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In swarm robotics, a design pattern provides high-level guidelines for the implementation 
of a particular robot behaviour and describes its impact on swarm performance. In this 
paper, we explore information exchange design patterns for robot swarm foraging. First, 
a method for the specification of design patterns for robot swarms is proposed that 
builds on previous work in this field and emphasises modular behaviour design, as well 
as information-centric micro-macro link analysis. Next, design pattern application rules 
that can facilitate the pattern usage in robot control algorithms are given. A catalogue 
of six design patterns is then presented. The patterns are derived from an extensive list 
of experiments reported in the swarm robotics literature, demonstrating the capability 
of the proposed method to identify distinguishing features of robot behaviour and 
their impact on swarm performance in a wide range of swarm implementations and 
experimental scenarios. Each pattern features a detailed description of robot behaviour 
and its associated parameters, facilitated by the usage of a multi-agent modeling 
language, BDRML, and an account of feedback loops and forces that affect the 
pattern’s applicability. Scenarios in which the pattern has been used are described. The 
consequences of each design pattern on overall swarm performance are characterised 
within the Information-Cost-Reward framework, that makes it possible to formally relate 
the way in which robots acquire, share and utilise information. Finally, the patterns are 
validated by demonstrating how they improved the performance of foraging e-puck 
swarms and how they could guide algorithm design in other scenarios.

Keywords: swarm robotics, design patterns, foraging, communication, information, control algorithm, bee-
inspired, ant-inspired

1. IntRoduCtIon

Multi-robot engineering is challenging, as it often requires a “bottom-up” approach to behavioural 
design (Trianni et al., 2011; Parunak and Brueckner, 2015). The emergent macro behaviour of the 
swarm is specified and evaluated, but it is the micro behaviour of individual robots that needs 
to be programmed. Furthermore, the relationship between these two levels is often somewhat 
opaque. There are a number of possible approaches when it comes to choosing algorithms for robot 
swarms, including, for instance, selecting an arbitrary algorithm either inspired by nature or by 
previous work in robotics (e.g., Sugawara and Watanabe, 2002; Lemmens et al., 2008; Gutiérrez 
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et al., 2010; Fujisawa et al., 2014; Pitonakova et al., 2016a), using 
artificial evolution to select robot behaviours (e.g., Sperati et al., 
2011; Ferrante et al., 2015)and applying design patterns.

In software engineering, a design pattern represents 
implementation-generic guidelines for a part of a system’s 
behaviour, usually created as an abstraction from a previously 
implemented algorithm, that can be applied to a class of similar 
problems (Gamma et al., 1994; Do et al., 2003). The potential 
of design patterns to facilitate reliable and efficient creation of 
algorithms has already been recognised in the swarm robotics 
literature (e.g.,  Nagpal, 2004; Parunak and Brueckner, 2004; 
Serugendo et  al., 2006; Gardelli et  al., 2007; Winfield, 2009b; 
Reina et  al., 2015), although a number of challenges remain 
partially unsolved. The first challenge in design pattern creation 
is establishing a common language for describing them (Graves 
and Czarnecki, 2000). Secondly, identifying a framework 
within which the effect of design patterns on collective swarm 
performance can be analysed is important (Gardelli et al., 2007; 
Reina et  al., 2014). Thirdly, swarm design patterns should be 
created based on an extensive set of experiments and attention 
should be paid to their generality and reusability (Fernandez-
Marquez et al., 2013).

These challenges are addressed here in the following ways. In 
order to address the first two problems related to design pattern 
specification, a new method for describing and combining design 
patterns for robot swarm foraging is proposed, utilising information-
centric approaches that include the Information-Cost-Reward (ICR) 
framework for swarm behaviour analysis (Pitonakova et al., 2018) 
and a formal modelling language for multi-agent systems, BDRML 
(Pitonakova et al., 2017). The main objectives of a design pattern, 
as defined here, are 1. to specify a self-contained module of robot 
behaviour in terms of robot actions and data dependencies using 
BDRML; 2. to identify the properties of this module, such as control 
parameters and their effect on the overall swarm performance within 
the ICR framework; and 3. to advise on the suitability of using the 
module in the context of other robot behaviours and swarm task 
parameters. The emphasis on pattern modularity is an important one. 
As will be demonstrated here, by creating patterns that only describe 
a particular aspect of a robot control algorithm (e.g., a location at 
which robots exchange information), it is possible to study and clearly 
describe the design pattern’s properties and consequences, as well 
as to create a range of robot control algorithms by considering the 
relationships between multiple design patterns and by applying well-
specified Application Rules to their BDRML representations.

This work focuses on design patterns for information exchange 
during multi-robot foraging, where robots need to search an unknown 
environment for worksites and either perform work on them or 
transport goods from the worksites into a predefined location. The 
robots may or may not exchange information about the worksites. 
Foraging was selected because it is often used as a paradigm for a 
wide range of real-world robot collective tasks such as collection 
of resources, search and rescue operations, environment cleanup, 
customer servicing, etc. (e.g., Gutiérrez et al., 2010; Jevtic et al., 2012; 
Lee et al., 2013; Ducatelle et al., 2014). Information processing and 
exchange have previously been emphasised as important elements 
of any swarm behaviour (e.g., Trianni et al., 2011; Wang et al., 2012; 
Fernandez-Marquez et al., 2013; Miller et al., 2014; Reina et al., 2015), 

and are therefore the main focus of the patterns presented here. The 
ways in which similar design patterns for other collective swarm tasks 
could be created are discussed in Section 6.

In order to consider a sufficient breadth of research work, a 
catalogue of six design patterns is presented, that is based on an 
extensive literature review, including our previous swarm analysis 
work. The design pattern creation method proposed here is applied 
to reason about and to organise behaviours repeatedly implemented 
in the literature, demonstrating its ability to identify distinguishing 
features of robot behaviour and their impact on swarm performance in 
a wide range of swarm implementations and experimental scenarios. 
Finally, in order to validate the design patterns and to demonstrate 
their applicability, examples of real-world and hypothetical scenarios 
where the patterns have or could be combined into robot control 
algorithms in order to improve swarm performance, given the 
mission requirements and robot hardware constraints, are provided.

The rest of the paper is organised as follows. In the next section, 
the background related to design patterns, the ICR framework and 
BDRML is provided. The method for creating, representing and 
applying design patterns is introduced in Section 3. The Design 
Pattern Catalogue is provided in Section 4 and examples of design 
pattern applications are included in Section 5. A more general 
discussion of the methods presented here, of other robot algorithm 
creation methods, as well as of how design patterns could complement 
automated robot algorithm design, such as on-line learning and 
artificial evolution, is provided in Section 6.

2. BACKgRound

2.1. design Patterns
A design pattern offers a flexible high-level solution to a class of 
problems, that a programmer can implement in a particular, context-
specific way (Do et al., 2003). Good patterns that use a common 
unambiguous language can decrease system design time, as well as 
improve communication between engineers (Brazier et  al., 2002; 
Gardelli et  al., 2007). In object-oriented software engineering, 
design patterns define what roles object classes should have and how 
they should interact (Gamma et al., 1994). In agent-based software 
engineering, design patterns can define roles and interactions of 
agents, as well as the role of the environment (e.g., Aridor and Lange, 
1998; Do et al., 2003). In swarm robotics, a design pattern usually 
defines a part of a robot control algorithm that is responsible for 
a specific robot behaviour (e.g., Nagpal, 2004; Gardelli et al., 2007; 
Fernandez-Marquez et al., 2013). Another class of design patterns for 
swarm robotics includes those composed of lower-level patterns. For 
example a “Gradient” pattern can be composed from a “Spreading” 
and an “Aggregation” patterns (Fernandez-Marquez et al., 2013).

An important property of design patterns is their modularity 
(Mikkonen, 1998). A single pattern usually defines a solution 
to a specific problem, e.g., in the case of swarm robotics, how 
to navigate the environment, how to manage data, etc. Multiple 
design patterns are then combined within a single program and 
the programmer decides how to implement them together, given 
a specific application and hardware available (Hernández et al., 
2013; Fernandez-Marquez et al., 2013).
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The first object-oriented design patterns included several 
properties, including (Gamma et al., 1994):

•  The pattern’s name and, if applicable, aliases
•  The intent, i.e, the main goal of the pattern and motivation, i.e., the 

reasons why the pattern should be applied
•  Applicability, i.e., a description of the circumstances under which 

the pattern should be applied
•  The class structure, a detailed description of the participants 

identified within the structure, as well as of their collaborations
•  A list of consequences on the overall software, including the 

advantages and disadvantages of using the pattern
•  Guidance on implementation, including sample skeleton code
•  A list of known uses of the pattern in real-world applications
•  A list of related patterns

The above specification method was also followed in early multi-
agent system patterns (Aridor and Lange, 1998). However, in 
later multi-agent work, the agent behaviour specification became 
more detailed and included the social dimension, that identified 
relevant agents, the intention dimension, that identified the services 
provided by agents, the structural dimension, that described how 
the services worked, the communication dimension, that modeled 
temporal exchange of events between agents and the dynamical 
dimensions, that described synchronisation mechanisms of the 
pattern (Do et al., 2003). On the other hand, other properties of 
design patterns, such as their applicability and their effect on the 
system as a whole were less prominent. Similarly, in early multi-
robot design pattern work (Nagpal, 2004), the patterns only 
included a description of how they worked, but did not describe 
their context or consequences.

