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The collective behavior of human crowds often exhibits surprisingly regular patterns of

movement. These patterns stem from social interactions between pedestrians such

as when individuals imitate others, follow their neighbors, avoid collisions with other

pedestrians, or push each other. While some of these patterns are beneficial and

promote efficient collective motion, others can seriously disrupt the flow, ultimately

leading to deadly crowd disasters. Understanding the dynamics of crowd movements

can help urban planners manage crowd safety in dense urban areas and develop an

understanding of dynamic social systems. However, the study of crowd behavior has

been hindered by technical and methodological challenges. Laboratory experiments

involving large crowds can be difficult to organize, and quantitative field data collected

from surveillance cameras are difficult to evaluate. Nevertheless, crowd research has

undergone important developments in the past few years that have led to numerous

research opportunities. For example, the development of crowd monitoring based on the

virtual signals emitted by pedestrians’ smartphones has changed the way researchers

collect and analyze live field data. In addition, the use of virtual reality, and multi-user

platforms in particular, have paved the way for new types of experiments. In this review,

we describe these methodological developments in detail and discuss how these novel

technologies can be used to deepen our understanding of crowd behavior.

Keywords: pedestrians, collective movement, complex systems, social interactions, tracking, virtual environment

INTRODUCTION

Understanding crowd movementsis key to the management of dense pedestrian flows in urban
areas. Research on crowd dynamics can inform urban planners and help authorities design efficient
public places in order to avoid congestions and enhance traffic efficiency (Cassol et al., 2017;
Haworth et al., 2017). In addition, crowd research can save lives in extreme situations (Helbing
et al., 2014). Recent studies have shown that the frequency and severity of deadly crowd accidents
have increased over the past decades (Helbing et al., 2007, 2014; Helbing and Mukerji, 2012). In
September 2015, one of the most dramatic crowd stampedes occurred in Mecca during which
thousands of pilgrims were crushed to death in a dense crowd (Khan and Noji, 2016). This tragedy
is one example of a series of accidents that have occurred in the past decade, costing many lives and
undermining trust in public institutions. In the present article, we will describe new technologies
that can potentially transform the way crowd researchers address these fundamental issues.
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How the System Works
Pedestrian crowds belong to a large family of self-organized social
systems (Helbing et al., 2005; Moussaïd et al., 2009), including
animal swarms (Camazine, 2003) and human activities such as
judgment formation and consumer behaviors (Castellano et al.,
2009; Moussaïd et al., 2015). In such systems, the collective
dynamics of the group is driven by behavioral propagation
processes that are induced by interactions between individuals
(Moussaïd et al., 2017). Indeed, pedestrian behaviors tend to
spread from person to person, resulting in large-scale snowball
effects. For example, when pedestrians slow down or stop in the
middle of a dense crowd, they force followers to also slow down
or stop in order to avoid a collision. This can trigger a chain
reaction as others adapt their movement and/or speed. Behaviors
as diverse as choosing an exit door, avoiding others on a particular
side, pushing, or escaping from danger are subject to behavioral
propagation. This propagation process eventually gives rise to
collective patterns, such as lane formation, the emergence of trail
networks, and biases in exit choice (Helbing et al., 2005). For
example, crowd turbulence is a deadly collective phenomenon
that has been recently identified from video surveillance analyses
and systematically associated with crowd accidents (Helbing
et al., 2007). This pattern is characterized by the occurrence
of waves of pushing that propagate from person to person
through the crowd. At very high densities, body contacts between
neighboring individuals support the spread of pushing forces.
These pushing waves set up, merge, and amplify when a certain
density threshold is achieved. As a result, people can be trampled
by others or crushed against walls. Thus, a large-scale global
pattern (e.g., crowd turbulence) can emerge from a simple
propagative individual behaviors (e.g., pushing behaviors).

The link between global patterns and the individual
behaviors that cause them is often difficult to establish. A
crowd is more than a collection of many isolated individuals.
Studying individual behaviors in isolation is not sufficient
for understanding collective dynamics, and macroscopic
descriptions of these patterns are not informative regarding the
mechanisms underlying their emergence. Instead, one needs to
focus on the causal mechanisms underlying these two levels of
observation (i.e., individual and collective behaviors).

How to Study the Crowd
In order to study crowd behavior, researchers use a combination
of computer simulations, field observations, and laboratory
experiments. Computer simulations explore the conditions
in which collective behaviors can emerge by simulating the
movements and interactions of many individuals. The outcomes
of simulations are determined by behavioral models that
describe how individuals respond to their physical and social
environments. Existing microscopic pedestrian models include
behavioral elements such as how individuals walk to their
destinations, how they avoid obstacles, and how they adapt to
the presence of other individuals. A large variety of models
have been developed in the past. These models include physics-
based models (Helbing and Molnár, 1995), biomechanically-
based approaches (Singh et al., 2011b), vision-based models
(Ondrej et al., 2010; Moussaïd et al., 2011; Dutra et al., 2017),

velocity-based approaches (Guy et al., 2009; van den Berg et al.,
2011), and hybrid approaches (Singh et al., 2011a). In addition,
macroscopic models aim at describing crowd movement by
means of locally averaged quantities, such as the velocity, density,
or flow of individuals. This type of model is often inspired by
Henderson’s original specification with respect to fluid dynamics
(Henderson, 1974). The state-of-the-art for crowd modeling
techniques has been reviewed in several articles (e.g., Bellomo
and Dogbe, 2011; Schadschneider et al., 2011; Degond et al.,
2013) and is beyond the scope of this article. A key challenge
is to capture the essence of real human crowd behavior while
generalizing to future scenarios (e.g., a change in environmental
conditions or stress induction in a crowd).

