
1 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Code
published: 12 June 2018

doi: 10.3389/frobt.2018.00046

Markerless eye-Hand Kinematic
Calibration on the iCub
Humanoid Robot
Pedro Vicente 1*, Lorenzo Jamone 1,2 and Alexandre Bernardino 1

1 Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2 ARQ (Advanced
Robotics at Queen Mary), School of Electronic Engineering and Computer Science, Queen Mary University of London,
London, United Kingdom

Humanoid robots are resourceful platforms and can be used in diverse application
scenarios. However, their high number of degrees of freedom (i.e., moving arms, head and
eyes) deteriorates the precision of eye-hand coordination. A good kinematic calibration
is often difficult to achieve, due to several factors, e.g., unmodeled deformations of the
structure or backlash in the actuators. This is particularly challenging for very complex
robots such as the iCub humanoid robot, which has 12 degrees of freedom and cable-
driven actuation in the serial chain from the eyes to the hand. The exploitation of real-time
robot sensing is of paramount importance to increase the accuracy of the coordination,
for example, to realize precise grasping and manipulation tasks. In this code paper,
we propose an online and markerless solution to the eye-hand kinematic calibration of
the iCub humanoid robot. We have implemented a sequential Monte Carlo algorithm
estimating kinematic calibration parameters (joint offsets) which improve the eye-hand
coordination based on the proprioception and vision sensing of the robot. We have shown
the usefulness of the developed code and its accuracy on simulation and real-world
scenarios. The code is written in C++ and CUDA, where we exploit the GPU to increase
the speed of the method. The code is made available online along with a Dataset for
testing purposes.

Keywords: code:C++, humanoid robot, markerless, hand pose estimation, sequential monte carlo parameter
estimation, kinematic calibration

1. IntRoduCtIon and Related WoRK

An intelligent and autonomous robot must be robust to errors on its perceptual and motor systems to
reach and grasp an object with great accuracy. The classical solution adopted by industrial robots rely
on a precise calibration of the mechanics and sensing systems in controlled environments, where sub-
millimeter accuracy can be achieved. However, a new emerging market is targeting consumer robots
for collaboration with humans in more general scenarios. These robots cannot achieve high degrees of
mechanical accuracy, due to (1) the use of lighter and flexible materials, compliant controllers for safe
human-robot interaction, and (2) lower sensing precision due to varying environmental conditions.
Indeed, humanoid robots, with complex kinematic chains, are among the most difficult platforms to
calibrate and model properly with the precision required to reach and/or grasp objects. A small error in
the beginning of the kinematic chain can generate a huge mismatch between the target location (usually
coming from vision sensing) and the actual 6D end-effector pose.

Edited by:
Giorgio Metta,

Fondazione Istituto Italiano di
Technologia, Italy

Reviewed by:
Claudio Fantacci,

Fondazione Istituto Italiano di
Technologia, Italy

 Hyung Jin Chang,
Imperial College London,

United Kingdom

*Correspondence:
Pedro Vicente

 pvicente@ isr. tecnico. ulisboa. pt

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 21 August 2017
Accepted: 06 April 2018

Published: 12 June 2018

Citation:
Vicente P, Jamone L and

Bernardino A
 (2018) Markerless Eye-Hand

Kinematic Calibration on the iCub
Humanoid Robot.

Front. Robot. AI 5:46.
doi: 10.3389/frobt.2018.00046

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00046&domain=pdf&date_stamp=2018-06-12
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00046
http://www.frontiersin.org/articles/10.3389/frobt.2018.00046/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00046/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00046/full
http://loop.frontiersin.org/people/245917/overview
https://loop.frontiersin.org/people/31029/overview
http://loop.frontiersin.org/people/158486/overview
https://creativecommons.org/licenses/by/4.0
mailto:pvicente@isr.tecnico.ulisboa.pt
https://doi.org/10.3389/frobt.2018.00046

2 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

Eye-hand calibration is a common problem in robotic systems that
several authors tried to solve exploiting vision sensing [e.g., Gratal
et al. (2011); Fanello et al. (2014); Garcia Cifuentes et al. (2017);
Fantacci et al. (2017)]1.

2. PRoPosed solutIon

In this code paper, we propose a markerless hand pose estimation
software for the iCub humanoid robot [Metta et al. (2010)] along
with an eye-hand kinematic calibration. We exploit the 3D CAD
model of the robot embedded in a game engine, which works as
the robot’s internal model. This tool is used to generate multiple
hypotheses of the hand pose and compare them with the real
visual perception. By using the information extracted from the
robot motor encoders, we generate hypotheses of the hand pose
and its appearance in the cameras, that are combined with the
actual appearance of the hand in the real images, using particle
filtering, a sequential Monte Carlo method. The best hypothesis
of the 6D hand pose is used to estimate the corrective terms
(joint offsets) to update the robot kinematic model. The visual
based estimation of the hand pose is used as an input, together
with the proprioception, to continuously calibrate (i.e., update)
the robot internal model. At the same time, the internal model
is used to provide better hypotheses for the hand position in
the camera images, therefore enhancing the robot perception.
The two processes help each other, and the final outcome is that
we can keep the internal model calibrated and obtain a good
estimation of the hand pose, without using specialized visual
markers on the hand.

The original research work [Vicente et al. (2016a) and Vicente
et al. (2016b)] contains: (1) a complete motivation from the
developmental psychology point of view and theoretical
details of the estimation process, and (2) technical details
on the interoperability between the several libraries and the
GPGPU approach for an increased boost on the method speed,
respectively.

