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Collaborative Multi-Robot
Transportation in Obstacle-Cluttered
Environments via Implicit
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Charalampos P. Bechlioulis* and Kostas J. Kyriakopoulos

Mechanical Engineering, National Technical University of Athens, Athens, Greece

This paper addresses the problem of cooperative object transportation in a constrained

workspace involving static obstacles, with the coordination relying on implicit

communication established via the commonly grasped object. In particular, we consider

a decentralized leader-follower architecture for multiple mobile manipulators, where the

leading robot, which has exclusive knowledge of both the object’s desired configuration

and the position of the obstacles in the workspace, tries to navigate the overall formation

to the desired configuration while at the same time it avoids collisions with the obstacles.

On the other hand, the followers estimate the object’s desired trajectory profile via

novel prescribed performance estimation laws that drive the estimation errors to an

arbitrarily small predefined residual set. Moreover, a navigation function-based scheme is

innovatively combined with adaptive control to deal with parametric uncertainty. Hence,

the current state of the art in robust motion planning and collision avoidance is extended

by studying second order non-linear dynamics with parametric uncertainty. Furthermore,

the feedback relies exclusively on each robot’s force/torque, position as well as velocity

measurements and no explicit information is exchanged online among the robots, thus

reducing the required communication bandwidth and increasing robustness. Finally, two

simulation studies clarify the proposed methodology and verify its efficiency.

Keywords: cooperative manipulation, implicit communication, interaction forces, obstacle avoidance, prescribed

performance estimator

1. INTRODUCTION

The recent development of robotic technologies has introduced robots in various fields of industry,
agriculture, security, etc. However, complex applications require multiple robots to execute a
task in coordination efficiently, e.g., handling a heavy object (see Figure 1) or assembling a
complex product. Thus, a great research effort has been made during the last three decades on
the coordinated control of multiple robots.

Most of the seminal works in this direction proposed centralized control algorithms, based
on global information with respect to a common coordinate system. Particularly, centralized
control systems are effective in the coordinated motion control of fixed-base manipulators, since
the number of robots in coordination is usually limited to two or three. However, the recent
advances in mobile manipulators, which allow free motion in a real world environment, have
substantially increased the number of robots that can be involved in a coordinated task. Thus,
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FIGURE 1 | Four mobile manipulators handling a rigidly grasped object in a constrained workspace with static obstacles.

centralized approaches render unrealistic, owing to the
computational burden and the fact that various geometric errors
that appear inevitably among the robots cannot be handled
accurately based on a common coordinate system. To overcome
the aforementioned issues, decentralized control of multiple
robots emerged, in which each robot is controlled by its own
controller based on its own local coordinate system.

The study of decentralized multi-robot systems in object
manipulation tasks has received increasing consideration over
the last two decades. In particular, the communication among
the robots has been proven critical, since no central unit
exists to supervize the robots’ actions. In general, two types
of communication occur, namely the explicit and the implicit
(see Figure 2). The former type is designed solely to convey
information such as control signals or sensory data directly
to other robots (Pereira et al., 2002). On the other hand,
the latter occurs as a side-effect of robot’s interactions with
the environment or other robots, either physically (e.g., via
the interaction forces between the object and the robot) or
non-physically (e.g., via visual observation) and in such case,
the information needed is acquired by appropriately installed
sensors.

The most studied and frequently adopted communication
form is the explicit one. It usually leads to simpler mathematical
analysis and renders teams more effective. However, in case of
communication environments that are prone to faults, severe
problems may arise, such as object dropping, appliance of
excessive forces and performance downgrading. Moreover, as
the number of cooperating robots increases, complex design
of communication networks is required to deal with crowded
bandwidth (Stilwell and Bishop, 2000). On the other hand,
the aforementioned limitations can be surpassed by employing
implicit communication instead. Despite the complexity of the
mathematical analysis, it yields simpler protocols and saves
bandwidth as well as power, since no or very few data is explicitly

exchanged. Furthermore, robustness is increased significantly
in case of communication environments that are prone to
failures. Moreover, although explicit communication leads, when
accurately employed, to superior performance, nonetheless it
is not essential for certain tasks when the implicit form
is available. It should also be noted that more complicated
communication protocols may offer little or no benefit over
implicit communication (Balch and Arkin, 1994; Donald, 1995).

Cooperative manipulation has been well-studied in the
literature, especially the centralized schemes (e.g., Uchiyama
and Dauchez, 1988; Khatib, 1988; Schneider and Cannon, 1992;
Tanner et al., 2003). In Uchiyama and Dauchez (1988) a hybrid
position/force control is presented. In Khatib (1988), the overall
closed-chain system is treated as an augmented object, with
its inertial properties expressed via a single inertia matrix.
Tanner et al. (2003) propose a centralized motion planning
methodology for non-holonomic mobile manipulators, handling
a deformable object. Navigation is based on dipolar inverse
Lyapunov functions with guaranteed collision avoidance and
convergence to the goal. The concept of object impedance control
is presented in Schneider and Cannon (1992). An impedance law
specifies the relation between the object’s accelerations, external
forces and kinematic state. Nevertheless, despite its efficacy,
centralized control is less robust, since all robots depend on a
central system and its complexity rises sharply as the number
of team-robots increases. On the other hand, decentralized
control usually depends on either explicit communication or
off-line knowledge of the desired object trajectory, (e.g., Khatib
et al., 1996; Dickson et al., 1997; Liu et al., 1996). Furthermore,
position-force hybrid control schemes, where the position of the
object is controlled toward a given direction in the workspace
and the internal forces on the object are controlled close to the
origin are presented in Zhang et al. (2016), Petitti et al. (2016),
and Noohi and Zefran (2016). Moreover, in other leader-follower
schemes (e.g., Luh and Zheng, 1987; Sugar and Kumar, 1998), the
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FIGURE 2 | The two types of communication, namely the explicit and the implicit.

leader has to transmit on-line the desired object trajectory to the
follower.

