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In this article, we introduce Trajectory Learning using Generalized Cylinders (TLGC), a

novel trajectory-based skill learning approach from human demonstrations. To model

a demonstrated skill, TLGC uses a Generalized Cylinder—a geometric representation

composed of an arbitrary space curve called the spine and a surface with smoothly

varying cross-sections. Our approach is the first application of Generalized Cylinders to

manipulation, and its geometric representation offers several key features: it identifies

and extracts the implicit characteristics and boundaries of the skill by encoding the

demonstration space, it supports for generation of multiple skill reproductionsmaintaining

those characteristics, the constructed model can generalize the skill to unforeseen

situations through trajectory editing techniques, our approach also allows for obstacle

avoidance and interactive human refinement of the resulting model through kinesthetic

correction. We validate our approach through a set of real-world experiments with both

a Jaco 6-DOF and a Sawyer 7-DOF robotic arm.

Keywords: learning from demonstration, trajectory-based skill, robot learning, physical human-robot interaction,

skill refinement

1. INTRODUCTION

Learning from Demonstration (LfD) approaches provide the ability to interactively teach robots
new skills, eliminating the need for manual programming of the desired behavior (Argall et al.,
2009b). By observing a set of human-provided examples and constructing a model, LfD approaches
can reproduce the skill and generalize it to novel situations autonomously. These capabilities make
LfD a powerful approach that has the potential to enable even non-expert users to teach new skills
to robots with minimum effort1. However, despite the existence of several trajectory-based skill
learning approaches, the vast majority of the existing robotic platforms still rely on motion-level
actions that are either hand-coded or captured through teleoperation by experts (Yanco et al.,
2015), highlighting the need for further advances in this area. To be effective, trajectory-based
learning representations should: (a) require few tuning parameters and be easy to tune especially
by non-experts, (b) perform effectively and be robust to sub-optimal demonstrations, (c) generalize
not only over the initial and final states but also to unforeseen situations successfully, and
(d) support methods for refinement of the model constructed with the set of sub-optimal
demonstrations.

While many LfD techniques exist that offer some subset of these requirements, no existing
method fulfills all of these needs. In this paper, we present a novel LfD approach that meets all the
above requirements through a geometric representation used to construct a model of the desired

1This work focuses on LfD approaches that encode trajectory-based skills (i.e., movements) and we do not discuss goal-based

LfD approaches.
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skill. The geometric representation is a generalized form of a
standard cylinder, called a Generalized Cylinder (GC), for which
the main axis is a regular curve in 3D Cartesian space (instead
of a straight line) and the cross-sections can vary in size and
shape (instead of circular cross-sections with fixed radius). We
refer to the proposed approach as Trajectory Learning using
Generalized Cylinders (TLGC). One of the major advantages of
employing generalized cylinders in our approach is that it allows
for representing the demonstration space that implicitly encodes
main characteristics of the demonstrated skill (i.e., the spatial
correlations across different demonstrations).

In order to extract the underlying characteristics of the skill
from the raw observations, TLGC requires minimal parameter
tuning and can reproduce a variety of successful movements
inside the boundaries of the encoded model by exploiting the
whole demonstration space, thereby minimizing the effort of
the user. Moreover, our representation is visually perceivable,
which makes it a powerful candidate for physical human-robot
interaction. This capability also helps to overcome the issue of
sub-optimal demonstrations by enabling the user to improve
the learned model through physical motion refinement. We
show that unlike other existing techniques, using our approach
refinements can be applied both through incremental and
constraint-based strategies. Consequently, the user can start from
a set of (sub-optimal) demonstrations and refine the learned
model interactively to reach the desired behavior.

To tackle the problem of generalization over terminal states,
we use a nonrigid registration method to transfer the encoded
model accordingly. This generalization approach preserves the
main characteristics of the demonstrated skill while achieving
the goal of the task and satisfying a set of constraints. We also
discuss an alternate generalization method that offers enhanced
robustness. Additionally, TLGC offers several strategies for
dealing with obstacles during the reproduction of the skill.
In summary, our approach (a) maintains the important
characteristics and implicit boundaries of the skill by encoding
the demonstration space, (b) requires minimal parameter tuning,
(c) reproduces a variety of successful movements by exploiting
the whole demonstration space, (d) generalizes over the terminal
states of the skill by deforming the model while preserving its
important characteristics, (e) enables users to provide physical
feedback to improve the characteristics/quality of the learned
skill interactively, and (f) offers multiple obstacle avoidance
strategies.

In our prior work (Ahmadzadeh et al., 2016), we encoded a
set of demonstrations as a Canal Surface (CS), a simpler form
of a generalized cylinder, and showed that multiple solutions of
a skill can be reproduced inside the CS. We then considered a
more flexible and generalized form for the representation with
the use of generalized cylinders (Ahmadzadeh et al., 2017). In this
article, we merge prior work and extend the idea by introducing
(a) a novel reproduction strategy with more flexibility, (b)
an alternate method for generalization of skills with more
robustness, (c) evaluation and comparison of generalization
methods, (d) additional comparisons of skill reproduction and
refinement against other approaches, and (e) three obstacle
avoidance strategies.

We validate our approach in fourteen experiments using two
physical 6 and 7-DOF robots, as well as demonstrate its use in
comparison to Dynamic Movement Primitives (Ijspeert et al.,
2013), Gaussian Mixture Models (GMM) (Calinon et al., 2007),
and GMM with weighted Expectation-Maximization (Argall
et al., 2010).

2. RELATED WORK

In this section, we review related work on LfD approaches
that are designed for modeling and reproduction of trajectory-
based skills (i.e., movements). LfD approaches differ in the way
they encode a demonstrated skill and retrieve a generalized
form of the skill (Argall et al., 2009b). One category of
approaches use probabilistic representations generated through
regression (Vijayakumar et al., 2005; Grimes et al., 2006; Calinon
et al., 2007). Work by Calinon et al. (2007) uses a Gaussian
Mixture Model (GMM) and retrieves a smooth trajectory
using Gaussian Mixture Regression (GMR). The reproduced
trajectory using GMR is attracted toward an average form of
the demonstrated skill and cannot adapt to changes in initial
and final states. To improve its generalization capabilities, a
task parameterized extension of GMM/GMR was developed
that assigns reference frames to task-related objects and
landmarks (Calinon, 2016). The resulting method generalizes
better to novel situations but requires extensive parameter tuning
for each trajectory (e.g., number of Gaussian components, scale,
weight, kernel). Our approach generalizes to novel situations
without the use of reference frames and requires minimal
parameter tuning.

Grimes et al. (2006) employed Gaussian Process regression
to learn and generalize over a set of demonstrated trajectories.
Although Gaussian Processes (GPs) provide a non-parametric
alternative, the computational complexity of conventional GP
approaches scales cubically with the number of data points,
limiting their effectiveness in trajectory-based LfD settings. To
address this issue, in follow-on work, Schneider and Ertel (2010)
used local Gaussian process regression. Another approach called
LfD by Averaging Trajectories (LAT) used only one-dimensional
normal distributions to reach lower computational cost (Reiner
et al., 2014). Both GPs and LAT reproduce an average form
of the movement and cannot generalize to novel situations
(e.g., terminal states). Our approach can reproduce multiple
successful solutions of the demonstrated skill and generalize
according to the changes in the terminal states as well as in the
environment.

An alternative to probabilistic approaches is to use dynamic
systems to encode and reproduce skills (Hersch et al., 2006;
Khansari-Zadeh and Billard, 2011; Ijspeert et al., 2013). Dynamic
Movement Primitives (DMPs) represent demonstrations as
movements of a particle subject to a set of damped linear
spring systems perturbed by an external force (Ijspeert et al.,
2013). The shape of the movement is approximated using
Gaussian basis functions and the weights are calculated using
locally weighted regression. DMPs can handle generalization
of the skill to new goal situations, however, the implicit
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FIGURE 1 | Two robots reproducing three trajectory-based skills encoded and learned using TLGC.

definition of time as a canonical system the movement
becomes slower as time increases. The implicit time dependency
also makes the system sensitive to temporal perturbations.
Finally, to maintain the shape of the movement during
generalization, DMPs require significant tuning of continuous
parameters, including those of the dynamic systems, such as
time constants and scaling factors. Unlike DMPs, our approach
is time-independent, requires minimal parameter tuning, and
reproduces trajectories that do not converge to an average
solution.