The present manuscript is a companion and complementary
code paper of the method presented in Vicente et al. (2016a). We
will not describe with full details the theoretical perspective of
our work, instead we will focus on the resulting software system
connecting the code with the solution proposed in Vicente et al.,
2016b. Moreover, the objective of this publication is to give a
hands-on perspective on the implemented software which could
be used and extended by the research community.

The source code is available at the official GitHub code repository:

https:// github. com/ vicentepedro/
Online- Body- Schema- Adaptation

and the documentation on the Online Documentation page:

1 For a more detailed review of the state of the art, please check the article Vicente
et al. (2016a)

http:// vicentepedro. github. com/
Online- Body- Schema- Adaptation

We use a Sequential Monte Carlo parameter estimation method
to estimate the calibration error β in the 7D robot’s joint space
corresponding to the kinematic chain going from each eye to the
end-effector. Let us consider:

 θ = θr + β (1)

where θr are the real angles; θ are the measured angles; β are joint
offsets representing calibration errors. Given an estimate of the
joint offsets (̂β), a better end-effector’s pose can be retrieved using
the forward kinematics.

One of the proposed solutions for using Sequential Monte Carlo
methods for parameter estimation2 (i.e., the parameters β in our
problem), is to introduce an artificial dynamics, changing from a
static transition model

(
βt = βt−1

)
 to a slowly time-varying one:

 βt = βt−1 + wt (2)

where wt is an artificial dynamic noise that decreases when t
increases.

3. softWaRe desIgn and
aRCHIteCtuRe PRInCIPles

The software design and architecture for implementing the eye-hand
kinematic calibration solution has the following requirements: (1)
the software should be able to run in real-time since the objective
is to calibrate the robot during a normal operating behaviour, and
(2) it should be possible to run the algorithm in a distributed way,
i.e., run parts of the algorithm in several computers in order to
increase computation power.

The authors decided to implement the code in C++ in order
to cope with the real-time constraint, and to exploit the YARP
middleware [Metta et al. (2006)] to distribute the components of
the algorithm in more than one machine.

The source code for these modules are available at the official
GitHub code repository (check section 2).

The code is divided into three logical components: (1) the
hand pose estimation (section 4.1), (2) the Robot’s Internal
Model generator (section 4.2), and (3) the likelihood assessment
(section 4.3), which are implemented, respectively, at the following
repository locations:

•  modules/handPoseEstimation
•  include/handPoseEstimationModule.h
•  src/ hand Pose Esti mati onMain. cpp
•  src/ hand Pose Esti mati onModule. cpp

•  modules/internalmodel

2 See Kantas et al. (2009) for other solutions

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
https://github.com/vicentepedro/Online-Body-Schema-Adaptation
https://github.com/vicentepedro/Online-Body-Schema-Adaptation
http://vicentepedro.github.com/Online-Body-Schema-Adaptation
http://vicentepedro.github.com/Online-Body-Schema-Adaptation

Vicente et al.

3 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

•  icub- internalmodel- rightA- cam- Lisbon. exe
•  icub- internalmodel- leftA- cam- Lisbon. exe

•  modules/likelihodAssessment
•  src/ Cuda_ Gl. cu
•  src/ likelihood. cpp

The software architecture implementing the proposed eye-hand
calibration solution can be seen in Figure 1. The first component
- Hand Pose Estimation - is responsible for proposing multiple
hypotheses according to the posterior distribution. We use a
Sequential Monte Carlo parameter estimation method in our work
[check Vicente et al. (2016a) Section 3.3 for further theoretical
details]. The definitions of the functions presented in the architecture
(Figure 1) can be found in the .cpp and .h files and will be
explained in detail in Section 4.1. The Hand Pose Estimation is OS
independent and can run in any computer with the YARP library
installed.

The second component - Robot’s Internal Model - generates
hypotheses of the hand pose based on the 3D CAD model of the
robot and was build using the game engine Unity®. There are two
versions of the internal model on the repository. One for the right-
hand (rightA) and another one for the left-hand (leftA). Our
approach was to divide the two internal models since we have separated
calibration parameters for the head-left-arm and for the head-right-
hand kinematic chains. The Unity platform was chosen to develop the
internal model of the robot since it is able to generate a high number
of frames per second on the GPU even for complex graphics models.
The scripting component of the Unity game engine was programmed
in C#. The bindings of YARP for C# were used in order to facilitate the
internal model generator to communicate with the other components
of the system. This component is OS-dependent and only runs on
Windows and the build version available on the repository does not
require a paid license of Unity Pro.

Finally, the likelihood assessment is called inside the Robot’s
Internal Model as a Dynamic Link Library and exploits GPGPU
programming to compare the real perception with the multiple
generated hypotheses. The GPGPU programming, using the CUDA
library [Nickolls et al. (2008)], allows the algorithm to run in quasi-
real-time. The .cpp file contains the likelihood computation method,
and the .cu the GPGPU program.

Our eye-hand calibration solution exploits vision sensing
to reduce the error between the perception and the simulated
hypotheses, the OpenCV library [Bradski (2000)] with CUDA
enabled capabilities [Nickolls et al. (2008)] was chosen to exploit
computer vision algorithms and run them in real-time.

