
1 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Methods
published: 07 June 2018

doi: 10.3389/frobt.2018.00047

Information exchange design
Patterns for Robot swarm Foraging
and their Application in Robot
Control Algorithms
Lenka Pitonakova 1*, Richard Crowder 2 and Seth Bullock 1

1 Department of Computer Science, University of Bristol, Bristol, United Kingdom, 2 Department of Electronics and
Computer Science, University of Southampton, Southampton, United Kingdom

In swarm robotics, a design pattern provides high-level guidelines for the implementation
of a particular robot behaviour and describes its impact on swarm performance. In this
paper, we explore information exchange design patterns for robot swarm foraging. First,
a method for the specification of design patterns for robot swarms is proposed that
builds on previous work in this field and emphasises modular behaviour design, as well
as information-centric micro-macro link analysis. Next, design pattern application rules
that can facilitate the pattern usage in robot control algorithms are given. A catalogue
of six design patterns is then presented. The patterns are derived from an extensive list
of experiments reported in the swarm robotics literature, demonstrating the capability
of the proposed method to identify distinguishing features of robot behaviour and
their impact on swarm performance in a wide range of swarm implementations and
experimental scenarios. Each pattern features a detailed description of robot behaviour
and its associated parameters, facilitated by the usage of a multi-agent modeling
language, BDRML, and an account of feedback loops and forces that affect the
pattern’s applicability. Scenarios in which the pattern has been used are described. The
consequences of each design pattern on overall swarm performance are characterised
within the Information-Cost-Reward framework, that makes it possible to formally relate
the way in which robots acquire, share and utilise information. Finally, the patterns are
validated by demonstrating how they improved the performance of foraging e-puck
swarms and how they could guide algorithm design in other scenarios.

Keywords: swarm robotics, design patterns, foraging, communication, information, control algorithm, bee-
inspired, ant-inspired

1. IntRoduCtIon

Multi-robot engineering is challenging, as it often requires a “bottom-up” approach to behavioural
design (Trianni et al., 2011; Parunak and Brueckner, 2015). The emergent macro behaviour of the
swarm is specified and evaluated, but it is the micro behaviour of individual robots that needs
to be programmed. Furthermore, the relationship between these two levels is often somewhat
opaque. There are a number of possible approaches when it comes to choosing algorithms for robot
swarms, including, for instance, selecting an arbitrary algorithm either inspired by nature or by
previous work in robotics (e.g., Sugawara and Watanabe, 2002; Lemmens et al., 2008; Gutiérrez

Edited by:
Giovanni Beltrame,

École Polytechnique de Montréal,
Canada

Reviewed by:
Sebastian Götz,

Technische Universität Dresden,
Germany

 Richard Hanten,
Universität Tübingen, Germany

*Correspondence:
Lenka Pitonakova

 contact@ lenkaspace. net

Specialty section:
This article was submitted to

Multi-Robot Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 14 March 2018
Accepted: 11 April 2018

Published: 07 June 2018

Citation:
Pitonakova L, Crowder R and

Bullock S
 (2018) Information Exchange Design

Patterns for Robot Swarm Foraging
and Their Application in Robot

Control Algorithms.
Front. Robot. AI 5:47.

doi: 10.3389/frobt.2018.00047

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00047&domain=pdf&date_stamp=2018-06-07
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00047
http://www.frontiersin.org/articles/10.3389/frobt.2018.00047/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00047/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00047/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00047/full
http://loop.frontiersin.org/people/510512/overview
http://loop.frontiersin.org/people/524658/overview
https://loop.frontiersin.org/people/171852/overview
https://creativecommons.org/licenses/by/4.0
mailto:contact@lenkaspace.net
https://doi.org/10.3389/frobt.2018.00047

2 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

et al., 2010; Fujisawa et al., 2014; Pitonakova et al., 2016a), using
artificial evolution to select robot behaviours (e.g., Sperati et al.,
2011; Ferrante et al., 2015)and applying design patterns.

In software engineering, a design pattern represents
implementation-generic guidelines for a part of a system’s
behaviour, usually created as an abstraction from a previously
implemented algorithm, that can be applied to a class of similar
problems (Gamma et al., 1994; Do et al., 2003). The potential
of design patterns to facilitate reliable and efficient creation of
algorithms has already been recognised in the swarm robotics
literature (e.g., Nagpal, 2004; Parunak and Brueckner, 2004;
Serugendo et al., 2006; Gardelli et al., 2007; Winfield, 2009b;
Reina et al., 2015), although a number of challenges remain
partially unsolved. The first challenge in design pattern creation
is establishing a common language for describing them (Graves
and Czarnecki, 2000). Secondly, identifying a framework
within which the effect of design patterns on collective swarm
performance can be analysed is important (Gardelli et al., 2007;
Reina et al., 2014). Thirdly, swarm design patterns should be
created based on an extensive set of experiments and attention
should be paid to their generality and reusability (Fernandez-
Marquez et al., 2013).

These challenges are addressed here in the following ways. In
order to address the first two problems related to design pattern
specification, a new method for describing and combining design
patterns for robot swarm foraging is proposed, utilising information-
centric approaches that include the Information-Cost-Reward (ICR)
framework for swarm behaviour analysis (Pitonakova et al., 2018)
and a formal modelling language for multi-agent systems, BDRML
(Pitonakova et al., 2017). The main objectives of a design pattern,
as defined here, are 1. to specify a self-contained module of robot
behaviour in terms of robot actions and data dependencies using
BDRML; 2. to identify the properties of this module, such as control
parameters and their effect on the overall swarm performance within
the ICR framework; and 3. to advise on the suitability of using the
module in the context of other robot behaviours and swarm task
parameters. The emphasis on pattern modularity is an important one.
As will be demonstrated here, by creating patterns that only describe
a particular aspect of a robot control algorithm (e.g., a location at
which robots exchange information), it is possible to study and clearly
describe the design pattern’s properties and consequences, as well
as to create a range of robot control algorithms by considering the
relationships between multiple design patterns and by applying well-
specified Application Rules to their BDRML representations.

This work focuses on design patterns for information exchange
during multi-robot foraging, where robots need to search an unknown
environment for worksites and either perform work on them or
transport goods from the worksites into a predefined location. The
robots may or may not exchange information about the worksites.
Foraging was selected because it is often used as a paradigm for a
wide range of real-world robot collective tasks such as collection
of resources, search and rescue operations, environment cleanup,
customer servicing, etc. (e.g., Gutiérrez et al., 2010; Jevtic et al., 2012;
Lee et al., 2013; Ducatelle et al., 2014). Information processing and
exchange have previously been emphasised as important elements
of any swarm behaviour (e.g., Trianni et al., 2011; Wang et al., 2012;
Fernandez-Marquez et al., 2013; Miller et al., 2014; Reina et al., 2015),

and are therefore the main focus of the patterns presented here. The
ways in which similar design patterns for other collective swarm tasks
could be created are discussed in Section 6.

In order to consider a sufficient breadth of research work, a
catalogue of six design patterns is presented, that is based on an
extensive literature review, including our previous swarm analysis
work. The design pattern creation method proposed here is applied
to reason about and to organise behaviours repeatedly implemented
in the literature, demonstrating its ability to identify distinguishing
features of robot behaviour and their impact on swarm performance in
a wide range of swarm implementations and experimental scenarios.
Finally, in order to validate the design patterns and to demonstrate
their applicability, examples of real-world and hypothetical scenarios
where the patterns have or could be combined into robot control
algorithms in order to improve swarm performance, given the
mission requirements and robot hardware constraints, are provided.

The rest of the paper is organised as follows. In the next section,
the background related to design patterns, the ICR framework and
BDRML is provided. The method for creating, representing and
applying design patterns is introduced in Section 3. The Design
Pattern Catalogue is provided in Section 4 and examples of design
pattern applications are included in Section 5. A more general
discussion of the methods presented here, of other robot algorithm
creation methods, as well as of how design patterns could complement
automated robot algorithm design, such as on-line learning and
artificial evolution, is provided in Section 6.

2. BACKgRound

2.1. design Patterns
A design pattern offers a flexible high-level solution to a class of
problems, that a programmer can implement in a particular, context-
specific way (Do et al., 2003). Good patterns that use a common
unambiguous language can decrease system design time, as well as
improve communication between engineers (Brazier et al., 2002;
Gardelli et al., 2007). In object-oriented software engineering,
design patterns define what roles object classes should have and how
they should interact (Gamma et al., 1994). In agent-based software
engineering, design patterns can define roles and interactions of
agents, as well as the role of the environment (e.g., Aridor and Lange,
1998; Do et al., 2003). In swarm robotics, a design pattern usually
defines a part of a robot control algorithm that is responsible for
a specific robot behaviour (e.g., Nagpal, 2004; Gardelli et al., 2007;
Fernandez-Marquez et al., 2013). Another class of design patterns for
swarm robotics includes those composed of lower-level patterns. For
example a “Gradient” pattern can be composed from a “Spreading”
and an “Aggregation” patterns (Fernandez-Marquez et al., 2013).

An important property of design patterns is their modularity
(Mikkonen, 1998). A single pattern usually defines a solution
to a specific problem, e.g., in the case of swarm robotics, how
to navigate the environment, how to manage data, etc. Multiple
design patterns are then combined within a single program and
the programmer decides how to implement them together, given
a specific application and hardware available (Hernández et al.,
2013; Fernandez-Marquez et al., 2013).

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

3 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

The first object-oriented design patterns included several
properties, including (Gamma et al., 1994):

•  The pattern’s name and, if applicable, aliases
•  The intent, i.e, the main goal of the pattern and motivation, i.e., the

reasons why the pattern should be applied
•  Applicability, i.e., a description of the circumstances under which

the pattern should be applied
•  The class structure, a detailed description of the participants

identified within the structure, as well as of their collaborations
•  A list of consequences on the overall software, including the

advantages and disadvantages of using the pattern
•  Guidance on implementation, including sample skeleton code
•  A list of known uses of the pattern in real-world applications
•  A list of related patterns

The above specification method was also followed in early multi-
agent system patterns (Aridor and Lange, 1998). However, in
later multi-agent work, the agent behaviour specification became
more detailed and included the social dimension, that identified
relevant agents, the intention dimension, that identified the services
provided by agents, the structural dimension, that described how
the services worked, the communication dimension, that modeled
temporal exchange of events between agents and the dynamical
dimensions, that described synchronisation mechanisms of the
pattern (Do et al., 2003). On the other hand, other properties of
design patterns, such as their applicability and their effect on the
system as a whole were less prominent. Similarly, in early multi-
robot design pattern work (Nagpal, 2004), the patterns only
included a description of how they worked, but did not describe
their context or consequences.

Later multi-robot design patterns reverted to the detailed format
that was originally used in object-oriented software (Gamma et al.,
1994), but also featured additional information due to the complex
nature of multi-robot systems, including (Gardelli et al., 2007;
Fernandez-Marquez et al., 2013):

•  The problem description, that replaced intent and motivation and
that either described a particular pathological collective behaviour
that a pattern was created to prevent, or a particular behaviour
that the multi-robot system could achieve

•  The forces, i.e., the way in which the pattern’s parameters affected
its effectiveness

•  The description of a solution, including a list of entities and their
dynamics, the feedback loops involved, an example that graphically
described a possible implementation of the pattern, including
guidance on how such implementation could be realised.

•  The inspiration behind the pattern in the form of its equivalents
found it nature.

2.2. graphical Representation of design
Patterns
An important part of a design pattern is a description of the
behaviours that the pattern represents, facilitated by a well-
specified modelling language with an unambiguous syntax
and semantics (Harel and Rumpe, 2004), and preferably, with
graphical elements (Graves and Czarnecki, 2000). In object-
oriented software engineering, UML class diagrams1 are
commonly used to graphically represent object classes and their
relationships. Multi-agent software patterns additionally make
use of state charts (Castello et al., 2016) and sequence charts
(Do et al., 2003).