Alternatively, implicit communication has been adopted in
various decentralized studies on mobile manipulators. Kosuge’s
research group in a series of works (e.g., Kosuge and Oosumi,
1996; Kosuge et al., 1997a,b), presented a leader-follower scheme
for holonomicmanipulators in free space. The leader implements
a desired trajectory profile through an impedance scheme, while
the follower estimates it through the motion of the object.
However, the estimation error remains bounded close to zero
only if the desired acceleration is zero (i.e., trajectories with
constant velocity profile). Regarding non-holonomic mobile
robots, the follower’s passive caster behavior was adopted in
Stilwell and Bay (1993) and Kosuge et al. (1998). Although,
the stability of the follower’s contact is established, it is
not mentioned how the object’s trajectory can be controlled.
Alternatively, Gross et al. (2006a,b) and Gross and Dorigo
(2008) designed a motion coordination controller with no
explicit communication for a group of physically connected
robots using only interaction force measurements. In a similar
direction but following a pushing-only strategy, Chen et al. (2013,
2015) employed a visual occlusion notion to guide the robot
swarm to the goal position without exchanging any information.
Finally, another algorithm that does not require any explicit
communication network among the robots, but instead, the
robots coordinate their actions through sensing the motion of the
object itself was presented in a series of recent works inWang and
Schwager (2016a,b,c, 2015).

This paper extends our recent results in Tsiamis et al. (2015a,b)
by considering multiple mobile manipulators in the problem of
decentralized cooperative object manipulation in a constrained
workspace with static obstacles. The challenge lies in completely
displacing explicit communication with implicit, which results
naturally from the physical interaction of the robots via the object

(i.e., as the robots move, forces and torques are exerted in certain
directions at the robot/object contacts). Similarly to Tsiamis et al.
(2015b), the considered architecture is a leader-follower scheme.
The leader is aware of both the object’s desired configuration
as well as of the position of the obstacles in the workspace and
employs a navigation function based scheme to calculate the
object’s desired trajectory and avoid collisions with the obstacles
and the workspace boundary. The followers, without knowing
a priori the object’s goal trajectory, estimate it by observing
its motion. The estimation process is based on the prescribed
performance methodology (Bechlioulis and Rovithakis, 2010),
which drives the estimation error to an arbitrarily small residual
set. Moreover, the robots employ adaptive laws to compensate
for the parametric uncertainty of their dynamic models. Finally,
it should be noticed that all robots use solely their own
force/torque, position and velocity measurements, thus avoiding
any inter-robot explicit communication.

In this work, navigation functions (Koditschek and Rimon,
1990) are also innovatively combined with adaptive control to
deal with the parametric uncertainty in the robot dynamics.
Hence, we extend the current state of the art in robust motion
planning by studying second order non-linear dynamics with
parametric uncertainty. We also extend the current state of
art in implicit communication-based cooperative manipulation
(Kosuge and Oosumi, 1996; Kosuge et al., 1997a,b), via a more
robust estimation algorithm that converges even though the
desired object’s acceleration profile is non-zero (i.e., arbitrary
object’s desired trajectory profile as long as it is bounded and
smooth). Moreover, the customizable ultimate bounds allow us
to achieve practical stabilization of the estimation error, with
accuracy limited only by the sensors’ resolution.

The rest of the manuscript is organized as follows: section 2
introduces the problem and describes the model of the system.
The control methodology along with the estimation algorithm
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are presented in section 3. Section 4 validates our approach via
two simulated paradigms. Finally, section 5 concludes the paper
and discusses future research directions.

2. PROBLEM FORMULATION

In conventional coordinated manipulation control problems, a
task is generally characterized by the desired motion of the
handled object. However, in decentralized multi-robot systems,
since there is no common coordinate system owing to the
fact that each robot should be controlled on its own local
coordinate system, the task cannot be parameterized in a
conventional way. Hence, ordinarily we select a robot as a
leader and we define its coordinate system as a reference one
to describe the desired object motion based on it. For the rest
of the robots, referred to as followers, their task is described
by the relative motion with respect to the commonly grasped
object. In this way, the motion of the object is determined
by the motion of the leader and the task is specified by the
motion of the followers. Consequently, since the task of the
followers is described by the relative motion with respect to
the commonly grasped object, which is controlled on the local
coordinate system based on local sensory information, the
followers should observe/estimate the motion of the manipulated
object.

In this work, we consider N + 1 mobile manipulators under
a leader-follower architecture, handling a rigidly grasped object
in a constrained workspace Q with static obstacles. We assume
that each robot has at least 6 DoFs and is fully actuated at its end-
effector (i.e., any force and torque along and around all axis of
the end-effector’s frame can be applied). It should also be noted
that only the leading robot is aware of the obstacles’ position
in the workspace and the object’s desired configuration PdO ∈

Q, whereas the followers should estimate the object’s desired
trajectory profile and manipulate the object in coordination with
the leader based solely on their own local sensory information. In
this respect, we assume that measurements of position, velocity
and interaction forces/torques with respect to the object are
available for each robot exclusively. Additionally, the geometric
parameters of the mobile manipulators are considered known,
whereas their dynamic parameters are completely unknown.
Moreover, the control for each robot will be designed based
on a commonly agreed frame on the object. Nevertheless,
it should be stressed that such assumption is realistic since
each robot could identify the common frame on the object
employing a visual detection system with respect to a feature
on the object. Finally, notice that we have not considered other
types of implicit communication, for instance via cameras or
other line of sight devices like range finders and laser scanners,
which work effectively already in certain multi-robot systems
in non-physical coordination. However, in a transportation task
it should be noted that the commonly handled object raises
severe occlusion issues that would probably block the line of
sight sensing devices. In this respect, certain other secondary
tasks, such as connectivity maintenance, should be considered in
parallel, increasing however the complexity of the approach.