The interoperability between the OpenCV, CUDA and OpenGL
libraries was studied in Vicente et al. (2016b). In the particular
case of the iCub humanoid robot [Metta et al. (2010)], and to suit
within the YARP and iCub architectures, we encapsulated part of
the code in an RFModule3 class structure and use YARP buffered
ports4 and RPC services5 for communications and user interface

3 http://www.yarp.it/classyarp_1_1os_1_1RFModule.html
4 http://www.yarp.it/classyarp_1_1os_1_1BufferedPort.html
5 http://www.yarp.it/classyarp_1_1os_1_1RpcServer.html

(Check section 5.2.3). The hand pose estimation module allows
the user to send requests to the algorithm which follows an event-
driven architecture: where for each new incoming information
from the robot (cameras and encoders) a new iteration of the
Sequential Monte Carlo parameter estimation is performed.

4. Code desCRIPtIon

4.1. Hand Pose estimation Module
4.1.1. Initializing the Sequential Monte Carlo parameter
estimation - initSMC Function
In the function initSMC we initialize the variables of the
Sequential Monte Carlo parameter estimation, i.e., the initial
distribution p(β0) [Eq. (10) in Vicente et al. (2016a)], and the
initial artificial dynamic noise. The Listings 1 contains the
initSMC function where some of the variables (in red) are
parametrized at initialization time (check sub-section 5.2.1 for
more details on the initialization parameters). We use a random
seed generated according with the current time and initialize
each angular offset with a Gaussian distribution: N(initialMean;
initialStdDev).

4.1.2 Read Image, Read Encoders, ProcessImages
and SendData
The left and right images along with the head and arm encoders
are read at the same time to ensure consistency between the several
sensors.

The reading and processing procedure of the images are defined
inside the function:

handPoseEstimationModule::updateModule()

that can be found on the file:

src/ hand Pose Esti mati onModule. cpp.

The function process Images (see Listings 2) applies a Canny
edge detector and a distance transform to both images separately.
Moreover, the left and the right processed images are merged, i.e.,
concatenated horizontally, in order to be compared to the generated
hypotheses inside the Robot’s internal model.

The Hand pose estimation module sends: (1) the pre-processed
images, (2) the head encoders and (3) the arm encoders (θ) along
with the offsets (β) to the Robot’s internal model6. This procedure
is defined inside the function:

handPoseEstimationModule::runSMCIteration()

4.1.3. Update Likelihood
The Hand Pose Estimation module receives the likelihood vector
from the Robot’s internal model and updates the likelihood value
for each particle on the for-loop at line:

 hand Pose Esti mati onModule. cpp# L225

6 See Eq. 1 and handPoseEstimationModule.cpp#L214

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

4 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

fIguRe 1 | Architecture of the software. The hand pose estimation component (handPoseEstimation) initiates the Sequential Monte Carlo parameter estimation
method (initSMC) and waits for a start command from the user. The perception and proprioception (cameras and encoders) of the robot are received and the
parameter estimation starts. The real image and the particles are sent (sendData) to the Robot’s internal Model (icub-internalmodel-rightA-cam-Lisbon.exe or
icub-internalmodel-leftA-cam-Lisbon.exe) in order to generate the hypotheses. The likelihood assessment of each hypothesis is calculated using a Dynamic Link
Library (DLL) file inside the Robot’s internal model. The likelihood of each particle is saved and a Kernel Density estimation is performed to calculate the best
calibration parameters. The Resampling step is performed and a new set of particles are saved for the next iteration of the Sequential Monte Carlo parameters
estimation.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Vicente et al.

5 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

4.1.4. Kernel Density Estimation
Although the state is represented at each time step as a
distribution approximated by the weighted particles, our best
guess for the angular offsets can be computed using a Kernel
Density Estimation (KDE) to smooth the weight of the particles
according to the information of neighbor particles, and choose
the particle with the highest smoothed weight (ωʹ[i]) as our state
estimate [Section 3.5 of Vicente et al. (2016a)].

The implementation of the KDE with a Gaussian kernel can
be seen in Listings 3. The double for-loop implements the KDE
accessing each particle (iParticle) and computing the influence
of each neighbor (mParticle) according to the relative distance
in the 7D-space between the two particles and the likelihood of
the neighbor [cvmGet (particles, 7,mParticle)]. The parameters
that can be fine-tuned are highlighted in red.

4.1.5. Best Hypothesis
The best hypothesis, computed using the KDE, is sent through
a YARP buffered port from the module after N iterations. The
port has the following name:

/hpe/bestOffsets:o

The parameter N (the number of elapsed iterations before
sending the estimated angular offsets) can be changed by the user
at initialization using the minIteration parameter (check
Section 5.2.1 for more details) and the objective is to ensure the
filter convergence before using the estimate (e.g., to control the

robot). This is an important parameter since in the initial stages
the estimation can jump a lot from an iteration to the next one
(before converging to a more stable solution).

4.1.6. Update Artificial Noise, Resampling and New
Particles
The artificial noise is updated according to the maximum likelihood
criteria. See the pseudo-code on Listings 4, which corresponds to
line 230 to 254 in the file:

src/ hand Pose Esti mati onModule. cpp

We update the artificial noise according to the maximum
likelihood, i.e., if the maximum likelihood is below a certain
threshold (minimumLikelihood), we do not perform the resampling
step and we increase the artificial noise. On the other hand, if the
maximum likelihood is greater than the threshold we apply the
resampling and decrease the artificial noise. The objective is to
prevent the particles to become trapped in a “local maximum”
since the current best solution is not worthy of resampling the
particles. Indeed, this approach will force them to explore the
state space.

