
March 2018 | Volume 5 | Article 221

Code
published: 12 March 2018

doi: 10.3389/frobt.2018.00022

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Jamone,

Queen Mary University of London,
United Kingdom

Reviewed by:
Amit Kumar Pandey,

SoftBank Robotics, France
Torbjorn Semb Dahl,
Plymouth University,

United Kingdom

*Correspondence:
Tobias Fischer

t.fischer@imperial.ac.uk

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 31 May 2017
Accepted: 21 February 2018

Published: 12 March 2018

Citation:
Fischer T, Puigbò J-Y, Camilleri D,

Nguyen PDH, Moulin-Frier C,
Lallée S, Metta G, Prescott TJ,
Demiris Y and Verschure PFMJ

(2018) iCub-HRI: A Software
Framework for Complex

Human–Robot Interaction Scenarios
on the iCub Humanoid Robot.

Front. Robot. AI 5:22.
doi: 10.3389/frobt.2018.00022

iCub-HRI: A Software Framework
for Complex Human–Robot
Interaction Scenarios on the
iCub Humanoid Robot
Tobias Fischer1*, Jordi-Ysard Puigbò2,3, Daniel Camilleri 4, Phuong D. H. Nguyen5,
Clément Moulin-Frier2, Stéphane Lallée2, Giorgio Metta5, Tony J. Prescott4,
Yiannis Demiris1 and Paul F. M. J. Verschure2,3,6

1 Personal Robotics Laboratory, Electrical and Electronic Engineering Department, Imperial College, London,
United Kingdom, 2 Synthetic Perceptive Emotive and Cognitive Systems Group (SPECS), Universitat Pompeu Fabra,
Barcelona, Spain, 3 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology,
Barcelona, Spain, 4Department of Computer Science, University of Sheffield, Sheffield, United Kingdom, 5 iCub Facility,
Istituto Italiano di Tecnologia, Genova, Italy, 6 ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

Generating complex, human-like behavior in a humanoid robot like the iCub requires
the integration of a wide range of open source components and a scalable cognitive
architecture. Hence, we present the iCub-HRI library which provides convenience wrap-
pers for components related to perception (object recognition, agent tracking, speech
recognition, and touch detection), object manipulation (basic and complex motor
actions), and social interaction (speech synthesis and joint attention) exposed as a C++
library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In
addition to previously integrated components, the library allows for simple extension to
new components and rapid prototyping by adapting to changes in interfaces between
components. We also provide a set of modules which make use of the library, such
as a high-level knowledge acquisition module and an action recognition module. The
proposed architecture has been successfully employed for a complex human–robot
interaction scenario involving the acquisition of language capabilities, execution of
goal-oriented behavior and expression of a verbal narrative of the robot’s experience in
the world. Accompanying this paper is a tutorial which allows a subset of this interaction
to be reproduced. The architecture is aimed at researchers familiarizing themselves with
the iCub ecosystem, as well as expert users, and we expect the library to be widely used
in the iCub community.

Keywords: robotics, iCub humanoid, human–robot interaction, YARP, software architecture, code:C++,
code:Python, code:Java

1. INTRodUCTIoN ANd BACKGRoUNd

The iCub is an advanced humanoid robot, which is equipped with multiple sensors: encoders in all its
53 joints, force/torque sensors, tactile sensors integrated in the artificial skin, and eye cameras (Metta
et al., 2010). They allow for a coherent understanding of body configuration, motor capabilities, and
the environment as well as an ability to show facial expressions, which makes it an ideal platform for
studies of human–robot interaction and cognition.

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00022&domain=pdf&date_stamp=2018-03-12
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00022
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:t.fischer@imperial.ac.uk
https://doi.org/10.3389/frobt.2018.00022
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
http://loop.frontiersin.org/people/413847
http://loop.frontiersin.org/people/481944
http://loop.frontiersin.org/people/474367
http://loop.frontiersin.org/people/481933
http://loop.frontiersin.org/people/74698
http://loop.frontiersin.org/people/232953
http://loop.frontiersin.org/people/79905
http://loop.frontiersin.org/people/2373
http://loop.frontiersin.org/people/25952
http://loop.frontiersin.org/people/5803

2

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

The research community around the iCub humanoid robot is
very active, with a large number of papers published every year.
The source code leading to these publications is often made avail-
able to the public, which allows for the replication of the results
and use of the code as a starting platform to tackle new research
questions. However, despite YARP (Fitzpatrick et al., 2006) being
typically used as the underlying middleware in these works, it
remains challenging to combine these efforts in a coherent
manner.

Here, we present iCub-HRI, which integrates several com-
ponents for perception, object manipulation, and social interac-
tion using two parts: (1) The iCub-HRI library, which facilitates
the use of the aforementioned components by providing easy to
use classes with suitable default parameters (called Subsystems)
and a shared knowledge database as means to represent knowl-
edge which is employed across all components. (2) Modules
which supply the shared knowledge database with input, as
well as some modules tailored for human–robot interaction
scenarios.

1.1. Background and Related Works
iCub-HRI has its origins in the Experimental Functional
Android Assistant (EFAA) project,1 where most of the library
was developed and employed in several works (e.g., Lallée et al.
(2013, 2015), Petit et al. (2013), and Lallée and Verschure (2015)).
EFAA targeted the development of a cognitive architecture to
realize effective and psychologically plausible human–robot
dyadic interaction. The code was then extended and matured
further in the What You Say Is What You Did (WYSIWYD)
project,2 and more papers based on iCub-HRI were published
(e.g., Fischer and Demiris (2016), Martinez-Hernandez et al.
(2016), Petit et al. (2016), Puigbò et al. (2016), and Moulin-Frier
et al. (2017)). WYSIWYD aimed at realizing robot human level
language capabilities by augmenting this cognitive architecture
with mechanisms for language acquisition, composition, and
expression. The cognitive architecture in both projects is based
on and elaborates the Distributed Adaptive Control theory of
mind and brain (DAC, see for reviews Verschure (2012, 2016)
and Section 4.3).

