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Autonomous decision-making is a fundamental requirement for the intelligent behavior of

individual agents and systems. For artificial systems, one of the key design prerequisites

is providing the system with the ability to make proper decisions. Current literature

on collective artificial systems designs decision-making mechanisms inspired mostly

by the successful natural systems. Nevertheless, most of the approaches focus on

voting mechanisms and miss other fundamental aspects. In this paper, we aim to draw

attention to the missed pieces for the design of efficient collective decision-making,

mainly information processes in its two types of stimuli and options set.

Keywords: decision-making process, multi-agent system (MAS), swarm robotics, collective system design (CSD),

information processing

Autonomous decision-making is a fundamental requirement for the intelligent behavior of, both,
individual agents (Russell and Norvig, 1995) as well as collective systems (Mallon et al., 2001;
Nicolis and Dussutour, 2008). In nature, there is a wide range of scenarios, from simple individual
decisions about the direction of movement to more complex group decisions, that demonstrate
the importance of achieving an appropriate decision-making, for example, selecting a new nest site
in social insects (Mallon et al., 2001). Instead, we focus on designing collective decision-making
processes in the context of artificial systems. We define this process as the emergence of a particular
decision at the system level based on the opinions formulated and exchanged among its individuals
(i.e., agents), who interact continuously and influence the opinion of each other. We restrict
our study to “liquid brains” (dynamic network of agents moving in space) instead of “solid
brains” (Gold and Shadlen, 2007; Pinero and Sole, 2018).

As a modeling assumption to help analyzing the system dynamics, we require the collective
decision-making process to be discrete in both, the decision options and time, such that there
are identifiable phases, for example, before and after an option was found/taken. An example of
a system that we do not cover here is the Boids model of collective motion by Reynolds (1987),
where the option space is continuous and it may never be clear when the swarm reconsidered
to take a different direction. A borderline case is the behavior generated by the BEECLUST
algorithm (Schmickl and Hamann, 2011) where the initially continuous option space (physical
space) collapses by the agents into discrete options of competing clusters option space.

Collective decisions are required to be coherent, that is, by relying on common information
and reaching consensus, it allows the system to act as one entity when confronted with different
inputs and stimuli (Zabzina et al., 2014). Generating processes that lead to coherent decisions are
subject to a tension in the decentralized system between (i) the individual freedom of choosing
actions and (ii) the common goal of the system. Despite this tension, many natural systems illustrate
how a collective system can make self-organized and coherent decisions. Typical examples include
social insects (Sasaki and Pratt, 2017), neurons of a brain (Reid et al., 2015), and cells of the
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immune system (Shin and Mahrou, 2014). We take inspiration
from the efficient decision-making demonstrated by natural
collective systems to extract a complete description of
requirements for decision making in artificial collectives.
Natural systems address all the phases of a decision-making
process, in addition, they learned to be adaptive and survive in
most real-world scenarios. By analyzing these systems carefully,
we can find a structured approach of collective-decision making
for technical systems, such as swarm robotics (Hamann, 2018b)
and self-organizing multi-agent systems (Wen et al., 2016),
artificial immune system (Timmis et al., 2004), and future hybrid
societies (Hamann et al., 2016). We identify different phases in
these processes.

• Sense the need to start a decision-making process: In this
phase a trigger that is defined by a particular set of stimuli
at the system (macroscopic) level needs to be perceived at the
individual level.

• Explore available options for the decision: This phase starts
at the individual level and emerges at the system level, that
is, the whole system needs to become aware of possible
alternatives—the options. The potential decision options are
identified in an exploration process, which is performed by
the system individuals. The resulting set of options is strongly
dependent on different parameters of the exploration process
including the exploration space (range), the coverage of the
space, the system size, and speed (e.g., deadlines) associated
with the exploration process. In addition, the options depend
on the features and capabilities of the individual agents, mainly
their sensory capabilities.

• Achieve a coherent decision: Once the set of available options
has been identified, in a final phase the collective system has
to find a consensus on one option, and hence act as a single
unit (Yu and Wang, 2010).

While we identify these phases for designing artificial systems,
they also correspond quite well to a common subdivision
of human decision-making by Orville et al. (1962). The
authors define five phases, with the first starting from the
identification of the problem followed by phases of obtaining
information, producing possible solutions, and evaluating them.
The production and evaluation of solutions translate here to the
identification of options and to the assessment of their quality.
Whereas, the first two phases of identifying the problem and
gathering information translate to sensing the need for starting
a decision-making process. The last phase defined by Orville
et al. (1962) is selecting a strategy which corresponds to reaching
consensus in a collective system.

Research on designing collective decision-making mainly
investigates the relationship and interplay between two
components: (i) the individual (microscopic) level, and (ii) the
system (macroscopic) level. A third component, however, is
often treated implicitly: information in the form of perceived
stimuli and explored decision options. Here, we argue for the
thesis that researchers should dedicate more effort to investigate
and integrate the initial triggers of collective decision making,
aiming to unravel the underlying principles and mechanisms
to sense the need to start exploring available options. By

highlighting the required aspects to perceive stimuli and
learn about alternative options that are understudied across
the different levels of the decision-making process, our main
goal is to find a more structured and realistic approach for
efficiently designing collective decisions in artificial systems.
With this paper, we hope to create awareness of the missing
pieces that are fundamental for a detailed investigation in future
research of artificial systems. The arguments of our analysis
are grounded in both biology as inspiration and robotics as a
use case.