The trade-off between exploration and exploitation is
measured according to the maximum likelihood in each
time step of the algorithm. The idea is to exploit the low
number of particles in a clever way. Moreover, the upper and
lower bound ensure, respectively, that: (1) the noise will not

listing 3 | Kernel density estimation with Multivariate normal distribu-
tion Kernel: modules/handPoseestimation/src/handPoseestimationMo-
dule.cpp

1. void handPoseEstimationModule :: kernelDensityEstimation ()
2.{
3. // Particle i
4. double maxWeight = 0.0;
5. for (int iParticle = 0; iParticle <n Particles; iParticle ++)
6. {
7. double sum1 = 0.0;
8. // Particle m
9. for (int mParticle = 0; mParticle <nParticles; mParticle++)
10. {
11. double sum2 = 0.0;
12. if ((float) cvmGet (particles, 7, mParticle) > 0)
13. {
14. // Beta 0.. to..6
15. for (int joint = 0; joint <7; joint ++)
16. {
17. // || pi–pj ||^2 / KDEStdDev ^2
18. sum2 += pow(((float) cvmGet (particles, joint, mParticle)–
(float) cvmGet (particles, joint, iParticle)) , 2) / pow(KDEStdDev, 2);
// Multivariate normal distribution
19. }
20. sum1 += s t d :: exp(–sum2/(2)) *cvmGet (particles, 7 , mParticle);
21. }
22. }
23. sum1 = sum1 / (nParticles*sqrt (pow(2*M_PI, 1) *pow(KDEStdDev, 7)));
24. double weight = alphaKDE*sum1 + cvmGet (particles, 7 , iParticle);
25. if (weight>maxWeight)
26. {
27. maxWeightIndex= iParticle; // save the best particle index
28. }
29. }
30.}

listing 1 | HandPoseestimationModule::initsMC function. defined in
handPoseestimationModule.cpp

1. bool handPoseEstimationModule :: initSMC ()
2. {
4. // Generate random particles
5. srand((unsigned int)time(0)); // make sure random numbers are really
random.
6. rngState = cvRNG(rand());
7. // initialize Beta1
8. cvRandArr(&rngState, particles 1, CV_RAND_NORMAL,
cvScalar(initialMean), cvScalar(initialStdDev));
9. … … // similar for particles2 to particles6
10. cvRandArr (&rngState, particles7, CV_RAND_NORMAL,
cvScalar(initialMean) , cvScalar(initialStdDev));
11. // Artificial Noise Initialization
12. artifNoiseStdDev = initialArtificialNoiseStdDev;
13. }

listing 2 | HandPoseestimationModule::processImages. defined in
handPoseestimationModule.cpp

1. Mat handPoseEstimationModule :: processImages (Mat inputImage)
2. {
3. Mat edges , dt Image;
4. cvtColor(inputImage, edges, CV_RGB2GRAY);
5. // Blur Image
6. blur(edges, edges, Size (3, 3));
7. Canny(edges, edges, 65, 3*65,3);
8. threshold(edges, edges, 100,255,THRESH_BINARY_INV); // binary Image
9. distanceTransform(edges, dt Image, CV_DIST_L2, CV_DIST_MASK_5);
10. return dtImage;
11. }

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

6 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

increase asymptotically and the samples will be spread over
the 7D state-space and (2) the particles will not end-up all
at the same value, which can happen when the random noise
is Zero.

On the resampling stage, we use the systematic resampling
strategy [check Hol et al. (2006)], which ensures that a particle
with a weight greater than 1/M is always resampled, where M is
the number of particles.

4.2. Robot’s Internal Model generator
The Listings 5 shows the general architecture of the Robot’s Internal
Model Generator using pseudo-code.

4.2.1. Initialization of the Render Textures
The render textures, which will be used to render the two camera
images, are initialized for each particle for both left and right views
of the scene.

4.2.2. Generate Hypotheses
The hypotheses are generated on a frame-based approach, i.e., we
generate one hypothesis for each frame of the “game”. After we receive
the vector with the 200 hypotheses to generate, we virtually move
the robot to each of the configurations to be tested and record both
images (left and right) in a renderTexture.

After the 200 generations, we call the likelihood assessment DLL
function to perform the comparison between the real images and
the generated hypotheses.

The available version of the Robot’s internal model generator is an
executable compiled and self-contained which works on Windows-
based computers with the installed dependencies7. Moreover, this

7 The list of dependencies can be seen on Section 5.1.2

does not require neither the Unity® Editor to be installed in the
computer nor the Unity Pro license.

More details on the creation of the Unity® iCub Simulator for this
project can be found in Vicente et al. (2016b) Sec. 5.2 - “The Unity®
iCub Simulator”.

4.3. likelihood assessment Module
The likelihood assessment is based on the observation model
defined in Vicente et al. (2016a) Section 3.4.2.

We exploit an edge-based extraction approach along with
a distance transform algorithm computing the likelihood
using the Chamfer matching distance [Borgefors and Bradski
(1986)].

