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One of the main advantages of building robots with size and motor capabilities close to
those of humans, such as iCub, lies in the fact that they can potentially take advantage
of a world populated with tools and devices designed by and for humans. However,
in order to be able to do proper use of the tools around them, robots need to be
able to incorporate these tools, that is, to build a representation of the tool’s geometry,
reach and pose with respect to the robot. The present paper tackles this argument by
presenting a repository which implements a series of interconnected methods that enable
autonomous, fast, and reliable tool incorporation on the iCub platform.
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1. OVERVIEW

A critical problem in most studies of tool use in developmental robotics is that actions are
performed without considering the geometry or pose of tools that the robot uses. Instead, most
experiments apply standard grasps and assume pre-defined kinematic end-effector extensions that
do not take into account the particular pose of the tool in the robot’s hand (Gongalves et al.,
2014; Dehban et al., 2017). In order to overcome this limitation, this paper presents a repository
which implements a series of interconnected methods that enable autonomous, fast, and reliable
estimation of a tool’s geometry, reach and pose with respect to the iCub’s hand, in order to attach it
to the robot’s kinematic chain, thereby enabling dexterous tool use. Indeed, this methods have been
successfully applied in the study presented in Mar et al. (2017).

The repository can be found at:

https://github.com/robotology/tool-incorporation

We name this process tool incorporation because of its meaning referring to embodiment
(literally, in-corpore), as it enables iCub to build a representation of the tool with respect to,
and included in, its own body representation. The iCub is a full body humanoid robot with
53 Degrees of Freedom (DoF) (Metta et al., 2010), including head, arms, and torso. The iCub
software is structured as modules that communicate with each other using YARP middleware,
which enables multi-machine and multi-platform integration (Metta, 2006). Modules provide
specific functionalities, and work together in form of applications to achieve desired behaviors
on the iCub. Vision is provided by the cameras mounted in the robot’s eyes, from which stereo
matching can be applied to estimate depth (Fanello et al., 2014). Image processing is achieved with
the help of OpenCV and PCL libraries, for 2D and 3D processing respectively (Rusu and Cousins,
2011; Itseez, 2015). All the methods described in this paper are implemented as functions in the
toolIncorporation module.
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The remainder of this paper is structured according to the
main methods required to incorporate tools. Section 2 describes
the methods for tool recognition, or visual appearance learning
if the tool has not been seen before. Section 3 presents a method
that enables iCub to reconstruct a 3D representation of the tool in
its hand using its stereo-vision capabilities. Section 4 explains the
meaning and estimation of the tool’s intrinsic frame and of the
tooltip. Finally, section 5 details a method for faster estimation of
a tool’s pose when its model is available.

2. TOOL RECOGNITION

The first step for tool incorporation is to recognize the tool in
the robot’s hand, so that its model can be loaded if the tool is
known, or its visual appearance learned otherwise. To that end,
the method applied in this work builds upon the techniques
described in Pasquale et al. (2016). In that paper, a pre-trained
CNN (AlexNet trained on imageNet, Krizhevsky et al., 2012)
learned to associate a cropped image of an object presented by
the experimenter with a provided label. In this work, we extended
this approach in order to reduce the need of an external teacher,
so that it is only required to hand over the tool to the robot and
provide its label.

Once the iCub robot is grasping the tool in its hand,
exploration is performed by moving it to different poses, so that
it can be observed from different perspectives (implemented in
function exploreTool). These poses are predefined to utilize
the range of iCub’s wrist joints to achieve distinct perspectives.

On each of the considered poses iCub focuses on the tool’s
effector, understood as the part of the tool that interacts with
the environment. However, at this point the robot has no
information about the tool’s geometry or pose in order to estimate
where the effector might be (these are discussed in section 4.3).
Therefore, in order to locate the effector, iCub initially looks
just slightly over its hand (10 cm along the X axis and -10 cm
along the Y axis of the hand reference frame). Then, it locates
the tooltip on the image by iteratively extracting the tool outline
from the disparity map, and looking at the point in the blob
further away from the hand reference frame. This process, which
is implemented in function 1ookAtTool, is repeated until the
position of the estimated tooltip is stable, or a given number of
iterations has been surpassed.

Once iCub is correctly gazing at the tool effector, a series of
images of the tool are obtained by cropping a region around the
tool, which is determined by the bounding box of the closest blob
obtained with dispBlobber!, plus a margin of 10 pixels on
each side. Finally the cropped images are fed to a CNN whose
output feeds in turn a linear classifier which associates them to
the user provided tool label. This process is performed by the
onTheFlyRecognition application, which is called from by
the learn function provided with the tool label.

This sequence —tool effector location and subsequent cropping
of the tool region to feed the CNN- is repeated for all
the exploration poses considered, which provides enough

Thttps://github.com/robotology/segmentation/tree/master/dispBlobber

perspectives to recognize the tool in any future pose in which it
might be grasped in the future.

