the high 
uncertainty brought about by the flux, the overlapping exposed 
surface regions for each stepping stone provide stable points—
local minima of uncertainty. These local minima facilitate 
crossing the river, by which the preferred outcome of reaching 
the opposite bank is realized. In a literal sense, the stones are 
clearly conventional Gibsonian affordances, presented here as 
local minima of uncertainty in sequential states of the generative 
model. Analogically, the roaring rapids correspond to the general 
sensory flux of thermodynamic surface impingements, and the 
stepping stones correspond to any reliably invariant multimodal 
covariance established by empirical model updating. This sense 
of local minima also suggests a formal correspondence to the 
basins of attraction in neurodynamics (Freeman, 2012).

6.2. skilled expertise
By considering affordances in this light, we can demonstrate how 
affordance theory relates to arguments about skilled expertise 
from the perspective of phenomenological philosophy. The latter 
argues for the central role of embodiment as the basis of skilled 
expertise, in contrast to some conventional theories that view 
expertise in terms of a mastery of symbol systems and condi-
tional rules (which, for historical or pragmatic reasons, can be 
commonly found in robotics/AI implementations). According 
to the most widely adopted embodied phenomenology theory of 
skill acquisition (Dreyfus and Dreyfus, 2005), there are five stages 
of progression from novice to expert, whether in, e.g., riding a 
bicycle, playing chess, or practicing medicine.

To briefly summarize these five stages, as the theory goes, a 
novice (in any domain) learns by appealing to basic rules that 
can indeed be expressed symbolically as propositions. Even with 
these conditional rules, the novice cannot necessarily discern 
what is relevant in the domain. This changes slightly in the next 
stage, when the advanced beginner continues to follow the rules, 
but gradually begins to notice what perceptions of the domain 
are relevant. Upon reaching the third stage, competence, the prac-
titioner gains an appreciation of the vastness of domain-relevant 
nuances, along with the recognition that a list of rules could not 
be exhaustive; even if such a list could be near comprehensive, 
it would be too unwieldy to manage in real-time interaction. 
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Nevertheless, to cope with the domain, some rule-like responses 
remain helpful at this stage. The fourth stage, proficiency, finally 
overcomes the appeal to rule-like responses with an embodied 
ability to discern relevant situational nuance. However, the profi-
cient practitioner continually reaches decision-making junctures 
that require a considered evaluation of different pathways 
forward. In the final stage, when expertise is attained, the expert 
seamlessly selects a pathway forward, rather than interrupting 
the “flow” (Csikszentmihalyi, 1990) for a considered evaluation. 
This form of embodied expertise is also described as “absorbed 
coping,” referring to the phenomenological absorption in the 
interactive situation.

Without objecting to this characterization of embodied exper-
tise as irreducible to symbols and rules, it is possible to explain 
the underpinnings of the stage progression using AIF simply 
by viewing the progression in reverse. If expertise is regarded 
as having a highly developed generative model of the agent/
environment relationships within the domain, then the preferred 
future realized through active inference is the attainment of the 
implicit or explicit goal (cycling across the terrain or defeating the 
chess opponent). Through experience (i.e., empirical prior-based 
model updating of reliably invariant modality covariances), the 
agent discovers how to exploit the relevant affordances—the 
local minima of uncertainty in the generative model state  
transitions—to achieve the preferred outcome using domain-
specific policies.12

By working backwards through the progression (moving 
from expert to novice), it becomes clear that without sufficient 
experience, the generative model has yet to become sufficiently 
“attuned” (a Gibsonian term) to the domain; some scaffolding 
is needed to stabilize the domain-specific interactions. The 
earlier the stage, the more scaffolding is needed, such that the 
novice relies almost exclusively on scaffolding (which need not 
be symbol and rule-based, as it could also be based on mimicry 
of experts). Any scaffolding presumably also serves to orient the 
non-expert practitioner to the relevant regularities that facilitate 
the progression. Note that, when learning to ride a bicycle, train-
ing wheels do not directly contribute to learning the cycling skill, 
but rather, they serve as supportive scaffolding to position the 
bicycle perpendicular to the ground until the relevant regularities 
for remaining perpendicular independently have been sufficiently 
learned.