2.1. Kinematics
We denote the coordinates of the commonly agreed frame on
the object as well as the leader’s and followers’ task-space (i.e.,
end-effector) coordinates with respect to an inertial frame {I}1

by:

PO ,

[

ηT1,O, η
T
2,O

]T
, PL ,

[

ηT1,L, η
T
2,L

]T
,

PFi ,
[

ηT1,Fi , η
T
2,Fi

]T
, i = 1, . . . ,N (1)

where η1,j ,
[

xj, yj, zj
]T

and η2, j ,
[

φj, θj,ψj

]T
, j ∈

{O, L, F1, . . . , FN} correspond to the position and orientation,
expressed in the Euler angles representation, with respect to the
inertial frame. Since the common object frame is identified by
the onboard sensory information (e.g., a local visual tracking
system), each robot may easily compute the object’s coordinates
with respect to the inertial frame via a fixed transformation,
without requesting any information via external communication
with a global tracking system. Furthermore, owing to the fact that
the object is rigidly grasped, we establish a velocity relation as
follows:

ṖL = JLOṖO, ṖFi = JFiOṖO, i = 1, . . . ,N (2)

where JLO and JFiO, i = 1, . . . ,N denote the adjoint
transformation matrix from the end-effector of each robot to
the object’s frame (Murray et al., 1994, p. 55). Notice that
since the end-effector and the object are rigidly connected, the
aforementioned transformation matrices have always full rank
and hence obtain a well-defined inverse. Thus, each robot may
calculate the object’s velocity through (2).

2.2. Dynamics
The dynamic model in terms of task space coordinates is
described by:

Mi (Pi) P̈i + Ci

(

Pi, Ṗi
)

Ṗi + Di

(

Pi, Ṗi
)

+ Gi (Pi) = Ui + Fi (3)

where Mi (Pi), i ∈ {L, F1, . . . , FN} denote the positive definite
inertial matrices, Ci

(

Pi, Ṗi
)

, i ∈ {L, F1, . . . , FN} represent
coriolis and centrifugal terms, Di

(

Pi, Ṗi
)

, i ∈ {L, F1, . . . , FN}

model joint friction effects and Gi (Pi), i ∈ {L, F1, . . . , FN}

encapsulate gravitational forces and torques. Furthermore, the
vectors Fi, i ∈ {L, F1, . . . , FN} represent the interaction forces
and torques exerted at the end-effector by the object and Ui, i ∈
{L, F1, . . . , FN} denote the task space control input wrenches. It is
also known that uncertain physical parameters of the robots, such
as link masses and inertias as well as joint friction coefficients,
appear linearly in the robot dynamic model (3). Hence, we may
express the dynamics in terms of a set of unknown but constant
parameters θi ∈ ℜQi , i ∈ {L, F1, . . . , FN} in the following way:

Mi (a) d + Ci

(

a, b
)

c+ Di

(

a, b
)

+ Gi (a) = ZT
i

(

a, b, c, d
)

θi (4)

1Since the proposed approach is based solely on the relative information among

the object and the robots, each robot may operate on its own inertial frame and

calculate with respect to it all required information regarding the object, thus

rendering the approach decentralized.
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where Zi
(

a, b, c, d
)

, i ∈ {L, F1, . . . , FN} are Qi × 6 regressor
matrices composed of known non-linear functions. Finally, a
skew-symmetric property of the matrices Ṁi (Pi) − 2Ci

(

Pi, Ṗi
)

,
i ∈ {L, F1, . . . , FN} is also fulfilled.

Remark 1. The relation between the robot joint force/torque
control input τi, i ∈ {L, F1, . . . , FN} and the task space control
input wrench Ui, i ∈ {L, F1, . . . , FN} is given by:

τi = J#Ti Ui +
(

I − JTi J
#T
i

)

τ 0i , i ∈ {L, F1, . . . , FN} (5)

where J#i , i ∈ {L, F1, . . . , FN} denote the generalized inverse
of the robot Jacobians, that is consistent with the equations
of motion of the mobile manipulators’ joints and their end-
effectors (see Khatib, 1988). Notice that the vector τ 0i does
not contribute to the end-effector’s wrench and thus can be
regulated independently to achieve secondary goals (e.g., increase
of velocity/force manipulability).

3. METHODOLOGY

The leader is aware of both the desired configuration of the
object as well as of the obstacles’ position in the workspace.
Thus, its control objective is to navigate the overall formation
toward the goal configuration while at the same time it avoids
collisions with the static obstacles that lie within the workspace.
Toward this direction, the concept of Navigation Functions in
Koditschek and Rimon (1990) will be innovatively combined
with adaptive control to deal with the parametric uncertainty in
the robot dynamics (3). On the other hand, the followers are not
aware of the object’s trajectory. However, even though explicit
inter-robot communication is not permitted, the followers
will estimate the object’s desired trajectory profile via their
own state measurements. Toward this direction, acceleration
residuals owing to the lack of acceleration measurements will
be compensated by adopting a robust prescribed performance
estimator that guarantees ultimate boundedness of the estimation
errors with predefined transient and steady state specifications.
Finally, an adaptive control scheme will be designed to achieve
asymptotic tracking of the estimated trajectory profile, increasing
thus the robustness of the overall control scheme and avoiding
high interaction forces between the object and the robots.

3.1. Leader’s Control Scheme
The control design relies on the Navigation Function concept
originally proposed by Koditschek and Rimon (1990) as follows:

8O

(

PO;P
d
O

)

=
γ
(

PO − PdO

)

(

(

γ
(

PO − PdO

))k
+ β (PO)

)
1
k

(6)

where k > 1 is a design constant, γ :Q → R+ with γ (0) = 0
represents the attractive potential field to the goal configuration

PdO (e.g., γ
(

PO − PdO

)

, ‖PO − PdO‖
2) and β :Q → R+

with lim

PO→
{Boundary
Obstacles

β (PO) = 0 represents the repulsive potential

field by the workspace boundary and the obstacle regions (e.g.,
β(PO) , 5M

j=0βj(PO), where βj(PO) denote appropriately

selected distance functions to the workspace boundary for j = 0
and to the obstacle regions for j = 1, . . . ,M). Without loss
of generality2, we adopt spherical regions to model the robots,
the object, the workspace and the obstacles. In that respect, it

was proven in Koditschek and Rimon (1990) that 8O

(

PO, P
d
O

)

obtains a global minimum at PdO and no other local minima for
sufficiently large k. Thus, a feasible path that leads from any initial
obstacle-free configuration3 to the desired configuration might

be generated by following the negated gradient of 8O

(

PO, P
d
O

)

.