After the visual appearance of the set of available tools has
been learned, the process of classification is simple. After iCub is
given any tool, it observes it in any of the exploratory poses and
uses the same method to crop it from the rest of the image. The
cropped image is in turn sent to the trained classifier (in this case,
using the recognize function), which returns the estimated
label of the tool. It should be noted that tools can be learned in
either terms of instances or categories. In the first case, the user
should provide a distinct label for each individual tool given to
iCub, and an associated pointcloud model. In the second case,
tools of the same category (e.g., rakes, sticks, shovels), should be
given the generic label of that category, and a generic model of
the tool category provided.

3. TOOL 3D RECONSTRUCTION

In cases where a 3D model of the tool is not available, the robot
should be able to reconstruct it through exploration. In this
section we describe an approach that allows iCub to achieve this,
without the need of external intervention by the experimenter.
Essentially, it consists of iterative segmentation, reconstruction,
and merge of the tool's partial views from different
perspectives.

Similar techniques have been presented in many different
papers in the recent years (Ren et al., 2013; Zhang et al., 2015).
However, most of these studies assume either a fixed camera
and an object being moved externally (by the user or on a
turning table), which could not be considered autonomous;
or a fix scene and a moving camera/robot navigating around
it, which is unfeasible on the current iCub setup. Therefore,
in the present work we implemented a method by means
of which iCub can reconstruct a tool’s complete pointcloud
representation by obtaining partial view reconstructions
from different perspectives and incrementally merging them
together.

The method applied to observe the tool effector is analogous
to the one described in the previous section for learning the
tool’s visual appearance, and in fact, both processes can be run
simultaneously (by calling the exploreTool function with the
2D and 3D flags active). For reconstruction, the steps performed
at each exploration pose are the following:

e Segmentation:

After the gaze is properly oriented toward the tool effector,
as described in section 2, instead of just cropping the bounding
box around the tool, the tool blob is segmented with the
dispBlobber module, which returns the pixels in the image
that correspond to the tool.

e Reconstruction:

This list of pixels is sent to the seg2cloud module,
which computes the 3D coordinates of each point in the
robot reference frame and returns them as a pointcloud.
This pointcloud is transformed from the robot frame to
the hand’s reference frame using the robot’s kinematics,
which greatly facilitates subsequent merging, as the hand
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FIGURE 1 | Planes and axes that determine the tool’s intrinsic reference frame. (A) Tool model divided by its three characteristic L planes. (B) Handle plane Lygp. (C)
Symmetry plane Lsym. (D) Effector plane Lgs. The reference frame in all figures shows fef in red, f5, in green, and fsym in blue.
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provides a coherent reference frame for all the partial
reconstructions.

Moreover, we can safely assume that the tool is connected
with the hand, and it does not extend beyond certain
boundaries. Therefore, in order to remove any points on
the reconstructed pointcloud that might belong to the
background, the pointcloud is truncated in all three axes of
the hand reference frame, removing all the points outside the
(0.0,35)cm range in the X axis, (—30,0.0)cm range in the Y’
axis, and (—15,15)cm range in the Z axis. Additionally, as
in many cases part of the hand might also be present in the
reconstructed pointcloud, it is removed by filtering out all
the points in the which are inside a radius of 8 cm from the
origin of the hand reference frame. Finally, the pointcloud is
smoothed by applying a statistical filter for outlier removal.
The described pointcloud reconstruction, transformation
and filtering are performed by the getPointCloud
function.

e Merging:

Although all the partial reconstructed pointclouds are
represented in a coherent reference frame, they are not
perfectly aligned due to errors in depth estimation and robot
kinematics. Therefore, a further refinement step is performed
using the Iterative Closest Point algorithm (ICP) (Besl and
McKay, 1992). We assume that the required refinement is
small and thus discard as unsuccessful those cases in which
the resulting roto-translation is larger than a given threshold.
Finally, in order to merge overlapping surfaces and reduce
noise, the resulting pointcloud is downsampled uniformly
using a voxelized grid.

As a result of this process, a complete pointcloud representation
of the explored tool is obtained, which also reflects the pose
with which the tool is being grasped by iCub. We refer to this
representation as an oriented pointcloud model, that is, the
available pointcloud model of the tool being held by the robot,
whose coordinates match the position of the actual tool with
respect to the robot’s hand reference frame.

4. TOOL REFERENCE FRAME AND
TOOLTIP ESTIMATION

Although the pose of the oriented pointcloud model corresponds
to that of the tool in the robot’s hand, its orientation is not readily
available for the robot, as it is only implicit in the pointcloud
representation. In the present section we present a method to
make this information explicit, based on the definition and
estimation of a reference frame intrinsic to each tool, applicable
to the vast majority of man-made tools that could be present in
a robotic tool use scenario. This frame of reference, referred to
as tool intrinsic reference frame, and denoted as f, identifies
the effector and handle of the tool, provides its orientation
with respect to the hand reference frame, and facilitates the
computation of the tooltip’s location.