An interesting robotics application of domain-specific sensori-
motor skills is found in the notion of policy reuse and adaptation 
(Rosman et al., 2016). From an AIF perspective, this parallels an 
equivalent phenomenon in humans. For example, given the abil-
ity to ride a standard bicycle, and confronted with an unfamiliar 
old-fashioned penny-farthing, an agent could glean from the 
similar seat, handlebar, wheel, and pedal configuration that the 
bicycle-riding policy could be reused to ride the penny-farthing, 
with some necessary adjustments.

A real-world example in which a policy was adapted from a 
source to a particularly divergent target is the cultural advent of 

12 In performing arts such as music, skilful policies may relate to actualized or simu-
lated coordination in improvisation, performance, and compositional practices 
(see Linson, Forthcoming).

skateboarding, which was based on surfing.13 Even though there 
are extreme differences between surfboard fins and skateboard 
wheels, ocean and pavement, the early skateboarders recognized 
the embodied motion similarities between the domains. In 
this case, a certain cross-domain policy identity is maintained 
through reuse and adaptation that focuses on the complex spa-
tiotemporal nesting required in both practices involving body, 
board, and traversal surface: the interactive precision-weighting 
required for short timescale, rapid adjustments, and the simulta-
neous progressively longer timescales of extended maneuvering. 
The Gibsonian concept of “resonance” appears to be appropri-
ately matched to such complex situated activity, in which the 
agent’s multiscale embodied neurody namics “resonate” with 
the multiscale environmental dynamics, following experiential 
attunement to the relevant regularities (Teques et  al., 2017; cf. 
Raja, 2017).

6.3. the Frame problem
At several points above, we have referred to the agent’s identifica-
tion of what is relevant or significant in a situation, which appears 
to run up against the frame problem. To recap, the frame problem 
holds that given actions that alter limited aspects of a situation, 
or given relevance-altering shifts in situational context, there is 
no clear mechanism to appeal to by which irrelevant situational 
aspects can be easily ignored. Dreyfus (1992) famously proposes 
that embodiment obviates the frame problem in a way that 
symbolic AI implementations cannot. He goes further still and 
proposes that even typical subsymbolic AI cannot overcome the 
problem; he finds some promise in Freeman’s neurodynamics 
(Dreyfus, 2007), although his analysis of why this shows promise 
is limited. Given the convergences between Freeman’s neurody-
namics and AIF (Friston, 2008, 2010; De Ridder et al., 2014), it is 
not surprising that the latter should offer the robust response to 
the frame problem Dreyfus anticipated.

It is worth briefly restating the nature of neural computation 
in AIF, due to its substantial difference from the computation of 
input, symbols, propositional logic, and other common associa-
tions. Even the convenient shorthand used by neuroscientists and 
others that the brain “is” Bayesian or “implements” Bayesian 
models can lend itself to misunderstanding AIF’s ontological 
commitments. Essentially, given synaptic connectivity and trans-
mission patterns, it is possible to model them mathematically. It 
is rarely misunderstood when equations are used to descriptively 
model a planet’s orbit in order to predict its positions—most 
people do not assume that this approach suggests the planet itself 
is computing anything (nor that the planet’s material complex-
ity is “reduced” or “eliminated” in the pragmatic abstraction 
of a mechanistic orbital model). Analogously, by appeal to the 
broader theoretical context of AIF, it can be stated that there are 
transformations in the dynamic neurobiological substrate in 
the service of the environmentally embedded body that can be 

13 The early skateboarders were “replicating on dry land the surfer’s traverse across 
ocean surface and close sensing of changing wave forms. Through surf-related 
moves, skaters recombined body, board and terrain, simultaneously copying one 
activity (surfing) while initiating a second (skateboarding)” (Borden, 2001, pp. 
31–33).
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mathematically modeled in terms of probability distributions. 
Thus, embodied and embedded brain activity can be modeled 
as the computation of these distributions. That the calculations 
should be Bayes-approximate within AIF results from implicit 
pragmatic efficiency directives (arising from the constraints laid 
out in Sections 2 and 3), such as “extrapolate from experience” 
(empirical priors), “context matters” (hierarchical model archi-
tecture), and “when expectations are not met, re-assess” (respond 
to surprisal through model updating, precision-weighting, or 
abduction, depending on particulars about the accumulation of 
prediction error).