In this paper, the Behaviour-Data Relations Modelling Language
(BDRML) (Pitonakova et al., 2017), that was specifically designed
for multi-agent systems, is used. In BDRML, agent behaviours
and data structures, as well as their relationships, are represented
explicitly, allowing the language to represent multi-agent control
algorithms, as well the way in which agents interact with each
other and with their environment. This makes BDRML a suitable
choice for representing design patterns for robot swarms, where
information processing and exchange play a pivotal role (Trianni
et al., 2011; Wang et al., 2012; Fernandez-Marquez et al., 2013;
Miller et al., 2014; Reina et al., 2015). BDRML defines three types of
primitive (Figure 1):

•  Behaviour, i.e., a set of processes that deal with a particular
situation that a robot may find itself in, for example, “Scout”

•  Internal data structure, i.e., information that is stored in a robot’s
memory

•  External data structure, i.e., information that is stored in a non-
robot entity, i.e., in the robot’s environment

BDRML primitives can be linked by the following relations
(Figure 2):

•  Transition: The robot transitions from one behaviour to another
•  Read/Write: Internal data is used/stored by the robot when it is

engaged in a particular behaviour
•  Receive/Send: External data is used/stored by the robot. In the case

of the Send relation, a robot may also send the data to another
robot that stores it in its own internal data structure

•  Copy: Information is copied from one data structure to another

1 http://bit.ly/2HwdnlT

FIguRe 1 | Graphical and textual representations of BDRML primitives. Reproduced from (Pitonakova et al., 2017) with permission of the copyright
holder, IEEE.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

4 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

•  Update: The value of a data structure is updated from that in the
previous time step by a subroutine not visualised in the BDRML
diagram (for example, a pheromone level may “spontaneously”
decrease over time).

The write and send relations can optionally define the new data
structure value or a function that updates the value, indicated
by a dashed line extending from the end of the relation arrow in
a graphical description, and written before a colon proceeding
the data structure name in a textual description. The update
relation must always specify the new value or the value
update function.

Finally, each relation or operation occurs under a specific set
of conditions (Figure 3). A condition is graphically represented
as an annotated triangle at the beginning of a relation arrow. In a
textual representation, a condition set follows a relation signature
and is separated from it by a colon. Unless otherwise specified,
the or logical operator is used when multiple conditions affect
a single relation.

A BDRML representation of a design pattern includes
a set of behaviours, B , a set of internal, Di , and external,
 De , data structures and a list of conditional relations. Figure 4
shows BDRML representations of three example design
patterns.

2.3. the Information-Cost-Reward
Framework
The Information-Cost-Reward (ICR) framework (Pitonakova
et al., 2018) formally relates the way in which robots obtain and
share information (e.g., about worksites to forage from) to the

swarm’s ability to use that information in order to obtain reward
efficiently, given a particular swarm task and environment.
Using this framework can address concerns regarding generality
and reusability of patterns (Fernandez-Marquez et al., 2013),
as well as those regarding describing the effect of patterns
on collective swarm performance (Gardelli et al., 2007; Reina
et al., 2014).

The framework identifies various metrics and formally relates
them to the amount of reward that a swarm is able to obtain at a
given point in time. Scouting efficiency and information gain rate
characterise how well robots are able to obtain new information
about worksite locations and share it amongst themselves. The
uncertainty cost represents the amount of reward lost due to
robots that do not know about where worksites are located,
while the displacement cost and the misinformation cost express
how efficiently a swarm can turn information about worksites
into reward. Displacement cost is incurred by robots that are
informed about where to forage from but are unable to act on this
information immediately (for example, they may be recruited
to a far away worksite, or they may be recruited while they are
part-way through completing another task). Misinformation
cost is incurred by robots with outdated information, that are
attempting to reach a worksite that has already been depleted. By
measuring these costs, it is possible to identify robot behaviours
that are responsible for an observed swarm performance (for
instance, recruitment far away from worksites). Consequently,
it is possible to identify the effect of design patterns on swarm-
level behaviour, as well as how their suitability and effectiveness
are affected by the parameter values of robot behaviour and by
other design patterns.

FIguRe 2 | Graphical and textual representations of BDRML relations and operations. Reproduced from Pitonakova et al. (2017) with permission of the copyright
holder, IEEE.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

5 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

FIguRe 4 | BDRML examples of design patterns. (A) A pattern consisting of behaviours b1 and b2 and of an internal data structure of boolean or integer type, di1 .
A robot transitions from b1 to b2 when a boolean function h returns true. The robot transitions back from b2 to b1 with a probability p

(
A
)
 . While performing b1 , the

robot writes into and reads from di1 . (B) A pattern consisting of behaviours b1 and b2 and an external data structure de1 . The robot transitions probabilistically
between b1 and b2 and updates the value of de1 according to the function j . (C) A pattern consisting of behaviour b1 , an internal data structure di1 and an external
data structure de1 . While in b1 , the robot may update the value of di1 by +1, provided that the boolean function f returns true. Similarly, the robot may update de1
when g returns true. Additionally, the value of de1 is updated by −0.5 at each time step.

FIguRe 3 | Graphical and textual representations of BDRML conditions. Reproduced from Pitonakova et al. (2017) with permission of the copyright
holder, IEEE.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

6 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

3. Methods

3.1. design Pattern specification
Inspired by object-oriented design pattern principles (Gamma
et al., 1994, p.11–42), it is proposed here that a swarm robotic
design pattern should:

•  Describe a particular stand-alone module of a robot control
algorithm in terms of robot behaviours, relevant internal and
external data structures and relationships between them. Such a
module should satisfy a particular functional requirement and its
description should be independent of other modules that deal
with other requirements.

•  Provide a description of suitable environments and swarm tasks,
in which the pattern is understood to be an appropriate design
choice.

•  Be possible to combine with other design patterns.
•  Be implementation-generic, i.e., only describe high-level

behaviour, rather than an implementation2.

The information exchange patterns presented here are split into
two categories that identify the pattern roles (see also, e.g., Gamma
et al., 1994; Aridor and Lange, 1998):

•  Information Transmitter patterns: Specify what entity transmits
or stores information, as well as what information is used by
behaviours and under what conditions

•  Information Aggregation patterns: Specify where information
exchange takes place and what behaviours are responsible for the
exchange

Each design pattern includes the following properties (as in,
e.g., Gamma et al., 1994; De Wolf and Holvoet, 2007; Gardelli
et al., 2007; Fernandez-Marquez et al., 2013):

•  Design pattern name and category
•  The problem that the pattern is solving
•  The applicability of the pattern, given the conditions of the swarm

task and of the environment, as well as the available
hardware

•  The solution, including a representation of relevant robot
behaviours and data structures in BDRML, as well as guidance on
the pattern implementation

•  A description of feedback loops that are created or altered as a
result of using the pattern

•  A list of parameters associated with the specified robot behaviours
and their detailed description

•  A list of forces that affect the pattern’s effectiveness
•  A list of consequences that the design pattern has on macro-level

swarm characteristics, especially those that cannot be controlled
through the pattern’s parameters

•  A list of known uses in the swarm robotics literature
•  A list of related patterns

2 This requirement is similar to the requirement of object-oriented design patterns
for programming to an interface rather than to an implementation, whichleads
to reusability and minimal implementation dependencies (Gamma et al., 1994,
p. 30).

The description of pattern feedback loops, parameters, forces
and consequences utilises terminology of the ICR framework
and considers a variety of experiments reported in the
literature.

Not all pattern descriptions include all of the properties listed
above. For example, when a pattern has no parameters (e.g., the
Individualist pattern in Section 4.1), it is likely to also not have any
forces associated with it. In other cases, a solution that a pattern
offers may look rather generic (for example, the Information
Exchange Anywhere pattern from Section 4.4). This can happen
when a pattern represents an alternative to other, more restrictive,
patterns from the same category. An example of how such pattern
is used is provided in Section 5.2.

Note that unlike in some design pattern work (e.g., Gamma
et al., 1994; Gardelli et al., 2007; Fernandez-Marquez et al., 2013),
aliases are not provided with the patterns presented here. The term
“alias” implies direct correspondence, which, to the best of our
knowledge, is not possible to make with other design patterns
found in the literature. Instead, design patterns similar to those
presented here are mentioned in the list of related patterns. Also,
example code for the patterns is not provided in this paper due to
content length restrictions. However, detailed high-level guidelines
on implementation are provided in the form of BDRML diagrams.
Furthermore, example pseudocode of four robot control algorithms
that can be created by using the Design Pattern Catalogue is shown
in Section 5.

3.2. design Pattern Application Rules
The usage of different design patterns in a robot control algorithm
can be facilitated by identifying Application Rules for modifying
and combining the BDRML pattern representations. Compulsory
Rules (C), represent a minimal set of steps for combining patterns
and should always be applied. Other rules are optional, and include
those for extending (EXT) and redefining (RDF) information
processing routines of patterns, and those for concretising (CNC)
the patterns.

The Compulsory Application Rules include:

•  C1. Relabel any elements of the selected design patterns that are
ambiguous with respect to one another or to the control algorithm
that is being created. For instance, identify any equivalences
between design pattern elements that appear in more than one of
the original design patterns (e.g., two design patterns may each
involve reading the same external environmental data but allocate
it a different identifier). Analogously, identify any distinctions
between labels that appear in more than one of the original design
patterns (e.g., two design patterns may each employ the identifier
“Worksite”, without this label necessarily referring to the same
entity). Finally, rename primitives in order to better facilitate
understanding of the control algorithm, especially if the original
design patterns use general labels, such as “Worksite data”.

•  C2. Copy all sets of behaviours, Bi , from all patterns into a new
behaviour set, B′ , i.e., B

′ =
{
B1 ∪ B2 ∪ . . . ∪ Bn

}
 .

•  C3. Copy common data structures from design pattern data
structure sets Di and De into new sets, Di and De , i.e.,
 Di =

{
Di1 ∩ Di2 ∩ . . . ∩ Din

}
,De =

{
De1 ∩ De2 ∩ . . . ∩ Den

}
.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

7 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

Choose appropriate data types if the design pattern data structures
define multiple data type options.

•  C4. Copy all relations between the primitives that belong to sets
 B′ , Di and De , including their conditions. Unless it is otherwise
specified by a relation condition, assume the or operator when
combining conditions. All conditions with the or operator should
be considered optional3. Additionally, when the “always” condition
is combined with others, the “always” condition should
be deleted4.

The rules for extending information processing routines of a pattern
by another include:

•  EXT1. Add additional data structures into Di ' and De ' from an
included Information Transmitter pattern that have a read relation
with a behaviour, or a copy relation with a data structure already
present in Di ' or De '. This allows one pattern to extend the list of
information processing routines of another, while ensuring that
Information Transmitter patterns play a decisive role in what data
structures are used in the robot program.

•  EXT2. Apply Rule C4.

The rules for redefining information processing routines of a pattern
by another are:

•  RDF1. Delete all relations that belong to shorter relation paths
between behaviours and data structures (but not between
behaviours) that are of the same type (for example, send relations).
A relation path specifies a set of relations that lead from a primitive
 V1 to a primitive V2 , including those relations that pass through

3 An “or” condition defines additional situations in which a relation is applicable.
In the most extreme case of the condition being empty, “or false” is aredundant
expressions and can therefore be omitted.
4 The “always” condition always returns “true” and it should therefore be
combined with other conditions using the “and” operator, ensuring that the
otherconditions are satisfied according to their specifications. Since “and true” is a
redundant expression, the “always” condition can be deleted.

other primitives and create an indirect relation between V1 and
 V2 .

•  RDF2. If applicable, use conditions from deleted relation paths on
the relation paths that are left over. For example, if relation between
 V1 and V2 with a condition c was deleted, and a new relation
between V3 and V2 exists instead, it may be appropriate to add
condition c to this relation.

Finally, patterns can be concretised in order to better describe the
dynamics of an implemented robot control algorithm by using
the following rule:

• CNC1. Add additional specifications to write, send and update
relations in order to identify how they change the values of their
corresponding data structures (see Figure 2).

Consider an example in Figure 5A, where the patterns from
Figure 4A,C are combined. First, a set of behaviours that belong
to both patterns is found (Rules C1 and C2). This set includes the
behaviours b1 and b2 . Next, the data structure di1 , that belongs to
both patterns, is included and its data type is chosen to be integer
(Rules C1 and C3). Finally, all relations that belong to b1 , b2 and
 di1 are copied and combined (Rule C4). Note that the pattern from
Figure 4C cannot extend information processing routines defined
in Figure 4A, since the additional data structure from Figure 4C,
 de1 , does not have a read or copy relation with another primitive
(Rule EXT1). The point of including a data structure without read
operations in a pattern, such as that in Figure 4C, is to specify
special conditions for their write, send or update relations, that
are applicable in cases when the pattern is combined with another
pattern, in which the data structure is read or copied.
An example of information processing redefinition is shown in
Figure 5B, which results from combining patterns from Figure 4B
and C. Primitives b1 , b2 and de1 , as well as their relations are
copied over (Rules C1–C4). In order to use the design pattern
from Figure 4C to redefine information processing described in

FIguRe 5 | BDRML examples of combining design patterns. (A) Combination of design patterns from Figure 4A,C. (B) Combination of design patterns from
Figure 4B,C. Primitives and relations of the first pattern are shown in black text. Additional primitives and relations, drawn from the second pattern in Figure 4C,
are shown in bold green text. Primitives and relations that belong to one of the patterns but are not included in the control algorithm are shown as strikethrough text,
but they are not shown graphically.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

8 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

Figure 4B, the write relation between b1 and de1 is deleted, as it
represents a shorter relation path (Rule RDF1).