Later multi-robot design patterns reverted to the detailed format 
that was originally used in object-oriented software (Gamma et al., 
1994), but also featured additional information due to the complex 
nature of multi-robot systems, including (Gardelli et  al., 2007; 
Fernandez-Marquez et al., 2013):

•  The problem description, that replaced intent and motivation and 
that either described a particular pathological collective behaviour 
that a pattern was created to prevent, or a particular behaviour 
that the multi-robot system could achieve

•  The forces, i.e., the way in which the pattern’s parameters affected 
its effectiveness

•  The description of a solution, including a list of entities and their 
dynamics, the feedback loops involved, an example that graphically 
described a possible implementation of the pattern, including 
guidance on how such implementation could be realised.

•  The inspiration behind the pattern in the form of its equivalents 
found it nature.

2.2. graphical Representation of design 
Patterns
An important part of a design pattern is a description of the 
behaviours that the pattern represents, facilitated by a well-
specified modelling language with an unambiguous syntax 
and semantics (Harel and Rumpe, 2004), and preferably, with 
graphical elements (Graves and Czarnecki, 2000). In object-
oriented software engineering, UML class diagrams1 are 
commonly used to graphically represent object classes and their 
relationships. Multi-agent software patterns additionally make 
use of state charts (Castello et  al., 2016) and sequence charts 
(Do et al., 2003).

In this paper, the Behaviour-Data Relations Modelling Language 
(BDRML) (Pitonakova et al., 2017), that was specifically designed 
for multi-agent systems, is used. In BDRML, agent behaviours 
and data structures, as well as their relationships, are represented 
explicitly, allowing the language to represent multi-agent control 
algorithms, as well the way in which agents interact with each 
other and with their environment. This makes BDRML a suitable 
choice for representing design patterns for robot swarms, where 
information processing and exchange play a pivotal role (Trianni 
et al., 2011; Wang et al., 2012; Fernandez-Marquez et al., 2013; 
Miller et al., 2014; Reina et al., 2015). BDRML defines three types of  
primitive (Figure 1):

•  Behaviour, i.e., a set of processes that deal with a particular 
situation that a robot may find itself in, for example, “Scout”

•  Internal data structure, i.e., information that is stored in a robot’s 
memory

•  External data structure, i.e., information that is stored in a non-
robot entity, i.e., in the robot’s environment

BDRML primitives can be linked by the following relations 
(Figure 2):

•  Transition: The robot transitions from one behaviour to another
•  Read/Write: Internal data is used/stored by the robot when it is 

engaged in a particular behaviour
•  Receive/Send: External data is used/stored by the robot. In the case 

of the Send relation, a robot may also send the data to another 
robot that stores it in its own internal data structure

•  Copy: Information is copied from one data structure to another

1 http://bit.ly/2HwdnlT

FIguRe 1 |  Graphical and textual representations of BDRML primitives. Reproduced from (Pitonakova et al., 2017) with permission of the copyright  
holder, IEEE.
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•  Update: The value of a data structure is updated from that in the 
previous time step by a subroutine not visualised in the BDRML 
diagram (for example, a pheromone level may “spontaneously” 
decrease over time).

The write and send relations can optionally define the new data 
structure value or a function that updates the value, indicated 
by a dashed line extending from the end of the relation arrow in 
a graphical description, and written before a colon proceeding 
the data structure name in a textual description. The update 
relation must always specify the new value or the value  
update function.

Finally, each relation or operation occurs under a specific set 
of conditions (Figure 3). A condition is graphically represented 
as an annotated triangle at the beginning of a relation arrow. In a 
textual representation, a condition set follows a relation signature 
and is separated from it by a colon. Unless otherwise specified, 
the or logical operator is used when multiple conditions affect 
a single relation.

A BDRML representation of a design pattern includes 
a set of behaviours, B , a set of internal,  Di , and external,  
 De , data structures and a list of conditional relations. Figure 4 
shows BDRML representations of three example design  
patterns.

2.3. the Information-Cost-Reward 
Framework
The Information-Cost-Reward (ICR) framework (Pitonakova 
et al., 2018) formally relates the way in which robots obtain and 
share information (e.g., about worksites to forage from) to the 

swarm’s ability to use that information in order to obtain reward 
efficiently, given a particular swarm task and environment. 
Using this framework can address concerns regarding generality 
and reusability of patterns (Fernandez-Marquez et  al., 2013), 
as well as those regarding describing the effect of patterns  
on collective swarm performance (Gardelli et al., 2007; Reina 
et al., 2014).

The framework identifies various metrics and formally relates 
them to the amount of reward that a swarm is able to obtain at a 
given point in time. Scouting efficiency and information gain rate 
characterise how well robots are able to obtain new information 
about worksite locations and share it amongst themselves. The 
uncertainty cost represents the amount of reward lost due to 
robots that do not know about where worksites are located, 
while the displacement cost and the misinformation cost express 
how efficiently a swarm can turn information about worksites 
into reward. Displacement cost is incurred by robots that are 
informed about where to forage from but are unable to act on this 
information immediately (for example, they may be recruited 
to a far away worksite, or they may be recruited while they are 
part-way through completing another task). Misinformation 
cost is incurred by robots with outdated information, that are 
attempting to reach a worksite that has already been depleted. By 
measuring these costs, it is possible to identify robot behaviours 
that are responsible for an observed swarm performance (for 
instance, recruitment far away from worksites). Consequently, 
it is possible to identify the effect of design patterns on swarm-
level behaviour, as well as how their suitability and effectiveness 
are affected by the parameter values of robot behaviour and by 
other design patterns.

FIguRe 2 |  Graphical and textual representations of BDRML relations and operations. Reproduced from Pitonakova et al. (2017) with permission of the copyright 
holder, IEEE.
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FIguRe 4 |  BDRML examples of design patterns. (A) A pattern consisting of behaviours  b1  and  b2  and of an internal data structure of boolean or integer type,  di1 . 
A robot transitions from  b1  to  b2  when a boolean function h  returns true. The robot transitions back from  b2  to  b1  with a probability  p

(
A
)
 . While performing  b1 , the 

robot writes into and reads from  di1 . (B) A pattern consisting of behaviours  b1  and  b2  and an external data structure  de1 . The robot transitions probabilistically 
between  b1  and  b2  and updates the value of  de1  according to the function  j  . (C) A pattern consisting of behaviour  b1 , an internal data structure  di1  and an external 
data structure  de1 . While in  b1 , the robot may update the value of  di1  by +1, provided that the boolean function f   returns true. Similarly, the robot may update  de1  
when  g  returns true. Additionally, the value of  de1  is updated by −0.5 at each time step.

FIguRe 3 |  Graphical and textual representations of BDRML conditions. Reproduced from Pitonakova et al. (2017) with permission of the copyright  
holder, IEEE.
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3. Methods

3.1. design Pattern specification
Inspired by object-oriented design pattern principles (Gamma 
et  al., 1994, p.11–42), it is proposed here that a swarm robotic 
design pattern should:

•  Describe a particular stand-alone module of a robot control 
algorithm in terms of robot behaviours, relevant internal and 
external data structures and relationships between them. Such a 
module should satisfy a particular functional requirement and its 
description should be independent of other modules that deal 
with other requirements.

•  Provide a description of suitable environments and swarm tasks, 
in which the pattern is understood to be an appropriate design 
choice.

•  Be possible to combine with other design patterns.
•  Be implementation-generic, i.e., only describe high-level 

behaviour, rather than an implementation2.

The information exchange patterns presented here are split into 
two categories that identify the pattern roles (see also, e.g., Gamma 
et al., 1994; Aridor and Lange, 1998):

•  Information Transmitter patterns: Specify what entity transmits 
or stores information, as well as what information is used by 
behaviours and under what conditions

•  Information Aggregation patterns: Specify where information 
exchange takes place and what behaviours are responsible for the 
exchange

Each design pattern includes the following properties (as in, 
e.g.,  Gamma et  al., 1994; De Wolf and Holvoet, 2007; Gardelli 
et al., 2007; Fernandez-Marquez et al., 2013):

•  Design pattern name and category
•  The problem that the pattern is solving
•  The applicability of the pattern, given the conditions of the swarm 

task and of the environment, as well as the available  
hardware

•  The solution, including a representation of relevant robot 
behaviours and data structures in BDRML, as well as guidance on 
the pattern implementation

•  A description of feedback loops that are created or altered as a 
result of using the pattern

•  A list of parameters associated with the specified robot behaviours 
and their detailed description

•  A list of forces that affect the pattern’s effectiveness
•  A list of consequences that the design pattern has on macro-level 

swarm characteristics, especially those that cannot be controlled 
through the pattern’s parameters

•  A list of known uses in the swarm robotics literature
•  A list of related patterns

2 This requirement is similar to the requirement of object-oriented design patterns 
for programming to an interface rather than to an implementation, whichleads 
to reusability and minimal implementation dependencies (Gamma et al., 1994, 
p. 30).

The description of pattern feedback loops, parameters, forces 
and consequences utilises terminology of the ICR framework 
and considers a variety of experiments reported in the  
literature.

Not all pattern descriptions include all of the properties listed 
above. For example, when a pattern has no parameters (e.g., the 
Individualist pattern in Section 4.1), it is likely to also not have any 
forces associated with it. In other cases, a solution that a pattern 
offers may look rather generic (for example, the Information 
Exchange Anywhere pattern from Section 4.4). This can happen 
when a pattern represents an alternative to other, more restrictive, 
patterns from the same category. An example of how such pattern 
is used is provided in Section 5.2.