Consequently, the leader’s end-effector desired motion profile is
designed as follows:

ṖdL (t) = −kNFJLO∇PO8O

(

PO (t) , P
d
O

)

, kNF > 0. (7)

In the sequel, we propose an adaptive control scheme for the
leader’s end-effector that guarantees the asymptotic stabilization
of the object to the goal configuration PdO.

Theorem 1. Consider the unknown leader’s dynamics (3) that
obeys the parametric property (4), as well as the desired motion
profile (7). The adaptive control scheme:

UL = −FL + ZT
L

(

PL, ṖL, Ṗ
d
L, P̈

d
L

)

θ̂L − KLSL

− 1

1−8
(

PO ,P
d
O

) J−T
LO ∇PO8

(

PO, P
d
O

)

, KL > 0 (8)

˙̂
θL = −ŴLZL

(

PL, ṖL, Ṗ
d
L, P̈

d
L

)

SL, ŴL > 0,

where SL (t) = ṖL (t) − ṖdL (t) denotes the velocity error and θ̂L
denotes the estimate of the unknown dynamic parameters θL of the
leader’s model, guarantees for a sufficiently large parameter k > 1

of the Navigation Function 8O

(

PO, P
d
O

)

defined in (6), that the

object is asymptotically stabilized to PdO except from a set of initial
conditions of measure zero.

Proof: Consider the positive definite function:

VL = ln

(

1

1−8O

(

PO ,P
d
O

)

)

+ 1
2S

T
LML (PL) SL +

1
2 θ̃

T
L Ŵ

−1
L θ̃L

where ML (PL) is the positive definite inertial matrix and
θ̃L = θ̂L − θL denotes the parametric error. Notice also

that 8O

(

PO, P
d
O

)

takes values from the set [0, 1); hence the

first term is well defined within the feasible workspace. Thus,

2Other geometrically more complex workspaces may also be considered by

adopting proper topologically equivalent transformations presented in Rimon and

Koditschek (1992) and Vlantis et al. (2018).
3Except from a set of measure zero, see Koditschek and Rimon (1990).
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differentiatingVL with respect to time and substituting (2) as well
as the dynamics (3), we obtain:

V̇L = 1

1−8O

(

PO,P
d
O

)∇T
PO
8O

(

PO, P
d
O

)

J−1
LO ṖL + STL

(

UL + FL

−ML (PL) P̈
d
L − CL

(

PL, ṖL
)

ṖL − DL

(

PL, ṖL
)

− GL (PL)
)

+ 1
2S

T
L ṀL (PL) SL + θ̃LŴ

−1
L

˙̂
θL.

Adding and subtracting the terms STLCL

(

PL, ṖL
)

ṖdL and
1

1−8O

(

PO ,P
d
O

)∇T
PO
8O

(

PO, P
d
O

)

J−1
LO Ṗ

d
L as well as substituting the

desired motion profile (7), we get:

V̇L = −
kNF

∥

∥

∥
∇T
PO
8O

(

PO,P
d
O

)
∥

∥

∥

2

1−8O

(

PO ,P
d
O

) + STL

(

UL + FL −ML (PL) P̈
d
L

−CL

(

PL, ṖL
)

ṖdL − DL

(

PL, ṖL
)

− GL (PL)

+ 1

1−8O

(

PO ,P
d
O

) J−T
LO ∇PO8O

(

PO, P
d
O

) )

+ θ̃LŴ
−1
L

˙̂
θL

+ 1
2S

T
L

(

ṀL (PL)− 2CL

(

PL, ṖL
))

SL.

Thus, invoking the parametric property (4) as well as the skew-
symmetry of ṀL (PL)− 2CL

(

PL, ṖL
)

we arrive at:

V̇L = −
kNF

∥

∥

∥
∇T
PO
8O

(

PO ,P
d
O

)∥

∥

∥

2

1−8O

(

PO ,P
d
O

) + STL

(

UL + FL − ZT
L

(

PL, ṖL, Ṗ
d
L, P̈

d
L

)

θL

+ 1

1−8O

(

PO ,P
d
O

) J−T
LO ∇PO8O

(

PO,P
d
O

) )

+ θ̃LŴ
−1
L

˙̂
θL.

Hence, substituting the control scheme (8) yields:

V̇L = −
kNF

∥

∥

∥
∇T
PO
8O

(

PO ,P
d
O

)∥

∥

∥

2

1−8O

(

PO,P
d
O

) − STLKLSL ≤ 0.

Therefore, owing to the fact that 1

1−8O

(

PO ,P
d
O

) > 1 and invoking

standard Lyapunov arguments (i.e., the function VL is positive
definite and its time derivative along the leader’s dynamics
is negative semi-definite) we may conclude the boundedness

of SL, θ̃L, ln

(

1

1−8O

(

PO ,P
d
O

)

)

and consequently PO (t), ṖO (t),

and ṖdL (t). Hence, it can be easily deduced that 8O

(

PO, P
d
O

)

remains strictly less than 1, avoiding thus collisions with the
obstacles and the workspace boundary. Furthermore, the
uniform continuity of V̇L can be easily inferred via calculating:

V̈L = −kNF
2∇T

PO
8O

(

PO ,P
d
O

)

H8O

(

PO ,P
d
O

)(

1−8O

(

PO ,P
d
O

))

+
∥

∥

∥
∇T
PO
8O

(

PO ,P
d
O

)∥

∥

∥

2
∇T
PO
8O

(

PO ,P
d
O

)

(

1−8O

(

PO,P
d
O

))2 ṖO − 2STLKLṠL

with H8O

(

PO, P
d
O

)

denoting the Hessian matrix of the

Navigation Function, which is proven bounded owing to

the boundedness of ṖO, ln

(

1

1−8O

(

PO,P
d
O

)

)

, SL and ṠL
4 that

4As a sum of bounded terms.