Apart from a BDRML representation of the robot behaviour,
other characteristics of design patterns should be considered
together when design patterns are combined. The list of suitable
applications becomes more specific when multiple patterns form
a control algorithm. Or, from another point of view, a more
detailed specification of the swarm’s environment and task allows
a programmer to choose between design patterns with a higher
confidence. The list of control algorithm parameters also grows
when multiple patterns are combined. Therefore, in order to
minimise the number of design decisions that need to be made,
design patterns with a smaller number of parameters should be
preferred where possible. Unless an exhaustive list of situations is
considered during a control algorithm optimisation phase, or unless
a suitable on-line parameter learning algorithm is implemented,
each new parameter can lead to undesirable dynamics.

4. the desIgn PAtteRn CAtAlogue

In this section, six information exchange design patterns for
robot swarm foraging are presented. The particular patterns
were selected due to the considerably large number of detailed
simulation experiments that we have previously performed using
robot controllers with behaviours described by these patterns
(Pitonakova et al., 2014, 2016a, b, Pitonakova et al., 2018). Also, as
we will show below, each pattern can be found in control algorithms
that were used in a relatively large number of other swarm robotics
research papers.

The term “worksite” is used to refer to a place where reward
is located, such as a place where items need to be collected from
[e.g., during raw material collection, package delivery, etc. (as
in, e.g., Winfield, 2009a; Wawerla and Vaughan, 2010)], or to a
place where work needs to be performed [e.g., during shop floor
machine maintenance (e.g., Sarker and Dahl, 2011) or similar tasks
(e.g., Jevtic et al., 2012)].

4.1. Individualist
4.1.1. Category
Information Transmitter pattern.

4.1.2. Problem
Robots need to find and exploit worksites as quickly as possible.

4.1.3. Applicability
Information about worksites is easily obtainable, for example
when worksite density is high (Winfield, 2009a; Pitonakova et al.,
2014, 2016a, Pitonakova et al., 2018). Also recommended when
continuous exploration of the environment is important, e.g., when
new worksites appear over time (Pitonakova et al., 2018).

4.1.4. Solution (see also Figure 6)
A robot scouts for worksites in the environment. A successful scout
stores information about its worksite, such as its location, in an
internal data structure (“Worksite data int.”), and begins work. The
data structure may be updated and utilised periodically while the
robot works. For example, if the robot uses odometry to localise
itself relative to the worksite, the relative vector to the worksite
should be updated periodically. The robot ignores any information
and actions of other members of the swarm.

4.1.5. Feedback Loops: -

4.1.6. Parameters: -

4.1.7. Forces: -

4.1.8. Consequences

•  Leads to a low information gain rate, which is why information
about worksites needs to be relatively easy to find (Pitonakova
et al., 2018)

•  Minimises displacement and misinformation costs (Pitonakova
et al., 2018)

•  The spread of robots across worksites only depends on their
scouting movement pattern. For example, an even spread across
the environment may be achieved when robots utilise random
walk (Sugawara and Watanabe, 2002; Kernbach et al., 2012;
Pitonakova et al., 2018)

•  Prevents the spread of erroneous information among robots
(Pitonakova et al., 2014)

4.1.9. Known Uses
Often used when simple foraging algorithms are needed as a basis
for robot behaviour, while other swarm behaviours, such as self-
regulation or task-allocation, are explored (Krieger and Billeter,
2000; Labella et al., 2006; Lerman et al., 2006; Campo and Dorigo,

FIguRe 6 | BDRML representation of the Individualist design pattern.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

9 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

2007; Kernbach et al., 2012). Also used in studies that compare
swarms that do and do not utilise robot-robot recruitment (Balch
and Arkin, 1994; Rybski et al., 2007; Gutiérrez et al., 2010; Lee et al.,
2013; Fujisawa et al., 2014; Amato et al., 2015) and in scenarios
where robots can infer information about others and about the
environment through sensing (e.g., by using a camera), rather than
through communication (Jones and Mataric, 2003).

4.1.10. Related Patterns
Serves an alternative to the Broadcaster and Information Storage
patterns, that, in general, is easier to implement and provides
collective performance that is less difficult to understand due to
the lack of parameters.

4.2. Broadcaster
4.2.1. Category
Information Transmitter pattern.

4.2.2. Problem
Robots need to find and exploit worksites as quickly as possible,
but the task characteristics (e.g., robot or worksite density) make
it difficult for robots to discover worksites.

4.2.3. Applicability
Robots are capable of directly communicating with each other
(as in, e.g., Wawerla and Vaughan, 2010; Ducatelle et al., 2014;
Pitonakova et al., 2018).

4.2.4. Solution (see also Figure 7)
A robot scouts for worksites in the environment. A successful scout
stores information about its worksite, such as its location, in an
internal data structure (“Worksite data int.”), and begins work.
The data structure may be updated and used periodically while
the robot works. A robot that is engaged in the “Work” behaviour
may send information about its worksite to another robot, provided
that a boolean recruitment function, r , returns true. When a robot
receives worksite data in this way, it stores it in its own internal data
structure and transitions from the “Scout” to the “Work” behaviour,
provided that a boolean adoption function, a , returns true.

4.2.5. Feedback Loops
Sharing of worksite information represents a positive feedback loop
that can be regulated via the pattern’s parameters.

4.2.6. Parameters

•  Recruitment function, r : A boolean function that determines
whether the robot decides to recruit another robot. For example,
a robot might decide to recruit with a certain probability every
time it encounters another robot

•  Adoption function, a : A boolean function that determines whether
a scout transitions to the “Work” behaviour after receiving worksite
information. For example, a robot might prefer worksites from a
certain area only.

•  Robot communication range: A range at which robots can
communicate with one another

4.2.7. Forces

•  A sufficient communication range must be available in order for
recruitment to take place, depending on the worksite and robot
density (Sugawara and Watanabe, 2002).

•  A larger communication range causes a higher information gain
rate, but can also increase displacement and misinformation costs
incurred by recruited robots, consequently decreasing the swarm
performance (Sugawara and Watanabe, 2002; Valdastri et al., 2006;
Rybski et al., 2007; Pitonakova et al., 2016a).

4.2.8. Consequences

•  Information about worksites is more easily accessible to
uninformed robots (Sugawara and Watanabe, 2002; Rybski et al.,
2007; Sarker and Dahl, 2011)

•  Information is carried and transmitted by robots, meaning that
the information gain rate depends on the probability of robots
meeting each other, i.e., on their movement algorithm and on the
structure of the environment (Pitonakova et al., 2018)

•  Causes the robots to incur displacement cost, associated with
traveling to worksites after being recruited (Pitonakova et al.,
2018)

•  Increases the probability of incurring misinformation cost, as a
result of outdated information potentially being spread across the
swarm (Gardelli et al., 2007; Fernandez-Marquez et al., 2013;
Pitonakova et al., 2018)

•  Can lead to the spread of erroneous information among robots,
e.g., when a recruiter’s worksite information is incorrect due to
sensory-motor noise (Pitonakova et al., 2014)

FIguRe 7 | BDRML representation of the Broadcaster design pattern.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

10 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

4.2.9. Known Uses
Often used to implement local communication of robot state (Balch
and Arkin, 1994; Parker, 1995; Dahl, 2002; Sugawara and Watanabe,
2002; Rybski et al., 2007), worksite location (Balch and Arkin, 1994;
Parker, 1995; Valdastri et al., 2006; Wawerla and Vaughan, 2010;
Sarker and Dahl, 2011; Amato et al., 2015; Pitonakova et al., 2018)
and worksite urgency (Sarker and Dahl, 2011). It has been used in
tasks like general (Balch and Arkin, 1994; Pitonakova et al., 2018)
and central-place (Parker, 1995; Valdastri et al., 2006; Rybski et al.,
2007; Pitonakova et al., 2018) foraging, cooperative transportation
(Sugawara and Watanabe, 2002; Amato et al., 2015), package
delivery (Wawerla and Vaughan, 2010) and task allocation (Sarker
and Dahl, 2011).

4.2.10. Related Patterns
The pattern can be combined with the Information Exchange
Anywhere pattern to make robots exchange information at any
time they meet in the foraging arena (Gutiérrez et al., 2010; Fraga
et al., 2011). When combined with Information Exchange near
Worksites pattern, a behaviour similar to that of sheep (Michelena
et al., 2010) and fish (Lachlan et al., 1998) is obtained, where robots
that are currently obtaining reward from worksites attract nearby
robots, effectively increasing the worksite detection range (e.g., as
in Wawerla and Vaughan, 2010; Ducatelle et al., 2014; Pitonakova
et al., 2018). Finally, bee-inspired recruitment (Seeley et al., 1991), that
involves communication in the base, can be obtained by combining
the Broadcaster and the Information Exchange Centre pattern (e.g.,
as in Parker, 1995; Krieger and Billeter, 2000; Pitonakova et al., 2018).

Other related patterns include “Diffusion” (Gardelli et al., 2007)
and “Spreading” (Fernandez-Marquez et al., 2013).

4.3. Information storage
4.3.1. Category
Information Transmitter pattern.

4.3.2. Problem
Robots need to find and exploit worksites as quickly as possible,
but the task characteristics (e.g., robot or worksite density) make
it difficult for robots to discover worksites.

4.3.3. Applicability
Robots are capable of depositing information into their
environments and retrieving it, for example to drop, update
and read RFID tags (Drogoul and Ferber, 1993; Hrolenok et al.,
2010), deposit and sense chemicals (Mayet et al., 2010; Fujisawa
et al., 2014), or store and read “virtual pheromone” maintained
by stationary robots (Hoff et al., 2010; Ducatelle et al., 2011) or
by an external server (Sugawara et al., 2004; Kazama et al., 2005).

4.3.4. Solution (see also Figure 8)
A robot scouts for worksites in the environment. Additionally, it can
adopt information about a worksite if it finds a data storage device
containing information (“Worksite data ext.”), and if a boolean
adoption function, a , returns true. Once a robot discovers information
about a worksite either as a result of scouting or when finding a data
storage device, it begins work. The robot’s internal data structure is
used and updated with information stored in the environment while
the robot works, based on a . An informed robot deposits information
about its worksite into data storage device(s) when appropriate.

4.3.5. Feedback Loops
Depositing information in the environment acts as a positive
feedback loop that can be regulated via the pattern’s parameters.
Additionally, a negative feedback loop can be created by applying
the update relation to “Worksite data ext.”.

4.3.6. Parameters

•  Deposit function, d : A boolean function that determines whether
a robot deposits information into an external data structure. For
example, a robot might deposit a chemical trail any time it is
traveling between a worksite and the base (Mayet et al., 2010;
Fujisawa et al., 2014). In other cases, a robot might decide to drop
an RFID tag into the environment based on a perceived density
of RFID tags nearby (Hrolenok et al., 2010).

•  Adoption function, a : A boolean function that determines whether
a robot copies information that it finds in a data storage device
into its own internal data structure. For example, a robot might
only adopt external data when it does not have any worksite

FIguRe 8 | BDRML representation of the Information Storage design pattern.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

11 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

information, or when the external data is more up-to-date (Hecker
and Moses, 2015).

•  Decay function, y : A function according to which information in
the data storage device(s) is updated. For example, if “Worksite
data ext.” stores a vector towards a worksite location, y can
determine how up-to-date the information is (Hecker and Moses,
2015). On the other hand, if ‘Worksite data ext.” is a real number,
as is often the case in pheromone-inspired algorithms, y can define
how the real value “evaporates” over time (Hrolenok et al., 2010;
Fujisawa et al., 2014).

•  Detection range: A range at which a robot can find storage
devices.

4.3.7. Forces

• The decay function affects how long the information about
worksites remains available in each storage device, i.e., the lifespan
of the stored information. The function therefore must consider
dynamics of the environment. An information life span that is too
long causes robots to get recruited to depleted worksites and incur
high misinformation cost, while a very short information life span
prevents robots from utilising the stored information (Drogoul
and Ferber, 1993; Garnier et al., 2007).

4.3.8. Consequences

•  Information about worksites is more easily accessible to
uninformed robots. Information gain rate depends on the
probability of robots to detect the information storage devices,
but not on the probability of robots to meet each other (Pitonakova
et al., 2018).

•  Causes robots to incur displacement and misinformation costs,
as a result of recruitment to worksites. The extent of these costs
increases with an increasing robot density as a result of congestion
(Drogoul and Ferber, 1993; Parker, 1995; Hoff et al., 2010).