Note that unlike in some design pattern work (e.g., Gamma 
et al., 1994; Gardelli et al., 2007; Fernandez-Marquez et al., 2013), 
aliases are not provided with the patterns presented here. The term 
“alias” implies direct correspondence, which, to the best of our 
knowledge, is not possible to make with other design patterns 
found in the literature. Instead, design patterns similar to those 
presented here are mentioned in the list of related patterns. Also, 
example code for the patterns is not provided in this paper due to 
content length restrictions. However, detailed high-level guidelines 
on implementation are provided in the form of BDRML diagrams. 
Furthermore, example pseudocode of four robot control algorithms 
that can be created by using the Design Pattern Catalogue is shown 
in Section 5.

3.2. design Pattern Application Rules
The usage of different design patterns in a robot control algorithm 
can be facilitated by identifying Application Rules for modifying 
and combining the BDRML pattern representations. Compulsory 
Rules (C), represent a minimal set of steps for combining patterns 
and should always be applied. Other rules are optional, and include 
those for extending (EXT) and redefining (RDF) information 
processing routines of patterns, and those for concretising (CNC)  
the patterns.

The Compulsory Application Rules include:

•  C1. Relabel any elements of the selected design patterns that are 
ambiguous with respect to one another or to the control algorithm 
that is being created. For instance, identify any equivalences 
between design pattern elements that appear in more than one of 
the original design patterns (e.g., two design patterns may each 
involve reading the same external environmental data but allocate 
it a different identifier). Analogously, identify any distinctions 
between labels that appear in more than one of the original design 
patterns (e.g., two design patterns may each employ the identifier 
“Worksite”, without this label necessarily referring to the same 
entity). Finally, rename primitives in order to better facilitate 
understanding of the control algorithm, especially if the original 
design patterns use general labels, such as “Worksite data”.

•  C2. Copy all sets of behaviours,  Bi , from all patterns into a new 
behaviour set, B′ , i.e.,  B

′ =
{
B1 ∪ B2 ∪ . . . ∪ Bn

}
 .

•  C3. Copy common data structures from design pattern data 
structure sets  Di   and  De   into new sets,  Di   and  De  , i.e., 
 Di =

{
Di1 ∩ Di2 ∩ . . . ∩ Din

}
,De =

{
De1 ∩ De2 ∩ . . . ∩ Den

}
.   
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Choose appropriate data types if the design pattern data structures 
define multiple data type options.

•  C4. Copy all relations between the primitives that belong to sets 
 B′ ,  Di  and  De , including their conditions. Unless it is otherwise 
specified by a relation condition, assume the or operator when 
combining conditions. All conditions with the or operator should 
be considered optional3. Additionally, when the “always” condition 
is combined with others, the “always” condition should  
be deleted4.

The rules for extending information processing routines of a pattern 
by another include:

•  EXT1. Add additional data structures into  Di ' and  De ' from an 
included Information Transmitter pattern that have a read relation 
with a behaviour, or a copy relation with a data structure already 
present in  Di ' or  De '. This allows one pattern to extend the list of 
information processing routines of another, while ensuring that 
Information Transmitter patterns play a decisive role in what data 
structures are used in the robot program.

•  EXT2. Apply Rule C4.

The rules for redefining information processing routines of a pattern 
by another are:

•  RDF1. Delete all relations that belong to shorter relation paths 
between behaviours and data structures (but not between 
behaviours) that are of the same type (for example, send relations). 
A relation path specifies a set of relations that lead from a primitive 
 V1  to a primitive  V2 , including those relations that pass through 

3 An “or” condition defines additional situations in which a relation is applicable. 
In the most extreme case of the condition being empty, “or false” is aredundant 
expressions and can therefore be omitted.
4 The “always” condition always returns “true” and it should therefore be 
combined with other conditions using the “and” operator, ensuring that the 
otherconditions are satisfied according to their specifications. Since “and true” is a 
redundant expression, the “always” condition can be deleted.

other primitives and create an indirect relation between  V1  and 
 V2 .

•  RDF2. If applicable, use conditions from deleted relation paths on 
the relation paths that are left over. For example, if relation between 
 V1  and  V2  with a condition  c  was deleted, and a new relation 
between  V3  and  V2  exists instead, it may be appropriate to add 
condition  c  to this relation.

Finally, patterns can be concretised in order to better describe the 
dynamics of an implemented robot control algorithm by using 
the following rule:

• CNC1. Add additional specifications to write, send and update 
relations in order to identify how they change the values of their 
corresponding data structures (see Figure 2).

Consider an example in Figure  5A, where the patterns from 
Figure 4A,C are combined. First, a set of behaviours that belong 
to both patterns is found (Rules C1 and C2). This set includes the 
behaviours  b1  and  b2 . Next, the data structure  di1 , that belongs to 
both patterns, is included and its data type is chosen to be integer 
(Rules C1 and C3). Finally, all relations that belong to  b1 ,  b2  and 
 di1  are copied and combined (Rule C4). Note that the pattern from 
Figure 4C cannot extend information processing routines defined 
in Figure 4A, since the additional data structure from Figure 4C, 
 de1 , does not have a read or copy relation with another primitive 
(Rule EXT1). The point of including a data structure without read 
operations in a pattern, such as that in Figure 4C, is to specify 
special conditions for their write, send or update relations, that 
are applicable in cases when the pattern is combined with another 
pattern, in which the data structure is read or copied.
An example of information processing redefinition is shown in 
Figure 5B, which results from combining patterns from Figure 4B 
and C. Primitives  b1 ,  b2  and  de1 , as well as their relations are 
copied over (Rules C1–C4). In order to use the design pattern 
from Figure 4C to redefine information processing described in 

FIguRe 5 |  BDRML examples of combining design patterns. (A) Combination of design patterns from Figure 4A,C. (B) Combination of design patterns from 
Figure 4B,C. Primitives and relations of the first pattern are shown in black text. Additional primitives and relations, drawn from the second pattern in Figure 4C, 
are shown in bold green text. Primitives and relations that belong to one of the patterns but are not included in the control algorithm are shown as strikethrough text, 
but they are not shown graphically.
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Figure 4B, the write relation between  b1  and  de1  is deleted, as it 
represents a shorter relation path (Rule RDF1).

Apart from a BDRML representation of the robot behaviour, 
other characteristics of design patterns should be considered 
together when design patterns are combined. The list of suitable 
applications becomes more specific when multiple patterns form 
a control algorithm. Or, from another point of view, a more 
detailed specification of the swarm’s environment and task allows 
a programmer to choose between design patterns with a higher 
confidence. The list of control algorithm parameters also grows 
when multiple patterns are combined. Therefore, in order to 
minimise the number of design decisions that need to be made, 
design patterns with a smaller number of parameters should be 
preferred where possible. Unless an exhaustive list of situations is 
considered during a control algorithm optimisation phase, or unless 
a suitable on-line parameter learning algorithm is implemented, 
each new parameter can lead to undesirable dynamics.

4. the desIgn PAtteRn CAtAlogue

In this section, six information exchange design patterns for 
robot swarm foraging are presented. The particular patterns 
were selected due to the considerably large number of detailed 
simulation experiments that we have previously performed using 
robot controllers with behaviours described by these patterns 
(Pitonakova et al., 2014, 2016a, b, Pitonakova et al., 2018). Also, as 
we will show below, each pattern can be found in control algorithms 
that were used in a relatively large number of other swarm robotics 
research papers.

The term “worksite” is used to refer to a place where reward 
is located, such as a place where items need to be collected from 
[e.g., during raw material collection, package delivery, etc. (as 
in, e.g., Winfield, 2009a; Wawerla and Vaughan, 2010)], or to a 
place where work needs to be performed [e.g., during shop floor 
machine maintenance (e.g., Sarker and Dahl, 2011) or similar tasks 
(e.g., Jevtic et al., 2012)].

4.1. Individualist
4.1.1. Category
Information Transmitter pattern.

4.1.2. Problem
Robots need to find and exploit worksites as quickly as possible.

4.1.3. Applicability
Information about worksites is easily obtainable, for example 
when worksite density is high (Winfield, 2009a; Pitonakova et al., 
2014, 2016a, Pitonakova et al., 2018). Also recommended when 
continuous exploration of the environment is important, e.g., when 
new worksites appear over time (Pitonakova et al., 2018).

4.1.4. Solution (see also Figure 6)
A robot scouts for worksites in the environment. A successful scout 
stores information about its worksite, such as its location, in an 
internal data structure (“Worksite data int.”), and begins work. The 
data structure may be updated and utilised periodically while the 
robot works. For example, if the robot uses odometry to localise 
itself relative to the worksite, the relative vector to the worksite 
should be updated periodically. The robot ignores any information 
and actions of other members of the swarm.