Khansari-Zadeh and Billard (2011) introduced the Stable
Estimator of Dynamical Systems (SEDS) approach which
uses a constrained optimization technique to model a set of
demonstrations as a dynamic system. Unlike DMPs, SEDS is
robust to perturbations and ensures global asymptotic stability
at the target. However, it requires a goal state and fails if the
demonstrations do not converge to a single final state. It also
cannot handle via-points (i.e., points where all demonstrations
pass through with a very small variance). Similar to DMPs, SEDS
relies on the first derivative of the motion (i.e., velocity) whether
it is given through demonstrations or computed internally.
Our approach does not require velocity data, can learn to
move through via-points, and can handle demonstrations with
different final states.

Other approaches such as Probabilistic Movement Primitives
(ProMP) (Paraschos et al., 2013) and Combined Learning from
demonstration and Motion Planning (CLAMP) (Rana et al.,
2017) approximate a stochastic control policy in the form of a
Gaussian Process. ProMP directly fits a Gaussian distribution
into demonstrations and then finds a control policy to reproduce
the skill and satisfy the constraints from the skill and the
environment. CLAMP, on the other hand, generates trajectories
that naturally follow the demonstrated policy while satisfying the
constraints. These approaches can reproduce various solutions
within the Gaussian distribution, however, both are limited
in modeling the movement as a discrete-time linear dynamic
system.

Several other techniques utilize models with characteristics
similar to generalized cylinders (Quinlan and Khatib, 1993;
Majumdar and Tedrake, 2016). Quinlan and Khatib (1993)
proposed elastic bands to tackle the real-time obstacle avoidance
inmotion planning. Similar to our representation, their approach

assigns a set of bubbles (i.e., 2D circles) to a global solution. By
applying small and local changes to the constructed model the
global path can be deformed. However, the approach is limited
to planar applications. The real-time motion planning approach
proposed by Majumdar and Tedrake (2016) approximates a
boundary around a trajectory (similar to elastic bands), which
is visualized as a funnel. The generated funnels illustrate
a similar representation to our approach, however, TLGC
does not require extensive off-line computation. Dong and
Williams (2012) proposed probabilistic flow tubes to represent
trajectories by extracting covariance data. The learned flow tube
consists of a spine trajectory and 2D covariance data at each
corresponding time-step. Although the approach was applied
to extract a human’s intention, the flow tube representation
can be seen as a special case of TLGC in which the cross-
sections are formed using the covariance data. Generalized
cylinders have been used in the context of providing safe human-
robot interaction (Martínez-Salvador et al., 2003; Corrales
et al., 2011). To avoid collisions between a robot arm and
a human, Martínez-Salvador et al. (2003) used GCs to build
a spatial model and proposed a computationally effective
method for collision checking. In the approach proposed
by Corrales et al. (2011), however, the shape of the GCs
representing the robot also changes according to the robot’s
speed.

Regardless of the technique used for learning from
demonstration, the capability of improving the learned model by
refining its shape or spatial constraints is highly desirable. This
can become available through physical human-robot interaction.
There exist few approaches that enable the human to refine the
initially given demonstrations. Argall et al. (2010) used tactile
feedback for refining a given set of demonstrations and reusing
the modified demonstrations to reproduce the skill through
incremental learning. They used this approach for performing
grasp-positioning tasks on a humanoid robot. Lee and Ott (2011)
also proposed an incremental learning approach for iterative
motion refinement. Their approach combines kinesthetic
teaching with impedance control and represents the skill using
a Hidden Markov Model (HMM). Our approach, on the other
hand, can be used to refine the learned skill by applying user-
provided corrections for both demonstrations and reproductions
interactively.
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FIGURE 2 | (A) Formation of a generalized cylinder by translating the cross-sectional curve along the directrix. (B) Six generalized cylinders with identical directrices

and different cross-sectional functions.

3. BACKGROUND

Consider a smooth simple closed-curve ρ, which is a non-self-
intersecting continuous loop2 in the plane R

2, perpendicular
to an arbitrary regular curve3 Ŵ in Cartesian space R

3 (see
Figure 2A). A Generalized Cylinder (GC) is a 3D surface
generated by translating the plane containing the closed-curve ρ

along the arbitrary curveŴ while keeping the plane perpendicular
to Ŵ at each step. We refer to Ŵ and ρ as the directrix (also spine)
and the cross-sectional curve, respectively. While translating
along the directrix, the cross-sectional curve can vary smoothly in
both shape and size. Figure 2B illustrates six GCs with identical
directrices but different cross-sectional functions.

Generalized cylinders play a fundamental role in Differential
Geometry, and in the context of Computer Aided Graphic
Design, their application includes construction of smooth
blending surfaces, shape reconstruction, and transition surfaces
between pipes (Hartmann, 2003). In robotics, generalized
cylinders have been used for finding flyable paths for unmanned
aerial vehicles (Shanmugavel et al., 2007). They also have
been used for collision detection during physical human-robot
interaction (Martínez-Salvador et al., 2003; Corrales et al., 2011).
To our knowledge, this is the first application of generalized
cylinders to skill learning for manipulation. In this section,
we first outline the mathematical definition and parameterized
formulation of Canal Surfaces (CS) (Hilbert and Cohn-Vossen,
1952), which are a simpler form of GCs, and then extend the
formulae to generalized cylinders.

3.1. Canal Surfaces
LetR

3 be Euclidean 3-space with Cartesian coordinates x1, x2, x3.
Let 8u be the one-parameter pencil4 of regular implicit surfaces5

with real-valued parameter u. Two surfaces corresponding to
different values of u intersect in a common curve. The surface

2A plane simple closed-curve, also known as the Jordan curve, is a continuous loop

that divides the plane into an interior region and an exterior region.
3A regular curve is a differentiable curve whose derivatives never vanish.
4A pencil is a family of geometric objects sharing a common property (e.g.,

spheres).
5An implicit surface is a surface in Euclidean space that can be represented as a

function F defined by equation F(x1(u), x2(u), x3(u)) = 0.

generated by varying u is the envelope6 of the given pencil of
surfaces (Abbena et al., 2006). The envelope can be defined by

8u : F(x; u) = 0, (1)

∂F(x; u)

∂u
= 0, (2)

where x = [x1, x2, x3]
⊤ and 8u consists of implicit C2−surfaces

which are at least twice continuously differentiable. A canal

surface Cu is defined as an envelope of the one-parameter pencil
of spheres and can be written as

Cu : f (x; u) : = {(c(u), r(u)) ∈ R
3,1|u ∈ R}, (3)

where the spheres are centered on the regular curve Ŵ : x =

c(u) ∈ R
3 in Cartesian space. The radius of the spheres are

given by the function r(u) ∈ R, which is a C1-function. The
non-degeneracy condition is satisfied by assuming r > 0 and
|ṙ| < ‖ċ‖ (Hartmann, 2003). Ŵ is the directrix (spine) and r(u) is
the cross-sectional function which in this case is called the radii
function. For the one-parameter pencil of spheres, Equation (3)
can be written as

Cu : f (x; u) : = (x− c(u))2 − r(u)2 = 0. (4)

Two canal surfaces with fixed and varying cross-sections have
been depicted in Figure 2B (bottom-left) and Figure 2B (top-
left) respectively.