•  Can lead to the spread of erroneous information through the
swarm, e.g., when a depositing robot’s worksite information is
incorrect due to sensory-motor noise (Hecker et al., 2012).

4.3.9. Known Uses
Often used for studying ant-inspired central-place foraging
behaviour (Beekman et al., 2001), where “pheromone” trails are
formed between the robot base and worksites, helping the robots
to navigate an unknown environment (Drogoul and Ferber, 1993;

Sugawara et al., 2004; Kazama et al., 2005; Hoff et al., 2010;
Hrolenok et al., 2010; Mayet et al., 2010; Ducatelle et al., 2011;
Fujisawa et al., 2014). Has also been used for robot recruitment
in a cooperative transportation task (Amato et al., 2015).

4.3.10. Related Patterns
Depending on the type of storage device used, the pattern can either
be combined with the Information Exchange Anywhere pattern, in
order to form pheromone trails made of RFID tags (Drogoul and
Ferber, 1993; Hrolenok et al., 2010), chemicals (Mayet et al., 2010;
Fujisawa et al., 2014) or by other means (Sugawara et al., 2004; Kazama
et al., 2005; Hoff et al., 2010; Ducatelle et al., 2011), or with the
Information Exchange Centre pattern, in order to store information
about worksites in the robot base (Alers et al., 2011; Amato et al.,
2015; Hecker and Moses, 2015).

Other related patterns include “Evaporation” (Gardelli et al.,
2007; Fernandez-Marquez et al., 2013), “Diffusion” (Gardelli
et al., 2007), “Gradient”, “Digital pheromone” and “Ant foraging”
(Fernandez-Marquez et al., 2013)

4.4. Information exchange Anywhere
4.4.1. Category
Information Aggregation pattern.

4.4.2. Problem
Robots need to exchange information frequently.

4.4.3. Applicability
Robots are able to either directly communicate with each other
(e.g., as in Wawerla and Vaughan, 2010; Ducatelle et al., 2014;
Pitonakova et al., 2018) or to store information in the environment
and retrieve it (Hrolenok et al., 2010; Fujisawa et al., 2014, e.g.,
as in).

4.4.4. Solution (see also Figure 9)
Information, stored in internal or external data structures, is
exchanged anywhere in the environment.

4.4.5. Feedback Loops
Positive feedback loops that already exist in the swarm behaviour
are enforced.

FIguRe 9 | BDRML representation of the Information Exchange Anywhere design pattern.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

12 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

4.4.6. Parameters: -

4.4.7. Forces: -

4.4.8. Consequences

•  Frequent exchange of information between robots can lead to a
strong preference for a single worksite (Gutiérrez et al., 2010; Fraga
et al., 2011). Therefore, a mechanism for regulation of recruitment
may need to be implemented in order to prevent congestion and
poor swarm performance.

4.4.9. Known Uses
To study the problem of decentralised worksite localisation (Hoff
et al., 2010; Gutiérrez et al., 2010; Fraga et al., 2011; Fujisawa et al.,
2014) and decentralised task allocation algorithms (Sarker and Dahl,
2011).

4.4.10. Related Patterns
Serves an alternative to the Information Exchange near Worksites
and the Information Exchange Centre patterns, where the robot
behaviour may be easier to understand due to the lack of parameters,
but where the swarm performance might deteriorate as a result of
frequent information sharing.

Often used in combination with the Information Storage pattern
to create chemical or other trails between the base and worksites
in central-place foraging (Drogoul and Ferber, 1993; Kazama et al.,
2005; Hoff et al., 2010; Hrolenok et al., 2010; Mayet et al., 2010;
Ducatelle et al., 2011; Fujisawa et al., 2014). Can also be used in
combination with the Broadcaster pattern in order to allow robots
to exchange information locally (Gutiérrez et al., 2010; Fraga et al.,
2011; Sarker and Dahl, 2011).

4.5. Information exchange near Worksites
4.5.1. Category
Information Aggregation pattern.

4.5.2. Problem
The information exchange of robots needs to be regulated.

4.5.3. Applicability
Uninformed robots are likely to encounter data transmitters, i.e.,
other robots or non-robot data storage devices, near worksites, for

example, when robots remain near worksites for a sufficient amount
of time, when worksite and/or robot density are high or when
robots have a large communication range (Pitonakova et al., 2018).

4.5.4. Solution (see also Figure 10)
Robots only exchange information while they are near worksites.
Note that in the BDRML syntax, the conditions of the two relations,
that connect the “Work” behaviour with the “Worksite data int.” and
“Worksite data ext.” data structures, have an “and” operator. This
ensures that the conditions always have to be met when this design
pattern is combined with other patterns, allowing this pattern to
regulate positive feedback loops of others.

4.5.5. Feedback Loops
Positive feedback loops already present in the swarm behaviour are
regulated by only allowing information exchange near worksites.

Positive feedback loops already present in the swarm behaviour
are regulated by only allowing information exchange near worksites.

4.5.6. Parameters

•  Proximity threshold: Maximum distance at which a robot is
considered to be “near a worksite”.

4.5.7. Dependencies

• The proximity threshold value represents a trade-off between how
much displacement and misinformation cost the robots will incur
and how much recruitment can take place. If the threshold is large,
robots can recruit while being further away from worksites, and
thus cover a larger recruitment area, but new recruits incur larger
costs.

4.5.8. Consequences

•  After an initial worksite discovery by a robot, the range at which
other robots can find the worksite is enlarged, increasing the
swarm’s scouting success (Sugawara and Watanabe, 2002; Sarker
and Dahl, 2011; Pitonakova et al., 2018)

•  The information gain rate depends on the structure of the
environment, especially on worksite density, and on the range at
which data transmitters can be detected and communicated with
(Pitonakova et al., 2018)

FIguRe 10 | BDRML representation of the Information Exchange near Worksites design pattern.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

13 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

4.5.9. Known Uses
Has been used to extend the range at which robots sense worksites
during foraging (Sugawara and Watanabe, 2002; Pitonakova et al.,
2018), package delivery (Wawerla and Vaughan, 2010) and general
event-servicing (Ducatelle et al., 2014).

4.5.10. Related Patterns
An alternative to the Information Exchange Anywhere pattern,
providing information flow regulation by localising information
sharing to areas around worksites. Usually combined with the
Broadcaster pattern to achieve foraging behaviour similar to that
of as sheep (Michelena et al., 2010) and fish (Lachlan et al., 1998),
where a foraging robot attracts more foragers that are nearby
(Sugawara and Watanabe, 2002; Wawerla and Vaughan, 2010;
Ducatelle et al., 2014; Pitonakova et al., 2018).

4.6. Information exchange Centre
4.6.1. Category
Information Aggregation pattern.

4.6.2. Problem
The information exchange of robots needs to be regulated, or,
robots have a low probability of meeting each other during foraging
due to low density of worksites and/or robots.

4.6.3. Applicability
Robots are able to navigate sufficiently long distances without
significantly distorting their private information about worksites,
e.g., as a result of cumulative effect of sensory-motor noise, which
could result in incorrect information being passed to others
(Pitonakova et al., 2014). Especially applicable during central-
place foraging, provided that the Information Exchange Centre is
identical to the place where robots need to travel to periodically in
order to drop off resource (Dornhaus et al., 2006; Lemmens et al.,
2008; Bailis et al., 2010; Pitonakova et al., 2014, 2016a, Pitonakova
et al., 2018).

4.6.4. Solution (see also Figure 11)
Robots meet at the Information Exchange Centre (IEC) in order to
exchange information. There are two types of robots found at the IEC:
informed robots, that provide information and uninformed robots
that search for information. An informed robot pauses its work and
returns to the IEC when its boolean recruitment initiation function,
i, returns true, in order to begin providing information at the IEC.
The robot leaves the IEC based on a recruitment expiry function, e ,
and resumes work.

An uninformed robot located outside of the IEC, i.e., a scout,
returns to the IEC based on a scouting expiry function, u , in order
to check whether new information is available. If the robot finds
information about where work is located, either as a result of robot-
robot recruitment, or after adopting data available in a non-robot
entity, it transitions to the “Work” behaviour and leaves the IEC.
If no information is available in the IEC, the uninformed robot
resumes scouting when a scouting initiation function, s , returns true.

Note that the relations between the data structures and other
primitives have an always condition. This signifies the fact that IEC
is an exchange pattern and its role is therefore to identify where
information exchange takes place, but not the conditions under
which information is utilised by behaviours.

4.6.5. Feedback Loops
Depending on the context within which it is used and on the
selected parameter values, this pattern can either enforce positive
feedback loops that already exist in the swarm behaviour by
designating an area where robots are likely to find information,
or provide regulation of information transfer by forcing robots to
travel to a designated location in order to exchange information.

4.6.6. Parameters

•  Transmission initiation function, i : a boolean function that
determines whether an informed robot returns to the IEC. For
example, a robot might need to drop off resource during

FIguRe 11 | BDRML representation of the Information Exchange Centre design pattern.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

14 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

central-place foraging (Krieger and Billeter, 2000; Hecker and
Moses, 2015).

•  Transmission expiry function, e : a boolean function that
determines whether an informed robot leaves the IEC. For
example, if the IEC pattern is combined with the Broadcaster
pattern, expiry of a recruitment time can trigger a robot to resume
work (Pitonakova et al., 2016a; Valentini et al., 2016).

•  Scouting expiry function, u : a boolean function that determines
whether a scout returns to the IEC. For example, when the robot
spends a certain amount of time scouting unsuccessfully
(Pitonakova et al., 2016a, Pitonakova et al., 2018).

•  Scouting initiation function, s : a boolean function that determines
whether an uninformed robot in the IEC becomes a scout. For
example, the robot might do so with a certain probability each
second (Pitonakova et al., 2016a, Pitonakova et al., 2018), or when
demand for resources reaches a threshold (Krieger and Billeter,
2000).

4.6.7. Forces

•  The scouting efficiency of the swarm decreases due to the fact that
scouts return to the IEC. The scouting expiry function, u , thus
must fit the nature of the environment. For example, enough time
must be given to scouts to explore a large or a dynamic working
area, while at the same time ensuring that robots do not spend too
much time outside of the base, where information may be readily
available (Pitonakova et al., 2018).

•  The swarm size and its relation to the area of the IEC play an
important role, since a large number of robots situated in the IEC
at the same time can cause congestion and decrease the swarm
performance (Lee et al., 2013; Pitonakova et al., 2016b).

4.6.8. Consequences

•  Information gain rate is less dependent on the structure of the
environment, on the communication range of robots and on the
robot movement algorithm. The variance in information gain rate
is small across different environments (Pitonakova et al., 2018).

•  Promotes spatio-temporal coordination between robots. This is
advantageous when a single worksite exists in the environment.
On the other hand, the swarm performance is poor when the
swarm needs to concentrate on multiple worksites simultaneously
(Krieger and Billeter, 2000; Pitonakova et al., 2018).

•  The amount of the incurred misplacement and misinformation
costs depends on the structure of the environment, especially on
the worksite distance from the IEC. A larger worksite distance
generally leads to higher costs being incurred (Pitonakova et al.,
2018).

4.6.9. Known Uses
Most prominently used to study bee-inspired (Seeley et al., 1991)
multi-robot foraging algorithms (Krieger and Billeter, 2000;
Pitonakova et al., 2014; Hecker and Moses, 2015; Reina et al.,
2015; Pitonakova et al., 2016a, Pitonakova et al., 2018), where
robots collect items from the environment and return them to
the base, where they also recruit in a peer-to-peer fashion. It has

also been used to help robots recruit each other in the base during
a cooperative transportation task (Amato et al., 2015).

4.6.10. Related Patterns
Provides an alternative to the Information Exchange Anywhere
and Information Exchange near Worksites patterns, by making
the ability of robots to share information less dependent on the
effectiveness of robot communication hardware and on the task
parameters.

The pattern can be either combined with the Broadcaster
pattern, in order to facilitate local interactions of agents in the
base (Krieger and Billeter, 2000; Pitonakova et al., 2014, 2016a,
Pitonakova et al., 2018), or with the Information Storage pattern, in
order to turn the base into a repository of information that robots
can read from without the need to meet each other (Alers et al.,
2011; Hecker et al., 2012; Amato et al., 2015).

A related pattern that involved bee-inspired collective decision-
making has been described in (Reina et al., 2015).

5. APPlICAtIons

After considering the properties of design patterns, in particular
their applicability, feedback loops, forces and consequences, and
matching them with information about a specific robot swarm
mission and available robot hardware, a robot control algorithm
can be created by utilising the Design Pattern Application Rules.
Here we first show how the Individualist, Broadcaster and
Information Exchange near Worksites patterns were validated on
a foraging e-puck swarm and how the latter two improved the
swarm performance. Further examples of how the Catalogue could
be used in different real-world missions are then provided.