4.1.5. Feedback Loops: -

4.1.6. Parameters: -

4.1.7. Forces: -

4.1.8. Consequences

•  Leads to a low information gain rate, which is why information 
about worksites needs to be relatively easy to find (Pitonakova 
et al., 2018)

•  Minimises displacement and misinformation costs (Pitonakova 
et al., 2018)

•  The spread of robots across worksites only depends on their 
scouting movement pattern. For example, an even spread across 
the environment may be achieved when robots utilise random 
walk (Sugawara and Watanabe, 2002; Kernbach et al., 2012; 
Pitonakova et al., 2018)

•  Prevents the spread of erroneous information among robots 
(Pitonakova et al., 2014)

4.1.9. Known Uses
Often used when simple foraging algorithms are needed as a basis 
for robot behaviour, while other swarm behaviours, such as self-
regulation or task-allocation, are explored (Krieger and Billeter, 
2000; Labella et al., 2006; Lerman et al., 2006; Campo and Dorigo, 

FIguRe 6 |  BDRML representation of the Individualist design pattern.
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2007; Kernbach et al., 2012). Also used in studies that compare 
swarms that do and do not utilise robot-robot recruitment (Balch 
and Arkin, 1994; Rybski et al., 2007; Gutiérrez et al., 2010; Lee et al., 
2013; Fujisawa et al., 2014; Amato et al., 2015) and in scenarios 
where robots can infer information about others and about the 
environment through sensing (e.g., by using a camera), rather than 
through communication (Jones and Mataric, 2003).

4.1.10. Related Patterns
Serves an alternative to the Broadcaster and Information Storage 
patterns, that, in general, is easier to implement and provides 
collective performance that is less difficult to understand due to 
the lack of parameters.

4.2. Broadcaster
4.2.1. Category
Information Transmitter pattern.

4.2.2. Problem
Robots need to find and exploit worksites as quickly as possible, 
but the task characteristics (e.g., robot or worksite density) make 
it difficult for robots to discover worksites.

4.2.3. Applicability
Robots are capable of directly communicating with each other 
(as in, e.g., Wawerla and Vaughan, 2010; Ducatelle et  al., 2014; 
Pitonakova et al., 2018).

4.2.4. Solution (see also Figure 7)
A robot scouts for worksites in the environment. A successful scout 
stores information about its worksite, such as its location, in an 
internal data structure (“Worksite data int.”), and begins work. 
The data structure may be updated and used periodically while 
the robot works. A robot that is engaged in the “Work” behaviour 
may send information about its worksite to another robot, provided 
that a boolean recruitment function,  r  , returns true. When a robot 
receives worksite data in this way, it stores it in its own internal data 
structure and transitions from the “Scout” to the “Work” behaviour, 
provided that a boolean adoption function,  a , returns true.

4.2.5. Feedback Loops
Sharing of worksite information represents a positive feedback loop 
that can be regulated via the pattern’s parameters.

4.2.6. Parameters

•  Recruitment function,  r  : A boolean function that determines 
whether the robot decides to recruit another robot. For example, 
a robot might decide to recruit with a certain probability every 
time it encounters another robot

•  Adoption function,  a : A boolean function that determines whether 
a scout transitions to the “Work” behaviour after receiving worksite 
information. For example, a robot might prefer worksites from a 
certain area only.

•  Robot communication range: A range at which robots can 
communicate with one another

4.2.7. Forces

•  A sufficient communication range must be available in order for 
recruitment to take place, depending on the worksite and robot 
density (Sugawara and Watanabe, 2002).

•  A larger communication range causes a higher information gain 
rate, but can also increase displacement and misinformation costs 
incurred by recruited robots, consequently decreasing the swarm 
performance (Sugawara and Watanabe, 2002; Valdastri et al., 2006; 
Rybski et al., 2007; Pitonakova et al., 2016a).

4.2.8. Consequences

•  Information about worksites is more easily accessible to 
uninformed robots (Sugawara and Watanabe, 2002; Rybski et al., 
2007; Sarker and Dahl, 2011)

•  Information is carried and transmitted by robots, meaning that 
the information gain rate depends on the probability of robots 
meeting each other, i.e., on their movement algorithm and on the 
structure of the environment (Pitonakova et al., 2018)

•  Causes the robots to incur displacement cost, associated with 
traveling to worksites after being recruited (Pitonakova et al., 
2018)

•  Increases the probability of incurring misinformation cost, as a 
result of outdated information potentially being spread across the 
swarm (Gardelli et al., 2007; Fernandez-Marquez et al., 2013; 
Pitonakova et al., 2018)

•  Can lead to the spread of erroneous information among robots, 
e.g., when a recruiter’s worksite information is incorrect due to 
sensory-motor noise (Pitonakova et al., 2014)

FIguRe 7 |  BDRML representation of the Broadcaster design pattern.
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4.2.9. Known Uses
Often used to implement local communication of robot state (Balch 
and Arkin, 1994; Parker, 1995; Dahl, 2002; Sugawara and Watanabe, 
2002; Rybski et al., 2007), worksite location (Balch and Arkin, 1994; 
Parker, 1995; Valdastri et  al., 2006; Wawerla and Vaughan, 2010; 
Sarker and Dahl, 2011; Amato et al., 2015; Pitonakova et al., 2018) 
and worksite urgency (Sarker and Dahl, 2011). It has been used in 
tasks like general (Balch and Arkin, 1994; Pitonakova et al., 2018) 
and central-place (Parker, 1995; Valdastri et al., 2006; Rybski et al., 
2007; Pitonakova et al., 2018) foraging, cooperative transportation 
(Sugawara and Watanabe, 2002; Amato et  al., 2015), package  
delivery (Wawerla and Vaughan, 2010) and task allocation (Sarker 
and Dahl, 2011).

4.2.10. Related Patterns
The pattern can be combined with the Information Exchange 
Anywhere pattern to make robots exchange information at any 
time they meet in the foraging arena (Gutiérrez et al., 2010; Fraga 
et  al., 2011). When combined with Information Exchange near 
Worksites pattern, a behaviour similar to that of sheep (Michelena 
et al., 2010) and fish (Lachlan et al., 1998) is obtained, where robots 
that are currently obtaining reward from worksites attract nearby 
robots, effectively increasing the worksite detection range (e.g., as 
in Wawerla and Vaughan, 2010; Ducatelle et al., 2014; Pitonakova 
et al., 2018). Finally, bee-inspired recruitment (Seeley et al., 1991), that 
involves communication in the base, can be obtained by combining 
the Broadcaster and the Information Exchange Centre pattern (e.g., 
as in Parker, 1995; Krieger and Billeter, 2000; Pitonakova et al., 2018).

Other related patterns include “Diffusion” (Gardelli et al., 2007) 
and “Spreading” (Fernandez-Marquez et al., 2013).

4.3. Information storage
4.3.1. Category
Information Transmitter pattern.

4.3.2. Problem
Robots need to find and exploit worksites as quickly as possible, 
but the task characteristics (e.g., robot or worksite density) make 
it difficult for robots to discover worksites.

4.3.3. Applicability
Robots are capable of depositing information into their 
environments and retrieving it, for example to drop, update 
and read RFID tags (Drogoul and Ferber, 1993; Hrolenok et al., 
2010), deposit and sense chemicals (Mayet et al., 2010; Fujisawa 
et al., 2014), or store and read “virtual pheromone” maintained 
by stationary robots (Hoff et al., 2010; Ducatelle et al., 2011) or 
by an external server (Sugawara et al., 2004; Kazama et al., 2005).

4.3.4. Solution (see also Figure 8)
A robot scouts for worksites in the environment. Additionally, it can 
adopt information about a worksite if it finds a data storage device 
containing information (“Worksite data ext.”), and if a boolean 
adoption function,  a , returns true. Once a robot discovers information 
about a worksite either as a result of scouting or when finding a data 
storage device, it begins work. The robot’s internal data structure is 
used and updated with information stored in the environment while 
the robot works, based on  a . An informed robot deposits information 
about its worksite into data storage device(s) when appropriate.

4.3.5. Feedback Loops
Depositing information in the environment acts as a positive 
feedback loop that can be regulated via the pattern’s parameters. 
Additionally, a negative feedback loop can be created by applying 
the update relation to “Worksite data ext.”.

4.3.6. Parameters

•  Deposit function,  d : A boolean function that determines whether 
a robot deposits information into an external data structure. For 
example, a robot might deposit a chemical trail any time it is 
traveling between a worksite and the base (Mayet et al., 2010; 
Fujisawa et al., 2014). In other cases, a robot might decide to drop 
an RFID tag into the environment based on a perceived density 
of RFID tags nearby (Hrolenok et al., 2010).

•  Adoption function,  a : A boolean function that determines whether 
a robot copies information that it finds in a data storage device 
into its own internal data structure. For example, a robot might 
only adopt external data when it does not have any worksite 

FIguRe 8 |  BDRML representation of the Information Storage design pattern.
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information, or when the external data is more up-to-date (Hecker 
and Moses, 2015).

•  Decay function,  y : A function according to which information in 
the data storage device(s) is updated. For example, if “Worksite 
data ext.” stores a vector towards a worksite location,  y  can 
determine how up-to-date the information is (Hecker and Moses, 
2015). On the other hand, if ‘Worksite data ext.” is a real number, 
as is often the case in pheromone-inspired algorithms,  y  can define 
how the real value “evaporates” over time (Hrolenok et al., 2010; 
Fujisawa et al., 2014).

•  Detection range: A range at which a robot can find storage  
devices.

4.3.7. Forces

• The decay function affects how long the information about 
worksites remains available in each storage device, i.e., the lifespan 
of the stored information. The function therefore must consider 
dynamics of the environment. An information life span that is too 
long causes robots to get recruited to depleted worksites and incur 
high misinformation cost, while a very short information life span 
prevents robots from utilising the stored information (Drogoul 
and Ferber, 1993; Garnier et al., 2007).