3.2. Generalized Cylinders
Since canal surfaces are constructed using the one-parameter
pencil of spheres, the cross-sectional curve is always a
circle even though its radius can vary along the directrix.
Generalized cylinders extrapolate this notion by considering
an arbitrary cross-sectional curve that can vary in both shape
and size while sweeping along the directrix. These variations
make generalized cylinders a powerful candidate for modeling
complicated constraints of trajectory-based skills captured
through demonstrations. We define a generalized cylinder Gu,v
as

Gu,v : f (x; u, v) : = {c(u), ρ(u, v) ∈ R
3,2|u, v ∈ R}, (5)

6An envelope is a curve/surface tangent to a family of curves/surfaces (2D or 3D).
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where ρ(u, v) represents the cross-sectional function with
parameters u, the arc-length on the directrix, and v, the arc-length
on the cross-sectional curve. The dependence on u reflects the
fact that the cross-section’s shapemay vary along the directrix. To
obtain a parametric representation for generalized cylinders, it is
useful to employ a local coordinate system defined with origin on
the directrix. A convenient choice is the Frenet-Serret (or TNB)
frame which is suitable for describing the kinematic properties of
a particle moving along a continuous and differentiable curve in
R
3. TNB is an orthonormal basis composed of three unit vectors:

the unit tangent vector eT , the unit normal vector eN , and the unit
binormal vector eB. For a non-degenerate directrix curveŴ : x(u),
the TNB frame can be defined by

eT(u) =
dx(u)

du
,

eN(u) =
deT

du
/‖

deT

du
‖, (6)

eB(u) = eT × eN ,

where ‖.‖ denotes the Euclidean norm of a vector and× denotes
the cross product operation. Since eT is tangent to the directrix,
we keep the cross-sectional curve in the plane defined by eN and
eB. Using this convention, we form a parametric representation
of generalized cylinders as

Gu,v : f (u, v) : = c(u)+ ρx1 (u, v)eN(u)+ ρx2 (u, v)eB(u). (7)

Calculating Frenet-Serret frames for real data is prone to noise.

The reason is that at some points the derivative vector deT
du

vanishes and the formulae cannot be applied anymore (i.e., eN
becomes undefined at the points where the curvature is zero).
This problem can be addressed by calculating the unit normal
vector eN as the cross product of a random vector by the unit
tangent vector eT . In this article, we use an improved technique
called Bishop frames (Bishop, 1975) which tackles the issue
by employing the concept of relatively parallel fields. Alternate
techniques, such as Beta frames (Carroll et al., 2013) can also be
employed.

4. SKILL LEARNING USING GENERALIZED
CYLINDERS

In this section, we explain how generalized cylinders can be used
to encode, reproduce, and generalize trajectory-based skills from
demonstrations. We assume that multiple examples of a skill are
demonstrated and captured as a set of trajectories. To capture
demonstrations we use kinesthetic teaching (Figure 3), however,
alternate demonstration techniques, such as teleoperation and
shadowing, can be employed (Argall et al., 2009b). Given the
set of captured demonstrations, our approach first calculates
the directrix (i.e., an average form of the movements) and
then extracts the main characteristics of the set (i.e., spatial
correlations across demonstrations) and forms the cross-
sectional function by identifying its boundaries. When the GC
is constructed, a geometric approach is used for generating
new trajectories starting from arbitrary initial poses. We also

Algorithm 1 Skill Learning using Generalized Cylinders

1: procedure ENCODING DEMONSTRATIONS

2: Input:set of n demonstrations ξ ∈ R
3×N×n

3: Output:Generalized cylinder Gu,v, TNB framesF(u)

4: m(u)← mean(ξ )
5: P(u, v)← estimateCSpline(ξ )
6: Gu,v,F ← makeGeneralizedCylinder(m(u),P(u, v))

7: procedure REPRODUCING TRAJECTORY

8: Input:initial point p0 ∈ R
3, Gu,v,F

9: Output:New trajectory ρ ∈ R
3×N

10: η←
‖p0−c0‖
‖g0−c0‖

11: pi ← p0 , ρ ← p0
12: for each frameFi do

13: pi+1 ← project(pi, η,Fi+1,Fi)
14: ρ ← pi+1
15: i← i+ 1

estimate a transformation function that generalizes the encoded
skill over terminal constraints (i.e., novel initial and final poses).
Algorithm 1 shows a pseudo code of the proposed approach.

4.1. Skill Encoding
Consider n different demonstrations of a task performed
and captured in task-space. For each demonstration, the 3D
Cartesian position of the target (i.e., robot’s end-effector)

is recorded over time as ξ̂
j
= {ξ

j
1, ξ

j
2, ξ

j
3}
⊤ ∈ R

3×Tj
,

j = 1, . . . , n, where Tj is the number of data-points within
the jth demonstrated trajectory . Since Tj can vary among
demonstrations, we use interpolation and resampling in order
to gain a frame-by-frame correspondence mapping among the
recorded demonstrations and align them temporally. To achieve
this, for each demonstration, we obtain a set of piecewise
polynomials using cubic spline interpolation. Then, we generate
a set of temporally aligned trajectories by resampling N new
data-points from each obtained polynomial. This process results
in a set of n resampled demonstrations ξ ∈ R

3×N×n each of
which consists of N data-points. An advantage of this technique
is that when the velocity and acceleration data are unavailable, the
first and second derivatives of the estimated polynomials can be
used instead. An alternate solution is to employ Dynamic Time
Warping (Myers et al., 1980).

4.1.1. Estimating the Directrix
To estimate the directrix Ŵ, we calculate the directional mean
(axis-wise arithmetic mean) for the set of demonstrations. Let
m ∈ R

3×N be the directional mean of set ξ (Line 4 in
Algorithm 1). Note that all the cross-sections will be centered on
m. Alternatively, the directrix can be produced using Gaussian
Mixture Regression (GMR) (Calinon et al., 2007). In that
case, GMR generates the directrix by sampling from the joint
probability learned by GMM. However, using GMR requires an
explicitly defined time vector.
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FIGURE 3 | One of the authors of the paper demonstrating a reaching skill using kinesthetic teaching. Captured task-space poses of the end-effector are used as

input for learning.

Algorithm 2 Generating GC with arbitrary cross-section

1: procedure MAKEGENERALIZEDCYLINDER

2: Input:directrixm(u), boundary function P(u, v)

3: Output:Generalized cylinder Gu,v, TNB framesFu

4: for each ui do
5: {eT(ui), eN(ui), eB(ui)} ← estimateFrame(m(ui))
6: F ← {eT(ui), eN(ui), eB(ui)}
7: Gu,v ← m(ui)+ Px(ui, v)eN(ui)+ Py(ui, v)eB(ui)

4.1.2. Estimating the Cross-Section Function
Given the demonstration set ξ and the estimated directrix m, in
this step, we explain methods for calculating the cross-sectional
function ρ(u, v). For each point u on the directrix, we gather
one corresponding point (aligned with u on the same cross-
sectional plane) from each demonstration; we call this set the
effective points. As an example, for a set of five demonstrations,
one point on the directrix and the corresponding effective points
are depicted in Figure 4 in blue and red respectively. We use
the effective points to calculate the cross-section at each step
with a smooth closed curve. The circumference of a cross-
section represents the implicit local constraints of the task (i.e.,
boundaries) imposed by the set of demonstrations. Figure 4
illustrates three different types of cross-sections calculated for
the same set of effective points. In its simplest form, we can
employ (4) and construct a canal surface which has a circular
cross-section. The radius of each circle is equal to the distance
from the point on the directrix to the furthest effective point
(i.e., point with maximum distance). As shown in Figure 4 (left),
the estimated cross-section bounds the other effective points as
well and consequently the formed canal surface encloses all the
demonstrations. The radii function r(u) ∈ R of the obtained
canal surface assigns a radius for each point u. We use a constant
range v to parameterize the circumference of the circular cross-
section (e.g., v = [0 2π]). More detail on encoding skills using
canal surfaces can be found in Ahmadzadeh et al. (2016). To
cover the cross-sectional area more effectively and precisely while
maintaining the implicit local constraints of the task, we can also
construct generalized cylinders with elliptical cross-sections [see
Figure 4 (middle)]. The radii function for elliptical cross-section
r(u) : R 7→ R

3 produces the major and minor axes and the

rotation angle of the ellipse at each step u. In amore general form,
we generate cross-sections by interpolating closed splines to the
data. Given a set of break points vj, j = 1, . . . ,m on the interval
[v0, vm] such that v0 < v1 < . . . < vm−1 < vm, we can fit a cubic
polynomial p(v) = a0 + a1(v − v0) + a2(v − v0)

2 + a3(v − v0)
3

to each interval described with four coefficients a0, a1, a2, a3. The
accumulated square root of chord length is used to find the
breaks and the number of polynomials. Since each polynomial
is C2-continuous, by applying the boundary condition p′′(t0) =
p′′(tn) = 0 and joining the polynomials, we construct a smooth
piecewise polynomial curve called a closed cubic spline. The
obtained closed-spline denoted by P(u, v) is C2-continuous
within each interval and at each interpolating nodes. Figure 4
(right) shows a closed-spline cross-section constructed on the
same set of effective points. Figure 5 depicts three GCs with
circular, elliptical and closed-spline cross-sections constructed
for a reaching skill toward an object (the green sphere).