was established previously, as well as to the smoothness
properties of the Navigation Function within the feasible
workspace Q; thus invoking Barbalat’s Lemma we conclude
that limt→∞ V̇L(t) = 0, from which we can easily deduce

that limt→∞

∥

∥

∥
∇PO8O

(

PO (t) , P
d
O

)∥

∥

∥
= 0 and consequently

that limt→∞

∥

∥ṖO (t)
∥

∥ = 0 since ṖO(t) was proven uniformly

bounded. Finally, even though
∥

∥

∥
∇PO8O

(

PO, P
d
O

)∥

∥

∥
= 0

occurs at either the goal configuration PdO or at a saddle

point, all saddle points of 8O

(

PO, P
d
O

)

become isolated

(Koditschek and Rimon, 1990) for sufficiently large k > 1
and hence, the set of initial conditions that lead to them are
sets of measure zero (Milnor, 1963). As a result, the proposed
control scheme guarantees the asymptotic stabilization of
the object to the desired configuration PdO, except from a set
of initial conditions of measure zero, which completes the
proof.

Remark 2. Let us denote B(PO; rO) as the closed ball centered
at PO that includes the volume of the object and has radius
rO. Let us also define the closed balls B(Pi; ri) with radii ri,
i ∈ {L, F1, . . . , FN}, centered at the end-effector of each robot,
that cover the robot volume for all possible configurations. We
also assume that the distance among the grasping points on the
given object is at least ri + rj, ∀i 6= j ∈ {L, F1, . . . , FN}
such that any pair of robots do not collide. Therefore, if we
define the ball area B(PO;R) centered at the origin of the object’s
body frame and comprises all aforementioned ball regions of the
robotic team and the object (see Figure 3), then the problem
at hand is recast into augmenting the workspace boundary
by the radius R and considering the overall robotic team as
a point, such that the Navigation Function strategy can be
employed to guarantee the safe execution of the transportation
task.

Remark 3. Artificial Potential Fields have been employed
extensively in the past to deal with the robot navigation problem
in both single and multi-agent formulations. However, single
and double integrator models have been mostly studied so
far without considering any robustness issues against model
uncertainties (Mellinger and Kumar, 2010; Duan et al.,
2013). In this work, Navigation Functions were innovatively
combined with adaptive control to deal with parametric
uncertainty in the robot dynamics and extend in this direction
the current state of the art in motion planning and collision
avoidance.

3.2. Follower’s Control Scheme
It should be noticed that the followers are not aware of either
the object’s desired trajectory or the obstacles in the workspace.
However, even though explicit communication between the
leader and the followers is not permitted, the followers will

estimate the object’s desired trajectory profile by P̂
di
O (t), i =
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FIGURE 3 | Graphical representation of a safe trajectory of the robotic team. The orange areas indicate the obstacles and the cyan line the workspace boundary. The

blue line encircles the area covered by the robotic team and the object.

FIGURE 4 | The overall control architecture.
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FIGURE 5 | Four mobile manipulators handling a rigidly grasped object in a constrained workspace with static obstacles. Only the leader is aware of the object’s

desired configuration and the obstacles’ position in the workspace.

1, . . . ,N via their own state measurements by adopting a
prescribed performance estimator. Hence, let us define the

errors ei (t) = PO (t) − P̂
di
O (t) ∈ ℜ6, i = 1, . . . ,N. The

expression of prescribed performance for each element of ei (t) =
[

ei1 (t) , . . . , e
i
6 (t)

]T
, i = 1, . . . ,N is given by the following

inequalities:

−ρij (t) < eij (t) < ρij (t) , j = 1, . . . , 6 and i = 1, . . . ,N (9)

for all t ≥ 0, where ρij (t), j = 1, . . . , 6 and i = 1, . . . ,N

denote the corresponding performance functions. A candidate
exponential performance function could be:

ρij (t) = (ρij,0 − ρ
i
j,∞)e−λt + ρij,∞, i = 1, . . . ,

where the constant λ dictates the exponential convergence rate,
ρij,∞, i = 1, . . . ,N denote the ultimate bounds and ρij,0 are

chosen to satisfy ρij,0 >
∣

∣

∣
eij (0)

∣

∣

∣
, i = 1, . . . ,N. Hence, following

the prescribed performance control technique (Bechlioulis and
Rovithakis, 2011), the estimation law is designed as follows:

˙̂P
di
Oj

= kij ln







1+
eij(t)

ρij (t)

1−
eij(t)

ρij (t)






, kij > 0 (10)

from which the followers’ estimate P̂
di
O (t) =

[

P̂
di
O1
(t) , . . . , P̂

di
O6
(t)
]

, i = 1, . . . ,N is calculated via a simple

integration. Moreover, differentiating (10) with respect to time,
we acquire the desired acceleration signal:

¨̂P
di
Oj

=
2kij

1−

(

eij(t)

ρij (t)

)2

ėij(t)ρ
i
j (t)−eij(t)ρ̇

i
j (t)

(

ρij (t)
)2 (11)

employing only the velocity ṖO (t) of the object, which can
be easily calculated via (2), and not its acceleration which is
unmeasurable.
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FIGURE 6 | The evolution of the proposed methodology in four consecutive time instants.

Lemma 1. Consider the errors ei (t) = PO (t) − P̂
di
O (t) =

[

ei1 (t) , . . . , e
i
6 (t)

]T
, i = 1, . . . ,N where PO (t) and P̂

di
O (t), i =

1, . . . ,N denote the object’s actual position/orientation and the
estimation of the object’s desired trajectory profile at the followers’
side respectively. Given the leader’s control scheme (8) as well as the
appropriately selected performance functions ρij (t), j = 1, . . . , 6

and i = 1, . . . ,N satisfying
∣

∣

∣
eij (0)

∣

∣

∣
< ρij (0), j = 1, . . . , 6 and i =

1, . . . ,N and incorporating the desired transient and steady state
performance specifications, the estimation law (10) guarantees that
∣

∣

∣
eij (t)

∣

∣

∣
< ρij (t) , j = 1, . . . , 6 and i = 1, . . . ,N for all t ≥ 0 as well

as that P̂
di
O (t),

˙̂P
di
O (t) and

¨̂P
di
O (t), i = 1, . . . ,N remain bounded.