4.1. Tool Reference Frame Definition

Given any radial tool?, generally we can define three orthogonal
characteristic tool planes as can be observed in Figure 1, denoted
together as a tool’s L planes:

e Handle plane (Ly,;,): Itis perpendicular to the handle axis, and
divides the tool into the effector and the handle sides.

o Symmetry plane (Lgy,): It is the plane with respect to which
the tool has the maximum symmetry. It runs along the handle
and divides the tool into two equal (or almost) longitudinal
halves.

o Effector plane (L,5): Orthogonal to the two previous planes,
usually divides the “forward” and “back” sides of the tool,
forward being the side where the effector is.

The planes’ normal vectors can be chosen so that they define a
right-hand reference frame, which we refer to as the tool intrinsic
reference frame,(f). To this end, the origin and orientation of the

2We refer as radial tools to tools consisting of clearly distinct handle and effector,
which are grasped from the handle with the thumb toward the effector of the tool
(called radial grip).
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corresponding axes is chosen so that they preserve the following
characteristics:

o Effector axis (X) (feﬁ): It is positive in the direction of the
effector, i.e., toward the “forward” side of the tool.

e Handle axis (Y) (fj,,,): Is positive in the direction toward the
handle, and negative in the direction toward the effector side
of the tool.

e Symmetry axis (Z) (f,): The symmetry basis vector is
obtained as the outer product of the other two to ensure
orthogonality, so it is positive on the “left” side of the tool, if
the effector is looking “forward”.

4.2. Tool Reference Frame Estimation

Based on the previous definitions, here we propose a method
to automatically estimate the tool intrinsic reference frame f
of a tool’s pointcloud representation W, relying solely on the
assumption that W represents an oriented pointcloud model, that
is, it is expressed with respect to the hand reference frame of the
robot. The proposed procedure consists on the following steps,
which can be observed in function findSyms:

1. Find the pointcloud’s main axes: The estimation of fs origin
and direction can be achieved by computing the covariance
matrix of the pointcloud W. The origin is determined at
the center of mass o, and the 3 eigenvectors v with larger
eigenvalues A correspond to the pointcloud’s main axes:

C = cov(W), (1)
Cv = \v, (2)
L[i] Lv[i],i € {0,1,2}. (3)

Therefore, this set of orthogonal vectors v defines a set of
orthogonal planes that approximate the tool planes L, but
their correspondence with the specific planes defined above,
as well as their orientation, need to be determined to fully
characterize f.

2. Identify the planes:

a. Handle plane Ljp,,: The handle is situated along the
longest tool dimension. Thus, the eigenvector with largest
eigenvalue indicates the direction of the handle axis,
normal to the Handle plane. That is,

Vihan = vln], where n = arg max (A[i]), (4)
i€{0,1,2}
accordingly, Ly, = L[n] (5)

b. Symmetry plane Lyy;,: The symmetry plane corresponds by
definition to the plane with respect to which the tool has
the maximum symmetry. Thus:

Lym = L[m], where m = arg max (sym(L[j]). (6)
jel0.1.2)#n

c. Effector plane Lyg: The effector plane is computed in
relation to previous two planes, as the plane orthogonal to

both the Handle and the Symmetry plane:

Leg = L[k], whereke€0,1,2 #n,m (7)
Leﬁ 1 Lsym L Lpan (8)

3. Find the axes orientations:

a. Handle axis fj;,: Determines the side where the handle
of the tool is (opposite of the effector). Following the
assumption that W is represented with respect to the hand
reference frame, it follows that the handle is on the side of
Ly, that contains the origin of the pointcloud reference
frame (i.e., the hand). Thus, the orientation of f},,, is set so
that the positive values correspond to the side of Ly, that
contains the origin.

b. Effector axis fog: In order to determine the direction that
corresponds with “forward” in a tool, we consider the
saliency of the features on each side of the effector plane.
Specifically, the “forward” side of the pointcloud W is
defined as the side where the effector half of the tool
(determined in the previous step) contains points further
away from the tool’s intrinsic reference frame origin o.
Thus, the orientation of the effector axis f.5 (perpendicular
to the effector plane) is set such that the positive values are
located on the salient side of the effector plane.

c. Symmetry axis fy,,;: The orientation of £y, is chosen so
that the set of axes defined by v corresponds to a right-
handed coordinate system. Thus, it is computed as the cross
product between the handle and effector axes basis vectors:

fsym = fpan ¥ feﬁ )

The tool intrinsic reference frame f is actually expressed on the
same frame of reference that the pointcloud reconstruction from
which it is estimated, that is, the hand reference frame. Thus, the
equations of the frame’s axes represent explicitly the orientation
of the tool in any of its three axis.