Finally, as mentioned earlier, the presented approach requires
minimal parameter tuning in that only the shape of the cross-
section needs to be defined. However, we have found the closed-
spline cross-section to be most effective in encoding a wide range
of trajectories, thus serving as a useful default for this single
parameter.

4.2. Skill Reproduction
During the reproduction phase, the initial position of the end-
effector p0 in the cross-sectional plane S0 (perpendicular to the
directrix at c0) is used as input. This point can be either provided
by the current pose of the robot end-effector or generated
randomly. By drawing a ray starting from c0 and passing through
p0, we find g0, the intersection of the ray and the cross-sectional
curve (see Figure 6, for i = 0). We consider the distance between
the given point p0 to g0 as a measure of the similarity of the
movement we want to reproduce to the nearest neighbor on the
GC. We define this similarity by measuring the ratio η (Line 10
in Algorithm 1) by

η =
‖p0c0‖

‖g0c0‖
. (8)

To calculate the next point of the trajectory, we first transform
p0 from the current TNB frame F0 to the next frame F1 using
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FIGURE 4 | Different types of cross-section on the same set of data. Point on the directrix and the effective points are shown in red and blue respectively.

FIGURE 5 | A reaching skill encoded using three generalized cylinders with different cross-section types. The demonstrations and the object are shown in red and

green respectively.

ṕ1 =
F1 TF0p0 and then similar to the previous step, we find

g1, the intersection of the ray started from c1 passing through ṕ1.
We then use η to adjust the projected point ṕ1 according to the
measured ratio and the size and shape of the cross-section S1 by

p1 = (η‖g1c1‖)ṕ1. (9)

We then repeat this process for each cross-section. Since
throughout the process, the ratio η is kept fixed, we call this
reproduction method the fixed-ratio rule. An illustration of
a single-step reproduction process using the fixed-ratio rule
can be seen in Figure 6. Using this method we can generate
new trajectories from any point inside the generalized cylinder
(i.e., within the demonstration space) and ensure that the
essential characteristics of the demonstrated skill are preserved.
Another advantage of this reproduction strategy is in its high
computational efficiency since calculating each point requires
a projection followed by a scaling. A demo implementation
of TLGC with the fixed-ratio reproduction strategy is available
online 7.

7https://github.com/rezaahmadzadeh/TLGC

FIGURE 6 | Reproduction from a random initial pose pi on the ith
cross-section Si to the next cross-section Si+1 using projection

ṕi+1 =
Fi+1 TFi

pi and scaling pi+1 = (η.‖gi+1ci+1‖)ṕi+1.

4.2.1. Adaptive-Ratio Strategy
While keeping a fixed ratio enables the robot to reproduce
the skill while preserving the important characteristics of the
movement (i.e., shape), being able to change the ratio from
its initial value to a specific value introduces new capabilities.
We call this procedure the adaptive-ratio strategy and later in
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FIGURE 7 | Reproduction of the reaching skill using different reproduction strategies (section 4.2). (A) fixed-ratio rule with η0 = 0.55, (B) adaptive-ratio rule with

ηf = 0 (i.e., convergent), (C) adaptive-ratio rule with ηf = 1 (i.e., divergent), (D) adaptive-ratio rule (in dark green) with η0 = 0.55 and η0 = 15. The directrix and the

reproductions are depicted in blue and magenta respectively. All trajectories were reproduced from the same initial point.

section 7.2, we show the effectiveness of this strategy for handling
obstacles. In this strategy, the transition from the initial ratio
η0 to a target ratio ηf should be done smoothly. Although
different methods can be used to achieve this goal, we utilize the
exponential decay given by

ηi+1 = (η0 − ηf )e
−γui + ηf , (10)

where ηi+1 is the ratio at step ui and γ denotes the decay constant.
Using (10) together with (8) and (9), the ratio smoothly converges
from its initial value η0 to the desired value ηf . Figure 7A shows
one reproduction of the reaching skill from a given initial point
using the fixed-ratio of η0 = 0.55. The reproduced trajectory
preserves its shape and remains with similar distance from the
directrix. Whereas, Figure 7D shows the reproduction of the
reaching skill from the same initial point using the adaptive-ratio
strategy with η0 = 0.55 and ηf = 0.15. It can be seen that the
reproduced trajectory converges toward the directrix but keeps
a distance according to the final ratio value. In section 7.2, we
provide a method for estimating ηf and γ automatically from
a detected obstacle. In the rest of this section, we discuss two
cases where selection of ηf produces two different reproduction
behaviors.

Convergent Strategy
In most LfD approaches, the reproduction always converges
toward the mean of the learned model regardless of the location
of the initial point (for example see results produced using
DMPs Calinon et al., 2010 in Figure 11). This behavior is suitable
when for instance the covariance information of the learned
model represent the uncertainty and a reproduced trajectory
should avoid staying in uncertain areas and converge toward the
mean which is considered to be the most certain shape of the
skill learned from the demonstrations. We show that TLGC can
mimic such behavior by decaying the initial ratio exponentially
from η0 to ηf = 0. In this case, Equation (10) can be written
as ηi+1 = η0e

−γui . Using this formula together with (8) and

(9), the ratio smoothly converges to zero while consequently the
reproduced trajectory gradually converges toward the directrix.
Figure 7B depicts the reproduction of the reaching skill using the
convergent strategy (i.e., η0 = 0.55 and ηf = 0). This experiment
shows that TLGC can reproduce trajectories similar to the ones
reproduced by Dynamic Movement Primitives (DMPs) (Ijspeert
et al., 2013).

Divergent Strategy
While using the convergent strategy the reproduction mimics
the behavior of the directrix, we can think of a case where we
want the trajectory to remain on the boundary of the generalized
cylinder. Such reproductions use the limits of the demonstration
space provided by the human teacher. This can be seen as
another method for avoiding uncertain areas. Since the provided
demonstrations by the teacher do not include any information
about the area they enclose, reproducing a trajectory similar to
the directrix might not always be desirable or even safe. In other
words, the user might prefer to stay as close as possible to the
the known areas of the demonstration space and reproduce the
skill similar to the nearest observed examples. Such behavior can
be achieved by decaying the initial ratio exponentially from η0 to
ηf = 1. Equation (10) can be simplified to ηi+1 = (η0−1)e

−γui+

1.
Figure 7C shows the reproduction of the reaching skill using

the divergent strategy (i.e., η0 = 0.55 and ηf = 1). The
reproduction uses the exponential growth to diverge from the
directrix toward the boundary of the GC while achieving the
main goal of the task which is reaching toward the object.
Table 1 summarizes the settings and properties of the discussed
reproduction strategies.

4.3. Generalization
The approach described thus far enables a robot to reproduce
the skill inside the GC and under similar start and goal
states. However, to have a robust and flexible skill model we
must ensure it can generalize to novel situations. We use
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TABLE 1 | A guideline for setting reproduction strategies for TLGC.

Strategy Setting Property

Fixed-ratio Use (8), (9), (10) with ηf = η0 Preserves shape

Convergence Use (8), (9), (10) with ηf = 0 DMP-like reproduction

Divergence Use (8), (9), (10) with ηf = 1 Avoids demonstration

space

Adaptive use (8), (9), (10) with ηf = automatically Obstacle avoidance

a nonrigid registration technique (Maintz and Viergever,
1998) to achieve this goal. Given a set of points in source
geometry (i.e., the environment during the demonstration)
and a corresponding set of points in target geometry (i.e., the
environment during reproduction), the nonrigid registration
technique computes a spatial deformation function. To
adapt to the new states of the skill during reproduction,
the constructed generalized cylinder uses this deformation
function.