While reviewing robotics middlewares is out of the scope for
this paper (we refer to Elkady and Sobh (2012) for an overview),
we briefly introduce several other proposals detailing software
frameworks for various robotics platforms. Natale et al. (2016)
summarize recent developments of the iCub’s software archi-
tecture, including the compatibility with the Robot Operating
System (ROS) and the introduction of a new testing framework.
They find that ROS is being adopted rapidly by more and more
robot developers, and indeed, there are several papers introduc-
ing human–robot interaction-related frameworks based on ROS.
For example, Jang et al. (2015) propose a ROS-based framework
where modules concerned with low-level control and service
logic are separated from modules concerned with social behav-
iors. Lane et al. (2012) present a bundle of ROS modules which

1 http://efaa.upf.edu/.
2 http://wysiwyd.upf.edu/.

allows the extension of existing projects for speech recognition,
natural language understanding, and basic gesture recognition
as well as gaze tracking. A toolkit which allows the evaluation
of human–robot interactions in virtual reality environments and
subsequent deployment on a real robot was presented by Krupke
et al. (2017). The robot behavior toolkit (Huang and Mutlu, 2012)
includes a ROS module which is based on the findings within
the social sciences. While the authors conducted a large-scale
study with humans, the evaluation was based on simulated sensor
data. Finally, Sarabia et al. (2011) present a framework allowing
to perceive the actions and intentions of humans, and show its
application in a social context where a robot imitates the dance
movements of a human.

1.2. design Principles
Here, we devise a set of guidelines and design principles which
were adopted when coding the framework.

•	 Adaptability and ease of use: the framework should be easy to
adapt by the community. Individual parts of the framework
should only depend on other parts if necessary, and substitut-
ing components should be easy. Furthermore, all libraries and
modules should be properly documented.

•	 Provision of overall framework: related to the previous goal, our
aim is to provide an overall framework which can work “out of
the box.” Hence, our framework contains modules related to
perception, action execution, and social interaction.

•	 Extendibility: it should be easy to extend the framework with
new modules. Rather than tailoring existing modules to work
with the iCub-HRI framework, it should be possible to write
wrapper code for the integration.

•	 Shared, centralized knowledge representation: each module
should have access to the same knowledge database, and the
contained knowledge should follow a standardized format.
Within iCub-HRI, we call this knowledge database the working
memory, and the contents are Entities or derivatives thereof.
The working memory is the default means of communicating
among modules.

•	 Open software: the code is released open source and made
publicly available. All dependencies must be available as open
source software too.

2. THe iCub-HRI LIBRARY

Due to the support of distributed computation within the YARP
middleware, there are typically many modules running simul-
taneously when conducting research on the iCub. Typically,
data are exchanged using YARP’s Bottle container, which can
encapsulate data of arbitrary length and varying type. While
this allows a high degree of flexibility, these containers are error
prone due to the requirement of parsing the messages dynami-
cally. This makes verification of compatibility and versioning
when used across a large number of modules hard (Natale
et al., 2016). Thus, within the iCub-HRI library, we introduce
fixed data representations for knowledge (fully compatible with
the Bottle container), similar to those used in ROS messages
(Quigley et al., 2009) and the Interface Description Language

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://efaa.upf.edu/
http://wysiwyd.upf.edu/

3

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

(IDL) in YARP (Fitzpatrick et al., 2014). Contrary to ROS mes-
sages and IDLs, the same representations are used across all
components of the iCub-HRI library. The representations and
their exchange which is orchestrated by a working memory are
detailed in Section 2.1.

The communication protocol with external modules is
described within Subsystems. Each subsystem connects to a host
(i.e., external module) and abstracts away the communication
internals, as described in Section 2.2. Finally, the icubClient class
is designed with additional convenience for end users in mind
such that all subsystems and other higher level methods are avail-
able from within a single class.

2.1. Knowledge Representation and
exchange
The basic representation type is an Entity, which is specified by
an ID and an associated name. The ID is used when storing and
retrieving the entity from the working memory. Several entities
can be linked together by the means of a Relation, for example, the
human “Paul” (subject) “holds” (verb) “duck” (object). For further
details on relations, we refer to Lallée and Verschure (2015).

Other knowledge representations inherit the basic properties
and methods of Entity and extend them further. The Object class
has additional properties representing the pose, size, presence,
and saliency of an object (see Section 3.1 for details how these
properties are acquired). The Agent class represents a human
partner, which additionally to all properties of an Object also
stores the positions of all body parts and a list of beliefs. Another
commonly used representation is that of a Bodypart, which
represents a part of the robot’s body. A Bodypart also inherits all
attributes of an Object, and additionally contains the related joint
number, tactile patch identifier, and corresponding body part of
the human. Zambelli et al. (2016) have used these representa-
tions to anchor self-learned representations to those of a human
interacting with the robot.

These representations must be shared across different modules
(for example, between perceptual modules and the more abstract
reactive layer as described later in this section), and we designed
the OPCClient class to automate the exchange of representa-
tions with the working memory of the iCub ecosystem (Objects
Properties Collector; OPC) (Lallée and Verschure, 2015). The
OPC is an ontology-based knowledge representation system
which is grounded on the need of humans and other social ani-
mals to interact in a physical, multi-agent world (see Lallée and
Verschure (2015)). In this direction, the role of such knowledge
representation should be to structure and distribute informa-
tion to different modules in an asynchronous (on-demand) and
centralized way. The design is inspired by the repository pattern
known from software engineering (Evans, 2004), and its usage is
very similar to the centralised version control software Apache
Subversion (known as SVN).3 For storage and retrieval, the
OPCClient provides methods such as “checkout” to poll repre-
sentations from the shared memory, “update” to update existing
representations, and “commit” to overwrite representations in the

3 https://subversion.apache.org/.

memory with the local version of the module. Altogether, this
implementation provides a shared, centralized knowledge repre-
sentation (following our design principle outlined in Section 1.2),
enabling asynchronous access to the information in a way similar
to how brains work.