5.1. Improving Robustness to noise in
Foraging e-Puck swarms
Five e-puck robots with the Linux extension board developed at the
Bristol Robotics Laboratory (Liu and Winfield, 2011) were tasked
with searching an arena for worksites and delivering virtual resources
from the worksites into the base until all worksites were depleted. The
arena was 2× 1.5 m large and it was characterised by the number of
worksites, NW ∈

{
1, 3, 12

}
 and minimum worksite distance from

the base, D ∈
{
0.7, 1.4

}
 m. The base was represented by a quarter-

circle area with 0.4 m radius that was located in one of the arena’s
corners. Worksites were placed randomly at a distance between D
and D ± 0.5 m from the base edge. They were circular, with a radius
of 0.1 m. The arena contained a total of 48 units of resource, where
each worksite had 48/NW units at the beginning of an experiment.

The robots navigated by obtaining their absolute coordinates
from an overhead tracking system. Additionally, the robots were
equipped with a virtual worksite sensor with a range of 0.25 m.
When a robot was at least 0.25 m away from a worksite, it received
the worksite location from an external computer, allowing the robot
to calculate a direction vector towards the worksite.

First, a “Solitary” redfinite-state machine robot controller was
created based on the Individualist design pattern (Figure 12A). This
involved copying the pattern’s BDRML primitives, and renaming its

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

15 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

data structure to “Worksite location”. Note the difference between
the high-level representation in BDRML and the pseudocode
built for the finite state machine controller in Figure 12A. In this
particular implementation, the “Work” behaviour was represented
by two states, “GO_TO_WORKSITE” and “GO_TO_BASE”. If the
controller was based on a neural network, for instance, a different
implementation would be needed. However, in both cases, the
robot would be required to adhere to the high-level BDRML
specification by exhibiting the “Scout” and “Work” behaviours.

The Solitary swarm successfully collected all the resource within
around 6–12 min, depending on the number of worksites and the
arena size (Figure 13A). In the second set of experiments, noise
was added into the positional information that the robots received
from the tracking system, so that the robots could not always arrive
to their worksites and had to abandon and re-discover them. In
other words, the noise caused the robots to loose information
about worksites, which was reflected by an increased amount of

uncertainty cost paid by the swarm. Consequently, the swarm
performance decreased and the robots needed more time to
complete the task (Figure 13).

In order to decrease the negative effect of information loss due
to noise, a “Local Broadcaster” controller was created as a result
of combining the Broadcaster and the Information Exchange near
Worksites (IEW) patterns (Figure 12B). The robots were equipped
with a wireless communication module with a maximum range of
 1.25 m. Because of the availability of this hardware, the Broadcaster
pattern represented a better choice than the alternative Information
Transmitter pattern, Information Storage, where additional devices or
chemicals would have to be placed by the robots into the environment.
The IEW pattern was selected in order to solve the robot navigation
problem by increasing the range at which robots could detect worksites.
The Information Exchange Centre pattern was not suitable, since it
requires robots to travel relatively long distances to the base and back
to worksites, potentially increasing the negative effects of positional

FIguRe 12 | (A) Graphical BDRML representation of the “Solitary” robot control algorithm, resulting from the Individualist design pattern, and robot update loop
pseudocode. (B) Graphical BDRML representation of the “Local Broadcaster” robot control algorithm, resulting from a combination of the Broadcaster and
Information Exchange near Worksites patterns, and robot update loop pseudocode.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

16 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

noise. On the other hand, using the Information Exchange Anywhere
pattern could prevent the swarm from designating a portion of its
effort to scouting the environment, which was especially important
in environments with twelve worksites.

The resulting “Local Broadcaster” controller was created by,
first, copying the behaviours and common data structures that
belonged to both patterns (Design Pattern Application Rules C1–
C3). These sets included the “Scout” and the “Work” behaviours
and the “Worksite data int.” data structure, which was renamed to
“Worksite location”. The relations between all included primitives,
as well as their applicable conditions, were then included (Rule
C4). The recruitment function, r , and the adoption function, a ,
were defined in the Broadcaster pattern as or conditions and were
therefore optional. They were not included in the control algorithm
in the interest of simplicity. At the same time, “Worksite data ext.”,
defined in the IEW pattern, was not included, since IEW is not an
Information Transmitter pattern (Rule EXT1).

The Local Broadcaster swarm was able to maintain information
about approximate worksite locations better that the Solitary swarm,
which made it more robust to the positional noise (Figure 13B).
When worksites were further away from the base (D = 1.4 m), the
completion time of the Broadcaster swarm was consistently lower
than that of the Solitary swarm. Additionally, Local Broadcasters
also achieved a lower completion time variance in the environment
with the lowest worksite density (NW = 1 , D = 1.4 m).

5.2. other examples
In missions like mineral collection, robot swarms could face
the challenge of discovering mineral veins of low density, while
minimising the mission time would be desirable. Once a vein
has been discovered, multiple robots could dedicate their effort
to carrying the minerals back to a depot, in order to satisfy their
output quota as quickly as possible. In this mission, creating a “Bee-
Inspired” swarm (Figure 14) as a combination of the Broadcaster
and Information Exchange Centre (IEC) patterns could be suitable,
provided that the robots could navigate reliably over longer
distances, for example by using GPS. Such an algorithm is well-
known in the swarm foraging literature (Krieger and Billeter, 2000;
Amato et al., 2015; Pitonakova et al., 2016a, Pitonakova et al., 2018).

In the Bee-Inspired swarm, robots that know about worksites
return to a depot in order to recruit uninformed robots.
Unsuccessful scouts also return to the depot and search for
informed robots. The control algorithm has four behaviours and
one internal data structure common to both patterns. The BDRML
primitives are renamed in order to facilitate understanding of the
resulting algorithm (Rule C1). Similarly as was the case with the
Local Broadcaster algorithm, “Worksite data ext.” is not included
in the Bee-Inspired algorithm5 because it does not satisfy the
condition of Rule EXT1. Additionally, like in the Local Broadcaster
algorithm, the “Work” behaviour is represented by two states in the
pseudocode implementation, “GO_TO_WORKSITE” and “GO_
TO_BASE”. The IEC pattern is used to redefine the communication
routines of Broadcaster by applying Rules RDF1 and RDF2. The
send relation between “Work” and “Worksite location”, defined in
the Broadcaster pattern, is deleted, since a longer relation path
that includes a send relation and passes through the “Recruit
in the base” behaviour exists in the IEC pattern. The optional
recruitment function, r , and the adoption function, a , defined
in the Broadcaster pattern, are omitted in order to simplify the
control algorithm.

In the final example, autonomous submarines need to
take water quality samples of contaminated areas, locations
of which are initially unknown. Additionally, the range and
reliability of peer-to-peer submarine communication is low,
while the total area that the submarines need to search is large.
In order to deal with these challenges, the Information Storage
and Information Exchange Anywhere (IEA) patterns could
be combined. The submarines could deposit programmable
beacons around the areas of interest that would hold virtual
pheromone and attract other submarines in order to decrease
the mission completion time. Such “Ant-Inspired” algorithm
(Figure 15) would lead to the creation of stigmergic cues,
eliminating the need of the submarines to communicate with

5 “Worksite data ext.” would be included if, for example, the Information Storage
and Information Exchange Centre patterns were combined, since Information
Storage is an Information Transmitter pattern that includes a copy relation
between “Worksite data ext.” and “Worksite data int.”. Such an algorithm has, for
example, been implemented in (Alers et al., 2011).

FIguRe 13 | The e-puck swarm performance in environments (A) without and (B) with positional noise.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

17 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

each other directly. Similar algorithms have been implemented
e.g., in (Hoff et al., 2010; Hrolenok et al., 2010; Ducatelle
et al., 2011).

Unlike the alternative Information Aggregation patterns,
the role of the IEA pattern is to allow data to be transferred as
often as necessary. Rather than causing deletion or addition of
primitives, the pattern allows all primitives from the Information
Storage pattern to be included after applying Rules C1-C4. On
the other hand, the Information Storage pattern can redefine the
relation between the “Work” and “Worksite Data Int.” primitives
defined in the IEA pattern by applying Rule RDF1, where the
text it write relation between these primitives is not copied,
since it represents a shorter relation path. The data structures
in the resulting control algorithm are renamed to “Pheromone”
and “Last pheromone value”. In the state machine pseudocode
implementation, the “Work” behaviour is represented by two
states, “FOLLOW_PHEROMONE” and “LEAVE_AREA”. The
patterns are concretised (Rule CNC1) by specifying the ways
in which the send and update relations change the value of
“Pheromone”.

6. dIsCussIon

6.1. other swarm design Methods
Apart from design patterns, a number of alternative methods for
robot behaviour design exist. For instance, a control algorithm
inspired by animal behaviour, usually that of social insects (as in
e.g., Fujisawa et al., 2014; Valentini et al., 2016), or by a previously
created robot control algorithm (as in e.g., Gutiérrez et al., 2010;
Ducatelle et al., 2014) can be chosen by hand. Parameter values
for robot control algorithms can then be selected, for example,
by applying macroscopic swarm models (e.g., Reina et al., 2015;
Scheidler et al., 2016; Valentini et al., 2016).

Automated design methods include, for example, on-line learning
and artificial evolution. On-line learning can be used to adapt robot
control parameters during swarm operation in order to respond to
environmental dynamics, such as a changing number of worksites
(e.g., Liu et al., 2007; Wawerla and Vaughan, 2010) or the amount
of congestion (e.g., Yang et al., 2009). However, these methods are
unable to deliver new control strategies in response to a significant
environmental change. On the other hand, artificial evolution

FIguRe 14 | Graphical BDRML representation of the Bee-Inspired robot control algorithm, resulting from a combination of the Broadcaster and Information
Exchange Centre patterns, and robot update loop pseudocode. Implementations of BDRML relation conditionshave been indicated in the pseudocode following the
// characters.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

18 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

can be applied to create a full multi-robot control algorithm with
minimal human intervention, for example by learning a neural
network configuration, in an off-line (Sperati et al., 2011; Francesca
et al., 2014) or an on-line (Bredeche et al., 2009) fashion. However,
this technique is often not only computationally expensive and
dependent on frequent communication between robots, but, more
importantly, it generally delivers viable solutions relatively slowly
due to a considerable amount of randomness in the evolutionary
processes (Doncieux et al., 2015). Moreover, the resulting evolved
robot controllers may be difficult to analyse and understand due to
the their black-box nature. The last problem mostly results from using
neural networks as evolved robot controllers, an approach which can
be improved on by evolving combinations of pre-defined low-level
robot behaviours instead (Ferrante et al., 2015).

All these methods can benefit from the knowledge that design
patterns offer in the following ways. Firstly, by allowing a swarm
designer to consider the properties of various building blocks of robot
behaviour, design patterns can guide manual algorithm selection.
Secondly, when using macroscopic or agent-based swarm models,
alternative control algorithms can be constructed with the guidance
of the Design Pattern Catalogue and their macro-level characteristics
compared. Knowledge of suitable design patterns can also make the
search space of evolutionary algorithms smaller, saving computational
requirements and time. Similarly, low-level behaviour blocks based
on design patterns can provide robots with alternative behaviours

to switch between during on-line adaptation, as was previously
suggested in (Hernández et al., 2013; Ferrante et al., 2015).

From a different perspective, making design pattern creation
one of the goals of experimentation and analysis in swarm robotics
can inspire working towards a deeper understanding of collective
intelligence by studying the mechanisms that play a role in the
micro-macro link [e.g., as in (Reina et al., 2015)]. Many authors
have argued that design and analysis approaches that could capture
general principles of how emergent collective behaviour comes
about are crucial to the advancement of the field (e.g., Parunak and
Brueckner, 2004; Serugendo et al., 2006; Winfield, 2009b; Brambilla
et al., 2014). Design patterns can represent a way of making this type
of understanding explicit.

6.2. other design Pattern Work
It has been previously suggested that design patterns for swarm
robotics should describe multiple levels of behaviour. For example,
“local-level” or “basic” patterns have been used to describe how
robots interact, while “global-level” or “composed” patterns described
swarm-level behaviour, such as “Labour division” (Nagpal, 2004;
Gardelli et al., 2007; Fernandez-Marquez et al., 2013). On the contrary,
all design patterns presented here describe the same level of robot
behaviour, equivalent to “local-level primitives” (Nagpal, 2004) or
“basic design patterns” (Fernandez-Marquez et al., 2013). Control
algorithms then result from combining the design patterns and are

FIguRe 15 | Graphical BDRML representation of the Ant-Inspired robot control algorithm, resulting from a combination of the Information Storage and Information
Exchange Anywhere patterns, and update loop pseudocode for robots and beacons. Implementations of BDRML relation conditions have been indicated in the
pseudocode following the // characters.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

19 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

thus their realisations, assembled to fit a particular mission. The
control algorithms are equivalent to “global-level primitives” (Nagpal,
2004) or “high-level patterns” (Fernandez-Marquez et al., 2013) found
in the literature.

