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Generating complex, human-like behavior in a humanoid robot like the iCub requires 
the integration of a wide range of open source components and a scalable cognitive 
architecture. Hence, we present the iCub-HRI library which provides convenience wrap-
pers for components related to perception (object recognition, agent tracking, speech 
recognition, and touch detection), object manipulation (basic and complex motor 
actions), and social interaction (speech synthesis and joint attention) exposed as a C++ 
library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In 
addition to previously integrated components, the library allows for simple extension to 
new components and rapid prototyping by adapting to changes in interfaces between 
components. We also provide a set of modules which make use of the library, such 
as a high-level knowledge acquisition module and an action recognition module. The 
proposed architecture has been successfully employed for a complex human–robot 
interaction scenario involving the acquisition of language capabilities, execution of 
goal-oriented behavior and expression of a verbal narrative of the robot’s experience in 
the world. Accompanying this paper is a tutorial which allows a subset of this interaction 
to be reproduced. The architecture is aimed at researchers familiarizing themselves with 
the iCub ecosystem, as well as expert users, and we expect the library to be widely used 
in the iCub community.

Keywords: robotics, iCub humanoid, human–robot interaction, YARP, software architecture, code:C++, 
code:Python, code:Java

1. INTRodUCTIoN ANd BACKGRoUNd

The iCub is an advanced humanoid robot, which is equipped with multiple sensors: encoders in all its 
53 joints, force/torque sensors, tactile sensors integrated in the artificial skin, and eye cameras (Metta 
et al., 2010). They allow for a coherent understanding of body configuration, motor capabilities, and 
the environment as well as an ability to show facial expressions, which makes it an ideal platform for 
studies of human–robot interaction and cognition.
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The research community around the iCub humanoid robot is 
very active, with a large number of papers published every year. 
The source code leading to these publications is often made avail-
able to the public, which allows for the replication of the results 
and use of the code as a starting platform to tackle new research 
questions. However, despite YARP (Fitzpatrick et al., 2006) being 
typically used as the underlying middleware in these works, it 
remains challenging to combine these efforts in a coherent 
manner.

Here, we present iCub-HRI, which integrates several com-
ponents for perception, object manipulation, and social interac-
tion using two parts: (1) The iCub-HRI library, which facilitates 
the use of the aforementioned components by providing easy to 
use classes with suitable default parameters (called Subsystems) 
and a shared knowledge database as means to represent knowl-
edge which is employed across all components. (2) Modules 
which supply the shared knowledge database with input, as 
well as some modules tailored for human–robot interaction 
scenarios.

1.1. Background and Related Works
iCub-HRI has its origins in the Experimental Functional 
Android Assistant (EFAA) project,1 where most of the library 
was developed and employed in several works (e.g., Lallée et al. 
(2013, 2015), Petit et al. (2013), and Lallée and Verschure (2015)). 
EFAA targeted the development of a cognitive architecture to 
realize effective and psychologically plausible human–robot 
dyadic interaction. The code was then extended and matured 
further in the What You Say Is What You Did (WYSIWYD) 
project,2 and more papers based on iCub-HRI were published 
(e.g., Fischer and Demiris (2016), Martinez-Hernandez et  al. 
(2016), Petit et al. (2016), Puigbò et al. (2016), and Moulin-Frier 
et al. (2017)). WYSIWYD aimed at realizing robot human level 
language capabilities by augmenting this cognitive architecture 
with mechanisms for language acquisition, composition, and 
expression. The cognitive architecture in both projects is based 
on and elaborates the Distributed Adaptive Control theory of 
mind and brain (DAC, see for reviews Verschure (2012, 2016) 
and Section 4.3).

While reviewing robotics middlewares is out of the scope for 
this paper (we refer to Elkady and Sobh (2012) for an overview), 
we briefly introduce several other proposals detailing software 
frameworks for various robotics platforms. Natale et al. (2016) 
summarize recent developments of the iCub’s software archi-
tecture, including the compatibility with the Robot Operating 
System (ROS) and the introduction of a new testing framework. 
They find that ROS is being adopted rapidly by more and more 
robot developers, and indeed, there are several papers introduc-
ing human–robot interaction-related frameworks based on ROS. 
For example, Jang et al. (2015) propose a ROS-based framework 
where modules concerned with low-level control and service 
logic are separated from modules concerned with social behav-
iors. Lane et al. (2012) present a bundle of ROS modules which 