In our code, these quantities are computed in the GPU using the
OpenCV and CUDA libraries, and the interoperability between
these libraries and the OpenGL library. The solution adopted
was to add the likelihood assessment as a cpp plugin called
inside the internal model generator module. The likelihood. cpp
file, particularly the function CudaEdgeLikelihood, is where the
likelihood of each sample is computed. Part of the code of the
likelihood function is shown and analysed in Listings 6. Up
to the line 21 of the Listings 6, we exploit the interoperability
between the libraries used (OpenGL, CUDA, OpenCV) and after
line 21 we apply our likelihood metric using the functionality of
the OpenCV library, where GgpuMat is the generated Image of
the ith sample and GgpuMat_R is the real Distance Transform
image. In line 35, the lambdaEdge is a parameter to tune the
distance metric sensitivity, which is initialized at the value 25
in line 1 (corresponding to line 148 of the C++ file)8. When
the generated image does not have edges (i.e., the hand is not
visible by the cameras), we force the likelihood of this particle
to be almost zero (line 37 and 39, respectively). The maximum
likelihood (i.e., the value 1.0) is achieved when each entry of

8 Check Vicente et al. (2016a) Eq (21) for more details on the lambdaEdge
parameter

listing 4 | Pseudo Code updating artificial noise corresponding to part
of the function runsMCIteration() within file: src/handPoseestimationMo-
dule.cpp

1. IN handPoseEstimationModule :: runSMCIteration ()
2.{
3. …
4. // Resampling or not Resampling. That’s the Question
5. if (maxLikelihood >minimumLikelihood) {
6. systematic_resampling (); // Check Section Resampling and New Particles
7. reduceArtificialNoise ();
8. }
9. else { // do not apply resampling stage
10. increaseArtificialNoise ();
11. }
12. if (artifNoiseStdDev > upperBoundNoise) { // upperbound of artificial noise
13. artifNoiseStdDev = upperBoundNoise;
14. }
15. if (artifNoiseStdDev < lowerBoundNoise) { // lowerbound of artificial noise
16. artifNoiseStdDev = lowerBoundNoise;
17. }
18. addNoiseToEachSample ()
19.}

listing 5 | Pseudo-Code Robot's internal model.

1. InitRenderTextures () // Initialization of the strutures to receive
2.
3.for (each iteration) // for each iteration of the SMC
4.{
5. waitForInput (); // wait for input vector with particles to be generated
6.
7. for (each particle) {
8. moveTheInternalModel () // Change the robot’s configuration
9. RenderAllucinatedImages (); // render left and right image on a render
texture
10. nextFrame ();
11. }
12. // After 200 frames call DLL function
13. ComputeLikelihood (AllucinatedImages (200), RealImage) // Call the DLL
function (CudaEdgeLikelihood) to compare the hypotheses with the real image.
14.}

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Vicente et al.

7 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

the result image is zero. This happen when every edge on the
generated image match a zero distance on the distance transform
image. The multiplication by 1,000 and the int cast in line 42 is
used to send the likelihood as a int value (the inverse process
is made in the internal model when it receives the likelihood
vector) and it is one of the limitations of the current approach

due to software limitations the authors could not send directly
a double value between 0 and 1.

5. aPPlICatIon and utIlIty

The Markerless kinematic calibration can run during normal
operations of the iCub robot. It will update the joint offsets
according to the new incoming observations. Moreover, one
can also stop the calibration and use the estimated offsets so
far, however, to achieve a better accuracy in different poses
of the end-effector the method should be kept running
in an online fashion to perform a better adaptation of
the parameters.

The details of the dependencies, installation and how to run
the modules can be found at Online Documentation page (check
Section 2).

5.1. Installation and dependencies
The dependencies of the proposed solution can be divided
in two sets of libraries: (1) the libraries needed to run the
handPoseEstimation module, and (2) the libraries needed
to run the Robot’s internal model and the likelihood
Assessment.

5.1.1. Hand Pose Estimation Module
The handPoseEstimation depends on YARP library, which
can be installed following the installation procedure of the
official repository9. Moreover, it depends on the OpenCV
library10.

We tested this module with the last release of YARP (i.e.,
June 15, 2017), version 2.3.70, with the OpenCV library V2.4.10
and V3.3 and the code works with both versions. The authors
recommend the reader to follow the official installation guides
for these libraries.

To install theses modules, one can just run CMake using the
CMakeLists. txt on the folder:

/modules/handPoseEstimation/

5.1.2 Robot’s Internal Model Generator and Likelihood
Assessment
The Robot’s internal model and the likelihood assessment
depend on YARP library for communication and on the OpenCV
library with CUDA enabled computation (i.e., installing the
CUDA toolkit) for image processing and GPGPU accelerated
algorithms. A Windows machine should be used to install this
module.

The tested version of the OpenCV library was V.2.4.10 with
the CUDA toolkit 6.5. The C# bindings for the YARP middleware
on a windows machine should be compiled. The details regarding
the installations procedures can be found at the following URL:

9 https://github.com/robotology/yarp
10 It is not mandatory the CUDA-enabled capabilities

listing 6 | likelihood assessment: modules/likelihoodassessment/src/
likelihood.cpp