Nonrigid registration techniques have been widely
used in medical imaging (Maintz and Viergever, 1998),
computer vision (Belongie et al., 2002), and 3D modeling
communities (Pauly et al., 2005). Recently, Schulman et al.
(2016) demonstrated the usefulness of nonrigid registration in
LfD by employing it for autonomous knot tying. Their proposed
trajectory transfer method is based on the classic Thin Plate
Splines (TPS) registration algorithm (Bookstein, 1989) extended
to 3D Cartesian space, which we also utilize here.

Consider a source geometry composed of a set of N landmark
points in 3D Cartesian space, L = {Ln ∈ R

3|n = 1, 2, ...,N}, and
a target geometry composed of the corresponding set of landmark
points, L′ = {L′n ∈ R

3|n = 1, 2, ...,N}. The nonrigid registration
problem then is to find an interpolation function z : R

3 7→ R
3

constrained to map the points in L to the points in L′. However,
there are infinitely many such interpolation functions. To address
this issue, TPS finds an interpolation function that achieves
the optimal trade-off between minimizing the distance between
the landmarks and minimizing the so-called bending energy, in
effect finding a smooth interpolator. The TPS formulation is
given by

min
z







N
∑

n=1

‖L′n − z(Ln)‖
2 + λ

∫

R3
dx

∑

i∈{1,2,3}

‖ ▽2 zi(x)‖
2
F







,

(11)
where ▽2zi represents the Hessian matrix of the ith dimension
of the image of z, λ is a regularization parameter, and ‖.‖F is
the Frobenius norm. The integral term represents the bending
energy. Minimizing the bending energy term in our case is
equivalent to minimizing the dissimilarity between the initial and
deformed generalized cylinder (i.e., preserving the shape of the
skill). The interpolation function z which solves (11) consists of
two parts: an affine part and a non-affine part. The affine part
approximates the overall deformation of the geometry acting
globally, while the non-affine part represents the local residual

Algorithm 3 Generalization of GC using TPS

1: procedure GENERALIZEGC
2: Input:Gu,v, framesFu, source & target landmarks L, L′

3: Output:target G′u,v, target frames F ′u
4: z← findTPS(L,L′) solve (11)

5: m′(u)← z
(

m(u)
)

6: P ′(u, v)← z
(

P(u, v)
)

7: G′u,v,F
′ ← makeGeneralizedCylinder(m′(u),P ′(u, v))

adjustments forced by individual landmark points. With the non-
affine part expanded in terms of the basis function φ, z can be
represented as z(x) = b+Ax+

∑N
n=1 wnφ(Ln, x) where b ∈ R

3,
A ∈ R

3×3 and wn ∈ R
3 are the unknown parameters while the

basis function is defined as φ(Ln, x) = ‖Ln − x‖ ∀x ∈ R
3. The

unknown parameters b,A, and wn can be found using matrix
manipulation (Bookstein, 1989).

In the generalization procedure using TPS (detailed in
Algorithm 3), the source geometry is composed of the locations
of the important landmarks in the workspace during the
demonstration while the corresponding target geometry is
composed of the new locations of the landmark points. For
instance, in the reaching skill, the location of the object is
considered as the source landmark and the target landmark
is the new location of the object during the reproduction.
Given the landmarks, the algorithm first finds the interpolation
function z using the nonrigid registration method (line 4 in
Algorithm 3). The algorithm then uses z to transform the
directrix m 7→ m′ and the cross-sectional function P 7→ P ′

(lines 5 and 6 in Algorithm 3). The new generalized cylinder
G′u,v is then constructed using the mapped parameters (line 7 in
Algorithm 3). To reproduce the skill in G′u,v, the reproduction
methods from section 4.2 can be employed. It has to be noted
that the set of landmarks is not limited to only the initial and
final points on the trajectory (e.g., location of the object) and
can include any point on the trajectory. In section 7, we use this
concept for obstacle avoidance.

To evaluate the proposed approach, we used TPS to generalize
the GC learned for a pick-and-place skill (experiment five in
section 5.1) over four novel final states of the task. We selected
two landmarks including the locations of the object and the box.
While the location of landmark on the object remains unchanged,
the location of the target landmark on the box was changed
during the reproduction. The result of employing Algorithm 3

are depicted in Figure 10A. It can be seen that the skill can be
successfully generalized to the four desired novel locations of the
box.

One of the drawbacks of the non-rigid registration technique
is that it can lead to non-linear deformations (see section 5.2 for a
discussion about the robustness of the TPS approach). To address
this issue, alternate generalization techniques such as Laplacian
Trajectory Editing (LTE) (Nierhoff et al., 2016) can be used. LTE
interprets a trajectory P = [p(t1), . . . , p(tn)]

⊤ as an undirected
graph and assigns uniform umbrella weights, wij = 1, to the
edges eij if i and j are neighbors and wij = 0 otherwise. Local
path properties are specified using the discrete Laplace-Beltrami
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Algorithm 4 Generalization of GC using LTE

1: procedure GENERALIZEGC-LTE
2: Input:Gu,v, framesFu, source & target landmarks L, L′

3: Output:target G′u,v, target framesF ′u
4: [L,1]← calcLaplacian(m(u),L,L′) using (12), (13)

5: z← SVD(pd, ps,L,L
′) using (15)

6: m′(u)← z
(

m(u)
)

7: P ′(u, v)← z
(

P(u, v)
)

8: G′u,v,F
′ ← makeGeneralizedCylinder(m′(u),P ′(u, v))

operator as

δi =
∑

j

wij
∑

wij
(pi − pj). (12)

For the whole graph, (12) can be written as 1 = LP where
1 = [δ1, . . . , δn]

⊤ and L is defined as

Lij =







1 i = j
−wij/

∑

j wij isNeighbor(i, j)

0 otherwise

(13)

LTE solves 1 = LP using least square by specifying additional
constraints C (similar to landmarks in non-rigid registration) as

Pd =

[

L

P

]† [

1

C

]

, (14)

where Pd is the deformed graph and † denotes the pseudo-
inverse. To handle non-linear deformations, LTE calculates
elements of the homogeneous transformation that maps the
source landmarks pLS ,i to the target landmarks pLT ,i through
Singular Value Decomposition by

min
z







k
∑

n=1

‖pd,i − z
(

ps,i
)

‖2







, (15)

where z is the homogeneous transformation including a scalar
scaling factor, a rotation matrix, and a translational vector.
The generalization procedure for GCs using LTE is detailed in
Algorithm 4. Given the source and target landmark sets, we first
calculate the Laplacian (Line 4 in Algorithm 4) and then find
the mapping z by applying least square and then Singular Value
Decomposition to deal with non-linear deformations. We then
use z to map the directrix m 7→ m′ and the cross-sectional
function P 7→ P ′ (Lines 6 and 7 in Algorithm 4). The new
generalized cylinder G′u,v is then constructed using the mapped
parameters (line 8 in Algorithm 4). The reproduction methods
from section 4.2 can be employed to reproduce the skill in G′u,v.

Similar to Algorithm 3, we evaluated Algorithm 4 for the
pick-an-place task over the same four final situations. The
location of the box and the ball are considered as landmarks. The
result of employing Algorithm 4 are depicted in Figure 10C. It
can be seen that the skill can be successfully generalized to the
four desired novel locations of the box during reproduction and

the deformed GCs are very similar to the ones obtained using
Algorithm 3. For a discussion about the robustness of the LTE
approach compared against TPS see section 5.2.

5. EXPERIMENTAL RESULTS

We conducted eight experiments on two robotic platforms
to demonstrate the encoding of the GC model, as well as
its reproduction and generalization capabilities, on multiple
trajectory-based skills8. For each experiment, we gathered a set
of demonstrations through kinesthetic teaching using either a
6-DOF Kinova Jaco2 robot or a 7-DOF Sawyer robotic arm
(Figures 1, 3). The data was recorded at 100 Hz.