The frame problem, in its many incarnations, can be sum-
marized in a single question: How does an agent know what is 
significant in an interactive situation? AIF answers with its own 
unique breakdown. The first level of the breakdown is that the 
agent can be either open or closed to potential significance. This 
is overlooked by most other accounts, which take openness to 
significance for granted, thereby missing the ecologically com-
mon phenomenon of habits. In AIF, habits can be regarded as 
context-free responses that are established by their invariance 
across multiple conditions (FitzGerald et al., 2014). When we act 
out of habit, we merely “go through the motions,” suppressing 
any potential significance that might otherwise be contextually 
relevant.

Apart from habit, when the agent is open to potential sig-
nificance, AIF points to a second-level breakdown of possible 
outcomes (when potential significance arises in a situation). 
Given that the active agent always entertains a repertoire of 
plausible policies within its generative model, there is a funda-
mental relationship between policy selection and the expected 
free energy within the policy or model space. Given that expected 
free energy scores the epistemic affordance of alternative policies 
on models, there is an inbuilt imperative to select significant or 
relevant actions. Significance in this instance is related to the 
epistemic, uncertainty-reducing component of expected free 
energy, while relevance can be construed in relation to prior 
preferences about ultimate actions. When a potentially significant 
aspect of the environment recruits a policy, it becomes relevant; 
this is equivalent to the notion of a “solicitation” in affordance 
theory and phenomenological philosophy (see Bruineberg and 
Rietveld, 2014; Bruineberg et al., 2016). In short, the significance 
or relevance is an integral aspect of FEM by which the frame 
problem is dissolved.

This argument rests upon appreciating that expected free 
energy can be decomposed into two parts (Figure 1). Variational 
free energy per se can always be decomposed into accuracy and 
complexity terms. This appeals to the Bayesian interpretation 
of variational free energy as an approximation to (or lower 
bound on) Bayesian model evidence. On this view, Bayesian 
model evidence is effectively simplicity plus accuracy.14 But 
what about expected free energy? It transpires that expected 
accuracy is the expected probability of obtaining preferred 

14 Note that minimizing variational free energy implicitly minimizes complexity 
and associated computational costs—via Landauer’s principle—that link thermo-
dynamic free energy to variational free energy. In other words, the path of least 
variational free energy is, thermodynamically, Hamilton’s path of least action.

outcomes, while expected simplicity is epistemic affordance, 
namely, the resolution of uncertainty or information gain 
afforded by the outcomes anticipated under any particular 
policy. This intrinsic value of a particular policy or model 
appears in many guises, most notably as intrinsic motivation 
in robotics (Oudeyer and Kaplan, 2007; Schmidhuber, 2010), 
the value of information in economics (Howard, 1966), and 
Bayesian surprise in models of exploration and visual searches 
(Schmidhuber, 1991; Itti and Baldi, 2009).

Ultimately, without the input/output model, the core difficul-
ties associated with the frame problem—when to sample input, 
what to sample as input, what to do with input, or what becomes 
of fixed output—do not arise. There is only the generative 
model’s accommodation of sensory perturbations in terms of 
hidden causes. By incorporating epistemic imperatives into the 
(Bayesian model) selection of policies in AIF, the broad frame 
problem never manifests. This is because novel information is 
not pre-screened for relevance, but instead is rendered relevant 
or significant when it leads to model updating or the selection 
of a new policy, and irrelevant or insignificant when it does 
neither. Note that the latter case holds irrespective of benefit 
or cost, given that the non-assimilation of novel information 
may be helpful (e.g., metabolic savings) or harmful (e.g., missed 
opportunity).