1 http://efaa.upf.edu/. 
2 http://wysiwyd.upf.edu/. 

allows the extension of existing projects for speech recognition, 
natural language understanding, and basic gesture recognition 
as well as gaze tracking. A toolkit which allows the evaluation 
of human–robot interactions in virtual reality environments and 
subsequent deployment on a real robot was presented by Krupke 
et al. (2017). The robot behavior toolkit (Huang and Mutlu, 2012) 
includes a ROS module which is based on the findings within 
the social sciences. While the authors conducted a large-scale 
study with humans, the evaluation was based on simulated sensor 
data. Finally, Sarabia et al. (2011) present a framework allowing 
to perceive the actions and intentions of humans, and show its 
application in a social context where a robot imitates the dance 
movements of a human.

1.2. design Principles
Here, we devise a set of guidelines and design principles which 
were adopted when coding the framework.

•	 Adaptability and ease of use: the framework should be easy to 
adapt by the community. Individual parts of the framework 
should only depend on other parts if necessary, and substitut-
ing components should be easy. Furthermore, all libraries and 
modules should be properly documented.

•	 Provision of overall framework: related to the previous goal, our 
aim is to provide an overall framework which can work “out of 
the box.” Hence, our framework contains modules related to 
perception, action execution, and social interaction.

•	 Extendibility: it should be easy to extend the framework with 
new modules. Rather than tailoring existing modules to work 
with the iCub-HRI framework, it should be possible to write 
wrapper code for the integration.

•	 Shared, centralized knowledge representation: each module 
should have access to the same knowledge database, and the 
contained knowledge should follow a standardized format. 
Within iCub-HRI, we call this knowledge database the working 
memory, and the contents are Entities or derivatives thereof. 
The working memory is the default means of communicating 
among modules.

•	 Open software: the code is released open source and made 
publicly available. All dependencies must be available as open 
source software too.

2. THe iCub-HRI LIBRARY

Due to the support of distributed computation within the YARP 
middleware, there are typically many modules running simul-
taneously when conducting research on the iCub. Typically, 
data are exchanged using YARP’s Bottle container, which can 
encapsulate data of arbitrary length and varying type. While 
this allows a high degree of flexibility, these containers are error 
prone due to the requirement of parsing the messages dynami-
cally. This makes verification of compatibility and versioning 
when used across a large number of modules hard (Natale 
et  al., 2016). Thus, within the iCub-HRI library, we introduce 
fixed data representations for knowledge (fully compatible with 
the Bottle container), similar to those used in ROS messages 
(Quigley et  al., 2009) and the Interface Description Language 
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(IDL) in YARP (Fitzpatrick et al., 2014). Contrary to ROS mes-
sages and IDLs, the same representations are used across all 
components of the iCub-HRI library. The representations and 
their exchange which is orchestrated by a working memory are 
detailed in Section 2.1.

The communication protocol with external modules is 
described within Subsystems. Each subsystem connects to a host 
(i.e., external module) and abstracts away the communication 
internals, as described in Section 2.2. Finally, the icubClient class 
is designed with additional convenience for end users in mind 
such that all subsystems and other higher level methods are avail-
able from within a single class.

2.1. Knowledge Representation and 
exchange
The basic representation type is an Entity, which is specified by 
an ID and an associated name. The ID is used when storing and 
retrieving the entity from the working memory. Several entities 
can be linked together by the means of a Relation, for example, the 
human “Paul” (subject) “holds” (verb) “duck” (object). For further 
details on relations, we refer to Lallée and Verschure (2015).

Other knowledge representations inherit the basic properties 
and methods of Entity and extend them further. The Object class 
has additional properties representing the pose, size, presence, 
and saliency of an object (see Section 3.1 for details how these 
properties are acquired). The Agent class represents a human 
partner, which additionally to all properties of an Object also 
stores the positions of all body parts and a list of beliefs. Another 
commonly used representation is that of a Bodypart, which 
represents a part of the robot’s body. A Bodypart also inherits all 
attributes of an Object, and additionally contains the related joint 
number, tactile patch identifier, and corresponding body part of 
the human. Zambelli et  al. (2016) have used these representa-
tions to anchor self-learned representations to those of a human 
interacting with the robot.