Another methodological approach consists of collecting real-
world data directly in the field (e.g., Gallup et al., 2012;
Alnabulsi and Drury, 2014). These empirical observations
can be used to build data-driven computational models of
human crowds (Qiao et al., 2017). Researchers typically set
up video recording installations directed at crowded urban
environments or use existing recordings from video surveillance
platforms. The recorded walking behaviors of pedestrians can
then be quantified by reconstructing the positions of individuals
from the video images. The advantages of studying real-world
phenomena are often undermined by difficulties with the
accuracy of these reconstructions, particularly for dense crowds.
This quantification step is usually undertaken by means of
computer vision software (e.g., Pérez-Escudero et al., 2014) but
often requires the tedious efforts of research assistants.

The third approach to studying crowd behavior is to conduct
controlled laboratory experiments. In a typical experiment,
researchers will invite a group of participants to the laboratory
and provide them with specific walking instructions. In the past
two decades, a large number of experiments have involved up to
hundreds of participants simultaneously, covering a wide range
of scenarios. These experiments investigated the study of crowd
evacuations, density effects, patterns characterizing uni- and bi-
directional flows of people, and large-scale evacuations from
public buildings (Hoogendoorn and Daamen, 2005; Jelić et al.,
2012; Moussaïd et al., 2012; Burghardt et al., 2013;Wagoum et al.,
2017). The popularity of crowd experiments can be explained by
the potential to vary experimental factors in a controlled manner,
coupled with the ease of tracking participants positions with
dedicated tracking devices.

New Perspectives
New technologies such as virtual sensing and multi-user virtual
reality platforms can complement the opportunities afforded by
field observations and laboratory experiments. Virtual sensing
consists of estimating crowd movements by tracking the Wi-
Fi and Bluetooth signals emitted by pedestrians’ smartphones.
Whereas, the idea of estimating a quantity by means of a proxy
measure is typically found in other domains (e.g., computer
science, chemistry, or transportation science; Liu et al., 2009),
this methodology also constitutes a promising line of research
for crowd monitoring. In addition, the emergence of multi-user
virtual reality platforms can be used to study the movement
behavior of crowds instead of individual participants. Controlled
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crowd experiments have recently been conducted in virtual
environments, extending the limits of possible experimental
designs (Thrash et al., 2015; Moussaïd et al., 2016).

We describe how the emergence of virtual sensing and virtual
reality can boost crowd research, their potential applications,
and corresponding challenges. In the following section, we
present previous crowd monitoring techniques and the potential
of smartphone-based signals. This section is followed by a
discussion of virtual reality from single-user experiments to
recent development in multi-user virtual environments. The
article concludes with a discussion that highlights the future
promises of these techniques for field observations and controlled
experiments.

CROWD MONITORING IN THE FIELD

Crowd monitoring involves collecting quantitative information
about an existing crowd located in an area of interest,
such as crowded streets, music festivals, or train stations.
Unlike laboratory experiments and computer simulations, crowd
monitoring provides data on real-world behaviors with high
external validity. The obtained data may include (i) macroscopic
features of the crowd (e.g., density, flow, movement patterns)
and/or (ii) microscopic information regarding the pedestrians
(e.g., their positions in space, walking trajectories, walking
speeds). However, accurate monitoring can be challenging in
practice. Crowd monitoring often requires tedious manual
corrections and tailored adjustments to specific external factors
(e.g., calibrating video analyses techniques to ambient light
conditions). There are at least two categories of technical options
for monitoring crowds (i.e., conventional methods and virtual
sensing).

Conventional Methods
Conventional methods of crowd monitoring include manual
crowd counting and computer vision. An early procedure for
manual crowd counting was introduced by Herbert Jacobs in
1967—a journalism lecturer at the University of California
at Berkeley (Jacobs, 1967). During the Berkeley riots against
the Vietnam war, Jacobs observed a crowd from his office
window and devised what is known as the “Jacobs method” for
estimating its size. The Jacobs method involves estimating the
number of people within a square of a stone pavement grid
and counting how many of these squares were occupied. Crowd
density can then be estimated by calculating the number of
people per square meter. This method is still frequently used
to estimate crowd density based on video surveillance footage
(Raybould et al., 2000). To date, the Jacobs method also remains
a simple procedure for extracting the ground truth values used
as benchmarks in the validation of more sophisticated methods.
Other manual counting approaches include counting people with
digital clickers at entrance or exit gates (Bauer et al., 2009, 2011).

Given recent advancements in technology, computer vision
techniques have become increasingly popular. This technique
consists of extracting relevant crowd information based on the
automated analyses of videos. These videos are often sourced
from surveillance cameras or aerial images. There are two distinct

approaches to computer vision, including the direct approach
of detecting people’s bodies (Rittscher et al., 2005) or faces (Lin
et al., 2001) and the indirect approach of inferring the presence
of people using image transformation procedures. For example,
researchers have used indirect methods by counting foreground
pixels after subtracting the background image (Davies et al., 1995;
Ma et al., 2004). Other researchers have employed texture features
analysis (Marana et al., 2005), histograms of edge orientations
(Dalal and Triggs, 2005), and moving corner points to estimate
the number of moving people (Albiol et al., 2009). Crowd flow
may also be estimated using the frame difference algorithm
(Liang et al., 2014) or the optical flow approach (Andrade et al.,
2006).