 1. int lambdaEdge = 25;
 2. // For each particle i – line 149 modules / likelihoodAssessment / src /
likelihood.cpp
 3. // Interopelability between the several libraries (OpenGL , CUDA, OpenCV)
 4. gltex =(GLuint) (size_t) (ID[i]); // ID is a vector with pointers to the render
textures
 5. glBindTexture(GL_TEXTURE_2D, gltex);
 6. GLint width, height, internalFormat;
 7. glGetTexLevelParameteriv(GLTEXTURE_2D, 0, GL_TEXTURE_
COMPONENTS, &internalFormat); // get internal format type of GL texture
 8. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH,
&width); // get width of GL texture
 9. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT,
&height); // get height of GL texture
 10.
 11. checkCudaErrors(cudaGraphicsGLRegisterImage (&cuda_tex_screen_
resource , gltex , GL_TEXTURE_2D, cudaGraphicsMapFlagsReadOnly));
 12. // Copy color buffer
 13. checkCudaErrors(cudaGraphicsMapResources (1, &cuda_tex_screen_
resource , 0));
 14. checkCudaErrors(cudaGraphicsSubResourceGe tMappedArray (&cuArr ,
cuda_tex_screen_resource, 0, 0));
 15. BindToTexture(cuArr); // BindToTexture Functions defined in Cuda_Gl.cu
 16.
 17. DeviceArrayCopyFromTexture((float3*) gpuMat.data, gpuMat.step,
gpuMat.cols, gpuMat.rows);//DeviceArrayCopyFromTexture function defined on
Cuda_Gl.cu
 18.
 19. checkCudaErrors(cudaGraphicsUnmapResources (1, &cuda_tex_screen_
resource, 0));
 20. checkCudaErrors(cudaGraphicsUnregisterResource (cuda_tex_screen_
resource));
 21. cv::gpu::cvtColor(gpuMat, GgpuMat,CV_RGB2GRAY);
 22.
 23. // Apply the likelihood Assessment
 24. // GgpuMat – generated Image
 25. // GgpuMat_R – Real Distance Transform image
 26. cv :: gpu :: multiply (GgpuMat, GgpuMat_R, GpuMatMul);
 27. cv :: Scalar sumS = cv :: gpu :: sum(GpuMatMul);
 28.
 29. /*
 30. Check the article:
 31. Online Body Schema Adaptation Based on Internal Mental Simulation and
Multisensory Feedback, Vicente et al.
 32. In particular, Equation (21)
 34. */
 35. sum = sumS [0]*lambdaEdge; // lambdaEdge is a tuning parameter for
distance sensitivity
 36. nonZero = (float) cv::gpu::countNonZero (GgpuMat); // generated image
 37. if (nonZero ==0) {
 38. likelihood [i] = 0.000000001; // Almost Zero
 39. }
 40. else {
 41. result = sum/nonZero;
 42. likelihood[i] = (int) ((cv::exp(– result)) *1000);
43. }
44.}

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

8 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

http://www. yarp. it/ yarp_ swig. html# yarp_
swig_ windows.

The C# bindings will allow the internal model generator to
communicate with the other modules.

The C# bindings will generate a DLL file that, along with
the DLL generated from the likelihood assessment module,
should be copied to the Plugins folder of the internal model
generator. In the official compiled version of the repository
this folder has the following path: internalmodel/icub-
internalmodel-rightA-cam-Lisbon_Data/
Plugins/

The complete and step-by-step installation procedure can
be seen in the Online Documentation page on the Installation
section.

5.2. Running the Modules
The proposed method can run on a cluster of computers connected
with the YARP middleware. The internal model generator should
run on a computer with Windows Operating System and with
CUDA capabilities. The step-by-step running procedure guide
can be found on the Online Documentation page. The rest of the
section is organized with a high level perspective of running the
algorithm. The YARP connections required between the several
components can be connected through the XML file under the
app/scripts folder.

5.2.1. Running the Hand Pose Estimation and its
parameters
The Hand Pose Estimation can be initialized using the
yarpmanager or in a terminal running the command:

handPoseEstimation [--<parameter_name>
<value > …]

where, <value> is the value for one of the parameters
(<parameter_name>) defined in the itemize list below:

•  name: name of the module (default =“hpe”)
•  arm: arm which the module should connect to. (default = right’)
•  initialMean: mean for the initial distribution of the particles

[in degrees]. (default = 0.0°)
•  initialStdDev: StdDev of the initial distribution of the

particles degrees
•  artificialNoiseStdDev: initial Artificial Noise (StdDev) to

spread the particles after each iteration (default = 3.0°)
•  lowerBound: artificial noise lower bound (StdDev). Should be

greater than Zero to prevent the particles to collapse in one single
value (default = 0.04°)

•  upperBound: artificial noise upper bound (StdDev). The artificial
noise should have a upper bound to prevent the particles to diverge
after each resampling stage (default = 3.5°)

•  minimumLikelihood: minimumLikelihood [0,1] in order to
resample the particles (default = 0.55)

•  increaseMultiplier: increase the artificial noise of a certain value
(currentValue*increaseMultiplier) if the maximum likelihood is
lower than the minimumLikelihood (default = 1.15)

•  decreaseMultiplier: decrease the artificial noise of a certain
value (currentValue*decreaseMultiplier) if the maximum
likelihood is greater than the minimumLikelihood (default =
0.85)

•  KDEStdDev: StdDev of each kernel in the Kernel Density
Estimation algorithm (default = 1.0°)

•  minIteration: minimum number of iterations before sending
the estimated offsets. The objective is to give time to the algorithm
to converge, without this feature one can receive completely
different offsets from iteration t to t + 1 during the filter
convergence (default = 35)

fIguRe 2 | Projection of the fingertips on the left camera on simulated robot experiments. The blue dot represents the end-effector projection (i.e., base of the
middle finger), the red represents the index fingertip, the green the thumb fingertip, the dark yellow the middle fingertip and the soft yellow the ring and little
fingertips. On the left image (a) is the canonical projection (i.e., with ̂β = 0) and on the right image (B) the estimated offsets (̂β).