The focus on robot behaviours and data structures that they
utilise and manipulate, and on describing small sub-components
of robot control algorithms, is an important aspect of the design
patterns presented here. A similar approach has been taken for
distributed communication design patterns, where biologically-
inspired local communication strategies were defined and combined
into control algorithms for specific applications (Babaoglu et al.,
2006). In our view, description of “global-level” swarm behaviour
would be a re-description of multiple local-level patterns and of
their dependencies on and interactions with each other. Swarm
behaviour can be complex, and in some cases emergent, which
makes it important to identify minimal sets of behaviours that can
be thoroughly analysed and their ability to achieve or avoid outcomes
at the collective level described. In a well-specified framework, that
includes a formal behaviour definition, such as the one offered by
BDRML, a list of feedback loops, forces and pattern consequences
on swarm-level behaviour, as well as unabmiguos application rules,
a separate specification of control algorithms that may be created
from these patterns should not be necessary. For the design patterns
presented in this paper, a demonstration of how different patterns
can be considered, combined and implemented has been presented
in Section 5.

The second aspect in which the design patterns presented here
differ from those in the swarm robotics literature is the introduction
of categorisation, which follows the methodology of object-oriented
design patterns (Gamma et al., 1994) and of design patterns for
distributed software algorithms (Aridor and Lange, 1998). The
purpose of categorising design patterns is, first, to make it easier
to specify their roles, and in turn to identify which patterns can
be combined together. In most cases, only patterns from different
categories will be combined as they are responsible for different
aspects of robot behaviour. Secondly, a design pattern category may
suggests which optional Application Rules are appropriate to use
when creating a control algorithm, as is, for example, the case for
Rule EXT1 (Section 3.2).

6.3. Current Issues and Future Work
Despite their advantages, the swarm design patterns presented here
currently have a number of issues that need addressing. The design
patterns need to be tested in a larger number of scenarios, which
will facilitate their better specification. For example, the Broadcaster
pattern description suggests that the pattern should be used when
“the combination of robot and worksite density makes it difficult for
robots to discover worksites.”. Is it possible to quantify this “difficulty”?
Is there a specific threshold for worksite and robot density that clearly
distinguishes environments where this pattern is and is not suitable?
Or, more generally, is there a way of matching the parameters of
a design pattern to parameters of the swarm task? While the ICR
framework (Pitonakova et al., 2018) or other analytical approaches
(Reina et al., 2015) can be used to analyse the forces that play a role
in the micro-macro link, the fact that design patterns presented here
are modular and can be combined together in different ways makes

it difficult to exhaust all possibilities in which they can manifest
themselves in swarm-level behaviour. It is therefore possible that we
will never be able to identify, with a complete certainty, the most
suitable set of design patterns for a given mission simply by browsing
the Design Pattern Catalogue. However, more experiments can be
performed with each design pattern, for example with different
robot hardware and in different scenarios, to make the pattern
specifications more detailed. In particular, the following challenges
could be addressed:

•  Characterising the interaction of the Information Exchange
Anywhere pattern with various Information Transmitter patterns.
A larger set of consequences for the Information Exchange
Anywhere pattern needs to be specified.

•  Characterising in more detail the effect of communication range
in the Broadcaster pattern and of detection range in the
Information Storage pattern

•  Characterising in more detail the effect of proximity threshold in
the Information Exchange near Worksites pattern

•  Characterising the effect of swarm size and robot density on all
design pattern properties

On the other hand, it is also important to note that, by offering a list
of forces and consequences, a design pattern can identify situations
in which it should not be used. For example, the Broadcaster pattern
only works when sufficient communication range between robots
is available. It could be combined with the Information Exchange
Centre in order to alleviate this problem, but only during central-
place foraging.

Rather than thinking about design patterns as branches of
a decision tree, that asks us questions about the robots and the
environment and eventually leads us to one suitable solution,
we should think about the Design Pattern Catalogue as a source
of alternatives that a robot designer, or an automated design
algorithm, can consider. A similar approach has been taken in
the case of object-oriented (Gamma et al., 1994) and distributed
computing (Babaoglu et al., 2006) design patterns, where it is
up to the developer to decide which patterns to use and how to
implement them together based on the context of the specific
application that is being developed. In any case, having design
guidelines at hand may be a better alternative to creating an entire
robot control algorithm based on arbitrary decisions.

Apart from providing better specifications for the existing patterns,
the Design Pattern Catalogue also needs to be extended in a number
of ways. Firstly, when it comes to foraging, design patterns for more
types of robot behaviours could be created, for example those for
scouting the environment, robot localisation, updating of information
about worksites, etc. This could be achieved by performing targeted
comparative experiments with different parts of robot behaviours,
similarly as in the studies that inspired creation of the design patterns
presented here (e.g., Gutiérrez et al., 2010; Wawerla and Vaughan,
2010; Sarker and Dahl, 2011; Pitonakova et al., 2014, 2016a, Pitonakova
et al., 2018). Secondly, the Design Pattern Catalogue should consider
a larger number of swarm tasks, such as dispersion, aggregation or
collective construction. It would be interesting to find out whether the
foraging patterns presented here would be applicable to other swarm
tasks and whether their descriptions could be improved by studying

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

20 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

them in new contexts. It is reasonable to assume that some patterns
could be generalised enough to be applicable across different tasks.
For example, the Broadcaster pattern has been used in multi-robot
flocking (Vasarhelyi et al., 2014) and aggregation (Couceiro et al.,
2012), to allow robots to share information about their positions,
intentions and the landscape of the environment. During a different,
construction task, the “Work” behaviour of the Broadcaster pattern
could be interpreted as “Build” and “Worksite” would be equivalent
to a “Building site”.

Further extensions of the Design Pattern Catalogue could include
new patterns for heterogeneous robot swarms and swarms that work
alongside humans or report data to users. In these cases, entities that
have different types of behaviour would work with each other, making
it more difficult to identify consequences of patterns due to increased
system-level complexity. Therefore, descriptions of design pattern
consequences would need to include specific conditions under which
they occur. For example, a behaviour might incur different costs when
a robot executing it works alongside humans rather than within a
homogeneous swarm.

Environments with more complex dynamics also need to be
explored. For example, it is reasonable to assume that some robot
missions would involve worksites with different priorities, or
worksites that could only be serviced by a subset of robots. Tasks
that require strong cooperation between robots, such as collective
transport, are also an interesting challenge. In other missions, the
ability of robots to perform work or to navigate the environment
may change over time, for example due to varying weather or city
traffic conditions. Understanding the impact of environmental
dynamics on the ability of robots to obtain, share and utilise
information is vital for both refining and extending the Design
Pattern Catalogue.

Finally, the rules for applying design patterns may need to be
refined and new rules may need to be added when mode design
patterns and application case studies are available. For example,
it is possible that future design patterns could be used to restrict
information processing routines by shortening relation paths between
pattern primitives. Some Application Rules may only be applicable
to a certain design pattern category, for example, as is the case for
Rule EXT1.

In a more general sense, it is interesting to think about how the
concept of “interfaces” from object-oriented software engineering
(Gamma et al., 1994) extends to robot swarm algorithms. Can
“interfaces” between swarm sub-algorithms ever be well-defined,
given the emergent nature of the systems that they result in when
combined together? While the divide-and-conquer approach
that design patterns suggest may restrict us to a more traditional
engineering part of the design space, is this the trade-off that has
to be paid for obtaining a well-understood and well-defined design
methodology for complex systems such as robot swarms?

As the previous few paragraphs suggest, the work needed to
extend and maintain a design pattern catalogue for robot swarms
is extensive. Therefore, it is our goal to make the Design Pattern
Catalogue presented here publicly available and extendable6. BDRML
will also need to be refined and extended, so that it is able to
accommodate a broader range of patterns and represent various

6 http://designing-robot-swarms.lenkaspace.net

heterogeneous entities that share information with each other.
Furthermore, implementation examples and code libraries could
be added in order to facilitate the usage of design patterns for specific
robots and applications. Object-oriented design patterns nowadays
come with implementation examples in various programming
languages (Shalloway and Trott, 2005), which makes them easier
to understand and apply.

7. ConClusIon

Robot swarms are a promising technology that could transform
the way in which we manage logistics, transportation and
agriculture, how we take care of the environment, and how we
explore and colonise new planets. One of the greatest challenges
of using this technology is that it is not obvious how we can
relate robot behaviour, programmable by software developers,
to a desired swarm-level outcome. Design patterns can serve as
guidelines to algorithm design by capturing properties and effects
of robot behaviours on swarm performance. Secondly, they can
be useful for checking whether a particular algorithm is suitable
given particular swarm task characteristics and availability of
hardware, and for providing alternative solutions that can be
considered. Thirdly, design patterns can guide automated design
methods, such as adaptive algorithms and artificial evolution, as
well as reduce their computational requirements.

This paper presented information exchange design patterns
for robot swarm foraging. The patterns were modular in nature
- they represented a particular aspect of robot behaviour, for
example a location at which information should be exchanged
between robots, and they could be combined into robot
control algorithms. An important objective of each pattern
was to describe the feedback loops and forces that affected the
pattern’s effectiveness, as well as the pattern’s consequences
on swarm-level behaviour. This was achieved by applying the
Information-Cost-Reward framework for swarm behaviour
analysis (Pitonakova et al., 2018) and for interpreting analysis
results from studies found in the literature. The behaviour
description and combination of the patterns were facilitated by
the Behaviour-Data-Relations Modelling Language (Pitonakova
et al., 2017), in which relevant robot behaviours and data
structures, as well their relationships, can be expressed explicitly.
The patterns were validated by demonstrating how they improved
the performance of foraging e-puck swarms and how they could
guide algorithm design in other scenarios. The ability of the
design pattern specification method presented here to identify
distinguishing features of robot behaviour and their impact on
swarm performance in a wide range of swarm implementations
and experimental scenarios was demonstrated by successfully
applying it to reason about and to organise robot behaviours
implemented by other authors.

AuthoR ContRIButIons

LP was responsible for the conception of the work, literature
review, creation of the ICR framework, BDRML language

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Pitonakova et al.

21 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

ReFeRenCes

Alers, S., Bloembergen, D., Hennes, D., Jong, S. D., Kaisers, M., and Lemmens, N.
(2011). “Bee-inspired foraging in an embodied swarm,” in Proceedings of the
10th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011), eds K. Tumer, P. Yolum, L. Sonenberg, and P. Stone (New York:
ACM), 1311–1312.

Amato, C., Konidaris, G. D., Cruz, G., Maynor, C. A., How, J. P., and Kaelbling,
L. P. (2015). “Planning for decentralized control of multiple robots under
uncertainty,” in Proceedings of the 2015 IEEE International Conference on
Robotics and Automation (ICRA 2015). Piscataway, NJ: IEEE, 1241–1248.

Aridor, Y., and Lange, D. (1998). “Agent design patterns: Elements of agent
application design,” in Proceedings of the Second International Conference on
Autonomous Agents (AGENTS ’98), eds K. P. Sycara, and M. Wooldridge (New
York: ACM), 108–115.

Babaoglu, O., Montresor, A., Urnes, T., Canright, G., Deutsch, A., Caro, G. A. D.,
et al. (2006). Design patterns from biology for distributed computing. ACM
Trans. Auton. Adapt. Syst. 1 (1), 26–66. doi: 10.1145/1152934.1152937

Bailis, P., Nagpal, R., and Werfel, J. (2010). “Positional communication and
private information in honeybee foraging models,” in Proceedings of the 7th
International Conference on Swarm Intelligence (ANTS 2010), eds M. Dorigo,
M. Birratari, G. A. Di Caro, R. Doursat, A. P. Engelbrecht, and D. Floreano
(Berlin: Springer), 263–274.

Balch, T., and Arkin, R. C. (1994). Communication in reactive multiagent robotic
systems. Auton. Robots 1 (1), 27–52. doi: 10.1007/BF00735341

Beekman, M., Sumpter, D. J., and Ratnieks, F. L. (2001). Phase transition between
disordered and ordered foraging in Pharaoh's ants. Proc. Natl. Acad. Sci. U.S.A.
98 (17), 9703–9706. doi: 10.1073/pnas.161285298

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2014). Property-driven
design for robot swarms: a design method based on prescriptive modeling and
model checking. ACM Transactions on Autonomous and Adaptive Systems 9
(17), 1–17.