In the recent years, computer vision techniques have been
reshaped by the rise of deep learning (Ouyang and Wang, 2013).
Convolutional neural networks can be trained on large hand-
annotated crowd datasets (e.g., ImageNet, WWW crowd dataset)
to associate image features with higher-level information about
the crowd. These methods can produce microscopic quantities,
such as the position, number, and trajectories of the pedestrians
(Ouyang and Wang, 2012, 2013; Sermanet et al., 2013), or
macroscopic information, such as density maps (Sindagi and
Patel, 2017), the spatial distribution of the crowd (Kang and
Wang, 2014), and contextual information regarding what kind
of crowd is present, where the scene occurs, and reasons for the
gathering (Shao et al., 2015, 2017). Because deep learning can
handle common problems that hinder the efficiency of traditional
approaches (e.g., changing camera perspective, body occlusions,
and lighting conditions), accuracy levels are typically higher than
what can be achieved by conventional methods (Tian et al., 2015).

Despite the fast development of deep learning and the
attention it has received in the domain of computer science, this
method has not yet widely reached the community of crowd
researchers. This is probably related to its lower accessibility for
non-experts and the technical complexity of its implementation.
To date, traditional crowd monitoring methods remain relatively
popular, but the promises of deep learning foreshadow an
important development in the near future.

Virtual Sensing
Whereas, conventional methods aim to visually detect the
presence of people (with the human eye or the computer eye),
virtual sensing consists of detecting traces of people and inferring
their numbers, density, andmovements. Manymethods of crowd
sensing rely on emerging technologies that enable the detection
of physical and virtual traces left by pedestrians. These methods
include carbon dioxide sensors (Ang et al., 2016), audio sensors
(Kannan et al., 2012), floor pressure sensors (Mori et al., 2004),
seismic sensors (Damarla et al., 2016), motion sensors (Coşkun
et al., 2015), and radar sensors (Choi et al., 2016).

In our highly connected world, people do not only leave
physical traces in their environment but also emit a variety
of virtual traces (e.g., the radio-frequency signals produced by
smartphones or other electronic equipments). The increased
reliance on smartphones and other connected devices has
motivated researchers to extract the crowd information provided
by these mobile devices (Eagle et al., 2009; Ding et al.,
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2015). Numerous applications have been developed that employ
smartphones as sensors for the recognition of activities such as
mobility, health information, and social interactions (see survey
in Khan et al., 2013). In the specific case of crowd sensing,
collecting location data from smartphones can be achieved by
accessing a device’s GPS or Wi-Fi positioning information (with
positional accuracies of∼5 and 20m, respectively; Azizyan et al.,
2009; Van Diggelen, 2009).

However, collecting position information is not trivial. For
privacy reasons, the positioning information of any randomly
selected pedestrian is typically not publicly available. Some
researchers have circumvented this challenge by setting up a
voluntary participatory system. Here, volunteers can register to
participate in the study and install an experimental application
on their smartphone. The application continuously records
the user’s spatial position and sends it to a central server.
Recent studies have shown that many individuals are willing
to install such an application and share this type of data as
long as the scientific use of this data is communicated in
a transparent manner and when the participants can receive
valuable information in return (Wirz et al., 2012). For example,
participants recruited at a music festival may be able to
use the application to access an interactive program guide,
a map of the neighboring points of interest, background
information regarding ongoing concerts, and other social
features. Furthermore, the application can be used to send
personalized location-dependent information to the users. For
example, the police can inform attendees located in a particular
area about how to behave in case of an emergency. One challenge
of this sensing method is that the researcher cannot expect to
receive position information from all individuals in the area
of interest. Because only a fraction of people will be using
the application, researchers must extrapolate the positions and
movements of the entire crowd from those of the collected
sample.

This method has been previously employed during the 2011
Lord Mayor Show in London (Wirz et al., 2013) and the 2013
Züri Fäscht in Zürich (Blanke et al., 2014). During the Lord
Mayor Show, 828 users downloaded the application (out of nearly
half a million visitors) and ∼4 millions GPS positions were
collected at a sampling rate of 1Hz. This method was validated
by comparing the GPS position data to a ground truth sample
resulting from the semi-automatic monitoring of surveillance
camera recordings. This study demonstrated that the application
users were distributed across the festival area similarly to the rest
of the crowd. Indeed, there was a positive correlation between
the density of application users and the actual crowd density
(Figure 1A). As an illustrative result, Figure 1B shows a map of
the crowd density in the festival area.

For the 2013 Züri Fäscht—a 3-day event comprising
concerts and shows—the scaling was considerably increased.
Out of 2 million total visitors, 28,000 users downloaded the
application, resulting in ∼25 million location updates. The
higher participation rate of this second deployment resulted from
an important marketing effort in promoting and distributing
the application. Several functionalities were added, including a
“friend finder” that allowed users to locate their friends in the

event they became lost in the crowd. The gamification of this
application (with a “trophy collector” function) also possibly
contributed to the higher download rate. Finally, a link to the
user’s Facebook profile favored the viral propagation of the
application on social networks.

Overall, this application allowed for the collection of detailed
data regarding the crowd at a scale and with an accuracy that was
rarely achieved in the past.