4.3.8. Consequences

•  Information about worksites is more easily accessible to 
uninformed robots. Information gain rate depends on the 
probability of robots to detect the information storage devices, 
but not on the probability of robots to meet each other (Pitonakova 
et al., 2018).

•  Causes robots to incur displacement and misinformation costs, 
as a result of recruitment to worksites. The extent of these costs 
increases with an increasing robot density as a result of congestion 
(Drogoul and Ferber, 1993; Parker, 1995; Hoff et al., 2010).

•  Can lead to the spread of erroneous information through the 
swarm, e.g., when a depositing robot’s worksite information is 
incorrect due to sensory-motor noise (Hecker et al., 2012).

4.3.9. Known Uses
Often used for studying ant-inspired central-place foraging 
behaviour (Beekman et al., 2001), where “pheromone” trails are 
formed between the robot base and worksites, helping the robots 
to navigate an unknown environment (Drogoul and Ferber, 1993; 

Sugawara et  al., 2004; Kazama et  al., 2005; Hoff et  al., 2010; 
Hrolenok et al., 2010; Mayet et al., 2010; Ducatelle et al., 2011; 
Fujisawa et al., 2014). Has also been used for robot recruitment 
in a cooperative transportation task (Amato et al., 2015).

4.3.10. Related Patterns
Depending on the type of storage device used, the pattern can either 
be combined with the Information Exchange Anywhere pattern, in 
order to form pheromone trails made of RFID tags (Drogoul and 
Ferber, 1993; Hrolenok et al., 2010), chemicals (Mayet et al., 2010; 
Fujisawa et al., 2014) or by other means (Sugawara et al., 2004; Kazama 
et  al., 2005; Hoff et  al., 2010; Ducatelle et  al., 2011), or with the 
Information Exchange Centre pattern, in order to store information 
about worksites in the robot base (Alers et al., 2011; Amato et al., 
2015; Hecker and Moses, 2015).

Other related patterns include “Evaporation” (Gardelli et al., 
2007; Fernandez-Marquez et  al., 2013), “Diffusion” (Gardelli 
et al., 2007), “Gradient”, “Digital pheromone” and “Ant foraging” 
(Fernandez-Marquez et al., 2013)

4.4. Information exchange Anywhere
4.4.1. Category
Information Aggregation pattern.

4.4.2. Problem
Robots need to exchange information frequently.

4.4.3. Applicability
Robots are able to either directly communicate with each other 
(e.g., as in  Wawerla and Vaughan, 2010; Ducatelle et  al., 2014; 
Pitonakova et al., 2018) or to store information in the environment 
and retrieve it (Hrolenok et al., 2010; Fujisawa et al., 2014, e.g., 
as in).

4.4.4. Solution (see also Figure 9)
Information, stored in internal or external data structures, is 
exchanged anywhere in the environment.

4.4.5. Feedback Loops
Positive feedback loops that already exist in the swarm behaviour 
are enforced.

FIguRe 9 |  BDRML representation of the Information Exchange Anywhere design pattern.
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4.4.6. Parameters: -

4.4.7. Forces: -

4.4.8. Consequences

•  Frequent exchange of information between robots can lead to a 
strong preference for a single worksite (Gutiérrez et al., 2010; Fraga 
et al., 2011). Therefore, a mechanism for regulation of recruitment 
may need to be implemented in order to prevent congestion and 
poor swarm performance.

4.4.9. Known Uses
To study the problem of decentralised worksite localisation (Hoff 
et al., 2010; Gutiérrez et al., 2010; Fraga et al., 2011; Fujisawa et al., 
2014) and decentralised task allocation algorithms (Sarker and Dahl, 
2011).

4.4.10. Related Patterns
Serves an alternative to the Information Exchange near Worksites 
and the Information Exchange Centre patterns, where the robot 
behaviour may be easier to understand due to the lack of parameters, 
but where the swarm performance might deteriorate as a result of 
frequent information sharing.

Often used in combination with the Information Storage pattern 
to create chemical or other trails between the base and worksites 
in central-place foraging (Drogoul and Ferber, 1993; Kazama et al., 
2005; Hoff et al., 2010; Hrolenok et al., 2010; Mayet et al., 2010; 
Ducatelle et al., 2011; Fujisawa et al., 2014). Can also be used in 
combination with the Broadcaster pattern in order to allow robots 
to exchange information locally (Gutiérrez et al., 2010; Fraga et al., 
2011; Sarker and Dahl, 2011).

4.5. Information exchange near Worksites
4.5.1. Category
Information Aggregation pattern.

4.5.2. Problem
The information exchange of robots needs to be regulated.

4.5.3. Applicability
Uninformed robots are likely to encounter data transmitters, i.e., 
other robots or non-robot data storage devices, near worksites, for 

example, when robots remain near worksites for a sufficient amount 
of time, when worksite and/or robot density are high or when 
robots have a large communication range (Pitonakova et al., 2018).

4.5.4. Solution (see also Figure 10)
Robots only exchange information while they are near worksites. 
Note that in the BDRML syntax, the conditions of the two relations, 
that connect the “Work” behaviour with the “Worksite data int.” and 
“Worksite data ext.” data structures, have an “and” operator. This 
ensures that the conditions always have to be met when this design 
pattern is combined with other patterns, allowing this pattern to 
regulate positive feedback loops of others.

4.5.5. Feedback Loops
Positive feedback loops already present in the swarm behaviour are 
regulated by only allowing information exchange near worksites.

Positive feedback loops already present in the swarm behaviour 
are regulated by only allowing information exchange near worksites.

4.5.6. Parameters

•  Proximity threshold: Maximum distance at which a robot is 
considered to be “near a worksite”.

4.5.7. Dependencies

• The proximity threshold value represents a trade-off between how 
much displacement and misinformation cost the robots will incur 
and how much recruitment can take place. If the threshold is large, 
robots can recruit while being further away from worksites, and 
thus cover a larger recruitment area, but new recruits incur larger 
costs.

4.5.8. Consequences

•  After an initial worksite discovery by a robot, the range at which 
other robots can find the worksite is enlarged, increasing the 
swarm’s scouting success (Sugawara and Watanabe, 2002; Sarker 
and Dahl, 2011; Pitonakova et al., 2018)

•  The information gain rate depends on the structure of the 
environment, especially on worksite density, and on the range at 
which data transmitters can be detected and communicated with 
(Pitonakova et al., 2018)

FIguRe 10 |  BDRML representation of the Information Exchange near Worksites design pattern.
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4.5.9. Known Uses
Has been used to extend the range at which robots sense worksites 
during foraging (Sugawara and Watanabe, 2002; Pitonakova et al., 
2018), package delivery (Wawerla and Vaughan, 2010) and general 
event-servicing (Ducatelle et al., 2014).

4.5.10. Related Patterns
An alternative to the Information Exchange Anywhere pattern, 
providing information flow regulation by localising information 
sharing to areas around worksites. Usually combined with the 
Broadcaster pattern to achieve foraging behaviour similar to that 
of as sheep (Michelena et al., 2010) and fish (Lachlan et al., 1998), 
where a foraging robot attracts more foragers that are nearby 
(Sugawara and Watanabe, 2002; Wawerla and Vaughan, 2010; 
Ducatelle et al., 2014; Pitonakova et al., 2018).

4.6. Information exchange Centre
4.6.1. Category
Information Aggregation pattern.

4.6.2. Problem
The information exchange of robots needs to be regulated, or, 
robots have a low probability of meeting each other during foraging 
due to low density of worksites and/or robots.

4.6.3. Applicability
Robots are able to navigate sufficiently long distances without 
significantly distorting their private information about worksites, 
e.g., as a result of cumulative effect of sensory-motor noise, which 
could result in incorrect information being passed to others 
(Pitonakova et  al., 2014). Especially applicable during central-
place foraging, provided that the Information Exchange Centre is 
identical to the place where robots need to travel to periodically in 
order to drop off resource (Dornhaus et al., 2006; Lemmens et al., 
2008; Bailis et al., 2010; Pitonakova et al., 2014, 2016a, Pitonakova 
et al., 2018).

4.6.4. Solution (see also Figure 11)
Robots meet at the Information Exchange Centre (IEC) in order to 
exchange information. There are two types of robots found at the IEC: 
informed robots, that provide information and uninformed robots 
that search for information. An informed robot pauses its work and 
returns to the IEC when its boolean recruitment initiation function, 
i, returns true, in order to begin providing information at the IEC. 
The robot leaves the IEC based on a recruitment expiry function,  e , 
and resumes work.

An uninformed robot located outside of the IEC, i.e., a scout, 
returns to the IEC based on a scouting expiry function,  u , in order 
to check whether new information is available. If the robot finds 
information about where work is located, either as a result of robot-
robot recruitment, or after adopting data available in a non-robot 
entity, it transitions to the “Work” behaviour and leaves the IEC. 
If no information is available in the IEC, the uninformed robot 
resumes scouting when a scouting initiation function,  s , returns true.

Note that the relations between the data structures and other 
primitives have an always condition. This signifies the fact that IEC 
is an exchange pattern and its role is therefore to identify where 
information exchange takes place, but not the conditions under 
which information is utilised by behaviours.

4.6.5. Feedback Loops
Depending on the context within which it is used and on the 
selected parameter values, this pattern can either enforce positive 
feedback loops that already exist in the swarm behaviour by 
designating an area where robots are likely to find information, 
or provide regulation of information transfer by forcing robots to 
travel to a designated location in order to exchange information.