This approach also avoids concerns about the inadequacy 
of fixed representational encoding accounts of perception 
(Bickhard, 2008), given that in AIF, environmental information 
can serve multiple context-dependent relational roles in situated 
interaction (cf. Pylyshyn, 1999). Moreover, the logical frame 
problem is obviated by the probability distributions of the gen-
erative model—the agent interacts with the environment on the 
basis of expected model extrapolations, so continuous sensory 
sampling is unproblematic: samples either confirm expec-
tations or produce surprisal (Mirza et al., 2016).

7. seLF-reFLeCtiVe episteMiC 
ForaGinG: an openinG For 
ConsCioUsness?

The reservoir of information present with respect to the self and 
the environment is inexhaustible. Only a small fraction is ever 
immediately relevant as adaptive behavioral control information. 
Thus, there are always new sources of potential relevance, as 
there are many possible signals in the noise (Dennett, 1991). 
While many discussions of AIF center on epistemic foraging in 
the environment, it is also possible to consider epistemic foraging 
of the self, also a rich source of signals in the noise (Seth, 2013; 
Seth and Friston, 2016).

Thus far, we have primarily addressed control information, 
noting that it can also be gleaned from conscious phenomenal 
sensation (Seth et  al., 2012). Enhancing the generative model 
through exploration, also known as epistemic foraging, provides 
potential future control information. However, when new signifi-
cance arises, it is not necessarily immediately subsumed as control 
information. Consider hearing a fellow diner’s request to “pass 
the salt.” Given situated language learning (Diessel, 2006), words 
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provide evidence for the most apt generative model or policy 
(Lupyan and Clark, 2015), enhancing the control information 
for the relevant modification of the thermodynamic substrate  
(identifying, grabbing, and passing a nearby salt shaker). Never-
theless, the request is also appreciable as a phenomenal sensation 
that can be further epistemically foraged. For instance, the diner’s 

shaky tone of voice might indicate an emotional state that was not 
immediately relevant to passing the salt, but may become relevant 
in social interaction, leading to an enquiry about their wellbeing 
(Filippi et al., 2017).

What should facilitate such inquiring? When time pressure is 
low, it is possible to reflectively evaluate information beyond its 
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role in facilitating immediate adaptive behavior. AIF can describe 
this as the momentary decoupling of aspects of the model from 
the environment for self-reflective epistemic foraging, while 
potentially remaining partially environmentally engaged (e.g., 
thinking about the office during the commute). Having this abil-
ity would confer adaptive advantages, such as navigating complex 
social meaning, as well as more protracted forms of elaborate 
problem-solving (mentally revisiting a problem from different 
angles). This example also speaks to the trade-off between epis-
temic (expected simplicity) and pragmatic (expected accuracy) 
imperatives that underlie FEM in policy selection. In brief, the 
trade-off—not dissimilar to an exploration/exploitation trade-
off—rests upon the precision of prior preferences. Generally, in 
a new situation, epistemic affordance would normally dominate 
policy selection until there is a comfortable familiarity with 
the lived context; prior preferences can then come into play. 
Crucially, these prior preferences are themselves inferred in deep 
(hierarchical) generative models.

A strong candidate for facilitating such self-reflection is also 
the most apparent correlate of self-consciousness: a mental 
buffer that underpins introspective awareness. This buffer can 
be regarded as the substrate of conscious mental simulation, 
imagination, and internal monolog. The latter would allow for 
forms of self-reflection, as well as the self-referential fine-tuning 
of adaptive behavior (“I must remain focused on the road!”). It 
is relatively uncontroversial to view simulation as contributing 
to adaptive behavior through mental rehearsal, and imagination 
as contributing to generating counterfactuals and exposing new 
affordances, while also enabling the suppression of conscious 
environmental coupling.