Despite the advantages of virtual sensing with active
participants, this method relies on an intensive marketing effort.
Alternatively, researchers may track pedestrians passively using
the Bluetooth and Wi-Fi signals emitted by their mobile devices.
Indeed, Bluetooth and Wi-Fi signals can be detected using
dedicated scanners (Musa and Eriksson, 2012; Barbera et al.,
2013). When applied to crowd observation, stationary scanners
positioned in the area of interest can allow the detection of virtual
traces left by pedestrians and thus the estimation of their number
and displacement (Fukuzaki et al., 2014; Schauer et al., 2014).
Hence, pedestrians do not need to actively cooperate with the
researchers by downloading an application on their phones.

However, the deployment of the scanners can be challenging.
One important issue with Wi-Fi is the interruption of the signal
propagation path caused by solid obstacles located between the
source and the scanners. In addition, human bodies can also
produce a shield effect that causes fluctuations in the signal. One
solution is to mount them above the crowd, thus enabling a free
line of sight toward the devices. While this solution is easily
applicable in indoor environments, it is more challenging when
tracking people in open spaces, such as commercial walkways or
music festivals.

Virtual sensing with passive participants has been successfully
deployed several times in the past (e.g., in shopping malls, car
exhibitions, and airports, see Fukuzaki et al., 2014; Schauer
et al., 2014). For example, Weppner et al. (2016) used a setup
consisting of 31 scanners (covering a total area of ∼6,000 m2)
during the IAA car exhibition in Frankfurt. Data was collected
for 13 business days, producing nearly 90 million data points
from a total of over 300,000 unique mobile devices. A video-
based manual counting procedure was also employed in order to
validate the virtual sensing data. The scanners were mounted on
the ceiling with an average distance of 14m between them and an
average scanning zone of 180 m2 for each of them.

Whenever, pedestrians walked through the detection area, the
Bluetooth and Wi-Fi signals emitted by their mobile devices
were detected by the scanners and sent to a central database
server. Every incoming signal was associated to an RSSI value
(i.e., the Received Signal Strength Indication). This information
can be combined with the coordinates of the scanners to estimate
the location of the pedestrian during a post-processing phase.
Multiple scanners can detect the presence of a unique mobile
device at a given moment of time. The simplest localization
method is to assign the spatial coordinates of the scanner
that has recorded the highest RSSI (i.e., the strongest signal)
to the pedestrian. A more sophisticated method is based on
an RSSI-weighted average of the scanners locations. In a
preliminary accuracy evaluation phase, the positioning error
was estimated to a maximum of 10m for 90% of the devices.
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FIGURE 1 | Virtual sensing of recruited participants (A) Correlation between the application user density and the actual crowd density (B) Map indicating the

estimated crowd density during the 2011 Lord Mayor Show in London (from Wirz et al., 2013).

FIGURE 2 | Virtual sensing of passive participants. This map shows the

estimated crowd density during the Frankfurt car exhibition (from Weppner

et al., 2016).

Figure 2 shows the estimation of local densities in subregions
delimited by the boundaries of a Voronoi cell surrounding each
scanner.

Calibration was necessary to convert the estimated density
of people into the actual density because not all visitors were
carrying a detectable device and the signal was not always
detected. Toward this end, ground truth manual measurements
were compared to the measures provided by the sensors.
Weppner et al. (2016) calculated that the measures provided
by the sensors have to be multiplied by an average of 1.5
in order to match the ground truth values. In practice, the
value of the multiplier might vary depending on social and

environmental conditions and would need to be calibrated by
means of preliminary evaluation data.

VIRTUAL REALITY IN THE LABORATORY

Virtual reality (VR) is a technology that involves presenting
a person with a responsive artificial environment. Participants
in VR studies are typically able to look around, move in, and
interact with the virtual environment. As such, VR constitutes
an interesting opportunity to study pedestrians’ behaviors such
as locomotion (i.e., bodily movement through the immediate
environment) and wayfinding (i.e., spatial decision-making in a
large-scale environment; Montello, 2005).

Techniques and Single-User Experiments
In VR, the interaction between a navigator and the environment
is mediated by a display (e.g., projection screen, head-mounted
display), and a control interface (e.g., a joystick, a mouse, and
keyboard, head movement sensors). Large projection screens
and desktop displays often provide a more natural field of view
but do not always allow users to rotate their bodies 360◦ in
order to experience the virtual environment (but see Höllerer
et al., 2007). In contrast, head-mounted displays (HMDs) are
relatively mobile and restrict visual access to the external
world (e.g., Oculus Rift, https://www.oculus.com/; HTC Vive,
https://www.vive.com/us/) (see e.g., Chance et al., 1998; Waller
et al., 2004; Foo et al., 2005; Kinateder and Warren, 2016).
One consequence of using VR displays is that distances are
systematically underestimated to a greater extent than distances
estimated in the real world (Knapp, 2003). However, training
in VR that involves explicit visual feedback can reduce these
biases (Richardson and Waller, 2005). Similarly, spatial updating
has been found to be less precise in VR without physical turns
(Klatzky et al., 1998), but biases in turn perception per se can be
reduced with explicit visual feedback (Bakker et al., 2001).
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The control interface translates the movements of users into
visual feedback on the display. Two important aspects of control
interfaces are the position of the body (Taube et al., 2013) and the
possible ways in which specific actions (e.g., pushing a joystick
forward) are connected with specific types of feedback (e.g.,
the expansion of optic flow). During locomotion in VR, the
user’s body can be sitting (e.g., Richardson et al., 1999), lying
(as in neuroscientific research; Taube et al., 2013), or standing
(e.g., Nescher et al., 2014). While sitting or lying (or standing
in place), the user does not receive proprioceptive (i.e., body-
based) feedback. In addition, lying causes a conflict in perspective
between facing upwards in the real environment (e.g., the fMRI
scanner) and facing forward in the virtual environment (Taube
et al., 2013). Comparisons of control interfaces are often case-
specific. For example, Thrash et al. (2015) found that users’
performance on navigation-related tasks was more efficient
and less error prone with a mouse-and-keyboard setup than a
handheld joystick. However, less attention has been allocated to
theoretical explanations for why users tend to perform better
with some interfaces than others. While mouse-and-keyboard
setups are often more familiar than joysticks, the extent to which
one interface is more “intuitive” than the other is unknown
(Lapointe et al., 2011). This challenge may be addressed in
the future by studies that focus on the impact of training
on interface use or on how to allow for realistic walking in
VR.