One of the strengths of this approach to estimate the tool’s
frame of reference f is that it relies on very few and general
assumptions to be met in order to work successfully, namely, that
the tool’s handle axis is longer that any other axis, and that the
tool has a certain degree of symmetry along a plane that contains
that axis. Moreover, the method is also very robust to noise in the
3D representation of the tool, since all the computations required
throughout the process of determining f have a high tolerance
to noise. Indeed, as most of the decisions are made in terms
of comparison (symmetry between two sides of a plane, longest
axis, furthest away point), if noise affects the whole pointcloud
similarly, it would not modify their outcome.

4.3. Tooltip Estimation
As stated above, one of the main advantages of estimating the tool
reference frame f is that it enables to precisely locate the tooltip,
required to perform the extension of the robot’s kinematic chain
to the new end-effector provided by the tool. Thus, the tool tip is
defined in terms of the concepts defined and estimated above:
Tooltip: Location on the tool represented by the point on
the Symmetry plane of the tool, above the Handle plane (i.e., on
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CAD models (middle row), or autonomously reconstructed (bottom row).

FIGURE 2 | Results of the tooltip estimation process described in the text shown for a few example tools (top row), whose pointcloud has been achieved from from

the effector side), furthest away from the Effector plane, on the
positive side of the effector axis.

The estimated tool reference frame f and tooltip for a small
sample of tools can be observed in Figure 2, where it can be
observed that the estimated tooltip coincides to what most people
would consider to be the tooltip of those tools.

In our code, this definition is implemented by the function
findTooltipSym, which computes the tooltip location based
on the information from the tool planes provided by the previous
steps.

5. TOOL POSE ESTIMATION

The methods described in sections 3 and 4 allow the robot
to reconstruct a tool’s geometry and estimate its pose even in
the case of previously unseen tools. However, this is a time
consuming approach that is not necessary if a 3D pointcloud
model of the tool or tool category is already available, either from

a CAD model or from a previous reconstruction. For these cases,
in this section we introduce a fast and reliable method for pose
estimation, based on the alignment of the available model with a
single partial view reconstruction to the tool in the robot’s hand,
implemented in the function findPoseAlign.

Qualitatively, the tool pose represents the way in which the
tool is being grasped with respect to the hand’s reference frame.
Numerically, we can express the tool pose in terms of the 4 x 4
roto-translation Pose Matrix P required to transform the hand
reference frame < H > frame to any reference frame intrinsic to
the tool < T >, that s,

<T>=P<H> (10)

The hand reference frame < H > is defined by the robot
kinematics. The tool reference frame < T > applied can be
arbitrarily chosen, as long as it is coherent among all the tools
that can be considered, as the Pose is expressed in relative terms.
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(b.1) (b.2) *

(b-3)

by applying P to the 3D model.

24 ]

FIGURE 3 | Example of the tool pose estimation through alignment process. (A) Load 3D pointcloud model on canonical pose. (B) Extract partial reconstruction using
seg2cloud model (segmentation + depth estimation). (C) Find Pose Matrix P by aligning 3D model to partial reconstruction. (D) Obtain oriented pointcloud model

This means that P can also be understood as the required
transformation to align a tool 3D model from its canonical pose
to the pose in which is the tool is being held by the robot, given by
the oriented pointcloud model. In this work, this transformation
is estimated by aligning the available model of the tool with a
partial reconstruction obtained through iCub’s disparity.

To that end, iCub first applies the method described in
section 2 to identify the tool instance or category and load the
corresponding model. Then, it fixates the gaze on the tool’s
effector and extracts a partial pointcloud reconstruction, using
the same methods applied on each of the exploration poses
considered for tool reconstruction, as detailed in section 3. Then,
the ICP algorithm is applied in order to align the pointcloud
model loaded from memory to the partial reconstruction just
obtained. Finally, the alignment matrix returned by the ICP is
checked to assess whether it corresponds to a feasible grasp pose
in terms of translation from the origin and rotation in Z and X
axes. If the alignment estimated by ICP corresponds to a feasible
grasp, then the returned alignment matrix is assigned to P, and
applied to transform the canonical pointcloud model available in
memory in order to obtain the oriented pointcloud model. This
process can be observed in Figure 3.

Thereby, after the pose estimation process iCub has explicit
information about the precise geometry and pose of the tool in
its hand. Therefore, it can apply the method described in section
4.3 to determine the position of the tooltip with respect to the
robot’s hand reference frame, and hence extend the kinematics of
the robot to incorporate the tip of the tool as the new end-effector
for further action execution.
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