These representations must be shared across different modules 
(for example, between perceptual modules and the more abstract 
reactive layer as described later in this section), and we designed 
the OPCClient class to automate the exchange of representa-
tions with the working memory of the iCub ecosystem (Objects 
Properties Collector; OPC) (Lallée and Verschure, 2015). The 
OPC is an ontology-based knowledge representation system 
which is grounded on the need of humans and other social ani-
mals to interact in a physical, multi-agent world (see Lallée and 
Verschure (2015)). In this direction, the role of such knowledge 
representation should be to structure and distribute informa-
tion to different modules in an asynchronous (on-demand) and 
centralized way. The design is inspired by the repository pattern 
known from software engineering (Evans, 2004), and its usage is 
very similar to the centralised version control software Apache 
Subversion (known as SVN).3 For storage and retrieval, the 
OPCClient provides methods such as “checkout” to poll repre-
sentations from the shared memory, “update” to update existing 
representations, and “commit” to overwrite representations in the 

3 https://subversion.apache.org/. 

memory with the local version of the module. Altogether, this 
implementation provides a shared, centralized knowledge repre-
sentation (following our design principle outlined in Section 1.2), 
enabling asynchronous access to the information in a way similar 
to how brains work.

2.2. Subsystems
A Subsystem provides a wrapper between the representations 
used by external components and the ones used within iCub-
HRI, which compares to the façade software engineering pattern 
(Gamma et al., 1994). This has several advantages, including that 
the complexity of remote procedure calls is hidden from the user 
and that formerly “incompatible” components can now be used 
within the same project. Within this paper, we provide a brief list 
of the most commonly used interfaces of these subsystems, and 
we provide a complete list in the documentation on GitHub.4

This is especially evident in the subsystems for the Actions 
Rendering Engine (ARE; follow up work on Pattacini et  al. 
(2010))5 and KARMA (Tikhanoff et al., 2015)6 object manipula-
tion libraries, which are typically used by the iCub community to 
issue high-level motor commands. If directly called, they require 
the provision of complex parameters. Contrary, using iCub-HRI, 
one simply specifies the desired action and the name of the object 
to be manipulated, as further demonstrated in Section 4.1.

Other important subsystems are those for speech recognition 
and synthesis. Both are convenience wrappers for the function-
ality offered in the “speech” repository of the iCub ecosystem. 
The speech synthesizer allows for speech production from text 
using a single command “say(),” with the only parameter being 
the sentence to be spoken, while being agnostic to the underly-
ing synthesizer (Acapela,7 eSpeak,8 Festival,9 and SVOX Pico10 
are supported). The speech recognizer relies on the Microsoft 
Speech API,11 which allows recognition and extraction of words 
from spoken utterance given a grammar file (using the command 
“recogFromGrammarLoop()”).

The functionality of the different subsystems is aggregated in 
the icubClient class, which allows using the different subsystems 
from within a single class instance. A configuration file is used 
to specify which subsystems a module requires, such that no 
unnecessary resources are bound. Adding new subsystems is 
straightforward and we provide a tutorial to do so.12

4 https://robotology.github.io/icub-hri/ → iCub-HRI libraries  → Subsystems. 
5 The following interfaces are provided by the ARE subsystem: (1) “home()” to put 
the robot or a specified part in the home position, (2) “take()” to reach and grasp 
an object, (3) “push()” to laterally push an object, (4) “point()” to an object, (5) 
“expect()” to extend the hand and wait for an object, (6) “drop()” an object which 
is currently held, (7) “wave()” the robot’s hands, (8) “look()” at an object, and (9) 
“track()” a moving object.
6 The following interfaces are provided by the KARMA subsystem: (1) “pushKar-
maLeft()” and “pushKarmaRight()” to push an object to the left/right side with a 
specified target position, (2) “pushKarmaFront()” to push an object forwards, and 
(3) “pullKarmaBack()” to bring an object closer to the robot.
7 http://www.acapela-group.com. 
8 http://espeak.sourceforge.net/. 
9 http://www.cstr.ed.ac.uk/projects/festival/. 
10 https://github.com/robotology/speech/tree/master/svox-speech. 
11 https://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx. 
12 https://robotology.github.io/icub-hri/ → Tutorials → Create a new Subsystem.
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3. iCub-HRI ModULeS

The modules accompanying the iCub-HRI library can be grouped 
into four main areas: 1. perception, 2. action, 3. social interac-
tion, and 4. miscellaneous tools. All modules have access to the 
knowledge introduced in the previous section (as they use the 
iCub-HRI library) and none of them is required to run; i.e., one 
can choose which subset of modules to run for each experiment, 
if any.