For realistic walking, some researchers have employed
omnidirectional treadmills (as a hardware solution; e.g., Souman
et al., 2010) and redirected walking algorithms (as a software
solution; e.g., Razzaque et al., 2001). Redirected walking steers
users toward particular targets by expanding and compressing
rotations and translations and allows for locomotion through
environments that are larger than the external infrastructure.
Even when VR participants walk with an HMD (without
these visual distortions), the HMD necessarily translates head
movements into visual feedback and thus constitutes a control
interface.

Advancements in control interface technology will be critical
for studies of locomotion but may be less critical for studying
certain aspects of wayfinding. Indeed, during wayfinding, the
decisions executed by the navigator typically depend less on
physical collisions or maneuverability than incomplete mental
representations and salient environmental cues.

Wayfinding behavior can be classified as either path
integration or landmark-based (Taube et al., 2013). During
path integration, observers rely on idiothetic cues in order to
maintain their orientations and positions during movement
through a large-scale environment (Gallistel, 1990). Landmark-
based navigation relies primarily on allothetic cues (e.g., visible
objects along a route; Presson and Montello, 1988) and is
associated with scene processing (Epstein and Vass, 2014) and
survey representation (Kitchin and Blades, 2002). Indeed, this
type of wayfinding has been successfully studied using a variety
of VR systems, including projection screens in fMRI scanners
(Epstein et al., 2017), desktop displays with simple controls
(Waller and Lippa, 2007), and HMDs with naturalistic walking
(Hodgson et al., 2011).

Virtual reality has allowed real humans to interact with
their digital counterparts (i.e., avatars) in an effort to study
more detailed local interactions under controlled experimental
conditions. For example, Olivier and colleagues have used VR
in order to study how people avoid collisions with groups
(Bruneau et al., 2015), the impact of social roles on collision-
avoidance strategies (Olivier et al., 2013), as well as human-
robot interactions (Vassallo et al., 2017). Similarly, Warren
and colleagues have focused on human locomotion and spatial
navigation using VR (Bonneaud et al., 2012). These studies have
allowed researchers to test theories of perceptual-motor control
and develop a formal model of pedestrian behavior (Warren and
Fajen, 2004; Bonneaud and Warren, 2012). This model has been
expanded to include perception (Bruggeman et al., 2007; Warren
and Fajen, 2008) and behaviors such as target interception (Fajen
and Warren, 2007) and collision avoidance with both static and
moving objects (Fink et al., 2007).

Immersive Multi-User Experiments
One drawback of single-user experiments is the lack of
interactions between participants. The collective dynamics of
a crowd cannot be explained by the accumulation of many
isolated individuals. Rather, collective behaviors stem from social
interactions between pedestrians. Observing the interactions of a
single participant with simulated agents constitutes an interesting
step toward studying crowd dynamics in VR (Drury et al., 2009).
Nevertheless, insight into collective behavior remains elusive
because the dynamics of the group are largely determined by the
behavior of the virtual agents implemented by the experimenter.

This challenge has been recently addressed with the
development of multi-user virtual environments (Normoyle
et al., 2012; Bode and Codling, 2013; Bode et al., 2014; Carlson
et al., 2014; Moussaïd et al., 2016; Boos et al., 2017). These
multi-user environments enable the observation of a crowd
of participants moving and interacting in a shared virtual
environment simultaneously. In a typical multi-user experiment,
every participant controls an avatar in the virtual environment
from a first-person perspective. The avatars can view and interact
with each other in real time (e.g., avoiding, following, or
colliding) and thus mimic some aspects of social interactions
among real pedestrians. In the following series of experiments,
Moussaïd et al. (2016) explored the potential of multi-user
VR using desktop displays with a mouse-and-keyboard control
interface (Thrash et al., 2015).

Validation
Given the novelty of multi-user VR experiments, initial research
has focused on validating simple crowd behaviors observed in
virtual worlds. Here, we describe two studies that have compared
avoidance maneuvers and simple evacuation situations against
real-world data.