5.1. Learning and Reproduction
In this section, we present examples of six trajectory-based
skills encoded using the generalized cylinder model. In the first
experiment, we performed a reaching skill toward an object
(green sphere) from above (Figure 5). We present circular,
elliptical and closed-spline cross-sections to showcase how GCs
with different cross-section types encode the demonstration
space. Ten reproductions of the skill from various initial poses
produced by the fixed-ratio rule are depicted in Figure 9A.

The demonstrations recorded for the second experiment
(Figure 8A) show an example of a movement that can be
started and ended in a wide task-space but in the middle is
constrained to pass through a narrow area. This movement
resembles threading a needle or picking up an object in the
middle of themovement. The obtainedGC extracts and preserves
the important characteristics of the demonstrated skill, i.e., the
precision and shape of the trajectory throughout the movement.
Figure 9B shows 10 successful reproductions of the skill from
various initial poses using the fixed-ratio rule. LfD approaches
such as SEDS (Khansari-Zadeh and Billard, 2011) that require a
single end point fail to model this skill successfully.

The third experiment (Figure 8B) shows a reaching/placing
skill similar to the first experiment with a curved trajectory.
The robot learns to exploit a wider demonstration space while
reaching the object and maintaining trajectories with precision
near the object. Figure 9C illustrates ten reproductions of the
skill from various initial poses produced by the fixed-ratio rule9.

The fourth experiment (Figure 8C) shows a circular
movement around an obstacle, which is unknown to the robot.
Since the given demonstrations avoid the obstacle, and the
encoded GC guarantees that all the reproductions of the task
remain inside the cylinder, the reproduced path is guaranteed to
be collision-free. Figure 9D illustrates ten reproductions of the
skill from various initial poses produced by the fixed-ratio rule. It
can be seen that all the reproductions stay inside the boundaries
while exploiting the demonstration space represented by GC.
Figure 1 (middle) also shows a snapshot captured during the
reproduction of the skill.

8In all of the figures, the demonstrations, directrix, and reproductions are plotted

in red, blue, and magenta, respectively.
9The accompanying video shows the execution of the task https://youtu.be/

KqUgT72G8Pw
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FIGURE 8 | Five real-world experiments performed using TLGC. The skills are encoded by extracting the directrix (blue) and generalized cylinder (gray) from

demonstrations (red).

FIGURE 9 | Ten reproductions of the skill for each experiment. The reproduced trajectories (magenta) are generated using the fixed-ratio rule from arbitrary initial

poses.

The fifth task represents a pick-and-place movement in which
the robot picks up an object and places it in a box (Figure 8D).
The encoded GC shows that the initial and final poses of the
movement are the main constraints of the task while in the
middle of the trajectory, the end-effector can pass through
a wider space while preserving the shape of the movement.
Figure 1 (left) shows a snapshot during the reproduction of this
skill. Figure 9E depicts ten reproductions of the skill generated
by the fixed-ratio rule.

The sixth experiment illustrates a pressing skill with
multiple goals [Figure 1(right)]. The robot starts from a wide
demonstration space, reaches to the first peg, presses it down,
retracts from it, reaches for the second peg, and presses it down
(Figure 8E). Unlike many existing LfD approaches, TLGC can
handle this skill although it includes more than one goal and
does not require skill segmentation. In addition, to show that
the proposed approach is robot-agnostic, we have conducted this
experiment on a 7-DOF Sawyer robot.

5.2. Generalization
In this section, we demonstrate the generalization capability of
the proposed approach using data from the fifth experiment.
By detecting a change in the location of the objects during
the reproduction the generalization is performed to satisfy the
new conditions. After encoding the skill in the fifth experiment
(Figure 8D), we relocated the box four times and each time used
Algorithm 3 to adapt the encoded model to the new situations.
The results can be seen in Figure 10A. We then repeated the

experiment by employing Algorithm 4. Figure 10C illustrates
the results. As noticeable in both generalization experiments,
the overall shape of the generalized cylinders is preserved while
accordingly expanding or contracting for different final poses. It
also can be seen that the two experiments resulted in very similar
GCs.

As mentioned before, one of the drawbacks of the non-rigid
registration technique is that it leads to non-linear deformations
as the distance between the source and target landmark locations
increases. Figure 10B shows an example of such instability
caused by increasing the distance of the target landmark (i.e.,
the box) from the source landmark (i.e., initial location of the
box). Although the magenta GC in Figure 10B satisfies the initial
and final states of the task in the new environment, it does
not preserve the shape of the skill. On the other hand, when
employingAlgorithm 4 for the same source and target landmark
locations, the results depicted in Figure 10D indicate that LTE is
more robust to the increase in the distance between the source
and target landmarks. Unlike TPS, the magenta GC generalized
using LTE not only satisfies the initial and final states of the
skill but also preserves the shape of the skill as close as possible.
As a direct consequence of the ratio rule for reproduction,
this successfully enables reproduction of the skill to unforeseen
situations while preserving the important features of the skill.

5.3. Comparison to DMPs and GMM/GMR
In this section, we compare the presented approach to
two widely-used LfD techniques, Dynamic Movement
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FIGURE 10 | Generalization of the learned pick-and-place skill over four novel final states. (A,B) Using TPS through Algorithm 3, and (C,D) using LTE through

Algorithm 4. New locations of the box in (A,C) are close to the original location of the box, while the new box locations are farther in (B,D).

Primitives (DMPs) (Ijspeert et al., 2013), and Gaussian Mixture
Model/Gaussian Mixture Regression (GMM/GMR) (Calinon
et al., 2007). Since the original DMP representation (Ijspeert
et al., 2013) is limited to learn from a single demonstration, we
compare our approach to a variant of DMPs that constructs
a representation from a set of demonstrations (Calinon et al.,
2010). We performed two experiments comparing the behavior
of the above approaches to TLGC.

5.3.1. Comparison I
Figure 11A shows two demonstrations of a skill performed by
a teacher. The demonstrations are simple direct trajectories (i.e.,
movement of robot’s end-effector from left to right). Unlikemany
common scenarios, in this case the size of the demonstration
space does not decrease at the end of the skill. When providing
such demonstrations, the user is showing not only the shape of
themovement but also the boundaries of themovement. The goal
of this experiment is to show that existing approaches have not
been designed to deal with the demonstration space and this fact
serves as one of the main motivations for proposing TLGC.

We first employed TLGC with a circular cross-section
and generated 10 reproductions from various initial poses
(Figure 11E). The encoded GC represents the demonstration
space and the reproductions maintain the important
characteristics of the movement. TLGC requires no parameter
tuning and can reproduce multiple nonidentical yet valid
solutions in the demonstration space. For GMM/GMR we
tuned the number of Gaussian components to 2, 4, and 8,
in Figures 11B–D, respectively, and for DMPs, we tuned
the number of attractors to 2, 4, and 8, in Figures 11F–H,
respectively. The results show that both DMPs and GMM/GMR
are capable of learning the skill. However, unlike TLGC,
GMM/GMR reproduces a single solution for this task.
The reproduced trajectory by GMM/GMR imitates the
demonstrations, however, the trajectory oscillates in the
middle under the influence of different Gaussian components
placed at the demonstration space. As shown in Figures 11C,D,
increasing the number of components to four and then to eight
fails to improve the shape of the reproduced trajectory and
although the amplitude decreases the frequency increases. For
DMPs, increasing the number of attractors helps with imitating
the given demonstrations. However, starting from different
initial points, reproduced trajectories converge to an average
solution (similar to the directrix in TLGC). This experiment

highlights the role and the importance of the demonstration
space on the behavior of the learning approach.