3.1. Perception Modules
3.1.1. Agent Detector
The agentDetector module is responsible for detecting and 
tracking a human partner using a RGB-D camera mounted 
behind the robot. It converts the joint positions detected by the 
RGB-D camera in the reference frame of the iCub and continu-
ously updates the joint positions of the human partner in the 
working memory.

3.1.2. Default Speech Recognition
The Ears module allows for recognition of speech utterances from 
the human when no other module is trying to recognize speech. 
It takes the role of a central component to redirect the com-
mand extracted from the recognized sentence to the appropriate 
module, while still allowing other modules to access the speech 
recognition subsystem directly if needed.

3.1.3. Object Recognition
The object recognition module within iCub-HRI is based on the 
interactive object learning (IOL) pipeline (Pasquale et al., 2015). 
Given the two input images of the iCub’s eyes, the scene is first 
segmented into the background and the different objects. Each 
object is then classified and stereo vision (Fanello et al., 2014) is 
used to localize the objects. We rely on superquadric models to 
estimate the size and pose of objects (Vezzani et al., 2017), and we 
use the OpenCV object tracker (Kalal et al., 2012) to track them 
even if they are manipulated by the human.

3.1.4. Saliency
The module PASAR (Mathews et  al., 2012) detects the appear-
ance and disappearance of objects, and the saliency of an object 
is increased proportionally to its acceleration. This also allows 
simple detection of pointing actions by measuring the proximity 
of the human’s hand with each of the objects and increasing the 
saliency with inverse proportion to the distance.

3.1.5. Face and Action Recognition
To recognize faces and actions performed on objects, we use 
the Synthetic Sensory Memory module (Martinez-Hernandez 
et  al., 2016). It uses Gaussian Process Latent Variable Models 
(Damianou et al., 2011) to train classifiers for faces and actions, 
which can then be loaded during interaction to perform real-time 
classification.

3.2. Action Modules
3.2.1. Face Tracking
The face tracking module detects the face of a human based on 
Haar cascades implemented in OpenCV (Viola and Jones, 2001) 

and uses the velocity control of the iCub to follow the face. This 
module can be used in human–robot interaction scenarios for 
increased vividness of the robot.

3.2.2. Babbling
The babbling module allows the issue of pseudo random 
(sinusoids) commands to the iCub (either individual or several 
joints). It has been used to learn forward and inverse models 
for the iCub (Zambelli and Demiris, 2017), as well as to learn 
correspondences between the robot’s body parts and that of 
the human (Zambelli et  al., 2016). Within the scope of this 
paper, it is mainly used for body part learning, as described in  
Section 4.2.

3.3. Social Interaction Modules
3.3.1. Proactive Tagging
The proactive tagging module can be used to acquire the names of 
objects (robot), body parts, and human partners. As this module 
plays a central role in the knowledge acquisition tutorial, it is 
further detailed in the corresponding Section 4.2.

3.3.2. Reactive Layer
The reactive layer implements drive reduction mechanisms 
for self-regulating the robot’s behavior. A drive is defined as a 
control loop that triggers appropriate behaviors whenever an 
associated internal state variable goes out of its homeostatic 
range. These drives present a way to self-regulate value in a 
dynamic and autonomous way (Sanchez-Fibla et  al., 2010). 
This has been shown to positively influence the acceptance of  
the human-robot interaction by naive users (Vouloutsi et  al., 
2014; Lallée and Verschure, 2015).

In the social robotic context, we provide two examples of 
drives that allow the robot to balance knowledge acquisition 
and expression in an autonomous way. The drive for knowledge 
acquisition maintains a curiosity-driven exploration of the 
environment by proactively requesting information from a 
human about the present entities (e.g., their name). The drive 
for knowledge expression regulates how the iCub expresses the 
acquired knowledge through synchronized speech, pointing 
actions and gaze. It informs the human about the robot’s current 
state of knowledge and thus maintains the interaction.