2.2. Subsystems
A Subsystem provides a wrapper between the representations
used by external components and the ones used within iCub-
HRI, which compares to the façade software engineering pattern
(Gamma et al., 1994). This has several advantages, including that
the complexity of remote procedure calls is hidden from the user
and that formerly “incompatible” components can now be used
within the same project. Within this paper, we provide a brief list
of the most commonly used interfaces of these subsystems, and
we provide a complete list in the documentation on GitHub.4

This is especially evident in the subsystems for the Actions
Rendering Engine (ARE; follow up work on Pattacini et al.
(2010))5 and KARMA (Tikhanoff et al., 2015)6 object manipula-
tion libraries, which are typically used by the iCub community to
issue high-level motor commands. If directly called, they require
the provision of complex parameters. Contrary, using iCub-HRI,
one simply specifies the desired action and the name of the object
to be manipulated, as further demonstrated in Section 4.1.

Other important subsystems are those for speech recognition
and synthesis. Both are convenience wrappers for the function-
ality offered in the “speech” repository of the iCub ecosystem.
The speech synthesizer allows for speech production from text
using a single command “say(),” with the only parameter being
the sentence to be spoken, while being agnostic to the underly-
ing synthesizer (Acapela,7 eSpeak,8 Festival,9 and SVOX Pico10
are supported). The speech recognizer relies on the Microsoft
Speech API,11 which allows recognition and extraction of words
from spoken utterance given a grammar file (using the command
“recogFromGrammarLoop()”).

The functionality of the different subsystems is aggregated in
the icubClient class, which allows using the different subsystems
from within a single class instance. A configuration file is used
to specify which subsystems a module requires, such that no
unnecessary resources are bound. Adding new subsystems is
straightforward and we provide a tutorial to do so.12

4 https://robotology.github.io/icub-hri/ → iCub-HRI libraries → Subsystems.
5 The following interfaces are provided by the ARE subsystem: (1) “home()” to put
the robot or a specified part in the home position, (2) “take()” to reach and grasp
an object, (3) “push()” to laterally push an object, (4) “point()” to an object, (5)
“expect()” to extend the hand and wait for an object, (6) “drop()” an object which
is currently held, (7) “wave()” the robot’s hands, (8) “look()” at an object, and (9)
“track()” a moving object.
6 The following interfaces are provided by the KARMA subsystem: (1) “pushKar-
maLeft()” and “pushKarmaRight()” to push an object to the left/right side with a
specified target position, (2) “pushKarmaFront()” to push an object forwards, and
(3) “pullKarmaBack()” to bring an object closer to the robot.
7 http://www.acapela-group.com.
8 http://espeak.sourceforge.net/.
9 http://www.cstr.ed.ac.uk/projects/festival/.
10 https://github.com/robotology/speech/tree/master/svox-speech.
11 https://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx.
12 https://robotology.github.io/icub-hri/ → Tutorials → Create a new Subsystem.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://subversion.apache.org/
https://robotology.github.io/icub-hri/
http://www.acapela-group.com
http://espeak.sourceforge.net/
http://www.cstr.ed.ac.uk/projects/festival/
https://github.com/robotology/speech/tree/master/svox-speech
https://msdn.microsoft.com/en-us/library/ee125663
https://robotology.github.io/icub-hri/

4

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

3. iCub-HRI ModULeS

The modules accompanying the iCub-HRI library can be grouped
into four main areas: 1. perception, 2. action, 3. social interac-
tion, and 4. miscellaneous tools. All modules have access to the
knowledge introduced in the previous section (as they use the
iCub-HRI library) and none of them is required to run; i.e., one
can choose which subset of modules to run for each experiment,
if any.

3.1. Perception Modules
3.1.1. Agent Detector
The agentDetector module is responsible for detecting and
tracking a human partner using a RGB-D camera mounted
behind the robot. It converts the joint positions detected by the
RGB-D camera in the reference frame of the iCub and continu-
ously updates the joint positions of the human partner in the
working memory.

3.1.2. Default Speech Recognition
The Ears module allows for recognition of speech utterances from
the human when no other module is trying to recognize speech.
It takes the role of a central component to redirect the com-
mand extracted from the recognized sentence to the appropriate
module, while still allowing other modules to access the speech
recognition subsystem directly if needed.

3.1.3. Object Recognition
The object recognition module within iCub-HRI is based on the
interactive object learning (IOL) pipeline (Pasquale et al., 2015).
Given the two input images of the iCub’s eyes, the scene is first
segmented into the background and the different objects. Each
object is then classified and stereo vision (Fanello et al., 2014) is
used to localize the objects. We rely on superquadric models to
estimate the size and pose of objects (Vezzani et al., 2017), and we
use the OpenCV object tracker (Kalal et al., 2012) to track them
even if they are manipulated by the human.

3.1.4. Saliency
The module PASAR (Mathews et al., 2012) detects the appear-
ance and disappearance of objects, and the saliency of an object
is increased proportionally to its acceleration. This also allows
simple detection of pointing actions by measuring the proximity
of the human’s hand with each of the objects and increasing the
saliency with inverse proportion to the distance.