5.3.2. Comparison II
Figure 12 shows a comparison of results on the data from
experiment four. The demonstrations and the object are shown
in Figure 12A. For TLGC, we encoded the demonstrations
using a generalized cylinder with a closed-spline cross-section
and generated five reproductions from various initial poses
(Figure 12B). Asmentioned before, TLGC requires no parameter
tuning beyond specifying the cross-section type, and by
extracting the characteristics of the movement it learns to avoid
the obstacle. For GMM/GMR we tuned the number of Gaussian
components to 5 and 10, in Figures 12C,D, respectively, and
for DMPs, we tuned the number of attractors to 5 and 10, in
Figures 12E,F, respectively. The results show that both DMPs
and GMM/GMR can learn the skill. In Figure 12C, and to a lesser
degree in Figure 12D, GMM/GMR produces a more angular
trajectory than seen in the demonstrations. In Figure 12E we
see that DMPs deviating from the demonstrations and colliding
with the object. In all four examples, we also observe that
the five reproductions starting from different initial locations
converge to a single path. In contrast, the reproductions by TLGC
produce a more natural set of motions that are not identical and
exploit the demonstration space while preserving the shape of
the skill. Note that TLGC can reproduce analogous trajectories
by using the convergent reproduction strategy if that behavior is
desirable.

6. SKILL REFINEMENT

So far, we have shown that TLGC can be used to extract,
reproduce, and generalize skills from reliable human
demonstrations. In practice, however, due to morphological
differences between the robot and the human, user-provided
demonstrations of a task are usually sub-optimal. Multiple
solutions to address this problem have been proposed. Argall
et al. (2009a) showed that a skill can be corrected by having the
teacher to assign weights to each demonstration based on its
quality. However, assigning weights to demonstrations is not
trivial. Another solution is to start from the sub-optimal model
and explore better solutions. For instance, an LfD approach
can be combined with Reinforcement Learning to refine the
sub-optimal behavior of the model (Kormushev et al., 2010).
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FIGURE 11 | Results of the comparison between GMM, DMPs, and TLGC in section 5.3.1 (A) demonstrations (B–D) GMM with two, four, and eight components

respectively, (E) generalized cylinder and ten reproductions (F–H) DMPs with two, four, and eight attractors and 10 reproductions, respectively.

FIGURE 12 | Results of the comparison between GMM, DMPs, and TLGC in section 5.3.2 (A) demonstrations (B) GC and five reproductions, (C,D) GMM with five

and ten components, respectively, (E,F) DMPs with five and ten attractors, respectively and five reproductions.

This family of solutions usually suffer from two drawbacks (a)
a manually engineered reward function is required, and (b)
finding an improved solution entails extensive trial and error.
An alternative approach is to refine the skill through physical
human-robot interaction (Argall et al., 2010). In this work, we
differentiate two types of refinement. Incremental Refinement
occurs during the learning process in which the user applies

modifications while the robot is replaying a demonstration (or a
reproduction) and the updated data is used to retrain the model.
Once a model is learned, constraint-based refinement can be
used to refine the model further by applying new constraints.
In this section, we show that both approaches can be applied to
TLGC. Note that we have selected simple tasks for analysis and
illustrative purposes.
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6.1. Incremental Refinement
In its first form, skill refinement can be performed during
the learning process incrementally. After encoding the skill
using TLGC, the user identifies a target trajectory (either a
demonstration or a reproduction) that needs to be modified.
We execute the target trajectory with the robot in compliant
control mode, allowing the joints and the end-effector position
to be adjusted while the robot is moving. Therefore, while the
robot is replaying the target trajectory, the teacher can reshape
the movement through kinesthetic correction. The obtained
trajectory either replaces the initial demonstration or is added to
the set as a new demonstration. Given the new set, the algorithm
updates the model and reproduces new trajectories that inherit
the applied corrections.

To evaluate this method, we initially demonstrated three
simple trajectories and encoded the skill with a closed-spline
cross-section (Figure 14A), and reproduced the skill using the
fixed-ratio rule (Figure 14B). Now assume we would like the
robot end-effector to dip downwards in the middle of the first
(top) demonstration. While the robot is replaying the target
demonstration, the teacher reshapes the demonstration through
kinesthetic correction. Figure 14C illustrates the original and
refined demonstrations. Figure 14D shows the updated GC after
replacing the target with the refined demonstration, as well as a
reproduction of the skill from a given initial point, that reflects
the performed refinements9. This experiment shows that TLGC
can be used to refine a learned skill incrementally. Although
many approaches can benefit from a similar process (Argall et al.,
2010), our representation is visually perceivable and has the
potential to enable even non-experts to observe and interpret the
effects of the refinement on the model.

6.2. Constraint-Based Refinement
In this section, we show that skill refinement can be
performed after the model has been encoded by applying new
constraints. We consider the skill from previous experiment
(Figure 15A). Assume during a reproduction, the user observes
and kinesthetically modifies the reproduced trajectory. When a
correction is imposed, we compare the original and the modified
trajectories, calculate point-to-point translation vectors vi, and
form a refinement matrix V̂ , by concatenating the vectors.
Figure 13 depicts the formation of the refinement matrix. The
refinement matrix acts as a geometric constraint on the GC
that would affect future reproductions. The green trajectory in
Figure 15C shows how the reproduction in Figure 15B is refined

FIGURE 13 | Formation of the refinement matrix from the original and modified

reproductions.

by the teacher through kinesthetic correction; the teacher has
applied downward forces (−x3 direction) to keep the end-effector
at a certain level. We calculated the refinement matrix V̂ =
[v1, . . . , vn] ∈ R

3×n and applied it as a constraint to our fixed-
ratio rule. A reproduction remains unaffected if it is generated
below the constraining plane. This case can be seen as the lower
reproduction in Figure 15D. On the other hand, if a reproduction
intersects with the constraining plane, the refinement matrix
applies to it. The upper reproduction in Figure 15D shows the
effect of the constraint while the dashed line shows reproduction
without applying the constraint9. This experiment indicates
that using constraint-based refinement, the user can apply new
constraints to the model without modifying it. One of the
advantages of this approach is that the imposed constraints later
can be removed or combined with other constraints without
updating the encoded model. To our knowledge there is no other
LfD approach with similar capabilities.

Note that, the refined reproduction might not be continuous
at the point where the constraint applies first (see the top
reproduction in Figure 15D). However, our experiments show
that the low-level controller of the robot can handle this during
execution9. Another solution is to smooth the trajectory before
execution.

6.3. Comparison to GMM-wEM
As mentioned before, the approach proposed by Argall et al.
(2010) enables a human to refine the trajectories during the
learning process using tactile feedback. The refined trajectories
are later used as new demonstrations to reproduce the
skill through incremental learning. Their approach GMM-
wEM combines GMM/GMR with a modified version of the
Expectation-Maximization algorithm that uses a forgetting factor
to assign weight values to the corrected points in the dataset.
In this section, we compare TLGC to GMM-wEM on two
refinement experiments.

6.3.1. Comparison I
In the first comparison, we repeated the third experiment from
section 5.1, refined one of the four demonstrations, replaced
it in the set, and retrained the model. We performed this
experiment using both TLGC and GMM-wEM as presented
in Argall et al. (2010). Figures 16A,B depict that the model
encoded using TLGC adapts to the new set and updates the
demonstration space. It can be seen that the directrix is also
moved toward the new demonstration. Figures 16C,D show the
results for GMM-wEM where the encoded Gaussian model with
three components also adapts to the new set of demonstrations.
However, the reproduction, both before and after the refinement,
oscillates toward different Gaussian components. Although the
reproduction achieves the goal of the task, it is dissimilar to the
demonstrations.

6.3.2. Comparison II
In the second comparison, we repeated the refinement
experiment in section 6.1. Since the refined demonstration
replaces the original trajectory in the set, for GMM-wEM
we assign weight values 0 and 1 to the original and refined
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FIGURE 14 | Incremental refinement of a skill by correcting a demonstration. (A) Demonstrations (red), directrix (blue) and the obtained GC, (B) reproduction from a

random pose (magenta), (C) first demonstration was refined (red) by user, (D) updated GC, directrix, and a new reproduction.

FIGURE 15 | Constraint-based refinement of a skill by correcting a reproduction. (A) Demonstrations (red), directrix (blue), and the obtained GC, (B) reproduction from

a random pose (magenta), (C) refined reproduction (green), (D) two new reproductions; upper one affected by the refinement, while lower one is not.