Whatever its genesis and other roles, consciousness appears to 
be crucial for epistemic foraging in the limitless source of signals 
in the noise of the self, in a manner wholly consistent with the 
information-bound AIF elaborated above. Note that bringing 
consciousness to the table presupposes a generative model of the 
future that necessarily entails a degree of selfhood and agency. 
This characteristic of generative models has been referred to as 
counterfactual richness or depth (Seth, 2015) to emphasize the 
deep and fictive nature of how (some) agents predict their world 
and behavior.

Moreover, from the AIF perspective, we can identify a feature 
that appears to be rare in the animal realm that could be plausibly 
robotically implemented. Our fundamentally thermodynamically 
constrained social origins imply a capacity for ethical consid-
erations, at least concerning basic aspects of resource sharing 
(Cosmides et al., 2010). In this context, consciousness as a buffer 
for self-reflective epistemic foraging would underpin our ability 
to evaluate preferred outcomes and inferred policies from a space 
of possible state transitions—in other words, to evaluate ends and 
means to ends—on the basis of ethical considerations.

Through conscious, self-reflective epistemic foraging, a 
self-conscious agent can turn active inference inward, by 
nuancing model or policy selection to alter its current outcome 
preference. Also, when a preferred outcome has been selected, 
an agent can determine whether it ought to infer a policy alter-
native to the immediate, intuitively inferred policy it would 

have selected under time pressure.15 (This can be thought 
of as the agent’s self-referential policy to realize a preferred 
future in which other possible ends and means have been duly 
considered.) With the luxury of time, consciously aware self-
reflective agents can individually and cooperatively aim for a 
deeply considered preferred future, to be reached via a deeply 
considered pathway.

The above speculations are indicative of the manner in which 
AIF can plausibly connect an agent’s consciousness to its embed-
ding in progressively larger social organizations. The mechanis-
tic—yet radically non-reductive—explanatory underpinning of 
this embodied, embedded account of individuals and society 
inherently includes their openness to vast cultural proliferations 
and indeterminate futures.

8. ConCLUsion: at tHe Crossroads 
oF natUraL and artiFiCiaL eMBodied 
CoGnition

We have seen above why, in contrast to common assumptions, 
AIF opposes the mechanistic to the reductive. If AIF were applied 
to developing a humanoid robot that would approximate a human 
being, it is clear that its embodied apparatus must be more than 
just for show. The mechanical actuation would need to furnish 
the proprioceptive sensing aspect of the generative model that 
would exhibit reliably invariant covariance with exteroceptive 
sensing. For this extero- and proprioceptive coupling to be 
biomimetic, the sensing should have the same constraints as our 
biologically inherited apparatus, such as a limited visual range 
that is extended by bodily movement. Assuming a neuromorphic 
information integration apparatus were also implemented, we 
could expect robotic interoception to identify environmentally 
relevant quantities such as energy requirements (“hunger”) and 
bodily damage (“pain”).

So far, none of this would require consciousness, though it could 
achieve basic adaptive behavior. For a more deeply situated robot, 
we would need to add a minimal mechanism for distinguishing 
foreground from background, and one for differentiating between 
quasi-conspecifics (others of the same make or possibly humans 
as well). This could serve to fulfill the requirement of social 
grounding that would in principle pave the way for cooperative 
communication strategies, such as gesture and language.

With an appropriate buffer of interoceptive self-awareness, the 
robot could epistemically forage within this buffer for additional 
relevant signals than those it first identifies in the environment. 
Through the usual human routes of upbringing and education, it 
could also be taught to evaluate the consequences of its actions, 
to weigh preferred ends and available means by considering their 
potential impact on itself and others. The process of learning 

15 Time pressure is accommodated in active inference by appealing to Hamilton’s 
principle of least action. In other words, it is the expected free energy over time 
that counts, where unexpected energy corresponds to an action. Put simply, for 
adaptive efficacy, it is much better to reduce free energy quickly, to an imperfect 
level, than to spend lots of time reducing it to its minimum.
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to appreciate counterfactual outcomes would be enhanced by a 
capacity for valenced esthetic experiences (“emotions”). This sug-
gests a broadly socially situated (humanlike) role for emotional 
regulation (see, e.g., Sell et al., 2017), which differs considerably 
from current robotic implementations of pseudo-emotional 
states (e.g., Moshkina et al., 2011).