3.1.5. Face and Action Recognition
To recognize faces and actions performed on objects, we use
the Synthetic Sensory Memory module (Martinez-Hernandez
et al., 2016). It uses Gaussian Process Latent Variable Models
(Damianou et al., 2011) to train classifiers for faces and actions,
which can then be loaded during interaction to perform real-time
classification.

3.2. Action Modules
3.2.1. Face Tracking
The face tracking module detects the face of a human based on
Haar cascades implemented in OpenCV (Viola and Jones, 2001)

and uses the velocity control of the iCub to follow the face. This
module can be used in human–robot interaction scenarios for
increased vividness of the robot.

3.2.2. Babbling
The babbling module allows the issue of pseudo random
(sinusoids) commands to the iCub (either individual or several
joints). It has been used to learn forward and inverse models
for the iCub (Zambelli and Demiris, 2017), as well as to learn
correspondences between the robot’s body parts and that of
the human (Zambelli et al., 2016). Within the scope of this
paper, it is mainly used for body part learning, as described in
Section 4.2.

3.3. Social Interaction Modules
3.3.1. Proactive Tagging
The proactive tagging module can be used to acquire the names of
objects (robot), body parts, and human partners. As this module
plays a central role in the knowledge acquisition tutorial, it is
further detailed in the corresponding Section 4.2.

3.3.2. Reactive Layer
The reactive layer implements drive reduction mechanisms
for self-regulating the robot’s behavior. A drive is defined as a
control loop that triggers appropriate behaviors whenever an
associated internal state variable goes out of its homeostatic
range. These drives present a way to self-regulate value in a
dynamic and autonomous way (Sanchez-Fibla et al., 2010).
This has been shown to positively influence the acceptance of
the human-robot interaction by naive users (Vouloutsi et al.,
2014; Lallée and Verschure, 2015).

In the social robotic context, we provide two examples of
drives that allow the robot to balance knowledge acquisition
and expression in an autonomous way. The drive for knowledge
acquisition maintains a curiosity-driven exploration of the
environment by proactively requesting information from a
human about the present entities (e.g., their name). The drive
for knowledge expression regulates how the iCub expresses the
acquired knowledge through synchronized speech, pointing
actions and gaze. It informs the human about the robot’s current
state of knowledge and thus maintains the interaction.

3.4. Tools
Several tools provide preprocessing functionalities for the other
modules or interact with other modules of the iCub ecosys tem
so they can be easily used within iCub-HRI. The guiUpdater
trans lates the representations of iCub-HRI to those used within
the iCubGui. More specifically, it allows the display of location
for objects and agents stored within the working memory along
with certain properties, such as their color and name. The opc-
Populator can be used to spawn new entities in simulation and
control their parameters. This allows testing new functionalities
in a controlled environment, without the noise encountered
when using the real robot. We further provide a touchDetector
that connects to the iCub’s artificial skin, and clusters taxels
belonging to the same body part. Finally, the referenceFrame-
Handler provides functionalities similar to that of the transform

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

library (TF; Foote, 2013), i.e., transforming a pose from one
frame (e.g., that of the RGB-D camera) to another (e.g., that of
the iCub root).

4. USING iCub-HRI

There is a variety of use cases for iCub-HRI. We first show the
ease of use of iCub-HRI in a representative example related to
the object manipulation subsystem. We then introduce a tutorial
which demonstrates the interplay of various components in the
context of human–robot interaction. Subsequently, we briefly
describe how an extended version of this tutorial has been used to
tackle the symbol grounding problem in the DAC-h3 framework
(Moulin-Frier et al., 2017). This is followed by a description of
the implications of this library for technical and non-technical
users alike. Finally, we discuss the platform independence and
dependencies of iCub-HRI and provide links to the documenta-
tion and repository.

4.1. example Usage of the object
Manipulation Subsystems
The GitHub repository contains a range of examples, including
examples of using the KARMA and ARE subsystems to manipulate
objects, i.e., grasping, pushing, or pulling them, in C++, Python,
and Matlab. Some examples use yarp::sig::Vector instances to
specify the target location (important for users looking to employ
iCub-HRI as a lightweight library), while others rely on the Object
class introduced earlier (providing a seamless integration with
the contained object recognition module). Listing 1 shows an
example which uses the iCub-HRI library to pull an object using
the KARMA Subsystem, while Listing 2 contains code directly
communicating with KARMA, which is much less intuitive
and likely distracts from the actually desired code related to the
human–robot interaction.

LISTING 1 | Pushing an object using iCub-HRI is straightforward and requires
the provision of just two parameters: the object to be pushed and the desired
target position.

#include <yarp/os/all.h>
#include <icubhri/clients/icubClient.h>

int main() {
yarp::os::Network yarp;

icubhri::ICubClient iCub("KARMA_Simple");
if(!iCub.connect()) {return -1;}//connect to
subsystems

std::string objectName = "octopus";//as recognized by
object recognition
double targetPositionX = -0.45;

bool ok = iCub.pushKarmaFront(objectName,
targetPositionX);
yInfo() << (ok ? "Success": "Failed");

return 0;
}

LISTING 2 | Pushing an object communicating directly with KARMA. Besides
being less readable, this code is also more error prone as the Bottle’s
components need to be provided with the right type and in the right order.
Furthermore, many more parameters are involved.