FIGURE 16 | Comparing incremental skill refinement on the reaching skill in section 5.1. (A,B) results using TLGC, (C,D) results using GMM-wEM.

FIGURE 17 | Comparing incremental skill refinement on the first experiment in section 6.1. (A,B) results using TLGC, (C,D) results using GMM-wEM.

demonstrations respectively. As depicted in Figures 17A,B,
given the refined trajectory and using TLGC, the encoded model
is adapted to the new set and can reproduce new trajectories
accordingly. However, as illustrated in Figures 17C,D, because of

the wide demonstration space, the model encoded using GMM-
wEM cannot represent the skill properly and the reproduction
of the skill is oscillating toward different Gaussian components.
The reproduced trajectories using the updated GC exploit the
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whole demonstration space while maintaining the main and
refined characteristics of the skill. GMM-wEM, on the other
hand, fails to represent the demonstration space.

7. OBSTACLE AVOIDANCE

In this section, we discuss a few strategies for dealing with
stationary obstacles using TLGC. Handling dynamic obstacles
is out of the scope of this article. A stationary obstacle can
either be known and present during both the demonstration and
the reproduction phases or just appear during the reproduction
phase.We refer to the first case as known obstacles and the second
case as unknown obstacles.We discuss each scenario separately in
the following sections.

7.1. Avoiding Known Obstacles
For a known stationary obstacle which is present during both
the demonstration and the reproduction, we can safely assume
that it was avoided by the teacher during the demonstration
phase. This means that neither the set of demonstrations nor
the formed demonstration space intersects with the obstacle. As
we have shown in experiment four (Figure 8C), the constructed
GC with convex cross-sections avoids the obstacle. Therefore,
the reproduced trajectories from this GC also will avoid the
obstacle as long as the obstacle remains stationary. While this
feature is inherent to our representation, the process becomes
more complicated when the obstacle is not present during
the demonstration phase. Note that, a GC with circular cross-
sections that encodes the skill might intersect with the obstacle,
since it can bound an unintended volume as the demonstration
space (Figure 4).

7.2. Avoiding Unknown Obstacles
It should be noted that the term unknown obstacle refers to
the scenario where a stationary obstacle is not present during
the demonstration but can be detected during the reproduction.
We propose two methods for avoiding unknown obstacles that
intersect with the constructed generalized cylinder.

7.2.1. Method I
Consider the GC constructed for the reaching task in the first
experiment. Now we assume an obstacle was detected during the
reproduction. In the first step, we estimate a bounding sphere for
the detected obstacle. Among several existing algorithms, we use
Fischer’s algorithm (Fischer et al., 2003) which is fast and efficient.
Geometrically, an obstacle can either be inside the GC or partially
intersect with it. Both cases are illustrated in Figures 18A,C. We
intentionally select an identical initial pose for which in both
cases reproducing the skill using the fixed-ratio rule (with ratio
η0) causes collision with the obstacles (magenta trajectories in
Figures 18A,C).

Our goal is to generate a trajectory that adapts to the new
condition and avoids the obstacle while preserving the main
characteristics of the skill as much as possible. Given the size and
location of the obstacle (i.e., the bounding sphere), our method
calculates a new ratio ηf and a decay constant γ accordingly

and employs the adaptive-ratio rule (section 4.2.1) to generate a
collision-free reproduction of the skill.

We use the diagrams depicted in Figures 18B,D to explain our
method for estimating the final ratio ηf in both cases. Assume
the sphere representing the obstacle is centered at point co with
radius ro. We first find ci the closest point on the directrix to the
center of the sphere co. We use the corresponding cross-section of
the GC centered at ci for our calculation. In the next step, we find
pi the closest point on the reproduced trajectory with the fixed-
ratio rule to co. The cosine of θ which is the angle between ¯cico
and ¯cipi can be calculated as cos θ = ( ¯cico).( ¯cipi)/(‖ ¯cico‖‖ ¯cipi‖).
Since ‖ ¯coqi‖ = ro, we can find the points where ¯cipi intersects
with the obstacle by solving the quadratic equation given by
x2 − 2x( ¯cico) cos θ + (( ¯cico)

2 − (ro)
2) = 0 for △(coqici). From

the set of solutions x = {qi, q
′
i}, we consider ones that are inside

the generalized cylinder (the solutions that satisfy x̄ci ≤ ri).
Both solutions in Figure 18B are valid while in Figure 18D, qi is
outside the GC and hence invalid. For each valid solution, we can
calculate a final ratio that forces the reproduction to pass through
that point. For instance, in Figure 18B, the final ratio for passing
through qi can be calculated as ηf = ‖ ¯ciqi‖/ri.

Nowwe estimate the decay constant γ that defines how fast the
final ratio ηf is reached. This constant can be estimated by finding
uc the minimum distance from the initial pose p0 to the sphere
along the directrix. The ratio at arc-length uc should reach and
stay within a range of certain percentage10 of ηf . We call this the
critical ratio denoted by ηc. Finally, we can calculate the critical
constant decay γc by substituting ηc and uc in (10) and solving
for γ that gives γc = (1/uc) ln ((ηo − ηf )/(ηc − ηf )).

By employing the adaptive-ratio strategy with the calculated
ηf and γc, we see in Figures 18A,C that the adapted
reproductions avoid the obstacle. It has to be noted that the
reproduced trajectory using our method is tangent to the sphere
at the intersection point qi. By increasing the size of the bounding
sphere (e.g., increasing the radius by a certain percentage), we can
force the reproduction to avoid the obstacle from a safe distance.
The proposed method is computationally efficient and requires
no parameter tuning. As soon as an obstacle is detected the
method automatically generates an adapted reproduction of the
skill. This method also can be easily extended to GCs with closed-
spline cross-sections. One of the limitations of this approach,
however, is the assumption of spherical obstacles which in some
cases can be inefficient and perform an unnecessary deformation.
For instance, when dealing with cylindrical or cubical obstacles.

7.2.2. Method II
Alternatively, a collision can be avoided by deforming the GC
using our generalization methods in section 4.3. In practice, this
deformation strategy behaves similarly to path planners when
dealing with obstacles. However, in skill learning, since the shape
of the movement is important, the dissimilarity between the
original and the deformed GCs should be minimized. To achieve
this, similar to the previous method, we first estimate a bounding
sphere for the detected obstacle. Nierhoff et al. (2016) have
shown that by considering an obstacle as a positional constraint

10We empirically found 2− 5% is a good range.
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FIGURE 18 | (A,C) Reproductions using fixed-ratio strategy (magenta) collide with obstacles. Adapted reproductions using adaptive-ratio strategy (green) avoid

obstacles. (B,D) Planar views for calculating final ratio. (E) Pick-and-place in the presence of an obstacle. GC was deformed using Algorithm 4 to avoid collision.

in (14), the trajectory can adapt to avoid the obstacle. Using this
feature and by introducing the bounding sphere as a positional
constraint in Algorithm 4, we estimate a transformation
function that deforms the GC to avoid the obstacle satisfying
the landmarks and preserving the shape of the movement
as much as possible. We have evaluated this modification to
our generalization algorithm for the task of pick-and-place
in experiment five. The deformed GC shown in Figure 18E

avoids the obstacle and can be used to generate collision-
free trajectories. Since representing non-spherical obstacles as
positional constrains is nontrivial, this method alsomight deform
the GC more than required when dealing with non-spherical
obstacles.

8. CONCLUSIONS

We have presented a novel LfD approach for learning
and reproducing trajectory-based skills using a geometric
representation which maintains the crucial characteristics and
implicit boundaries of the skill and generalizes it over the initial
and final states of the movement. The proposed approach, TLGC,

represents and exploits the demonstration space to reproduce
a variety of successful movements. TLGC requires minimal
parameter tuning that not-only simplifies the usage of the
algorithm and makes the result consistent but also can make
the approach more convenient for non-expert users. We have
shown that TLGC enables users to refine a learned skill through
both incremental and constraint-based refinement strategies
interactively. We also have introduced three obstacle avoidance
strategies for TLGC and have compared it to two existing LfD
approaches.
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