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://www.yarp.it/yarp_swig.html#yarp_swig_windows.
http://www.yarp.it/yarp_swig.html#yarp_swig_windows.

Vicente et al.

9 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

5.2.2. Running the Robot’s Internal Model
The internal model generator should run on a terminal using
the following command:

 icub- internalmodel- rightA- cam- Lisbon. exe
-force-opengl

The -force-opengl argument will force the robot’s
internal model to use the OpenGL library for rendering purposes,
which is fundamental for the libraries interoperability.

5.2.3. User interface
The user can send commands to the Hand Pose estimation
algorithm through the RPC port hpe/rpc:i. The RPC port acts
like a service to the user where the algorithm can be started,
stoped or paused/resumed. It is also possible to request the last
joint offsets estimated by the algorithm. The thrift file (modules/
handPoseEstimation/ handPoseEstimation. thrift) contains the
input and output of each RPC service function (i.e., start, stop,
pause, resume, lastOffsets and quit). More details about these
commands can be seen in the use procedure on the documentation.
Moreover, after connecting to the RPC port (yarp rpc hpe/rpc:i),
the user can type help to get the available commands. The
module also replies the input and output parameters of a given
command if the user type help FunctionName (e.g., help start).

6. exPeRIMents and exaMPles of
use

The experiments performed with the proposed method on the
iCub simulator, with ground truth data, have shown a good
accuracy on the hand pose estimation, where artificial offsets
were introduced in the seven joints of the arm. The results on the
real robot have shown a significant reduction of the calibration
error [Check Vicente et al. (2016a) Section 5 for more results in
simulation (Section 5.1) and with the real iCub (Section 5.2)].

For the reader to be able to test the algorithm, the authors
collected a simulated dataset (encoders of the head and arms, and
the left and right images) which can be used to test the algorithm.

The simulation results of the present article were obtained
running the above-stated code with the default parameters on
the collected dataset.

The dataset11 was collected using a visual simulator based on
the CAD model of the iCub humanoid robot adding artificial
offsets in the arm joints. The artificial angular offsets β were the
following:

β = { – 10.0, – 10.0, 6.0, – 7.0, – 1.0, – 20.0, 7.0}°.

The robot performed a babbling movement which consists in a
random walk in each joint. The minimum and maximum values of
the uniform distribution used to generate the babbling movement
starts at [–5, 5]°, and is reduced during the movement to [– 0.5,
0.5]°, respectively. Despite a great amount of errors in the robot’s
kinematic chain, the algorithm was able to converge to the
solution in Figure 2. Moreover, the cluttered environment on the
background did not influence the filter convergence. The reader
can see the projection of the fingertips on the left camera image:
(1) according to the canonical representation on Figure 2A (where
it is assumed an error-free kinematic structure, i.e., with ̂β = 0
and (2) the corrected kinematic structure using the algorithm
implemented and documented in this code paper on Figure 2B.

The convergence of the algorithm along with a side-by-side
comparison with the canonical solution can be seen in the
following video: https:// youtu. be/ 0tzLFqZLbxc

On the real robot, we already performed several experiments
in previous works, with different initial and final poses using
the 320 × 240 cameras. In Figure 3 one can see one example of
the hand estimation. While the image on the left (Figure 3A)
shows the canonical estimation of the hand projected on the
left camera image according to the non-calibrated kinematic
chain, the image on the right (Figure 3B) shows the corrected
kinematic chain which originates a better estimation of the
hand pose. The rendering of the estimated hand pose was done
taking into account the joint offsets on the kinematic chain before
computing the hand pose in the image reference frame.

11 https://github.com/vicentepedro/eyeHandCalibrationDataset-Sim

fIguRe 3 | Projection of the fingertips on left camera in real robot experiments. On the left image (a) the canonical projection (i.e., with β̂ = 0) is shown, and on
the right (B) the projection according with the corrected kinematic chain using the estimated offsets (̂β).

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
https://youtu.be/0tzLFqZLbxc

10 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

RefeRenCes

Borgefors, G., and Bradski, G. (1986). Distance transformations in digital images.
Computer Vision Graphics and Image Processing 34 (3), 344–371. doi: 10.1016/
S0734-189X(86)80047-0

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
Fanello, S.R., Pattacini, U., Gori, I., Tikhanoff, V., Randazzo, M., and Roncone,

A. (2014). “3D stereo estimation and fully automated learning of eye-hand
coordination in humanoid robot” IEEE-RAS International Conference on
Humanoid Robots 1028–1035.

Fantacci, C., Pattacini, U., Tikhanoff, V., and Natale, L. (2017). Visual end-effector
tracking using a 3D model-aided particle filter for humanoid robot platforms.
arXiv preprint arXiv 1703, 04771.

Garcia Cifuentes, C., Issac, J., Wuthrich, M., Schaal, S., and Bohg, J. (2017).
Probabilistic articulated real-time tracking for robot manipulation. IEEE
Robot. Autom. Lett. 2 (2), 577–584. doi: 10.1109/LRA.2016.2645124

Gratal, X., Romero, J., and Kragic, D. (2011). “Virtual Visual Servoing for Real-
Time Robot Pose Estimation” Proc. of the 18th IFAC World Congress 9017–
9022.