3.4. Tools
Several tools provide preprocessing functionalities for the other 
modules or interact with other modules of the iCub ecosys tem 
so they can be easily used within iCub-HRI. The guiUpdater 
trans lates the representations of iCub-HRI to those used within 
the iCubGui. More specifically, it allows the display of location 
for objects and agents stored within the working memory along 
with certain properties, such as their color and name. The opc-
Populator can be used to spawn new entities in simulation and 
control their parameters. This allows testing new functionalities 
in a controlled environment, without the noise encountered 
when using the real robot. We further provide a touchDetector 
that connects to the iCub’s artificial skin, and clusters taxels 
belonging to the same body part. Finally, the referenceFrame-
Handler provides functionalities similar to that of the transform 
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library (TF; Foote, 2013), i.e., transforming a pose from one 
frame (e.g., that of the RGB-D camera) to another (e.g., that of 
the iCub root).

4. USING iCub-HRI

There is a variety of use cases for iCub-HRI. We first show the 
ease of use of iCub-HRI in a representative example related to 
the object manipulation subsystem. We then introduce a tutorial 
which demonstrates the interplay of various components in the 
context of human–robot interaction. Subsequently, we briefly 
describe how an extended version of this tutorial has been used to 
tackle the symbol grounding problem in the DAC-h3 framework 
(Moulin-Frier et al., 2017). This is followed by a description of 
the implications of this library for technical and non-technical 
users alike. Finally, we discuss the platform independence and 
dependencies of iCub-HRI and provide links to the documenta-
tion and repository.

4.1. example Usage of the object 
Manipulation Subsystems
The GitHub repository contains a range of examples, including 
examples of using the KARMA and ARE subsystems to manipulate 
objects, i.e., grasping, pushing, or pulling them, in C++, Python, 
and Matlab. Some examples use yarp::sig::Vector instances to 
specify the target location (important for users looking to employ 
iCub-HRI as a lightweight library), while others rely on the Object 
class introduced earlier (providing a seamless integration with 
the contained object recognition module). Listing 1 shows an 
example which uses the iCub-HRI library to pull an object using 
the KARMA Subsystem, while Listing 2 contains code directly 
communicating with KARMA, which is much less intuitive 
and likely distracts from the actually desired code related to the 
human–robot interaction.

LISTING 1 | Pushing an object using iCub-HRI is straightforward and requires 
the provision of just two parameters: the object to be pushed and the desired 
target position.

#include <yarp/os/all.h>
#include <icubhri/clients/icubClient.h>

int main() {
yarp::os::Network yarp;

icubhri::ICubClient iCub("KARMA_Simple");
if(!iCub.connect()) {return -1;}//connect to 
subsystems

std::string objectName = "octopus";//as recognized by 
object recognition
double targetPositionX = -0.45;

bool ok = iCub.pushKarmaFront(objectName, 
targetPositionX);
yInfo() << (ok ? "Success": "Failed");

return 0;
}

LISTING 2 | Pushing an object communicating directly with KARMA. Besides 
being less readable, this code is also more error prone as the Bottle’s 
components need to be provided with the right type and in the right order. 
Furthermore, many more parameters are involved.

#include <yarp/os/all.h>
#include <yarp/sig/all.h>

yarp::sig::Vector getPos(std::string name) {
//communicate with object recognition module to obtain 
object position
//this is not shown for brevity

}

int main() {
yarp::os::Network yarp;

yarp::os::RpcClient toKarma; toKarma.open("/example/
toKarma");
yarp::os::Network::connect(toKarma.getName(), "/
karmaMotor/rpc");

yarp::sig::Vector pos = getPos("octopus");
double targetPositionX = -0.45;
double radius = fabs(pos[0] - targetPositionX);

yarp::os::Bottle cmd, reply;
cmd.addString("push");
cmd.addDouble(pos[0]); cmd.addDouble(pos[1]); cmd.
addDouble(pos[2]);
cmd.addDouble(-90);//angle theta
cmd.addDouble(radius);//distance to be pushed
toKarma.write(cmd, reply);
bool ok = (reply.get(0).
asVocab() == yarp:os:Vocab:encode("ack"));
yInfo() << (ok ? "Success": "Failed");