#include <yarp/os/all.h>
#include <yarp/sig/all.h>

yarp::sig::Vector getPos(std::string name) {
//communicate with object recognition module to obtain
object position
//this is not shown for brevity

}

int main() {
yarp::os::Network yarp;

yarp::os::RpcClient toKarma; toKarma.open("/example/
toKarma");
yarp::os::Network::connect(toKarma.getName(), "/
karmaMotor/rpc");

yarp::sig::Vector pos = getPos("octopus");
double targetPositionX = -0.45;
double radius = fabs(pos[0] - targetPositionX);

yarp::os::Bottle cmd, reply;
cmd.addString("push");
cmd.addDouble(pos[0]); cmd.addDouble(pos[1]); cmd.
addDouble(pos[2]);
cmd.addDouble(-90);//angle theta
cmd.addDouble(radius);//distance to be pushed
toKarma.write(cmd, reply);
bool ok = (reply.get(0).
asVocab() == yarp:os:Vocab:encode("ack"));
yInfo() << (ok ? "Success": "Failed");

return 0;
}

4.2. Knowledge Acquisition Tutorial
The robot can acquire knowledge in two different ways: pro-
actively, where a decaying drive to acquire knowledge triggers
the behavior to obtain the name of an object or body part, or
reactively, where the knowledge acquisition follows a human
command. The demo for this paper is centered around the
proactive tagging module, which makes use of several sub-
systems and connects directly to several other modules. For
example, it uses the speech recognition subsystem to acquire
the names of entities (objects in the vicinity, partners, and body
parts), the speech synthesis subsystem to enable the robot to
verbally express itself (in order to ask for object names), and
the ARE subsystem to point at objects and make them salient.
Furthermore, it makes use of the functionalities provided by
a number of other modules presented within the previous
section, including PASAR to detect which object the partner
is pointing to, the face recognition module to recognize the
partner, and the touchDetector to identify which skin patch was
being touched by the human. An overview of the interaction
between the modules is shown in Figure 1. All further details,
including the necessary set-up, configuration files, modules to
run, and supported interactions, are described in the dedicated
tutorial. We provide a set of videos of this experiment which

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIGURe 1 | Temporal UML diagram for an interaction where a human gives a speech command to the iCub to push an object which is currently unknown to the
robot. The diagram depicts the involved modules and subsystems, and shows the information flow. After converting the speech command in an action plan, the
robot first asks the human to indicate the desired object, and subsequently pushes that object. The knowledge database is continuously being updated by the
agent detector and object recognition system throughout the interaction, and the object name is updated after the human indicated the object by pointing to it.
In our GitHub repository, we provide another diagram for the case that a drive threshold is hit, which triggers the behavior to tag an unknown object autonomously.

6

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

demonstrates the robustness of the framework in various
environments.13

4.3. Usage within dAC-h3 Framework
An extended version of the knowledge acquisition tutorial has
been used to solve the symbol grounding problem, acquire lan-
guage capabilities, execute goal-oriented behavior, and express
a verbal narrative of the robot’s experience in the world, using
the DAC-h3 framework (Moulin-Frier et al., 2017). The work of
Moulin-Frier et al. (2017) also demonstrates that the software
framework presented in this paper can be readily used to study
human–robot interaction experiments with naive subjects.

From the engineering perspective, the library and modules
of iCub-HRI have been embedded in the Distributed Adaptive
Control architecture (DAC, mentioned in the Introduction).
The DAC architecture proposes that the brain can be seen as
a multi-layered control structure consisting of (1) the body
(with its sensors, needs and effectors), (2) the reactive layer
for reflexive predefined control, (3) the adaptive layer for state
acquisition and model-free reinforcement learning, and (4) the
contextual layer which acquires model-based goal-oriented poli-
cies. Across these layers, we can distinguish columns of systems
that processes states of the environment, the self and action as
depicted in Figure 2.

13 https://github.com/robotology/wysiwyd—“Demonstration 4,” up to the fourth
minute of the video.

The implementation of iCub-HRI with its subsystems and
working memory make it particularly suitable in any scenario
where module integration is driven by a complex multi-layered
control architecture, with heterogeneous modules communicat-
ing within and between the different control layers.

4.4. More Applications and Use Cases
The central advantage of iCub-HRI is that the library bypasses
the requirement for obtaining a working knowledge of the opera-
tion of a large range of modules during the normal operation of
the iCub and their interaction before starting to develop one’s
specific application on top of these modules. Furthermore, iCub-
HRI’s modular subsystem architecture means that one can easily
integrate applications developed on top of iCub-HRI to further
abstract and accelerate the development of robotics applications.

The underlying design principles of iCub-HRI (see Section
1.2) and the high-level abstractions of the robot’s basic input and
output systems like speech, vision, and motor control allow a
wide, varied range of use cases. For users with a non-technical
background, it significantly reduces the learning curve to exploit
the iCub robotic platform, with potential applications such as
robotic art, research into the societal effects of robotics, investiga-
tions into human–robot collaboration and human–robot inter-
action studies investigating the psychological effects of such an
interaction. For users more familiar with the iCub, the flexibility
of the library allows them to focus on the core of their applica-
tions, where iCub-HRI provides a bridge to quickly integrate

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/wysiwyd

FIGURe 2 | iCub-HRI serves as underlying software framework for the
depicted DAC-h3 cognitive architecture (see text for more detail). The usage
within DAC-h3 has shown that several design principles were successfully
implemented: iCub-HRI was easy to adapt and was extended with several
other modules. Furthermore, the user study presented by Moulin-Frier et al.
(2017) was directly based on the knowledge acquisition tutorial presented in
Section 4.2.

7

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

these applications with the sensory, motor, and affective systems
of the robot. This reduces the implementation effort which leads
to faster developments, and allows for accelerated prototyping of
embodied artificial intelligence applications.

4.5. Platform Independence
This paper specifically aims to provide a software framework to be
used on the iCub humanoid robot. However, due to the modular
design of the framework, certain components could be used on
other robotic platforms as well, as they do not directly interface
with the iCub’s sensors and/or actuators and are hence robot
agnostic. The following components are platform independent
and can directly be used on other robots14:

•	 Working memory (Section 2.1).
•	 Perception modules: agent detector (Section 3.1.1), speech

recognition (Section 3.1.2), saliency (Section 3.1.4), as well as
face and action recognition (Section 3.1.5).