4.6.6. Parameters

•  Transmission initiation function,  i : a boolean function that 
determines whether an informed robot returns to the IEC. For 
example, a robot might need to drop off resource during  

FIguRe 11 |  BDRML representation of the Information Exchange Centre design pattern.
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central-place foraging (Krieger and Billeter, 2000; Hecker and 
Moses, 2015).

•  Transmission expiry function,  e : a boolean function that 
determines whether an informed robot leaves the IEC. For 
example, if the IEC pattern is combined with the Broadcaster 
pattern, expiry of a recruitment time can trigger a robot to resume 
work (Pitonakova et al., 2016a; Valentini et al., 2016).

•  Scouting expiry function,  u : a boolean function that determines 
whether a scout returns to the IEC. For example, when the robot 
spends a certain amount of time scouting unsuccessfully 
(Pitonakova et al., 2016a, Pitonakova et al., 2018).

•  Scouting initiation function,  s : a boolean function that determines 
whether an uninformed robot in the IEC becomes a scout. For 
example, the robot might do so with a certain probability each 
second (Pitonakova et al., 2016a, Pitonakova et al., 2018), or when 
demand for resources reaches a threshold (Krieger and Billeter, 
2000).

4.6.7. Forces

•  The scouting efficiency of the swarm decreases due to the fact that 
scouts return to the IEC. The scouting expiry function,  u , thus 
must fit the nature of the environment. For example, enough time 
must be given to scouts to explore a large or a dynamic working 
area, while at the same time ensuring that robots do not spend too 
much time outside of the base, where information may be readily 
available (Pitonakova et al., 2018).

•  The swarm size and its relation to the area of the IEC play an 
important role, since a large number of robots situated in the IEC 
at the same time can cause congestion and decrease the swarm 
performance (Lee et al., 2013; Pitonakova et al., 2016b).

4.6.8. Consequences

•  Information gain rate is less dependent on the structure of the 
environment, on the communication range of robots and on the 
robot movement algorithm. The variance in information gain rate 
is small across different environments (Pitonakova et al., 2018).

•  Promotes spatio-temporal coordination between robots. This is 
advantageous when a single worksite exists in the environment. 
On the other hand, the swarm performance is poor when the 
swarm needs to concentrate on multiple worksites simultaneously 
(Krieger and Billeter, 2000; Pitonakova et al., 2018).

•  The amount of the incurred misplacement and misinformation 
costs depends on the structure of the environment, especially on 
the worksite distance from the IEC. A larger worksite distance 
generally leads to higher costs being incurred (Pitonakova et al., 
2018).

4.6.9. Known Uses
Most prominently used to study bee-inspired (Seeley et al., 1991) 
multi-robot foraging algorithms (Krieger and Billeter, 2000; 
Pitonakova et  al., 2014; Hecker and Moses, 2015; Reina et  al., 
2015; Pitonakova et  al., 2016a, Pitonakova et  al., 2018), where 
robots collect items from the environment and return them to 
the base, where they also recruit in a peer-to-peer fashion. It has 

also been used to help robots recruit each other in the base during 
a cooperative transportation task (Amato et al., 2015).

4.6.10. Related Patterns
Provides an alternative to the Information Exchange Anywhere 
and Information Exchange near Worksites patterns, by making 
the ability of robots to share information less dependent on the 
effectiveness of robot communication hardware and on the task 
parameters.

The pattern can be either combined with the Broadcaster 
pattern, in order to facilitate local interactions of agents in the 
base (Krieger and Billeter, 2000; Pitonakova et al., 2014, 2016a, 
Pitonakova et al., 2018), or with the Information Storage pattern, in 
order to turn the base into a repository of information that robots 
can read from without the need to meet each other (Alers et al., 
2011; Hecker et al., 2012; Amato et al., 2015).

A related pattern that involved bee-inspired collective decision-
making has been described in (Reina et al., 2015).

5. APPlICAtIons

After considering the properties of design patterns, in particular 
their applicability, feedback loops, forces and consequences, and 
matching them with information about a specific robot swarm 
mission and available robot hardware, a robot control algorithm 
can be created by utilising the Design Pattern Application Rules. 
Here we first show how the Individualist, Broadcaster and 
Information Exchange near Worksites patterns were validated on 
a foraging e-puck swarm and how the latter two improved the 
swarm performance. Further examples of how the Catalogue could 
be used in different real-world missions are then provided.

5.1. Improving Robustness to noise in 
Foraging e-Puck swarms
Five e-puck robots with the Linux extension board developed at the 
Bristol Robotics Laboratory (Liu and Winfield, 2011) were tasked 
with searching an arena for worksites and delivering virtual resources 
from the worksites into the base until all worksites were depleted. The 
arena was  2× 1.5  m large and it was characterised by the number of 
worksites,  NW ∈

{
1, 3, 12

}
  and minimum worksite distance from 

the base,  D ∈
{
0.7, 1.4

}
  m. The base was represented by a quarter-

circle area with 0.4 m radius that was located in one of the arena’s 
corners. Worksites were placed randomly at a distance between D  
and  D ± 0.5  m from the base edge. They were circular, with a radius 
of  0.1  m. The arena contained a total of 48 units of resource, where 
each worksite had  48/NW   units at the beginning of an experiment.

The robots navigated by obtaining their absolute coordinates 
from an overhead tracking system. Additionally, the robots were 
equipped with a virtual worksite sensor with a range of  0.25  m. 
When a robot was at least  0.25  m away from a worksite, it received 
the worksite location from an external computer, allowing the robot 
to calculate a direction vector towards the worksite.

First, a “Solitary” redfinite-state machine robot controller was 
created based on the Individualist design pattern (Figure 12A). This 
involved copying the pattern’s BDRML primitives, and renaming its 
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data structure to “Worksite location”. Note the difference between 
the high-level representation in BDRML and the pseudocode 
built for the finite state machine controller in Figure 12A. In this 
particular implementation, the “Work” behaviour was represented 
by two states, “GO_TO_WORKSITE” and “GO_TO_BASE”. If the 
controller was based on a neural network, for instance, a different 
implementation would be needed. However, in both cases, the 
robot would be required to adhere to the high-level BDRML 
specification by exhibiting the “Scout” and “Work” behaviours.

The Solitary swarm successfully collected all the resource within 
around 6–12 min, depending on the number of worksites and the 
arena size (Figure 13A). In the second set of experiments, noise 
was added into the positional information that the robots received 
from the tracking system, so that the robots could not always arrive 
to their worksites and had to abandon and re-discover them. In 
other words, the noise caused the robots to loose information 
about worksites, which was reflected by an increased amount of 

uncertainty cost paid by the swarm. Consequently, the swarm 
performance decreased and the robots needed more time to 
complete the task (Figure 13).

In order to decrease the negative effect of information loss due 
to noise, a “Local Broadcaster” controller was created as a result 
of combining the Broadcaster and the Information Exchange near 
Worksites (IEW) patterns (Figure 12B). The robots were equipped 
with a wireless communication module with a maximum range of 
 1.25  m. Because of the availability of this hardware, the Broadcaster 
pattern represented a better choice than the alternative Information 
Transmitter pattern, Information Storage, where additional devices or 
chemicals would have to be placed by the robots into the environment. 
The IEW pattern was selected in order to solve the robot navigation 
problem by increasing the range at which robots could detect worksites. 
The Information Exchange Centre pattern was not suitable, since it 
requires robots to travel relatively long distances to the base and back 
to worksites, potentially increasing the negative effects of positional 

FIguRe 12 |  (A) Graphical BDRML representation of the “Solitary” robot control algorithm, resulting from the Individualist design pattern, and robot update loop 
pseudocode. (B) Graphical BDRML representation of the “Local Broadcaster” robot control algorithm, resulting from a combination of the Broadcaster and 
Information Exchange near Worksites patterns, and robot update loop pseudocode.
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noise. On the other hand, using the Information Exchange Anywhere 
pattern could prevent the swarm from designating a portion of its 
effort to scouting the environment, which was especially important 
in environments with twelve worksites.

The resulting “Local Broadcaster” controller was created by, 
first, copying the behaviours and common data structures that 
belonged to both patterns (Design Pattern Application Rules C1–
C3). These sets included the “Scout” and the “Work” behaviours 
and the “Worksite data int.” data structure, which was renamed to 
“Worksite location”. The relations between all included primitives, 
as well as their applicable conditions, were then included (Rule 
C4). The recruitment function,  r  , and the adoption function,  a , 
were defined in the Broadcaster pattern as or conditions and were 
therefore optional. They were not included in the control algorithm 
in the interest of simplicity. At the same time, “Worksite data ext.”, 
defined in the IEW pattern, was not included, since IEW is not an 
Information Transmitter pattern (Rule EXT1).

The Local Broadcaster swarm was able to maintain information 
about approximate worksite locations better that the Solitary swarm, 
which made it more robust to the positional noise (Figure 13B). 
When worksites were further away from the base ( D = 1.4  m), the 
completion time of the Broadcaster swarm was consistently lower 
than that of the Solitary swarm. Additionally, Local Broadcasters 
also achieved a lower completion time variance in the environment 
with the lowest worksite density ( NW = 1 ,  D = 1.4  m).