Proof: The proof follows identically for each element of ei (t),
i = 1, . . . ,N. Hence, let us first define the normalized errors
with respect to the performance specifications encapsulated by
the corresponding performance functions ρij (t), as:

ξ ij =
eij(t)

ρij (t)
, j = 1, . . . , 6 and i = 1, . . . ,N. (12)

The estimation law (10) may be rewritten as a function of the
normalized error ξ ij as follows:

˙̂P
di
Oj

= kij ln

(

1+ξ ij

1−ξ ij

)

, j = 1, . . . , 6 and i = 1, . . . ,N. (13)
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FIGURE 7 | The actual position errors to the desired configuration.

Hence, differentiating ξ ij with respect to time and substituting

(13), we obtain:

ξ̇ ij = hij

(

t, ξ ij

)

,

ṖOj (t)−kij ln

(

1+ξ ij

1−ξ ij

)

ρij (t)
− ξ ij

ρ̇ij (t)

ρij (t)
. (14)

We also define the non-empty and open set�ξ ij
= (−1, 1). In the

sequel, we shall prove that ξ ij (t) never escapes a compact subset

of �ξ ij
, thus meeting the performance bounds (9). The following

proof is divided in two phases. First, we analyze the solution of
the normalized errors and show that a maximal solution exists,
such that ξ ij (t) ∈ �ξj ∀t ∈ [0, τmax), whereas subsequently, via

standard Lyapunov arguments, we prove by contradiction that

τmax is extended to ∞ and consequently that the errors e
j
i(t)

evolve strictly within the performance envelope described in (9).

Phase A: Since
∣

∣

∣
eij (0)

∣

∣

∣
< ρij (0), we conclude that ξ

i
j (0) ∈ �ξ ij

.

Moreover, owing to the smoothness of the object’s trajectory
and the proposed estimation scheme (10) over �ξ ij

, the function

FIGURE 8 | The control input signals UL and UFi , i = 1, 2, 3.

hij

(

t, ξ ij

)

is continuous for all t ≥ 0 and ξ ij ∈ �ξ ij
. Therefore, by

Theorem 54 (pp.476) in Sontag (1998), a maximal solution ξ ij (t)

of (14) exists for the time interval [0, τmax) such that ξ ij (t) ∈ �ξ ij
,

∀t ∈ [0, τmax).
Phase B: Notice that the transformed error signal:

εij (t) = ln

(

1+ξ ij (t)

1−ξ ij (t)

)

(15)

is well defined for all t ∈ [0, τmax). Hence, consider the

positive definite and radially unbounded function V i
j =

1
2

(

εij

)2
.

Differentiating with respect to time and substituting (14), we
obtain:

V̇ i
j =

2εij
(

1−
(

ξ ij

)2
)

ρij (t)

(

ṖOj (t)− kijε
i
j − ξ

i
j ρ̇

i
j (t)

)

.

Since ṖOj (t), j = 1, . . . , 6 was proven bounded in Theorem

1 for all t ≥ 0, and ρ̇ij (t) are bounded by construction,
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FIGURE 9 | Two mobile manipulators handling a rigidly grasped object in a constrained workspace with static obstacles. Only the leader is aware of the object’s

desired configuration and the obstacles’ position in the workspace.

we conclude that:
∣

∣

∣
ṖOj (t)+ ξ

i
j ρ̇

i
j (t)

∣

∣

∣
≤ d̄ij , ∀t ∈ [0, τmax)

for an unknown positive constant d̄ij . Moreover, 1

1−
(

ξ ij

)2 > 1,

∀ξ ij ∈ �ξ ij
and ρij (t) > 0 for all t ≥ 0. Hence, we conclude

that V̇ i
j < 0 when

∣

∣

∣
εij (t)

∣

∣

∣
>

d̄ij

kij
and consequently that:

∣

∣

∣
εij (t)

∣

∣

∣
≤ ε̄ij , max

{

∣

∣

∣
εij (0)

∣

∣

∣
,
d̄ij

kij

}

, ∀t ∈ [0, τmax) . (16)

Thus, invoking the inverse of (15), we get:

− 1 < e
−ε̄ij−1

e
−ε̄ij+1

= ξ i
j
≤ ξ ij (t) ≤ ξ

i
j =

e
ε̄ij−1

e
ε̄ij+1

< 1. (17)

Therefore, ξ ij (t) ∈ �′
ξ ij

=
[

ξ i
j
, ξ

i
j

]

, ∀t ∈ [0, τmax), which is a

non-empty and compact subset of �ξ ij
. Consequently, assuming

τmax < ∞ and since �′
ξ ij

⊂ �ξ ij
, Proposition C.3.6 (p. 481) in

Sontag (1998) dictates the existence of a time instant t′ ∈ [0, τmax)

such that ξ ij
(

t′
)

/∈ �′
ξ ij
, which is a clear contradiction. Therefore,

τmax is extended to∞. As a result, all closed loop signals remain
bounded and moreover ξ ij (t) ∈ �

′
ξ ij

⊂ �ξ ij
, ∀t ≥ 0. Thus, from

(12) and (17), we conclude that:

−ρij (t) < ξ i
j
ρij (t) ≤ eij (t) ≤ ξ

i
jρ

i
j (t) < ρij (t) , ∀t ≥ 0.

Finally, invoking (9)–(11) as well as the boundedness of PO (t)
and ṖO (t) from Theorem 1, we also deduce the boundedness of

P̂
di
O (t),

˙̂P
di
O and ¨̂P

di
O , i = 1, . . . ,N for all t ≥ 0, which completes

the proof.