•	 Reactive layer (Section 3.3.2); the actions executed by the
drives can be easily adjusted in a configuration file.

14 Provided they run on YARP, or can be interfaced with YARP through, e.g., the
YARP-ROS interoperation.

•	 Tools (Section 3.4): the opcPopulator as well as the
referenceFrameHandler.

All other components are tailored for the iCub and would need
to be re-implemented or substituted with alternatives on another
platform.

4.6. dependencies
The only hard dependencies of iCub-HRI are a C++ 11 compat-
ible compiler and YARP. Due to the aspiration to combine various
components within a single architecture, there are a number of
soft dependencies: OpenCV, IOL, and superquadric-model for
object tracking, kinect-wrapper to track the human partner, the
speech repository for speech synthesis and recognition, as well
as (a modified version of) KARMA for object manipulation. All
dependencies are released under free software licenses, specifi-
cally LGPLv2.1 for YARP, BSD-3-Clause in case of OpenCV and
GPLv2 for all other dependencies.

The installation of these components is further detailed in the
iCub-HRI repository and we provide a Python script to easily
keep all dependencies up-to-date. It is also possible to download
or compile a Docker image which contains all required and
optional libraries pre-installed and configured.

4.7. download, Licensing, and
Compatibility
The code is available for download on the designated GitHub
repository15 alongside the documentation (including class
diagrams) and tutorials. It is released under the free software
license GPLv2. The build status is continuously monitored on
Windows, Linux, and macOS. The code itself can be considered
stable and has been in adapted from the code which was used in
the EFAA and WYSIWYD projects for several years.

5. CoNCLUSIoN ANd FUTURe WoRK

We presented iCub-HRI, a software framework which integrates
various components available within the iCub ecosystem and
makes them easily accessible by the means of method calls.
iCub-HRI can be used in various ways, from a very lightweight
library up toan integrated platform for studies on human–robot
interaction. While it is tailored for the iCub humanoid robot,
many parts are platform independent and can be used on other
robotic platforms as well. We provide a full documentation and
various tutorials, allowing researchers to easily adapt iCub-HRI
for their purposes.

One limitation of the presented framework is that while it
facilitates communication between different modules, it does
not have any means of manipulating the execution of indi-
vidual modules. This is a disadvantage in case of, e.g., monitor-
ing real-time constraints, which cannot be guaranteed on the
framework level but only within individual components (this
is the case for the low-level Cartesian controller employed by
ARE and KARMA (Pattacini et al., 2010)). Furthermore, as a

15 https://github.com/robotology/icub-hri.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/icub-hri

8

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

central memory is being employed, there is a delay of the infor-
mation flow from one module to another. Another limitation
of this work is that no test data are being provided. Providing
a proper test-suite is beyond the scope of this research, as
it would need to write test cases for several tens of modules
(many of them being external), and their communication
handled by over 100 YARP ports. Writing suitable test cases
using the testing framework presented by Natale et al. (2016)
is an interesting research idea which we would like to tackle
in future works.

A key point for the future adaptation of iCub-HRI will be the
integration of new components from within the iCub ecosys-
tem as well as state of the art software from related disciplines.
For example, we intend to replace the current object tracking
functionality with a state of the art object tracker (Choi et al.,
2017); and to embed the reaching-with-avoidance framework
(Nguyen et al., 2016; Roncone et al., 2016) for safer robot
actions.

eTHICS STATeMeNT

The research protocol was approved by the Parc de Salut MAR—
Clinical Research Ethics Committee.

AUTHoR CoNTRIBUTIoNS

TF, CM-F, DC, and J-YP drafted the initial version of
the paper. TF, SL, and PN designed and implemented the

iCub-HRI library. TF, J-YP, DC, PN, CM-F, and SL designed
and implemented the iCub-HRI modules. TF, PN, J-YP, and SL
documented the code and wrote tutorials. TF, J-YP, DC, PN,
and CM-F conceived and performed the knowledge acquisi-
tion demonstration. CM-F, J-YP, and PV designed the DAC-h3
cognitive architecture. PV conceived and coordinated the
EFAA and WYSIWYD projects including the proactive tag-
ging benchmark. GM, TP, PV, and YD created the idea, were
significantly involved in reviewing manuscript drafts, and
supervised the project.

ACKNoWLedGMeNTS

The authors would like to thank all participants of the WYSIWYD
project who contributed to the code which made writing this
paper feasible.

FUNdING

The research leading to these results has received funding under
the European Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement n. FP7-ICT-612139 (WYSIWYD—
What You Say Is What You Did) and FP7-ICT-270490 (EFAA—The
Experimental Functional Android Assistant). PN was supported
by a Marie Curie Early Stage Researcher Fellowship (H2020-
MSCA-ITA, SECURE 642667). PV was supported by the ERC
advanced grant 341196 (cDAC—Role of Consciousness in
Adaptive Behavior).

ReFeReNCeS

Choi, J., Chang, H. J., Yun, S., Fischer, T., Demiris, Y., and Choi, J. Y. (2017). “Attentional
correlation filter network for adaptive visual tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition (Honolulu, HI), 4807–4816.

Damianou, A., Titsias, M. K., and Lawrence, N. D. (2011). “Variational Gaussian
process dynamical systems,” in Advances in Neural Information Processing
Systems (Granada, Spain), 2510–2518.

Elkady, A., and Sobh, T. (2012). Robotics middleware: a comprehensive literature
survey and attribute-based bibliography. J. Robot. 2012, 1–15. doi:10.1155/
2012/959013

Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Boston, MA: Addison-Wesley Professional.