Side Preference

Avoidance maneuvers between pedestrians are characterized by
a well-known social bias called the side preference (Helbing,
1992). In most Western countries, people preferentially evade
each other on the right-hand side. This bias is a social attribute
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FIGURE 3 | The side preference. (A) Illustration of the real-life experiment in which pairs of participants were instructed to avoid each other in a narrow corridor

(Moussaïd et al., 2009). (B) Replication of the side preference experiment in the multi-user virtual environment. (C) The layout and the dimensions of the corridor are

identical between the two experiments. (D) In both experiments, participants exhibited a marked preference for avoidance on the right-hand side (81% in the real-life,

95% in the virtual environment), demonstrating that people rely on the same social norms in real and virtual settings.

that does not occur during the avoidance of a static obstacle
(Moussaïd et al., 2009). In a multi-user VR experiment, 95% of
the participants exhibited the side preference, compared to 81%
in an identical real-world study (Moussaïd et al., 2009, 2016;
Figure 3). This suggest that participants in VR can consider other
avatars as “real” people and expect them to follow similar social
norms.

Simple Evacuation

The second validation experiment focused on evacuation
dynamics. Previous research has demonstrated that the outflow
during an evacuation of a group of people increased linearly with
the width of the room doorway (Kretz et al., 2006; Liddle et al.,
2009; Seyfried et al., 2009; Daamen and Hoogendoorn, 2010).

One of these evacuation experiments has been replicated in
desktop VR (Moussaïd et al., 2016). A total of 36 participants
were immersed simultaneously in a large virtual room and
instructed to evacuate through a doorway of varying width
(Kretz et al., 2006). Consistent with real-world findings, the
outflow of pedestrians increased linearly with the bottleneck
width (Figure 4). However, compared to a larger body of
real-world datasets, the outflow of participants was smaller in
the virtual environment. This difference can be attributed to
micro-navigation factors such as differences in walking speed,
acceleration, and/or shoulder movements.

Emergency Evacuations
Multi-user virtual environments also offer the advantage of
enabling the investigation of difficult (if not impossible)
scenarios. For example, the collective behavior that occurs during
emergency situations (e.g., evacuating a burning building) can

be challenging to study in the real world because of ethical and
safety reasons (Schadschneider et al., 2011). Recently, emergency
evacuations were investigated in virtual settings. Large groups
of participants were instructed to evacuate a virtual building
with four possible exits, only one which was not blocked by
fire. For each trial, the location of the correct exit was randomly
chosen, and only a randomly selected subset of participants were
told which exit was correct. We compared collective behaviors
between non-emergency and stressful emergency conditions.
In the study, the two conditions differed by three factors.
Specifically, in the stressful emergency condition, there was a
short time limit imposed, participants were penalized for not
finding the correct exit, and the environment contained stressful
elements such as red blinking lights and a siren. In contrast,
in the non-emergency condition, no time limit was imposed,
participants were rewarded for finding the correct exit, and the
environment lacked blinking lights and sirens.

The results revealed significant differences between the two
conditions (Figure 5). While participants searched for the exit
in a slow and orderly manner in the non-emergency condition,
mass herdings and severe crowding occurred in the emergency
condition. In particular, in the non-emergency condition,
participants tended to stay reasonably safe distances from one
another in order to avoid a monetary penalty for colliding with
each other. In contrast, a high number of collisions occurred
in the high-stress condition, despite having the same collision
penalty. Density levels remained lower than 2 people per m2 in
the non-emergency condition, as typically observed in everyday
congested zones (Still, 2000). Under high stress, the density level
reached values up to 5 people per m2. This value is close to
the critical threshold of crowd turbulence, a deadly collective
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FIGURE 4 | Simple evacuation. (A) Illustration of an experiment conducted in a virtual environment in which 36 participants were asked to evacuate a room through a

doorway. (B) Outflow of people through bottlenecks of varying width measured in the virtual environment (red dots), replicating a real-world experiment (blue dots).

FIGURE 5 | Emergency evacuations from the multi-user virtual environment. (A) Snapshots of the environment as perceived by a participant in non-emergency (top)

and emergency conditions (bottom). (B) Bird’s-eye view of the non-emergency (top) and emergency conditions (bottom). Each red dot represents the position of a

participant in the virtual building a few seconds after the trial started. (C) Maximum density levels measured across the environment.

phenomenon (Helbing et al., 2007). Another collective pattern
that emerged in the emergency condition was herding. While
participants in the non-emergency condition tended to choose a
random branch at each intersection, the majority of participants
herded in the same direction in the emergency condition, which
amplified the crowding pattern.

The development of multi-user virtual environments for
conducting crowd experiments is promising but still at the early
stages. Additional validation experiments should be conducted.
In addition, there are necessary improvements with respect
to simulating social and physical interactions between avatars
during navigation. For example, social interactions may be
impacted by appearance and behavioral realism of other avatars
in the virtual environment (e.g., gait; Narang et al., 2017b). These
aspects of realism in VR can be improved using new methods
for generating avatar movement based on the recordings of
real people (Narang et al., 2017b). Empirical research has also

demonstrated that the match between appearance and behavioral
realism is critical for recognizing one’s own movement (Narang
et al., 2017a) and co-presence (Bailenson et al., 2005). With
respect to crowds, Prazak and O’Sullivan (Pražák and O’Sullivan,
2011) suggest that the crowd’s perceived realism depends on the
number of animations particular to individual avatars.