Remark 4. The proposed estimation scheme is more robust against
trajectory profiles with non-zero acceleration than previous results
presented in Kosuge and Oosumi (1996); Kosuge et al. (1997a,b).
In particular, our method guarantees bounded closed loop signals
and practical asymptotic stabilization of the estimation errors.
Moreover, the aforementioned ultimate bounds depend directly on
the design parameters ρij,∞, j = 1, . . . , 6 and i = 1, . . . ,N of the

performance functions ρij (t), j = 1, . . . , 6 and i = 1, . . . ,N which

can be set arbitrarily small to a value reflecting the resolution of
the measurement device, thus achieving practical convergence of
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FIGURE 10 | The feasible workspace for oriented planar motion of a long formation.

the estimation errors to zero. Additionally, the transient response
depends on the convergence rate of the performance functions
ρij (t), j = 1, . . . , 6 and i = 1, . . . ,N that is directly affected by

the parameter λ.

Based on the aforementioned estimation of the object’s desired

trajectory profile P̂
di
O (t),

˙̂P
di
O (t), and

¨̂P
di
O (t), i = 1, . . . ,N we can

easily derive the corresponding desired trajectory profile for the
follower’s end-effector:

ṖdFi (t) , ĴFiO (t)
˙̂P
di
O (t)

P̈dFi (t) , ĴFiO (t)
¨̂P
di
O (t)+

˙̂JFiO (t)
˙̂P
di
O (t)

}

, i = 1, . . . ,N (18)

Let us also define the position and velocity errors:

ePFi (t) = PFi (t)− PdFi (t) , eṖFi
(t) = ṖFi (t)− ṖdFi (t)

as well as the first order stable linear filters:

SFi

(

ePFi , eṖFi

)

=

(

d

dt
+3

)

ePFi ≡ eṖFi
+3ePFi ,3 > 0 (19)

where SFi and ePFi can be considered as input and output
respectively. Notice that the tracking control problem
for the followers’ end-effector is equivalent to driving

SFi

(

ePFi (t) , eṖFi
(t)
)

to the origin, since for SFi = 0, (19)

represents a set of stable linear differential equations whose
unique solution is ePFi = 0 and eṖFi

= 0. In the sequel, we

propose an adaptive control scheme for the followers’ end-
effector that guarantees the asymptotic convergence of the
position and velocity errors to the origin.

Theorem 2. Consider the unknown dynamics of the followers
(3), that obey the parametric property (4), as well as the desired

trajectory profiles (18) and the error metrics SFi

(

ePFi , eṖFi

)

defined

in (19). The adaptive control scheme:

UFi = −FFi + ZT
Fi

(

PFi , ṖFi , Ṗ
r
Fi
, P̈rFi

)

θ̂Fi − KFiSFi , KFi > 0

˙̂
θFi = −ŴFiZFi

(

PFi , ṖFi , Ṗ
r
Fi
, P̈rFi

)

SFi , ŴFi > 0

(20)

where ṖrFi = ṖdFi (t) − 3
(

PFi (t)− PdFi (t)
)

, P̈rFi = P̈dFi (t) −

3
(

ṖFi (t)− ṖdFi (t)
)

and θ̂Fi denotes the estimate of the unknown

dynamic parameters θFi of the followers’ model, guarantees the
asymptotic convergence of the position and velocity errors ePFi (t),
eṖFi

(t) to the origin.

Proof: The proof follows identical arguments for each follower
i ∈ {1, . . . ,N}. Hence, consider the positive definite function:

VFi =
1
2S

T
Fi
MFi

(

PFi
)

SFi +
1
2 θ̃

T
Fi
Ŵ−1
Fi
θ̃Fi ,

where MFi

(

PFi
)

is the positive definite inertial matrix and θ̃Fi =

θ̂Fi − θFi denotes the parametric errors. Differentiating with
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FIGURE 11 | The evolution of the proposed methodology in six consecutive time instants.

respect to time and substituting the dynamics (3), we obtain:

V̇Fi = STFi
(

UFi + FFi −MFi

(

PFi
)

P̈rFi − CFi

(

PFi , ṖFi
)

ṖFi

−DFi

(

PFi , ṖFi
)

− GFi

(

PFi
))

+ 1
2S

T
Fi
ṀFi

(

PFi
)

SFi

+θ̃FiŴ
−1
Fi

˙̂
θFi .

Adding and subtracting the term STFiCFi

(

PFi , ṖFi
)

ṖrFi yields:

V̇Fi = STFi
(

UFi + FFi −MFi

(

PFi
)

P̈rFi − CFi

(

PFi , ṖFi
)

ṖrFi

−DFi

(

PFi , ṖFi
)

− GFi

(

PFi
))

+ θ̃FiŴ
−1
Fi

˙̂
θFi

+ 1
2S

T
Fi

(

ṀFi

(

PFi
)

− 2CFi

(

PFi , ṖFi
))

SFi .
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FIGURE 12 | The estimation errors along with the performance bounds

imposed by the proposed method.

FIGURE 13 | The tracking errors.

Thus, invoking the parametric property (4) as well as the skew-
symmetry of ṀFi

(

PFi
)

− 2CFi

(

PFi , ṖFi
)

, we arrive at:

V̇Fi = STFi

(

UFi + FFi − ZT
Fi

(

PFi , ṖFi , Ṗ
r
Fi
, P̈rFi

)

θFi

)

+ θ̃FiŴ
−1
Fi

˙̂
θFi .

FIGURE 14 | The control input signals UL and UF .

FIGURE 15 | The interaction forces FL and FF exerted between the object

and the robots.

Hence, substituting the control scheme (20), we get:

V̇Fi = −STFiKFiSFi ≤ 0

from which we may conclude the boundedness of SFi and θ̃Fi .
Finally, employing Barbalat’s Lemma, we may easily deduce
that limt→∞ SFi (t) = 0 and consequently the asymptotic
convergence of the position and velocity errors ePFi (t), eṖFi

(t)

to the origin, which completes the proof.

Remark 5. The proposed approach does not utilize any explicit
on-line communication. The only information needed on-line to
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implement the developed control schemes concerns measurements
acquired exclusively by each robot’s sensor suite (i.e., force,
position and velocity). Moreover, it is robust against parametric
uncertainties in the robot dynamics. Further reinforcement of
the closed loop robustness against model uncertainties could
be achieved by introducing the σ -modification or deadzone
techniques in the adaptive law (20), in order to handle the
parameter drift issue. The overall control architecture is illustrated
in Figure 4.