Brazier, F. M. T., Jonker, C. M., and Treur, J. (2002). Principles of component-based
design of intelligent agents. Data Knowl. Eng. 41 (1), 1–27. doi: 10.1016/S0169-
023X(01)00058-1

Bredeche, N., Haasdijk, E., and Eiben, A. E. (2009). “On-line, on-board evolution
of robot controllers,” in Artifical Evolution, Vol. 5975, eds P. Collet, N.
Monmarché, P. Legrand, M. Schoenauer, and E. Lutton (Berlin: Springer),
110–121.

Campo, A., and Dorigo, M. (2007). “Efficient multi-foraging in swarm robotics,” in
Proceedings of the 9th European Conference on Advances in Artificial Life (ECAL
2007), ed. F. Almeida e Costa (Berlin: Springer), 696–705.

Castello, E., Yamamoto, T., Libera, F. D., Liu, W., Winfield, A. F. T., Nakamura,
Y., et al. (2016). Adaptive foraging for simulated and real robotic swarms:
the dynamical response threshold approach. Swarm Intell. 10 (1), 1–31. doi:
10.1007/s11721-015-0117-7

Couceiro, M. S., Rocha, R. P., Figueiredo, C. M., Luz, J. M. A., and Ferreira, N. M.
F. (2012). “Multi-robot foraging based on Darwin’s survival of the fittest,” in
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2012). Piscataway, NJ: IEEE, 801–806.

Dahl, T. S. (2002). “Adaptive spatio-temporal organization in groups of robots,” in
Proceedings of the 2002 IEEE/RSI Internatinal Conference on Intelligent Robots
and Systems (IROS 2002). IEEE 1044–1049.

De Wolf, T., and Holvoet, T. (2007). “Design patterns for decentralised
coordination in self-organising emergent systems,” in Proceedings of the 4th
International Workshop on Engineering Self-Organising Systems (ESOA’06), eds
S. A. Brueckner, S. Hassas, M. Jelasity, and D. Yamins (Berlin: Springer), 28–49.

Do, T. T., Kolp, M., and Pirotte, A. (2003). “Social patterns for designing multi-
agent systems,” in Proceedings of the 15th International Conference on Software
Engineering & Knowledge Engineering (SEKE 2003), eds G. Webb, and H. Dai
(Skokie, Ill: Knowledge Systems Instittute), 103–110.

Doncieux, S., Bredeche, N., Mouret, J. -B., EibenA. E. (2015). Evolutionary
robotics: what, why, and where to. Front. Robot. AI 2 (Suppl. 15). doi: 10.3389/
frobt.2015.00004

Dornhaus, A., Klügl, F., Oechslein, C., Puppe, F., and Chittka, L. (2006). Benefits of
recruitment in honey bees: effects of ecology and colony size in an individual-
based model. Behav. Ecol. 17 (3), 336–344. doi: 10.1093/beheco/arj036

Drogoul, A., and Ferber, J. (1993). “From tom thumb to the dockers: some
experiments with foraging robots,” in From Animals to Animats II, eds
J. Meyer, H. L. Roitblat, and S. W. Wilson (Cambridge, MA: MIT Press),
451–459.

Ducatelle, F., Di Caro, G. A., Förster, A., Bonani, M., Dorigo, M., Magnenat, S.,
et al. (2014). Cooperative navigation in robotic swarms. Swarm Intell. 8 (1),
1–33. doi: 10.1007/s11721-013-0089-4

Ducatelle, F., Di Caro, G. A., Pinciroli, C., and Gambardella, L. M. (2011). Self-
organized cooperation between robotic swarms. Swarm Intell. 5 (2), 73–96. doi:
10.1007/s11721-011-0053-0

Fernandez-Marquez, J. L., Di Marzo Serugendo, G., Montagna, S., Viroli, M.,
and Arcos, J. L. (2013). Description and composition of bio-inspired design
patterns: a complete overview. Nat. Comput. 12 (1), 43–67. doi: 10.1007/
s11047-012-9324-y

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M., and Wenseleers,
T. (2015). Evolution of self-organized task specialization in robot swarms.
PLoS Comput. Biol. 11 (8):e1004273. doi: 10.1371/ journal. pcbi. 1004273

Fraga, D., Gutiérrez, A., Vallejo, J. C., Campo, A., and Bankovic, Z. (2011).
Improving social odometry robot networks with distributed reputation
systems for collaborative purposes. Sensors 11 (12), 11372–11389. doi: 10.3390/
s111211372

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., et al. (2014). “An experiment in automatic design of robot swarms,” in
Proceedings of the International Conference on Swarm Intelligence (ANTS 2014),
eds M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C.
Solnon, et al. (Berlin: Springer), 25–37.

Fujisawa, R., Dobata, S., Sugawara, K., and Matsuno, F. (2014). Designing
pheromone communication in swarm robotics: Group foraging behavior
mediated by chemical substance. Swarm Intell. 8 (3), 227–246. doi: 10.1007/
s11721-014-0097-z

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Indianapolis: Pearson Education.

Gardelli, L., Viroli, M., and Omicini, A. (2007). “Design patterns for self-
organising systems,” in Proceedings of the 5th International Central and
Eastern European Conference on Multi-Agent Systems (CEEMAS 2007), eds H.
D. Burkhard, G. Lindemann, R. Verbrugge, and L. Varga (Berlin: Springer),
123–132.

Garnier, S., Tâche, F., Combe, M., Grimal, A., and Theraulaz, G. (2007). “Alice
in pheromone land: An experimental setup for the study of ant-like robots,”
in Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007).
Piscataway, NJ: IEEE, 37–44.

Graves, A. R., and Czarnecki, C. (2000). Design patterns for behavior-based robotics.
IEEE Trans. Syst. Man Cybern. A 30 (1), 36–41. doi: 10.1109/3468.823479

Gutiérrez, Álvaro., Campo, A., Monasterio-Huelin, F., Magdalena, L., and Dorigo,
M. (2010). Collective decision-making based on social odometry. Neural
Comput. and. Applic. 19 (6), 807–823. doi: 10.1007/s00521-010-0380-x

Harel, D., and Rumpe, B. (2004). Meaningful modeling: what's the semantics of
"semantics"? Computer 37 (10), 64–72. doi: 10.1109/MC.2004.172

and the design patterns, implementation and execution of
simulations, robot experiments and data analysis software, and
drafting and finalising this manuscript. RC and SB contributed
by critically revising the work, in particular the ICR framework,
the BDRML language and the design patterns (SB) and the robot
experiments (RC).

FundIng

LP was supported by EPSRC Doctoral Training Centre grants EP/
G03690X/1 and EP/N509747/1 and by the University of Bristol
EPSRC grant EP/R0047571. RC was funded by the University of
Southampton. SB was funded by the University of Bristol.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1145/1152934.1152937
http://dx.doi.org/10.1007/BF00735341
http://dx.doi.org/10.1073/pnas.161285298
http://dx.doi.org/10.1016/S0169-023X(01)00058-1
http://dx.doi.org/10.1016/S0169-023X(01)00058-1
http://dx.doi.org/10.1007/s11721-015-0117-7
http://dx.doi.org/10.3389/frobt.2015.00004
http://dx.doi.org/10.3389/frobt.2015.00004
http://dx.doi.org/10.1093/beheco/arj036
http://dx.doi.org/10.1007/s11721-013-0089-4
http://dx.doi.org/10.1007/s11721-011-0053-0
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1371/journal.pcbi.1004273
http://dx.doi.org/10.3390/s111211372
http://dx.doi.org/10.3390/s111211372
http://dx.doi.org/10.1007/s11721-014-0097-z
http://dx.doi.org/10.1007/s11721-014-0097-z
http://dx.doi.org/10.1109/3468.823479
http://dx.doi.org/10.1007/s00521-010-0380-x
http://dx.doi.org/10.1109/MC.2004.172

22 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Pitonakova et al. Robot Swarm Foraging Design Patterns

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., and Moses, M. E. (2012).
“Formica ex machina: Ant swarm foraging from physical to virtual and back
again,” in Proceedings of the 8th International Conference on Swarm Intelligence
(ANTS 2012), eds M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. P.
Engelbrecht, R. Groß et al. (Berlin: Springer), 252–259.

Hecker, J. P., and Moses, M. E. (2015). Beyond pheromones: evolving error-tolerant,
flexible, and scalable ant-inspired robot swarms. Swarm Intell. 162 (5), 43–70.
doi: 10.1007/s11721-015-0104-z

Hernández, C., Bermejo-alonso, J., Ignacio, L., and Sanz, R. (2013). “Three
patterns for autonomous robot control architecting,” in Proceedings of the Fifth
International Conference on Pervasive Patterns and Applications (PATTERNS
2013), ed. A. Zimmermann (Wilmington, DE: International Academy,
Research, and Industry Association (IARIA)), 44–51.

Hoff, N., Sagoff, A., Wood, R. J., and Nagpal, R. (2010). “Two foraging algorithms
for robot swarms using only local communication,” in Proceedings of the 2010
IEEE International Conference on Robotics and Biomimetics (ROBIO 2010).
Piscataway, NJ: IEEE, 123–130.

Hrolenok, B., Luke, S., Sullivan, K., and Vo, C. (2010). “Collaborative foraging
using beacons,” in Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), eds W. van der
Hoek, G. A. Kaminka, Y. Lesperance, M. Luck, and S. Sen (Richland, SC:
IFAAMAS), 1197–1204.

Jevtic, A., Gutierrez, Álvaro., Andina, D., and Jamshidi, M. (2012). Distributed bees
algorithm for task allocation in swarm of robots. IEEE Systems Journal 6 (2),
296–304. doi: 10.1109/JSYST.2011.2167820

Jones, C., and Mataric, M. J. (2003). “Adaptive division of labor in large-scale
minimalist multi-robot systems,” in Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003).
Piscataway, NJ: IEEE, 1969–1974.

Kazama, T., Sugawara, K., and Watanabe, T. (2005). “Traffic-like movement on
a trail of interacting robots with virtual pheromone,” in Proceedings of the
3rd International Symposium on Autonomous Minirobots for Research and
Edutainment (AMiRE 2005), eds K. Murase, K. Sekiyama, T. Naniwa, N.
Kubota, and J. Sitte (Berlin: Springer), 383–388.

Kernbach, S., Nepomnyashchikh, V. A., Kancheva, T., and Kernbach, O.
(2012). Specialization and generalization of robot behaviour in swarm
energy foraging. Math. Comput. Model. Dyn. Syst. 18 (1), 131–152. doi:
10.1080/13873954.2011.601421

Krieger, M. J. B., and Billeter, J. -B. (2000). The call of duty: Self-organised task
allocation in a population of up to twelve mobile robots. Rob. Auton. Syst. 30
(1-2), 65–84. doi: 10.1016/S0921-8890(99)00065-2

Labella, T. H., Dorigo, M., and Deneubourg, J. -L. (2006). Division of labor in a
group of robots inspired by ants' foraging behavior. ACM Trans. Auton. Adapt.
Syst. 1 (1), 4–25. doi: 10.1145/1152934.1152936

Lachlan, R. F., Crooks, L., and Laland, K. N. (1998). Who follows whom? Shoaling
preferences and social learning of foraging information in guppies. Anim.
Behav. 56 (1), 181–90. doi: 10.1006/anbe.1998.0760

Lee, J. H., Ahn, C. W., and An, J. (2013). “A honey bee swarm-inspired cooperation
algorithm for foraging swarm robots: An empirical analysis,” in Proceedings
of the 2013 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM 2013). Piscataway, NJ: IEEE, 489–493.

Lemmens, N., de Jong, S., Tuyls, K., and Nowe, A. (2008). “Bee behaviour in multi-
agent systems,” in Adaptive Agents and Multi-Agent Systems III. Adaptation and
Multi-Agent Learning, eds K. Tuyls, A. Nowe, Z. Guessoum, and D. Kudenko
(Berlin: Springer), 145–156.

Lerman, K., Jones, C., Galstyan, A., and Matarić, M. J. (2006). Analysis of dynamic
task allocation in multi-robot systems. Int. J. Rob. Res. 25 (3), 225–41. doi:
10.1177/0278364906063426

Liu, W., and Winfield, A. F. T. (2011). Open-hardware e-puck Linux extension
board for experimental swarm robotics research. Microprocess. Microsyst. 35
(1), 60–67. doi: 10.1016/j.micpro.2010.08.002

Liu, W., Winfield, A. F. T., Sa, J., Chen, J., and Dou, L. (2007). “Strategies for energy
optimisation in a swarm of foraging robots,” in Swarm Robotics, eds E. Sahin,
W. M. Spears, and A. F. Winfield (Berlin: Spinger), 14–26.