Hol, JD., Schon, TB., and Gustafsson, F. (2006). “On resampling algorithms for
particle filters” IEEE Nonlinear Statistical Signal Processing Workshop 79–82.

Kantas, N., Doucet, A., Singh, S. S., and Maciejowski, J. M. (2009). “An overview
of Sequential Monte Carlo methods for parameter estimation on general state
space models,” in IFAC Symposium on System Identification (SYSID), Vol. 42,
774–785. doi: 10.3182/20090706-3-FR-2004.00129

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
International Journal of Advanced Robotic Systems 3 (1), 8. doi: 10.5772/5761

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in
cognitive development. Neural Netw. 23 (8-9), 1125–1134. doi: 10.1016/j.
neunet.2010.08.010

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue 6 (2), 40–53. doi: 10.1145/1365490.1365500

Vicente, P., Jamone, L., and Bernardino, A. (2016a). Online body schema adaptation
based on internal mental simulation and multisensory feedback. Front. Robot.
AI 3:7. doi: 10.3389/frobt.2016.00007

Vicente, P., Jamone, L., and Bernardino, A. (2016b). Robotic hand pose estimation
based on stereo vision and GPU-enabled internal graphical simulation. J. Intell.
Robot. Syst. 83 (3-4), 339–358. doi: 10.1007/s10846-016-0376-6

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, CF, and handling Editor declared their shared affiliation.

Copyright © 2018 Vicente, Jamone and Bernardino. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

7. KnoWn Issues

There are some known issues or limitations in this algorithm and
its software. The Windows dependency of the internal model
generator module can be a problem for non-windows users.
Moreover, the number of particles in the Sequential Monte Carlo
is fixed (200 particles), which we found to be a good trade-off
between accuracy and speed [check Vicente et al. (2016a) for more
details on this matter].

The camera size is also fixed to the 320 × 240 resolution,
which is sufficient to most of the experiments performed on the
iCub. Indeed, to the authors’ knowledge, this is the most popular
resolution in the iCub community. The camera resolution can
be modified by changing the input resolution on the hand pose
estimation module and on the internal structures of the internal
model and the likelihood assessment. However, this demands for
a recompilation of the internal model generator which could not
be done without a Pro license of Unity®.

The limitation on the integration of the likelihood assessment
and the int cast discussed in Section 4.3 should be investigated
since we are truncating the likelihood and in the end we have, at
most, three significant figures of the likelihood value.

Hand occlusions can also be problematic at this stage of the
work since we are not dealing explicitly with them. If the hand is
occluded for a long period, the filter can start to diverge since it
does not find a good match of the hand model in its perception.

8. ConClusIon and futuRe WoRK

In this paper, we have shown how to calibrate the eye-hand
kinematic chain of a humanoid robot – the iCub robot. We

have provided a tutorial on how to execute the module and how
it works, its inputs and outputs. Our proposed work could be
beneficial for research works with the iCub humanoid robot,
from manipulation related fields to human-robot interaction, for
instance. The results have shown a good accuracy in simulation
and in a real-world environment. For future work, we are planning
to extend the architecture. A useful feature is to be able to predict
if the hand is present or not in the image or if it is occluded in
order to perform a better match between the perception and
the generated hypotheses. We will investigate the possibility of
running the internal model simulator on different platforms (i.e.,
Linux, macOS), which seems to be a new feature of the Unity game
engine editor environment.

autHoR ContRIButIons

In this work, all the authors contributed to the conception of the
markerless eye-hand kinematic calibration solution and to the
analysis and interpretation of the data acquired.

fundIng

This work was partially supported by Fundação para a Ciência
e a Tecnologia [UID/EEA/50009/2013] and PhD grant [PD/
BD/135115/2017] and by EPSRC UK (project NCNR, National
Centre for Nuclear Robotics, EP/R02572X/1). We acknowledge the
support of NVIDIA Corporation with the donation of the GPU
used for this research.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1109/LRA.2016.2645124
http://dx.doi.org/10.3182/20090706-3-FR-2004.00129
http://dx.doi.org/10.5772/5761
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.3389/frobt.2016.00007
http://dx.doi.org/10.1007/s10846-016-0376-6
http://creativecommons.org/licenses/by/4.0/

	Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot
	1. Introduction and Related Work
	2. Proposed Solution
	3. Software Design and Architecture Principles
	4. Code Description
	4.1. Hand Pose Estimation Module
	4.1.1. Initializing the Sequential Monte Carlo parameter estimation - initSMC Function
	4.1.2 Read Image, Read Encoders, ProcessImages and SendData
	4.1.3. Update Likelihood
	4.1.4. Kernel Density Estimation
	4.1.5. Best Hypothesis
	4.1.6. Update Artificial Noise, Resampling and New Particles

	4.2. Robot’s Internal Model Generator
	4.2.1. Initialization of the Render Textures
	4.2.2. Generate Hypotheses

	4.3. Likelihood Assessment Module

	5. Application and Utility
	5.1. Installation and Dependencies
	5.1.1. Hand Pose Estimation Module
	5.1.2 Robot’s Internal Model Generator and Likelihood Assessment

	5.2. Running the Modules
	5.2.1. Running the Hand Pose Estimation and its parameters
	5.2.2. Running the Robot’s Internal Model
	5.2.3. User interface

	6. Experiments and Examples of Use
	7. Known Issues
	8. Conclusion and Future Work
	Author Contributions
	Funding
	References