return 0;
}

4.2. Knowledge Acquisition Tutorial
The robot can acquire knowledge in two different ways: pro-
actively, where a decaying drive to acquire knowledge triggers 
the behavior to obtain the name of an object or body part, or 
reactively, where the knowledge acquisition follows a human 
command. The demo for this paper is centered around the 
proactive tagging module, which makes use of several sub-
systems and connects directly to several other modules. For 
example, it uses the speech recognition subsystem to acquire 
the names of entities (objects in the vicinity, partners, and body 
parts), the speech synthesis subsystem to enable the robot to 
verbally express itself (in order to ask for object names), and 
the ARE subsystem to point at objects and make them salient. 
Furthermore, it makes use of the functionalities provided by 
a number of other modules presented within the previous 
section, including PASAR to detect which object the partner 
is pointing to, the face recognition module to recognize the 
partner, and the touchDetector to identify which skin patch was 
being touched by the human. An overview of the interaction 
between the modules is shown in Figure 1. All further details, 
including the necessary set-up, configuration files, modules to 
run, and supported interactions, are described in the dedicated 
tutorial. We provide a set of videos of this experiment which 
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FIGURe 1 | Temporal UML diagram for an interaction where a human gives a speech command to the iCub to push an object which is currently unknown to the 
robot. The diagram depicts the involved modules and subsystems, and shows the information flow. After converting the speech command in an action plan, the 
robot first asks the human to indicate the desired object, and subsequently pushes that object. The knowledge database is continuously being updated by the 
agent detector and object recognition system throughout the interaction, and the object name is updated after the human indicated the object by pointing to it.  
In our GitHub repository, we provide another diagram for the case that a drive threshold is hit, which triggers the behavior to tag an unknown object autonomously.
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demonstrates the robustness of the framework in various 
environments.13

4.3. Usage within dAC-h3 Framework
An extended version of the knowledge acquisition tutorial has 
been used to solve the symbol grounding problem, acquire lan-
guage capabilities, execute goal-oriented behavior, and express 
a verbal narrative of the robot’s experience in the world, using 
the DAC-h3 framework (Moulin-Frier et al., 2017). The work of 
Moulin-Frier et  al. (2017) also demonstrates that the software 
framework presented in this paper can be readily used to study 
human–robot interaction experiments with naive subjects.

From the engineering perspective, the library and modules 
of iCub-HRI have been embedded in the Distributed Adaptive 
Control architecture (DAC, mentioned in the Introduction). 
The DAC architecture proposes that the brain can be seen as 
a multi-layered control structure consisting of (1) the body 
(with its sensors, needs and effectors), (2) the reactive layer 
for reflexive predefined control, (3) the adaptive layer for state 
acquisition and model-free reinforcement learning, and (4) the 
contextual layer which acquires model-based goal-oriented poli-
cies. Across these layers, we can distinguish columns of systems 
that processes states of the environment, the self and action as 
depicted in Figure 2.

13 https://github.com/robotology/wysiwyd—“Demonstration 4,” up to the fourth 
minute of the video.

The implementation of iCub-HRI with its subsystems and 
working memory make it particularly suitable in any scenario 
where module integration is driven by a complex multi-layered 
control architecture, with heterogeneous modules communicat-
ing within and between the different control layers.

4.4. More Applications and Use Cases
The central advantage of iCub-HRI is that the library bypasses 
the requirement for obtaining a working knowledge of the opera-
tion of a large range of modules during the normal operation of 
the iCub and their interaction before starting to develop one’s 
specific application on top of these modules. Furthermore, iCub-
HRI’s modular subsystem architecture means that one can easily 
integrate applications developed on top of iCub-HRI to further 
abstract and accelerate the development of robotics applications.

The underlying design principles of iCub-HRI (see Section 
1.2) and the high-level abstractions of the robot’s basic input and 
output systems like speech, vision, and motor control allow a 
wide, varied range of use cases. For users with a non-technical 
background, it significantly reduces the learning curve to exploit 
the iCub robotic platform, with potential applications such as 
robotic art, research into the societal effects of robotics, investiga-
tions into human–robot collaboration and human–robot inter-
action studies investigating the psychological effects of such an 
interaction. For users more familiar with the iCub, the flexibility 
of the library allows them to focus on the core of their applica-
tions, where iCub-HRI provides a bridge to quickly integrate 
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FIGURe 2 | iCub-HRI serves as underlying software framework for the 
depicted DAC-h3 cognitive architecture (see text for more detail). The usage 
within DAC-h3 has shown that several design principles were successfully 
implemented: iCub-HRI was easy to adapt and was extended with several 
other modules. Furthermore, the user study presented by Moulin-Frier et al. 
(2017) was directly based on the knowledge acquisition tutorial presented in 
Section 4.2.
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these applications with the sensory, motor, and affective systems 
of the robot. This reduces the implementation effort which leads 
to faster developments, and allows for accelerated prototyping of 
embodied artificial intelligence applications.