Fanello, S., Pattacini, U., Gori, I., Tikhanoff, V., Randazzo, M., Roncone, A.,
et al. (2014). “3D stereo estimation and fully automated learning of eye-hand
coordination in humanoid robots,” in IEEE-RAS International Conference on
Humanoid Robots (Madrid, Spain), 1028–1035.

Fischer, T., and Demiris, Y. (2016). “Markerless perspective taking for humanoid
robots in unconstrained environments,” in IEEE International Conference on
Robotics and Automation (Stockholm, Sweden), 3309–3316.

Fitzpatrick, P., Ceseracciu, E., Domenichelli, D. E., Paikan, A., Metta, G., and
Natale, L. (2014). A middle way for robotics middleware. J. Softw. Eng. Robot.
5, 42–49. doi:10.6092/JOSER_2014_05_02_p42

Fitzpatrick, P., Metta, G., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761

Foote, T. (2013). “tf: the transform library,” in IEEE Conference on Technologies for
Practical Robot Applications (Woburn, MA, USA).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object Oriented Software. Boston, MA: Addison-Wesley.

Huang, C. M., and Mutlu, B. (2012). “Robot behavior toolkit: generating effective
social behaviors for robots,” in ACM/IEEE International Conference on Human-
Robot Interaction (Boston, MA), 25–32.

Jang, M., Kim, J., and Ahn, B. K. (2015). “A software framework design for social
human-robot interaction,” in International Conference on Ubiquitous Robots
and Ambient Intelligence (Goyang, South Korea), 411–412.

Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Tracking-learning-detection.
IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409–1422. doi:10.1109/TPAMI.
2011.239

Krupke, D., Starke, S., Einig, L., Steinicke, F., and Zhang, J. (2017). “Prototyping of
immersive HRI scenarios,” in International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines (Porto, Portugal),
537–544.

Lallée, S., Hamann, K., Steinwender, J., Warneken, F., Martienz, U., Barron-
Gonzales, H., et al. (2013). “Cooperative human robot interaction systems: IV.
Communication of shared plans with Naïve humans using gaze and speech,” in
IEEE International Conference on Intelligent Robots and Systems (Tokyo, Japan),
129–136.

Lallée, S., and Verschure, P. (2015). How? Why? What? Where? When? Who?
Grounding ontology in the actions of a situated social agent. Robotics 4,
169–193. doi:10.3390/robotics4020169

Lallée, S., Vouloutsi, V., Blancas, M., Grechuta, K., Puigbo, J.-Y., Sarda, M., et al.
(2015). Towards the synthetic self: making others perceive me as an other.
Paladyn J. Behav. Robot. 6, 136–164. doi:10.1515/pjbr-2015-0010

Lane, I., Prasad, V., Sinha, G., Umuhoza, A., Luo, S., Chandrashekaran, A., et al.
(2012). “HRItk: the human-robot interaction ToolKit rapid development
of speech-centric interactive systems in ROS,” in NAACL-HLT Workshop on
Future Directions and Needs in the Spoken Dialog Community: Tools and Data
(Montreal, Canada), 41–44.

Martinez-Hernandez, U., Damianou, A., Camilleri, D., Boorman, L. W.,
Lawrence, N., and Prescott, T. J. (2016). “An integrated probabilistic framework
for robot perception, learning and memory,” in IEEE International Conference
on Robotics and Biomimetics (Qingdao, China), 1796–1801.

Mathews, Z., i Badia, S. B., and Verschure, P. F. M. J. (2012). PASAR: an inte-
grated model of prediction, anticipation, sensation, attention and response

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1155/
2012/959013
https://doi.org/10.1155/
2012/959013
https://doi.org/10.6092/JOSER_2014_05_02_p42
https://doi.org/10.5772/5761
https://doi.org/10.1109/TPAMI.
2011.239
https://doi.org/10.1109/TPAMI.
2011.239
https://doi.org/10.3390/robotics4020169
https://doi.org/10.1515/pjbr-2015-0010

9

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

for artificial sensorimotor systems. Inf. Sci. 186, 1–19. doi:10.1016/j.ins.2011.
09.042

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in cognitive
development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.2010.08.010

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J.-Y., Pattacini, U.,
et al. (2017). DAC-h3: a proactive robot cognitive architecture to acquire and
express knowledge about the world and the self. IEEE Trans. Cogn. Dev. Syst.
doi:10.1109/TCDS.2017.2754143

Natale, L., Paikan, A., Randazzo, M., and Domenichelli, D. E. (2016). The iCub
software architecture: evolution and lessons learned. Front. Robot. AI 3:24.
doi:10.3389/frobt.2016.00024

Nguyen, P. D., Hoffmann, M., Pattacini, U., and Metta, G. (2016). “A fast heuristic
Cartesian space motion planning algorithm for many-DoF robotic manipu-
lators in dynamic environments,” in IEEE-RAS International Conference on
Humanoid Robots (Cancun, Mexico), 884–891.

Pasquale, G., Ciliberto, C., Odone, F., Rosasco, L., and Natale, L. (2015). “Teaching
iCub to recognize objects using deep convolutional neural networks,” in
Workshop on Machine Learning for Interactive Systems (Lille, France), 21–25.

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). “An
experimental evaluation of a novel minimum-jerk Cartesian controller for
humanoid robots,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (Taipei, Taiwan), 1668–1674.