Mayet, R., Roberz, J., Schmickl, T., and Crailsheim, K. (2010). “Antbots: a feasible
visual emulation of pheromone trails for swarm robots,” in Swarm Intelligence,
eds M. Dorigo, M. Birattari, G. A. Di Caro, R. Doursat, A. P. Engelbrecht, D.
Floreano, et al. (Berlin: Springer), 84–94.

Michelena, P., Jeanson, R., Deneubourg, J. L., and Sibbald, A. M. (2010). Personality
and collective decision-making in foraging herbivores. Proc. Biol. Sci. 277
(1684), 1093–1099. doi: 10.1098/rspb.2009.1926

Mikkonen, T. (1998). “Formalizing design patterns,” in Proceedings of the 20th
International Conference on Software Engineering (ICSE’98). Piscataway, NJ:
IEEE, 115–124.

Miller, J. M., Wang, X. R., Lizier, J. T., Prokopenko, M., and Rossi, L. F. (2014).
“Measuring information dynamics in swarms,” in Guided Self-Organisation:
Inception, ed. M. Prokopenko (Berlin: Springer), 343–64.

Nagpal, R. (2004). “A catalog of biologically-inspired primitives for engineering self-
organization,” in Engineering Self-Organising Systems, eds G. Di Marzo Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli (Berlin: Springer), 53–62.

Parker, L. E. (1995). “The effect of action recognition and robot awareness in
cooperative robotic teams,” in Proceedings of the 1995 IEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 1995). Piscataway, NJ:
IEEE, 212–219.

Parunak, H., and Brueckner, S. A. (2004). “Engineering swarmings systems,” in
Methodologies and Software Engineering for Agent Systems, eds F. Bergenti, M.
P. Gleizes, and F. Zambonelli (Berlin: Springer), 341–376.

Parunak, H. V. D., and Brueckner, S. A. (2015). Software engineering for self-
organizing systems. Knowl. Eng. Rev. 30 (04), 419–434. doi: 10.1017/
S0269888915000089

Pitonakova, L., Crowder, R., and Bullock, S. (2014). “Understanding the role of
recruitment in collective robot foraging,” in Proceedings of the Fourteenth
International Conference on the Synthesis and Simulation of Living Systems
(ALIFE 14), eds H. Lipson, H. Sayama, J. Rieffel, S. Risi, and R. Doursat
(Cambridge, MA: MIT Press), 264–71.

Pitonakova, L., Crowder, R., and Bullock, S. (2016a). Information flow principles
for plasticity in foraging robot swarms. Swarm Intell 10 (1), 33–63. doi:
10.1007/s11721-016-0118-1

Pitonakova, L., Crowder, R., and Bullock, S. (2016b). “Task allocation in foraging
robot swarms: The role of information sharing,” in Proceedings of the Fifteenth
International Conference on the Synthesis and Simulation of Living Systems
(ALIFE XV), eds G. Gershenson, T. Froese, J. M. Siqueiros, W. Aguilar, E. J.
Izquierdo, and H. Sayama (Cambridge, MA: MIT Press), 306–13.

Pitonakova, L., Crowder, R., and Bullock, S. (2017). “Behaviour-Data Relations
Modelling Language for multi-robot control algorithms,” in Proceedings of
the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2017). Piscataway, NJ: IEEE, 727–732.

Pitonakova, L., Crowder, R., and Bullock, S. (2018). The Information-Cost-Reward
framework for understanding robot swarm foraging. Swarm Intell. 12 (1), 71–
96. doi: 10.1007/s11721-017-0148-3

Reina, A., Dorigo, M., and Trianni, V. (2014). “Towards a cognitive design pattern
for collective decision-making,” in Swarm Intelligence, eds D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, and J. C. Mitchell (Berlin:
Springer), 194–205.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V. (2015). A
design pattern for decentralised decision making. PLoS ONE 10 (10):e0140950.
doi: 10.1371/ journal. pone. 0140950

Rybski, P. E., Larson, A., Veeraraghavan, H., Lapoint, M., and Gini, M. (2007).
“Communication strategies in multi-robot search and retrieval: Experiences
with MinDART,” in Distributed Autonomous Robotic Systems 6, eds R. Alami,
R. Chatila, and H. Asama (Berlin: Springer), 317–26.

Sarker, M. O. F., and Dahl, T. S. (2011). “Bio-Inspired communication for
self-regulated multi-robot systems,” in Multi-Robot Systems, Trends and
Development, ed. T. Yasuda 367–92.

Scheidler, A., Brutschy, A., Ferrante, E., and Dorigo, M. (2016). The k -unanimity
rule for self-organized decision-making in swarms of robots. IEEE Trans
Cybern 46 (5), 1175–88. doi: 10.1109/TCYB.2015.2429118

Seeley, T., Camazine, S., and Sneyd, J. (1991). Collective decision-making in honey
bees: how colonies choose among nectar sources. Behav Ecol Sociobiol (Print)
28 (4), 277–90. doi: 10.1007/BF00175101

Serugendo, G. M., Gleizes, M. -P., and Karageorgos, A. (2006). Self-organisation
and emergence in MAS: An overview. Informatica 30, 45–54.

Shalloway, A., and Trott, J. R. (2005). Design Patterns Explained: A New Perspective
on Object Oriented Design, 2nd Edn. Boston, MA: Pearson Education, Inc.

Sperati, V., Trianni, V., and Nolfi, S. (2011). Self-organised path formation in a
swarm of robots. Swarm Intell 5 (2), 97–119. doi: 10.1007/s11721-011-0055-y

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1007/s11721-015-0104-z
http://dx.doi.org/10.1109/JSYST.2011.2167820
http://dx.doi.org/10.1080/13873954.2011.601421
http://dx.doi.org/10.1016/S0921-8890(99)00065-2
http://dx.doi.org/10.1145/1152934.1152936
http://dx.doi.org/10.1006/anbe.1998.0760
http://dx.doi.org/10.1177/0278364906063426
http://dx.doi.org/10.1016/j.micpro.2010.08.002
http://dx.doi.org/10.1098/rspb.2009.1926
http://dx.doi.org/10.1017/S0269888915000089
http://dx.doi.org/10.1017/S0269888915000089
http://dx.doi.org/10.1007/s11721-016-0118-1
http://dx.doi.org/10.1007/s11721-017-0148-3
http://dx.doi.org/10.1371/journal.pone.0140950
http://dx.doi.org/10.1109/TCYB.2015.2429118
http://dx.doi.org/10.1007/BF00175101
http://dx.doi.org/10.1007/s11721-011-0055-y

Pitonakova et al.

23 June 2018 | Volume 5 | Article 47Frontiers in Robotics and AI | www. frontiersin. org

Robot Swarm Foraging Design Patterns

Sugawara, K., Kazama, T., and Watanabe, T. (2004). “Foraging behavior of
interacting robots with virtual pheromone,” in Proceedings of the 2004 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS 2004).
Piscataway, NJ: IEEE, 3074–3079.

Sugawara, K., and Watanabe, T. (2002). “Swarming robots - foraging behavior of
simple multirobot system,” in Proceedings of the 2002 IEEE/RSI Internatinal
Conference on Intelligent Robots and Systems (IROS 2002). Piscataway, NJ:
IEEE, 2702–2707.

Trianni, V., Tuci, E., Passino, K. M., and Marshall, J. A. R. (2011). Swarm
Cognition: an interdisciplinary approach to the study of self-organising
biological collectives. Swarm Intell. 5 (1), 3–18. doi: 10.1007/s11721-010-
0050-8

Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J.,
et al. (2006). Micromanipulation, communication and swarm intelligence
issues in a swarm microrobotic platform. Rob. Auton. Syst. 54 (10), 789–804.
doi: 10.1016/j.robot.2006.05.001

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016). Collective
decision with 100 Kilobots: speed versus accuracy in binary discrimination
problems. Auton Agent Multi Agent Syst 30 (3), 553–80. doi: 10.1007/s10458-
015-9323-3

Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N., Szorenyi, T., and Nepusz,
T. (2014). “Outdoor flocking and formation flight with autonomous aerial
robots,” in Proceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014). Piscataway, NJ: IEEE, 3866–
3873.

Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., and Rossi, L. F. (2012).
Quantifying and tracing information cascades in swarms. PLoS ONE 7
(7):e40084. doi: 10.1371/ journal. pone. 0040084

Wawerla, J., and Vaughan, RT. (2010). “A fast and frugal method for team-task
allocation in a multi-robot transportation system” Proceedings of the 2010
IEEE International Conference on Robotics and Automation (ICRA 2010)
(Piscataway, NJ:IEEE), 1432–7.

Winfield, A. F. T. (2009a). “Foraging robots,” in Encyclopedia of Complexity and
Systems Science, Vol. 6, ed. R. Meyers (Berlin: Springer), 3682–3700.

Winfield, A. F. T. (2009b). “Towards an engineering science of robot foraging,”
in Distributed Autonomous Robotic Systems 8, eds H. Asama, H. Kurokawa,
and K. Sekiyama (Berlin: Springer), 185–192.

Yang, Y., Zhou, C., and Tian, Y. (2009). “Swarm robots task allocation based on
response threshold model,” in Proceedings of the 4th International Conference on
Autonomous Robots and Agents (ICARA 2009). Piscataway, NJ: IEEE, 171–176.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Pitonakova, Crowder and Bullock. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1007/s11721-010-0050-8
http://dx.doi.org/10.1007/s11721-010-0050-8
http://dx.doi.org/10.1016/j.robot.2006.05.001
http://dx.doi.org/10.1007/s10458-015-9323-3
http://dx.doi.org/10.1007/s10458-015-9323-3
http://dx.doi.org/10.1371/journal.pone.0040084
http://creativecommons.org/licenses/by/4.0/

	Information Exchange Design Patterns for Robot Swarm Foraging and Their Application in Robot Control Algorithms
	1. Introduction
	2. Background
	2.1. Design Patterns
	2.2. Graphical Representation of Design Patterns
	2.3. The Information-Cost-Reward Framework

	3. Methods
	3.1. Design Pattern Specification
	3.2. Design Pattern Application Rules

	4. The Design Pattern Catalogue
	4.1. Individualist
	4.1.1. Category
	4.1.2. Problem
	4.1.3. Applicability
	4.1.4. Solution (see also Figure 6)
	4.1.5. Feedback Loops: -
	4.1.6. Parameters: -
	4.1.7. Forces: -
	4.1.8. Consequences
	4.1.9. Known Uses
	4.1.10. Related Patterns

	4.2. Broadcaster
	4.2.1. Category
	4.2.2. Problem
	4.2.3. Applicability
	4.2.4. Solution (see also Figure 7)
	4.2.5. Feedback Loops
	4.2.6. Parameters
	4.2.7. Forces
	4.2.8. Consequences
	4.2.9. Known Uses
	4.2.10. Related Patterns

	4.3. Information Storage
	4.3.1. Category
	4.3.2. Problem
	4.3.3. Applicability
	4.3.4. Solution (see also Figure 8)
	4.3.5. Feedback Loops
	4.3.6. Parameters
	4.3.7. Forces
	4.3.8. Consequences
	4.3.9. Known Uses
	4.3.10. Related Patterns

	4.4. Information Exchange Anywhere
	4.4.1. Category
	4.4.2. Problem
	4.4.3. Applicability
	4.4.4. Solution (see also Figure 9)
	4.4.5. Feedback Loops
	4.4.6. Parameters: -
	4.4.7. Forces: -
	4.4.8. Consequences
	4.4.9. Known Uses
	4.4.10. Related Patterns

	4.5. Information Exchange Near Worksites
	4.5.1. Category
	4.5.2. Problem
	4.5.3. Applicability
	4.5.4. Solution (see also Figure 10)
	4.5.5. Feedback Loops
	4.5.6. Parameters
	4.5.7. Dependencies
	4.5.8. Consequences
	4.5.9. Known Uses
	4.5.10. Related Patterns

	4.6. Information Exchange Centre
	4.6.1. Category
	4.6.2. Problem
	4.6.3. Applicability
	4.6.4. Solution (see also Figure 11)
	4.6.5. Feedback Loops
	4.6.6. Parameters
	4.6.7. Forces
	4.6.8. Consequences
	4.6.9. Known Uses
	4.6.10. Related Patterns

	5. Applications
	5.1. Improving Robustness to Noise in Foraging E-Puck Swarms
	5.2. Other Examples

	6. Discussion
	6.1. Other Swarm Design Methods
	6.2. Other Design Pattern Work
	6.3. Current Issues and Future Work

	7. Conclusion
	Author Contributions
	Funding
	References