4.5. Platform Independence
This paper specifically aims to provide a software framework to be 
used on the iCub humanoid robot. However, due to the modular 
design of the framework, certain components could be used on 
other robotic platforms as well, as they do not directly interface 
with the iCub’s sensors and/or actuators and are hence robot 
agnostic. The following components are platform independent 
and can directly be used on other robots14:

•	 Working memory (Section 2.1).
•	 Perception modules: agent detector (Section 3.1.1), speech 

recognition (Section 3.1.2), saliency (Section 3.1.4), as well as 
face and action recognition (Section 3.1.5).

•	 Reactive layer (Section 3.3.2); the actions executed by the 
drives can be easily adjusted in a configuration file.

14 Provided they run on YARP, or can be interfaced with YARP through, e.g., the 
YARP-ROS interoperation.

•	 Tools (Section 3.4): the opcPopulator as well as the 
referenceFrameHandler.

All other components are tailored for the iCub and would need 
to be re-implemented or substituted with alternatives on another 
platform.

4.6. dependencies
The only hard dependencies of iCub-HRI are a C++ 11 compat-
ible compiler and YARP. Due to the aspiration to combine various 
components within a single architecture, there are a number of 
soft dependencies: OpenCV, IOL, and superquadric-model for 
object tracking, kinect-wrapper to track the human partner, the 
speech repository for speech synthesis and recognition, as well 
as (a modified version of) KARMA for object manipulation. All 
dependencies are released under free software licenses, specifi-
cally LGPLv2.1 for YARP, BSD-3-Clause in case of OpenCV and 
GPLv2 for all other dependencies.

The installation of these components is further detailed in the 
iCub-HRI repository and we provide a Python script to easily 
keep all dependencies up-to-date. It is also possible to download 
or compile a Docker image which contains all required and 
optional libraries pre-installed and configured.

4.7. download, Licensing, and 
Compatibility
The code is available for download on the designated GitHub 
repository15 alongside the documentation (including class 
diagrams) and tutorials. It is released under the free software 
license GPLv2. The build status is continuously monitored on 
Windows, Linux, and macOS. The code itself can be considered 
stable and has been in adapted from the code which was used in 
the EFAA and WYSIWYD projects for several years.

5. CoNCLUSIoN ANd FUTURe WoRK

We presented iCub-HRI, a software framework which integrates 
various components available within the iCub ecosystem and 
makes them easily accessible by the means of method calls. 
iCub-HRI can be used in various ways, from a very lightweight 
library up toan integrated platform for studies on human–robot 
interaction. While it is tailored for the iCub humanoid robot, 
many parts are platform independent and can be used on other 
robotic platforms as well. We provide a full documentation and 
various tutorials, allowing researchers to easily adapt iCub-HRI 
for their purposes.

One limitation of the presented framework is that while it 
facilitates communication between different modules, it does 
not have any means of manipulating the execution of indi-
vidual modules. This is a disadvantage in case of, e.g., monitor-
ing real-time constraints, which cannot be guaranteed on the 
framework level but only within individual components (this 
is the case for the low-level Cartesian controller employed by 
ARE and KARMA (Pattacini et al., 2010)). Furthermore, as a 

15 https://github.com/robotology/icub-hri. 
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central memory is being employed, there is a delay of the infor-
mation flow from one module to another. Another limitation 
of this work is that no test data are being provided. Providing 
a proper test-suite is beyond the scope of this research, as 
it would need to write test cases for several tens of modules 
(many of them being external), and their communication 
handled by over 100 YARP ports. Writing suitable test cases 
using the testing framework presented by Natale et al. (2016) 
is an interesting research idea which we would like to tackle 
in future works.

A key point for the future adaptation of iCub-HRI will be the 
integration of new components from within the iCub ecosys-
tem as well as state of the art software from related disciplines. 
For example, we intend to replace the current object tracking 
functionality with a state of the art object tracker (Choi et al., 
2017); and to embed the reaching-with-avoidance framework 
(Nguyen et  al., 2016; Roncone et  al., 2016) for safer robot 
actions.
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