It would be within reason to describe the set of processes in 
AIF as algorithms, which raises the question: what implications 
does this have for our understanding of humans? There have 
been many recent discussions of algorithmic bias in computer 
systems said to reflect the bias of the human system designers. 
This is not surprising, given any disembodied algorithm based 
on a reductive input/output model. With AIF, however, we can 
make sense of natural and artificial ecologically and socially 
situated embodied agents. Agents with this specification would 
interactively probe and learn the apparent regularities of their 
world. At the same time, with sufficient complexity, they would 
have the capacity to critically evaluate their own generalizations 
from past environmental exposure, to identify when forms of 
bias are detrimental, and to engage in meaningfully value-laden 
self-corrective recalibration (while of course this provides no 
guarantees, even for humans; see, e.g., Bang and Frith, 2017; 
Holroyd et al., 2017).

To summarize: by appeal to the principle of FEM, we 
can descriptively account for a long view that takes us from 
elementary particles to embodied biological agents. In an eco-
logical context, the emergence and behavior of these agents— 
underpinned by a cybernetic relationship between thermo-
dynamics and information—can be understood to plausibly 
facilitate the evolutionary development of life. On a long 
enough time scale, under contingent circumstances, FEM is 
sufficient to yield the coevolutionary development of mutually 
adaptive, highly complex agents and niches, as we see in human 
culture, especially in our pragmatic and epistemic foraging 
behavior, which fundamentally includes socially cooperative 
and self-reflective capacities. Taking all of this into account, 
AIF suggests a possible approach to the biomimetic modeling 
of human agents that in principle would exhibit humanlike 
embodied cognition. Such agents would plausibly be conscious 
in most senses of the word.
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appendiX

Glossary of terms
In Bayesian statistics and machine learning, several common 
terms have technical meanings. This glossary defines the way in 
which we use key terms in the current article.

Free-energy: an information theory measure that bounds  
(is greater than) the surprise on sampling some data, given a 
generative model.

Entropy: the average surprise of outcomes sampled from a 
probability distribution or density. A density with low entropy 
means, on average, the outcome is relatively predictable. High 
entropy denotes unpredictability and uncertainty.

Surprise, surprisal, or self-information: the negative log-
probability of an outcome. An improbable outcome is, therefore, 
surprising. Negative surprise is the same as log evidence; namely, 
the logarithm of Bayesian model evidence.

Bayesian surprise: a measure of salience based on the divergence 
between the posterior and prior probability densities. It measures 
the information gain obtained by updating the priors to posteriors.

[Kullback–Leibler] Divergence: information divergence, 
infor mation gain, or relative entropy. The divergence is a 

(non-commutative) measure of the difference between two prob-
ability distributions.

Generative model: a probabilistic model that generates conse-
quences (i.e., data) from their causes (i.e., model parameters). A 
generative model is also known as a forward model and is usually 
specified in terms of the likelihood of getting some data given 
their causes (parameters of a model) and priors on the parameters.

Prior: the probability distribution or density over the causes 
of data that encode beliefs about those causes prior to observing 
the data.

Empirical prior: priors that are induced by hierarchical models; 
they provide constraints on the recognition density is the usual 
way but depend on the data.

Conditional density or posterior density: the probability distri-
bution over causes or model parameters, given some data; i.e., a 
probabilistic mapping from observed consequences to causes. In 
Bayesian inference, the prior is updated—on the basis of observa-
tions—to become a posterior, according to Bayes rule.

Model evidence: in Bayesian statistics, the model evidence is 
the probability that observed data were generated by a particular 
generative model. The negative logarithm of model evidence is 
surprise or self-information in information theory.
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