Petit, M., Fischer, T., and Demiris, Y. (2016). Lifelong augmentation of multi-modal
streaming autobiographical memories. IEEE Trans. Cogn. Dev. Syst. 8, 201–213.
doi:10.1109/TAMD.2015.2507439

Petit, M., Lallee, S., Boucher, J.-D., Pointeau, G., Cheminade, P., Ognibene, D., et al.
(2013). The coordinating role of language in real-time multimodal learning
of cooperative tasks. IEEE Trans. Auton. Ment. Dev. 5, 3–17. doi:10.1109/
TAMD.2012.2209880

Puigbò, J.-Y., Moulin-Frier, C., and Verschure, P. F. (2016). “Towards self-controlled
robots through distributed adaptive control,” in Conference on Biomimetic and
Biohybrid Systems (Edinburgh, Scotland), 490–497.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009).
“ROS: an open-source robot operating system,” in ICRA Workshop on Open
Source Software, (Kobe, Japan).

Roncone, A., Hoffmann, M., Pattacini, U., Fadiga, L., and Metta, G. (2016).
Peripersonal space and margin of safety around the body: learning visuo-tactile
associations in a humanoid robot with artificial skin. PLoS ONE 11:e0163713.
doi:10.1371/journal.pone.0163713

Sanchez-Fibla, M., Bernardet, U., Wasserman, E., Pelc, T., Mintz, M., Jackson, J. C.,
et al. (2010). Allostatic control for robot behavior regulation: a compar-
ative rodent-robot study. Adv. Complex Syst. 13, 377–403. doi:10.1142/
S0219525910002621

Sarabia, M., Ros, R., and Demiris, Y. (2011). “Towards an open-source social
middleware for humanoid robots,” in IEEE-RAS International Conference on
Humanoid Robots (Bled, Slovenia), 670–675.

Tikhanoff, V., Pattacini, U., Natale, L., and Metta, G. (2015). “Exploring affordances
and tool use on the iCub,” in IEEE-RAS International Conference on Humanoid
Robots (Atlanta, GA, USA), 130–137.

Verschure, P. F. M. J. (2012). Distributed adaptive control: a theory of the mind,
brain, body nexus. Biol. Inspired Cogn. Arch. 1, 55–72. doi:10.1016/j.bica.
2012.04.005

Verschure, P. F. M. J. (2016). Synthetic consciousness: the distributed adaptive con-
trol perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 263–275. doi:10.1098/
rstb.2015.0448

Vezzani, G., Pattacini, U., and Natale, L. (2017). “A grasping approach based on
superquadric models,” in IEEE International Conference on Robotics and
Automation (Singapore, Singapore), 1579–1586.

Viola, P., and Jones, M. (2001). “Rapid object detection using a boosted cascade
of simple features,” in IEEE Conference on Computer Vision and Pattern
Recognition (Kauai, HI), I-511–I-518.

Vouloutsi, V., Grechuta, K., Lallée, S., and Verschure, P. F. (2014). “The influence of
behavioral complexity on robot perception,” in Conference on Biomimetic and
Biohybrid Systems (Milan, Italy), 332–343.

Zambelli, M., and Demiris, Y. (2017). Online multimodal ensemble learning
using self-learnt sensorimotor representations. IEEE Trans. Cogn. Dev. Syst. 9,
113–126. doi:10.1109/TCDS.2016.2624705

Zambelli, M., Fischer, T., Petit, M., Chang, H. J., Cully, A., and Demiris, Y. (2016).
“Towards anchoring self-learned representations to those of other agents,” in
Workshop on Bio-Inspired Social Robot Learning in Home Scenarios at IEEE/
RSJ International Conference on Intelligent Robots and Systems, (Daejeon,
Korea).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, TD, declared a shared affiliation, though no other collaboration, with
one of the authors, GM, to the handling editor.

Copyright © 2018 Fischer, Puigbò, Camilleri, Nguyen, Moulin-Frier, Lallée, Metta,
Prescott, Demiris and Verschure. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1016/j.ins.2011.
09.042
https://doi.org/10.1016/j.ins.2011.
09.042
https://doi.org/10.1016/j.neunet.2010.
08.010
https://doi.org/10.1109/TCDS.2017.2754143
https://doi.org/10.3389/frobt.2016.00024
https://doi.org/10.1109/TAMD.2015.2507439
https://doi.org/10.1109/TAMD.2012.2209880
https://doi.org/10.1109/TAMD.2012.2209880
https://doi.org/10.1371/journal.pone.0163713
https://doi.org/10.1142/S0219525910002621
https://doi.org/10.1142/S0219525910002621
https://doi.org/10.1016/j.bica.
2012.04.005
https://doi.org/10.1016/j.bica.
2012.04.005
https://doi.org/10.1098/
rstb.2015.0448
https://doi.org/10.1098/
rstb.2015.0448
https://doi.org/10.1109/TCDS.2016.2624705
http://creativecommons.org/licenses/by/4.0/

	iCub-HRI: A Software Framework for Complex Human–Robot Interaction Scenarios on the iCub Humanoid Robot
	1. Introduction and Background
	1.1. Background and Related Works
	1.2. Design Principles

	2. The iCub-HRI Library
	2.1. Knowledge Representation and Exchange
	2.2. Subsystems

	3. iCub-HRI Modules
	3.1. Perception Modules
	3.1.1. Agent Detector
	3.1.2. Default Speech Recognition
	3.1.3. Object Recognition
	3.1.4. Saliency
	3.1.5. Face and Action Recognition

	3.2. Action Modules
	3.2.1. Face Tracking
	3.2.2. Babbling

	3.3. Social Interaction Modules
	3.3.1. Proactive Tagging
	3.3.2. Reactive Layer

	3.4. Tools

	4. Using iCub-HRI
	4.1. Example Usage of the Object Manipulation Subsystems
	4.2. Knowledge Acquisition Tutorial
	4.3. Usage within DAC-h3 Framework
	4.4. More Applications and Use Cases
	4.5. Platform Independence
	4.6. Dependencies
	4.7. Download, Licensing, and Compatibility

	5. Conclusion and Future Work
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	References