4. RESULTS

4.1. Simulation Scenario A
We consider a scenario that involves the planar motion of
four mobile manipulators in a leader-follower scheme, handling
a rigidly grasped object in a constrained workspace with
static obstacles (see Figure 5). The body frame of the object
and the frame attached at the leader’s end-effector are set
aligned, while the followers’s frame obtains a relative yaw
angle of π/2 rad counter-clockwise. The leader is aware of
the obstacles’ position in the workspace and is assigned the
desired object’s configuration, whereas the followers estimate
the object trajectory via the proposed algorithm (10), by simply
observing the motion of the object and without communicating
explicitly with the leader. Apparently, the overall formation has
to transverse the obstacles in order to arrive at the desired
configuration. The control gains were selected as follows: k =

2.15, kNF = 0.8, KL = 3I2×2, 3 = 3I2×2, KF = 2I2×2.
Additionally, since the robots’ mass (i.e., mL = mF = 2.5 kgr)
was considered unknown, the adaptive laws (8) and (20) were
adopted to provide their estimates with control gains ŴL = 0.1
and ŴF = 0.15. Finally, the parameters of the proposed estimator

were chosen as kij = 1, ρij (t) =
(

2
∣

∣

∣
eij (0)

∣

∣

∣
+ 0.1

)

e−3t + 0.05,

j ∈
{

x, y
}

and i = 1, 2, 3.
The results are given in Figures 6–8. More specifically,

four consecutive instantiations of the simulated control
algorithm are depicted in Figure 6. Notice that the overall
formation maneuvers between the obstacles toward the desired
configuration, which is attained in 60 s. The position errors with
respect to the desired configuration of each robot are illustrated
in Figure 7. Finally, the required control inputs for all agents
are given in Figure 8. It should be stressed that reasonable
overshoot (i.e., less than five times the effort requested at the
steady state, which is acceptable from a practical point of view)
on the control signals occurs initially as well around the middle
of the simulation, where the formation transverses the obstacles
and reaches the desired configuration.

4.2. Simulation Scenario B
We consider a scenario involving oriented motion on a planar
surface (i.e., the coordinates are x, y and the orientation ψ) with
two mobile manipulators in a leader-follower scheme, handling
a rigidly grasped object in a constrained workspace with static
obstacles (see Figure 9). The body frame of the object and the
leader’s end-effector frame are set aligned, while the follower’s
frame has a relative yaw angle of π rad. The leader is aware

of the obstacles’ position in the workspace and is assigned the
desired object’s configuration, whereas the follower estimates the
object’s trajectory via the proposed algorithm (10), by simply
observing the motion of the object and without communicating
explicitly with the leader. Apparently, the overall formation
has to be aligned with the x-axis in order to transverse the
obstacles. In this respect, we constructed a navigation function
in a 3D workspace (i.e., x, y, and ψ), by adopting a virtual
toroidal obstacle (see Filippidis and Kyriakopoulos, 2012 for the
safety and convergence properties) to model the aforementioned
relation of position

(

x, y
)

with the orientation ψ , as depicted in
Figure 10. Moreover, the control gains were selected as follows:
k = 1.9, kNF = 0.8, KL = 3I3×3, 3 = 3I3×3, KF = 3I3×3.
Additionally, since the robots’ mass (i.e., mL = mF = 2.5 kgr)
was considered unknown, the adaptive laws (8) and (20) were
adopted to provide their estimates with control gains ŴL = 0.1
and ŴF = 0.15. Finally, the parameters of the proposed estimator
were chosen as kj = 1, ρj(t) =

(

2
∣

∣ej (0)
∣

∣+ 0.1
)

e−3t + 0.05,
j ∈

{

x, y,ψ
}

.
The results are given in Figures 11–15. In particular, the

evolution of the simulation of the proposed scheme for
six consecutive time instants is illustrated in Figure 11. The
estimation errors of the trajectory of the object are depicted
in Figure 12 along with the performance bounds imposed by
the appropriately selected performance functions. Notice that
after a short transient, the estimation errors converge close to
zero and are kept small afterwards. The tracking errors with
respect to the desired object configuration and the estimated
object trajectory by the follower are illustrated in Figure 13. It
should be noted that the object arrives at its desired configuration
in 30 sec via the appropriate motion planning executed by the
leader. On the other hand, the follower tracks quickly the object’s
estimated trajectory and collaborates with the leader toward
the successful fulfillment of the transportation task. Finally, the
requested control inputs (i.e., forces along x, y and torque around
z) as well as the interaction forces/torque between the robots
and the commonly grasped object are depicted in Figures 12, 13.
It should be stressed that the control effort and consequently
the interaction forces/torque obtain high but reasonable values
when the formation is maneuvering at the initial and final stage
to transverse the obstacles and attain the desired orientation
respectively.

5. CONCLUSIONS

This paper presented a leader-follower scheme for cooperative
object transportation under implicit communication, thus
avoiding completely tedious explicit on-line inter-robot
communication. The leader that was aware of both the desired
configuration of the object as well as of the obstacles’ position
in the workspace, aimed at navigating the overall formation
toward the goal configuration while avoiding collisions with
static obstacles. On the contrary, the followers adopted a
prescribed performance estimator to evaluate the object’s desired
trajectory that were unaware of. We extended the related
literature by: (i) combining innovatively Navigation Functions
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with adaptive control to deal with parametric uncertainty
in the robot dynamics and (ii) robustifying the estimation
process against any smooth and bounded object’s desired
trajectory profile. Future research efforts will be devoted toward
extending the current methodologies for environments with
dynamically moving obstacles (i.e., humans) via employing
other types of implicit communication and relative sensing,
acquired by onboard sensors such as cameras, range finders
or laser scanners, that would increase the applicability of
the proposed scheme. Moreover, considering uncertainties
in the model of the grasped object and its geometry is also
left open for future investigation. Finally, generalizing the
results of this work into a scheme with multiple leaders would
significantly increase the robustness against faults/failures
and lead eventually in a fully decentralized approach with

dynamic assignment of the leading roles among the team

members, for which only lean explicit communication would be
requested.
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