Additional challenges for multi-user VR include the lack
of haptic feedback and sound rendering, material constraints
associated with equipping multiple participants with individual
displays (e.g., HMDs) and controls, and sufficient training with
these controls. Previous research has suggested the benefits (e.g.,
improved immersion) of haptic feedback using haptic garments
(Ryu and Kim, 2004), vibrating actuators (Louison et al., 2017),
and quadcopters (among others; see Knierim et al., 1998).
Similarly, the rendering of spatialized sounds may complement
visual feedback by providing temporal information that can
improve presence (see Serafin et al., 2015 for a review). However,
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both haptic feedback and sound rendering require additional
computing power and impose material constraints. For example,
equipping 36 participants with HMDs, haptic garments, and
spatialized sounds would be prohibitively expensive in terms
of finances and computational resources. These constraints also
require participants in multi-user VR to use simple controls such
as a joystick. Training with these controls is critical given that
participants may need to negotiate both static (e.g., walls) and
dynamic (e.g., other avatars) obstacles (Grübel et al., 2017).

Alternative Approaches to Multi-User
Experiments
Other approaches have been used to study crowd behaviors in
VR. Compared to the above examples, these approaches are not
presented from a first-person perspective and implement a less
realistic graphical environment.

One of the first attempts to study evacuations in multi-
user virtual environments was conducted within the popular
massive multiplayer online game “Second Life.” There, users
can create an avatar, explore a large virtual environment,
and interact with other users’ avatars. Whereas the primary
purpose of Second Life is entertainment, researchers have used
it to conduct behavioral experiments (Molka-Danielsen and
Chabada, 2010; Normoyle et al., 2012). For these experiments,
participants were recruited among existing users of Second Life
with announcements posted in the virtual world. Participantsmet
in a virtual building and then were asked to evacuate because
of a virtual fire. The experimenters were able to characterize
numerous aspects of emergency evacuations (e.g., exit choice,
knowledge about the building plan), but this type of experimental
setup offers little experimental control. Nevertheless, using an
existing virtual world already populated with thousands of users
could potentially allow the development of very large-scale
experiments (i.e., with more than 36 participants). In addition,
other massive multiplayer online platforms may allow for a
combination of both larger crowds and experimental control to
study phenomena such as crowd disasters.

Other simpler approaches for conducting crowd experiments
in virtual environments have also been developed. For example,
Bode and Codling have studied various aspects of evacuation
dynamics by having participants control the movement of
a dot with a computer mouse through a two-dimensional
environment from a top-down perspective (Bode and Codling,
2013; Bode et al., 2014, 2015). The authors managed to
highlight some important aspects of participant behavior during
evacuations, such as the impact of congestions, static signs,
social cues, and memorized information on routing and exit
choice dynamics. Although these experiments were designed for
a single participant interacting with simulated agents, adapting
this approach to multiple simultaneous users should only present
minor technical challenges.

Similarly, the HoneyComb paradigm has a multi-player
design in which each participant controls a dot on a two-
dimensional playfield (Boos et al., 2017). Using their mouse,
groups of participants can navigate simultaneously in a shared
environment. Every individual can see the position and the

movement of the those who are located within a particular
perceptual radius. In such a way, researchers investigated a series
of fundamental questions related to the role of leadership (Boos
et al., 2014), spatial attraction (Belz et al., 2013), and competition
(Boos et al., 2015) on collective flocking patterns.

DISCUSSION

Conventional methods of crowd monitoring are difficult
to implement for tracking large crowds, and experimental
approaches often face organizational and ethical challenges.
Owing to recent technological developments, novel methods
of crowd monitoring (i.e., virtual sensing) and crowd
experimentation (i.e., multi-user virtual reality) have emerged
and constitute promising complementary options for crowd
researchers.

Virtual Sensing
Most pedestrians carry a connected device (e.g., a smartphone)
that continuously emits radio-frequency signals. Whereas, the
physical locations of individuals are often difficult to establish
using video recordings, these locations can be inferred by
detecting and tracking the virtual traces left by their devices.
Crowd monitoring techniques have rapidly evolved frommanual
counting to computer-based video analyses. Researchers can now
transition toward virtual sensing techniques. However, twomajor
challenges for this approach are to access a sufficiently large
proportion of these signals and to estimate their locations as
accurately as possible.

Toward this end, two methods have been developed. The
first method consists of distributing a dedicated application
to a large sample of users. This application can continuously
record users’ positions and send these positions to a central
server. The second method consists of monitoring the Wi-
Fi signals emitted by devices using dedicated sensors installed
in the area of interest. Both methods are able to accurately
represent the crowd’s movement and density. However, both
methods also require a considerable amount of effort to set up.
Deploying an application requires a marketing effort to distribute
as broadly as possible and convince people to install and activate
it. Remarkable progress has been made in that regard between
the two past deployments (at the Lord Mayor Show in London
and the 2013 Züri Fäscht in Zürich) of a virtual sensing system,
for which the number of participants has increased from 828
users to 28,000 users. In particular, the authors of these studies
noticed that the application should offer a variety of services to
the users, explicitly communicate about what usage is made with
the collected data, and make use of social networks and social
recommandation tools.

In contrast, monitoring Wi-Fi signals does not require the
explicit cooperation of the individuals. However, dedicated
signal sensors must be installed in the area of interest and
may require permission from the event organizers. In addition,
the sensors must be positioned as much above the crowd as
possible in order to avoid signal interruptions and obstructions.
Recently, innovations in animal tracking have demonstrated
the advantages of using drones to collect video and GPS data
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on the movement of wild baboons (Strandburg-Peshkin et al.,
2017). Similarly, one could imagine embedding radio-frequency
sensors in drones flying above the crowd, which could minimize
signal interruptions and convert the sensor into a mobile
installation.