5.2. other examples
In missions like mineral collection, robot swarms could face 
the challenge of discovering mineral veins of low density, while 
minimising the mission time would be desirable. Once a vein 
has been discovered, multiple robots could dedicate their effort 
to carrying the minerals back to a depot, in order to satisfy their 
output quota as quickly as possible. In this mission, creating a “Bee-
Inspired” swarm (Figure 14) as a combination of the Broadcaster 
and Information Exchange Centre (IEC) patterns could be suitable, 
provided that the robots could navigate reliably over longer 
distances, for example by using GPS. Such an algorithm is well-
known in the swarm foraging literature (Krieger and Billeter, 2000; 
Amato et al., 2015; Pitonakova et al., 2016a, Pitonakova et al., 2018).

In the Bee-Inspired swarm, robots that know about worksites 
return to a depot in order to recruit uninformed robots. 
Unsuccessful scouts also return to the depot and search for 
informed robots. The control algorithm has four behaviours and 
one internal data structure common to both patterns. The BDRML 
primitives are renamed in order to facilitate understanding of the 
resulting algorithm (Rule C1). Similarly as was the case with the 
Local Broadcaster algorithm, “Worksite data ext.” is not included 
in the Bee-Inspired algorithm5 because it does not satisfy the 
condition of Rule EXT1. Additionally, like in the Local Broadcaster 
algorithm, the “Work” behaviour is represented by two states in the 
pseudocode implementation, “GO_TO_WORKSITE” and “GO_
TO_BASE”. The IEC pattern is used to redefine the communication 
routines of Broadcaster by applying Rules RDF1 and RDF2. The 
send relation between “Work” and “Worksite location”, defined in 
the Broadcaster pattern, is deleted, since a longer relation path 
that includes a send relation and passes through the “Recruit 
in the base” behaviour exists in the IEC pattern. The optional 
recruitment function,  r  , and the adoption function,  a , defined 
in the Broadcaster pattern, are omitted in order to simplify the  
control algorithm.

In the final example, autonomous submarines need to 
take water quality samples of contaminated areas, locations 
of which are initially unknown. Additionally, the range and 
reliability of peer-to-peer submarine communication is low, 
while the total area that the submarines need to search is large. 
In order to deal with these challenges, the Information Storage 
and Information Exchange Anywhere (IEA) patterns could 
be combined. The submarines could deposit programmable 
beacons around the areas of interest that would hold virtual 
pheromone and attract other submarines in order to decrease 
the mission completion time. Such “Ant-Inspired” algorithm 
(Figure  15) would lead to the creation of stigmergic cues, 
eliminating the need of the submarines to communicate with 

5 “Worksite data ext.” would be included if, for example, the Information Storage 
and Information Exchange Centre patterns were combined, since Information 
Storage is an Information Transmitter pattern that includes a copy relation 
between “Worksite data ext.” and “Worksite data int.”. Such an algorithm has, for 
example, been implemented in (Alers et al., 2011).

FIguRe 13 |  The e-puck swarm performance in environments (A) without and (B) with positional noise.
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each other directly. Similar algorithms have been implemented 
e.g., in (Hoff et  al., 2010; Hrolenok et  al., 2010; Ducatelle 
et al., 2011).

Unlike the alternative Information Aggregation patterns, 
the role of the IEA pattern is to allow data to be transferred as 
often as necessary. Rather than causing deletion or addition of 
primitives, the pattern allows all primitives from the Information 
Storage pattern to be included after applying Rules C1-C4. On 
the other hand, the Information Storage pattern can redefine the 
relation between the “Work” and “Worksite Data Int.” primitives 
defined in the IEA pattern by applying Rule RDF1, where the 
text it write relation between these primitives is not copied, 
since it represents a shorter relation path. The data structures 
in the resulting control algorithm are renamed to “Pheromone” 
and “Last pheromone value”. In the state machine pseudocode 
implementation, the “Work” behaviour is represented by two 
states, “FOLLOW_PHEROMONE” and “LEAVE_AREA”. The 
patterns are concretised (Rule CNC1) by specifying the ways 
in which the send and update relations change the value of 
“Pheromone”.

6. dIsCussIon

6.1. other swarm design Methods
Apart from design patterns, a number of alternative methods for 
robot behaviour design exist. For instance, a control algorithm 
inspired by animal behaviour, usually that of social insects (as in 
e.g., Fujisawa et al., 2014; Valentini et al., 2016), or by a previously 
created robot control algorithm (as in e.g., Gutiérrez et al., 2010; 
Ducatelle et al., 2014) can be chosen by hand. Parameter values 
for robot control algorithms can then be selected, for example, 
by applying macroscopic swarm models (e.g., Reina et al., 2015; 
Scheidler et al., 2016; Valentini et al., 2016).

Automated design methods include, for example, on-line learning 
and artificial evolution. On-line learning can be used to adapt robot 
control parameters during swarm operation in order to respond to 
environmental dynamics, such as a changing number of worksites 
(e.g., Liu et al., 2007; Wawerla and Vaughan, 2010) or the amount 
of congestion (e.g., Yang et al., 2009). However, these methods are 
unable to deliver new control strategies in response to a significant 
environmental change. On the other hand, artificial evolution 

FIguRe 14 |  Graphical BDRML representation of the Bee-Inspired robot control algorithm, resulting from a combination of the Broadcaster and Information 
Exchange Centre patterns, and robot update loop pseudocode. Implementations of BDRML relation conditionshave been indicated in the pseudocode following the 
// characters.
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can be applied to create a full multi-robot control algorithm with 
minimal human intervention, for example by learning a neural 
network configuration, in an off-line (Sperati et al., 2011; Francesca 
et al., 2014) or an on-line (Bredeche et al., 2009) fashion. However, 
this technique is often not only computationally expensive and 
dependent on frequent communication between robots, but, more 
importantly, it generally delivers viable solutions relatively slowly 
due to a considerable amount of randomness in the evolutionary 
processes (Doncieux et al., 2015). Moreover, the resulting evolved 
robot controllers may be difficult to analyse and understand due to 
the their black-box nature. The last problem mostly results from using 
neural networks as evolved robot controllers, an approach which can 
be improved on by evolving combinations of pre-defined low-level 
robot behaviours instead (Ferrante et al., 2015).

All these methods can benefit from the knowledge that design 
patterns offer in the following ways. Firstly, by allowing a swarm 
designer to consider the properties of various building blocks of robot 
behaviour, design patterns can guide manual algorithm selection. 
Secondly, when using macroscopic or agent-based swarm models, 
alternative control algorithms can be constructed with the guidance 
of the Design Pattern Catalogue and their macro-level characteristics 
compared. Knowledge of suitable design patterns can also make the 
search space of evolutionary algorithms smaller, saving computational 
requirements and time. Similarly, low-level behaviour blocks based 
on design patterns can provide robots with alternative behaviours 

to switch between during on-line adaptation, as was previously 
suggested in (Hernández et al., 2013; Ferrante et al., 2015).

From a different perspective, making design pattern creation 
one of the goals of experimentation and analysis in swarm robotics 
can inspire working towards a deeper understanding of collective 
intelligence by studying the mechanisms that play a role in the 
micro-macro link [e.g., as in  (Reina et  al., 2015)]. Many authors 
have argued that design and analysis approaches that could capture 
general principles of how emergent collective behaviour comes 
about are crucial to the advancement of the field (e.g., Parunak and 
Brueckner, 2004; Serugendo et al., 2006; Winfield, 2009b; Brambilla 
et al., 2014). Design patterns can represent a way of making this type 
of understanding explicit.

6.2. other design Pattern Work
It has been previously suggested that design patterns for swarm 
robotics should describe multiple levels of behaviour. For example, 
“local-level” or “basic” patterns have been used to describe how 
robots interact, while “global-level” or “composed” patterns described 
swarm-level behaviour, such as “Labour division” (Nagpal, 2004; 
Gardelli et al., 2007; Fernandez-Marquez et al., 2013). On the contrary, 
all design patterns presented here describe the same level of robot 
behaviour, equivalent to “local-level primitives” (Nagpal, 2004) or 
“basic design patterns” (Fernandez-Marquez et al., 2013). Control 
algorithms then result from combining the design patterns and are 

FIguRe 15 |  Graphical BDRML representation of the Ant-Inspired robot control algorithm, resulting from a combination of the Information Storage and Information 
Exchange Anywhere patterns, and update loop pseudocode for robots and beacons. Implementations of BDRML relation conditions have been indicated in the 
pseudocode following the // characters.
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thus their realisations, assembled to fit a particular mission. The 
control algorithms are equivalent to “global-level primitives” (Nagpal, 
2004) or “high-level patterns” (Fernandez-Marquez et al., 2013) found 
in the literature.

The focus on robot behaviours and data structures that they 
utilise and manipulate, and on describing small sub-components 
of robot control algorithms, is an important aspect of the design 
patterns presented here. A similar approach has been taken for 
distributed communication design patterns, where biologically-
inspired local communication strategies were defined and combined 
into control algorithms for specific applications (Babaoglu et  al., 
2006). In our view, description of “global-level” swarm behaviour 
would be a re-description of multiple local-level patterns and of 
their dependencies on and interactions with each other. Swarm 
behaviour can be complex, and in some cases emergent, which 
makes it important to identify minimal sets of behaviours that can 
be thoroughly analysed and their ability to achieve or avoid outcomes 
at the collective level described. In a well-specified framework, that 
includes a formal behaviour definition, such as the one offered by 
BDRML, a list of feedback loops, forces and pattern consequences 
on swarm-level behaviour, as well as unabmiguos application rules, 
a separate specification of control algorithms that may be created 
from these patterns should not be necessary. For the design patterns 
presented in this paper, a demonstration of how different patterns 
can be considered, combined and implemented has been presented 
in Section 5.

The second aspect in which the design patterns presented here 
differ from those in the swarm robotics literature is the introduction 
of categorisation, which follows the methodology of object-oriented 
design patterns (Gamma et  al., 1994) and of design patterns for 
distributed software algorithms (Aridor and Lange, 1998). The 
purpose of categorising design patterns is, first, to make it easier 
to specify their roles, and in turn to identify which patterns can 
be combined together. In most cases, only patterns from different 
categories will be combined as they are responsible for different 
aspects of robot behaviour. Secondly, a design pattern category may 
suggests which optional Application Rules are appropriate to use 
when creating a control algorithm, as is, for example, the case for 
Rule EXT1 (Section 3.2).

6.3. Current Issues and Future Work
Despite their advantages, the swarm design patterns presented here 
currently have a number of issues that need addressing. The design 
patterns need to be tested in a larger number of scenarios, which 
will facilitate their better specification. For example, the Broadcaster 
pattern description suggests that the pattern should be used when 
“the combination of robot and worksite density makes it difficult for 
robots to discover worksites.”. Is it possible to quantify this “difficulty”? 
Is there a specific threshold for worksite and robot density that clearly 
distinguishes environments where this pattern is and is not suitable? 
Or, more generally, is there a way of matching the parameters of 
a design pattern to parameters of the swarm task? While the ICR 
framework (Pitonakova et al., 2018) or other analytical approaches 
(Reina et al., 2015) can be used to analyse the forces that play a role 
in the micro-macro link, the fact that design patterns presented here 
are modular and can be combined together in different ways makes 

it difficult to exhaust all possibilities in which they can manifest 
themselves in swarm-level behaviour. It is therefore possible that we 
will never be able to identify, with a complete certainty, the most 
suitable set of design patterns for a given mission simply by browsing 
the Design Pattern Catalogue. However, more experiments can be 
performed with each design pattern, for example with different 
robot hardware and in different scenarios, to make the pattern 
specifications more detailed. In particular, the following challenges 
could be addressed:

•  Characterising the interaction of the Information Exchange 
Anywhere pattern with various Information Transmitter patterns. 
A larger set of consequences for the Information Exchange 
Anywhere pattern needs to be specified.

•  Characterising in more detail the effect of communication range 
in the Broadcaster pattern and of detection range in the 
Information Storage pattern

•  Characterising in more detail the effect of proximity threshold in 
the Information Exchange near Worksites pattern

•  Characterising the effect of swarm size and robot density on all 
design pattern properties

On the other hand, it is also important to note that, by offering a list 
of forces and consequences, a design pattern can identify situations 
in which it should not be used. For example, the Broadcaster pattern 
only works when sufficient communication range between robots 
is available. It could be combined with the Information Exchange 
Centre in order to alleviate this problem, but only during central-
place foraging.

Rather than thinking about design patterns as branches of 
a decision tree, that asks us questions about the robots and the 
environment and eventually leads us to one suitable solution, 
we should think about the Design Pattern Catalogue as a source 
of alternatives that a robot designer, or an automated design 
algorithm, can consider. A similar approach has been taken in 
the case of object-oriented (Gamma et al., 1994) and distributed 
computing (Babaoglu et  al., 2006) design patterns, where it is 
up to the developer to decide which patterns to use and how to 
implement them together based on the context of the specific 
application that is being developed. In any case, having design 
guidelines at hand may be a better alternative to creating an entire 
robot control algorithm based on arbitrary decisions.

Apart from providing better specifications for the existing patterns, 
the Design Pattern Catalogue also needs to be extended in a number 
of ways. Firstly, when it comes to foraging, design patterns for more 
types of robot behaviours could be created, for example those for 
scouting the environment, robot localisation, updating of information 
about worksites, etc. This could be achieved by performing targeted 
comparative experiments with different parts of robot behaviours, 
similarly as in the studies that inspired creation of the design patterns 
presented here (e.g., Gutiérrez et al., 2010; Wawerla and Vaughan, 
2010; Sarker and Dahl, 2011; Pitonakova et al., 2014, 2016a, Pitonakova 
et al., 2018). Secondly, the Design Pattern Catalogue should consider 
a larger number of swarm tasks, such as dispersion, aggregation or 
collective construction. It would be interesting to find out whether the 
foraging patterns presented here would be applicable to other swarm 
tasks and whether their descriptions could be improved by studying 
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them in new contexts. It is reasonable to assume that some patterns 
could be generalised enough to be applicable across different tasks. 
For example, the Broadcaster pattern has been used in multi-robot 
flocking (Vasarhelyi et al., 2014) and aggregation (Couceiro et al., 
2012), to allow robots to share information about their positions, 
intentions and the landscape of the environment. During a different, 
construction task, the “Work” behaviour of the Broadcaster pattern 
could be interpreted as “Build” and “Worksite” would be equivalent 
to a “Building site”.

Further extensions of the Design Pattern Catalogue could include 
new patterns for heterogeneous robot swarms and swarms that work 
alongside humans or report data to users. In these cases, entities that 
have different types of behaviour would work with each other, making 
it more difficult to identify consequences of patterns due to increased 
system-level complexity. Therefore, descriptions of design pattern 
consequences would need to include specific conditions under which 
they occur. For example, a behaviour might incur different costs when 
a robot executing it works alongside humans rather than within a 
homogeneous swarm.

Environments with more complex dynamics also need to be 
explored. For example, it is reasonable to assume that some robot 
missions would involve worksites with different priorities, or 
worksites that could only be serviced by a subset of robots. Tasks 
that require strong cooperation between robots, such as collective 
transport, are also an interesting challenge. In other missions, the 
ability of robots to perform work or to navigate the environment 
may change over time, for example due to varying weather or city 
traffic conditions. Understanding the impact of environmental 
dynamics on the ability of robots to obtain, share and utilise 
information is vital for both refining and extending the Design 
Pattern Catalogue.

Finally, the rules for applying design patterns may need to be 
refined and new rules may need to be added when mode design 
patterns and application case studies are available. For example, 
it is possible that future design patterns could be used to restrict 
information processing routines by shortening relation paths between 
pattern primitives. Some Application Rules may only be applicable 
to a certain design pattern category, for example, as is the case for 
Rule EXT1.

In a more general sense, it is interesting to think about how the 
concept of “interfaces” from object-oriented software engineering 
(Gamma et  al., 1994) extends to robot swarm algorithms. Can 
“interfaces” between swarm sub-algorithms ever be well-defined, 
given the emergent nature of the systems that they result in when 
combined together? While the divide-and-conquer approach 
that design patterns suggest may restrict us to a more traditional 
engineering part of the design space, is this the trade-off that has 
to be paid for obtaining a well-understood and well-defined design 
methodology for complex systems such as robot swarms?

As the previous few paragraphs suggest, the work needed to 
extend and maintain a design pattern catalogue for robot swarms 
is extensive. Therefore, it is our goal to make the Design Pattern 
Catalogue presented here publicly available and extendable6. BDRML 
will also need to be refined and extended, so that it is able to 
accommodate a broader range of patterns and represent various 

6 http://designing-robot-swarms.lenkaspace.net

heterogeneous entities that share information with each other. 
Furthermore, implementation examples and code libraries could 
be added in order to facilitate the usage of design patterns for specific 
robots and applications. Object-oriented design patterns nowadays 
come with implementation examples in various programming 
languages (Shalloway and Trott, 2005), which makes them easier 
to understand and apply.

7. ConClusIon

Robot swarms are a promising technology that could transform 
the way in which we manage logistics, transportation and 
agriculture, how we take care of the environment, and how we 
explore and colonise new planets. One of the greatest challenges 
of using this technology is that it is not obvious how we can 
relate robot behaviour, programmable by software developers, 
to a desired swarm-level outcome. Design patterns can serve as 
guidelines to algorithm design by capturing properties and effects 
of robot behaviours on swarm performance. Secondly, they can 
be useful for checking whether a particular algorithm is suitable 
given particular swarm task characteristics and availability of 
hardware, and for providing alternative solutions that can be 
considered. Thirdly, design patterns can guide automated design 
methods, such as adaptive algorithms and artificial evolution, as 
well as reduce their computational requirements.

This paper presented information exchange design patterns 
for robot swarm foraging. The patterns were modular in nature 
- they represented a particular aspect of robot behaviour, for 
example a location at which information should be exchanged 
between robots, and they could be combined into robot 
control algorithms. An important objective of each pattern 
was to describe the feedback loops and forces that affected the 
pattern’s effectiveness, as well as the pattern’s consequences 
on swarm-level behaviour. This was achieved by applying the 
Information-Cost-Reward framework for swarm behaviour 
analysis (Pitonakova et al., 2018) and for interpreting analysis 
results from studies found in the literature. The behaviour 
description and combination of the patterns were facilitated by 
the Behaviour-Data-Relations Modelling Language (Pitonakova 
et  al., 2017), in which relevant robot behaviours and data 
structures, as well their relationships, can be expressed explicitly. 
The patterns were validated by demonstrating how they improved 
the performance of foraging e-puck swarms and how they could 
guide algorithm design in other scenarios. The ability of the 
design pattern specification method presented here to identify 
distinguishing features of robot behaviour and their impact on 
swarm performance in a wide range of swarm implementations 
and experimental scenarios was demonstrated by successfully 
applying it to reason about and to organise robot behaviours 
implemented by other authors.
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