Another branch of virtual sensing employs the traces left by
interactions between people on the phone or the Internet. To
date, such an approach has been used to collect macroscopic
data such as unemployment levels, disease prevalence, and
consumers behavior based on Internet search queries (Ginsberg
et al., 2008; Goel et al., 2010). People’s positions in space
can also be inferred from their activity patterns. For example,
Gonzalez and colleagues used the data from a mobile phone
carrier containing the date, time, and coordinates of the phone
towers routing the phone calls of ∼6 million users (González
et al., 2008). The movements of each user was then inferred
by tracking the locations of the phone towers routing the
communications despite low spatial resolution (∼3 km2) and
restrictions regarding data accessibility. Nevertheless, it has
been shown that the spatial density of phone communications
correlated with the volume of geolocalized tweets recorded
over the same period on Twitter (Botta et al., 2015). In
other words, the number of tweets and the place where they
were produced—free and easily accessible data—can serve as
a proxy to estimate the density of people in a certain area of
interest.

In general, virtual sensing approaches remain less accurate
than conventional video-based tracking methods. The
positioning of the individuals is, at best, estimated within a
few meters of uncertainty. This challenges the extraction of
individual-level mechanisms underlying the crowd dynamics.
However, virtual sensing has a larger spatial and temporal reach,
potentially covering an entire city during unlimited time periods.
As such, both methods complement each other well and should
eventually constitute different options in the crowd researcher’s
toolbox.

Virtual Reality
While virtual sensing allows for the observation of natural
crowds, multi-user virtual reality provides more control
over experimental conditions and the ability to draw causal
inferences. This approach builds on single-user virtual reality
by allowing for the study of simultaneously immersed users.
These multi-user virtual environments have several other
advantages.

First, virtual environments are easy to manipulate.
Researchers can conduct experiments in virtual buildings,
streets, stadiums, or large vehicles such as planes and boats of
different typologies and sizes. Unlike real-world experiments
that rely on existing physical infrastructures, virtual designs can
modify existing environments or create new ones. For example,
the side preference experiment described above was conducted
both in the real world and in the virtual environment. In the
real world, 144 replications of the experiment were collected
during several days. In the virtual world, 561 replications of
the same experiment were collected in <15min. Regarding
the creation of new environments or situations, experiments

can be conducted to address questions that were previously
unapproachable because of safety or ethical issues. For example,
they enable the systematic investigation of crowd behavior
under stressful and dangerous conditions with real human
participants.

Second, multi-user virtual environments allow for greater
experimental control. For example, experimental variables such
as light level, walking speed, and body size may be manipulated
in a way that is not possible in real-world settings. Experiments
could also modify real participant behavior to create artificial
agents and induce the propagation of certain behaviors through
the crowd.

Third, experiments in multi-user virtual environments
allows the collection of a large variety of measurement
variables with high precision. Participants’ positions, speeds,
and body and head orientations can be easily captured at
high resolution and with minimal measurement errors. In
addition, other types of behavior could also be measured such
as properties of participants’ gaze (using eye trackers) and
their physiological states (using electrocardiograms or skin
conductance sensors).

While some researchers have studied crowd behavior online
with mixed results, new technologies may allow for carefully
controlled multi-user experiments in the near future. In such
scenarios, participants could use their own computer setup and
participate from home. It may be unrealistic to expect a large
number of participants at their respective homes wearing HMDs
for research purposes. However, desktop computers with mouse
and keyboard setups may be sufficient for some experiments
similar to those already conducted in the laboratory. These
advancements suggest that massive online crowd experiments
could be used for studying thousands of participants connected
to an experimental server at a given moment of time.
Previously, similar group experiments were conducted in the
fields of social psychology and network science (Mason and
Watts, 2012; Mao et al., 2016). In these experiments, up
to a 100 of online participants were tested simultaneously,
This approach could be further facilitated by the existence
of crowdsourcing platforms for recruiting participants such as
AmazonMechanical Turk or Prolific Academic (Mason and Suri,
2012).

Despite these advantages, multi-user virtual reality cannot
be considered as a replacement for conventional real-world
experiments. It offers some advantages, like a greater control
on external variables, the ease of designing environments,
and the potential for exploring dangerous situations, but also
has drawbacks. For example, the feeling of body contacts in
high density situations is difficult to communicate realistically.
Similarly, there exist numerous micro-navigation differences
that prevent participants from modulating their speed and
acceleration as they would in real life.

CONCLUSION AND PERSPECTIVES

In this review, we have described two technological innovations
that can offer promising new perspectives for crowd researchers.
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While livemonitoring techniques can facilitate data collection for
field studies, multi-user virtual reality offers new opportunities
for conducting experiments with greater flexibility and control.
Similar developments are also taking place for the study of
other self-organized social systems. Animal tracking methods
are currently undergoing major changes with the development
of high-accuracy GPS methods (e.g., Nagy et al., 2010;
Strandburg-Peshkin et al., 2015, 2017). At the same time,
virtual reality is emerging as a powerful tool for studying
social interactions among fish and understanding the resulting
collective behaviors of the school (Ioannou et al., 2012; Stowers
et al., 2017). The parallel development of virtual sensing
and virtual reality across different social systems confirms
the important role that these two methods might play for
the study of the self-organized crowd phenomena in the
future.
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