A prominent example of a robotic collective system is swarm
robotics, a scalable approach of coordinating large groups of
robots (Hamann, 2018b). Robot swarms are often used as
artificial systems to analyze and validate collective decision-
making approaches in dynamic complex systems (Trianni and
Campo, 2015; Valentini et al., 2016). They take inspiration from
natural collective systems, that address all relevant decision-
making phases and survive successfully within their real-
world scenarios. In contrast, collective decision-making in
robot swarms can be demonstrated in an artificial context
that takes mainly care of the phase, in which proper voting
mechanisms and interaction models are defined for the decision
process, without providing solutions to any of the other
phases mentioned above. Given the early stage of swarm
robotics research and the temptation to focus exclusively on
the actual decision-making process, we find that especially
the two initial phases of decision making—i.e., sensing the
need to start and exploring available options—have often been
ignored (totally or partially). We analyze the different aspects,
to which we would like to draw more attention, in light
of the three levels associated with any collective decision-
making process as illustrated in Figure 1. In this figure, we
show by color-coded features how the sensitivity of individuals
determines the influx of decision information and in turn
influences the characteristics of the emergent behavior at the
system level.

1. THE NEGLECTED PIECES OF THE
DECISION PROCESS: STIMULI AND
OPTIONS

For collective decision-making, we highlight two important types
of information that need to be acquired by the system and we
refer to those as the neglected pieces of the decision process:
(i) stimuli, and (ii) the set of options (alternatives) available
for a particular decision (Couzin et al., 2005). A stimulus is
the signal that triggers the system to start a decision-making
process. The system’s change in majority opinions is then its
response to that stimulus. Different characteristics of stimuli
and options, such as their rate and their spatial distributions
influence the output of the decision process fundamentally.
Nevertheless, characterizing this information and analyzing its
consequences is mostly ignored in the literature of collective
decision-making in artificial systems. In the following, we
discuss the two types of information and some of their
influential characteristics.
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FIGURE 1 | Three conceptual levels of collective decision-making and their interactions. The color scheme shows how properties of the available information and of

the individual agents influence system-level features.

1.1. Decision Stimuli
Before a decision is after a decision. In general, the current state
of the system is achieved as a result of a previous decision-making
process, that led the system to select this particular state based on
a set of given conditions. Hence, any change in these conditions
(stimulus) can trigger the system to switch to another state.

The need of starting a decision-making process thus depends
on a certain stimulus that is perceived either by a group of
individuals or by the swarm collectively. A problem that is
seldom studied is on recognizing the system’s need to undertake
decision-making processes. Indeed, studies on artificial systems
(e.g., in robot swarms) often make the implicit assumption that
there is system-wide awareness of the need to start a decision-
making process. Usually, studied decision-making scenarios

start at that moment when the system is assumed to have
already gained global awareness about the need to start the
collective decision-making process. Hence, mainly the agreement
mechanisms are investigated in terms of their application at the
individual level, as well as their emergent effect at the system
level (Hamann et al., 2014; Valentini et al., 2014; Strandburg-
Peshkin et al., 2015).

Inspired by natural systems, stimuli can be of two types:
internal and external. Internal stimuli are associated with a
change in system (or individuals) needs (e.g., a growth in the
populations size, see Britton et al., 2002; Seeley, 2010, or in
robots’ on-board energy, see Khaluf and Dorigo, 2016). External
stimuli are associated with a change in features of the system’s
current state, such as environmental changes, for example, a
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change in the intensity of the heat at the aggregation spots of
honeybees (Szopek et al., 2013).

Individuals in natural systems capture both internal and
external stimuli driven by their ultimate goal of surviving.
Differently, artificial systems are designed to satisfy a set of goals,
which may change according to their application. Such dynamic
conditions make the identification of a specific set of stimuli—
that lists the changes upon which the system should trigger
a decision-making process—a critical challenge (Ashikaga and
Asgari-Targhi, 2018). This challenge is not only related to the
type of stimuli to which the system needs to react, but also to
optimize the size of such a set when defined. Designing the system
to react to a large number of stimuli has the risk of the system
becoming vulnerable to fluctuations that result from developing
several responses to a large number of changes. In addition, large
stimuli sets can introduce conflicts in the system’s reactions, that
require to be resolved before the system can converge to a proper
response. Hence, the stimuli set needs to be minimized carefully
since missing particular stimuli reduces the system’s adaptivity.

Once the stimuli set is defined, the next challenge is to design
the individual mechanisms that guarantee a proper detection
of the defined stimuli. This belongs to the micro-macro-link
challenges in collective systems: deriving individual rules from
a global goal (i.e., the particular stimulus) and vice versa. This
challenge brings along a list of additional research questions, such
as how to define the sensory capabilities of agents (Rodrigues
et al., 2015; Salva et al., 2015) and how to decide between
homogeneous or heterogeneous individuals in terms of detection
mechanisms and the associated costs. In case of heterogeneous
individuals, the size of the different sub-populations and their
spatial distribution needs to be investigated.

1.2. Decision Options
Without options, there is no decision to take. Once the system has
recognized its need to take a decision, the next step is to explore
the set of possible options in order to select either the best option
or to find a good-enough option within a limited time.

The set of options can be discrete, for example, in an
aggregation scenario at predefined positions in space (Campo
et al., 2011) or continuous, for example, when selecting a
common direction of travel (Salge and Polani, 2011; Sartoretti
et al., 2014). Additionally, the number of options can be
finite, for example, as in a symmetry-breaking binary decision
problem (Zabzina et al., 2014) or infinite, for example, choosing
the velocity vector in flocking (Santos et al., 2016). We also
distinguish between a static option set, where the options are
known a priori, and a dynamic option set, where a subset of
options is known in the beginning and options evolve over time
(evolutionary option set). For a static set, the main challenge
is to efficiently explore the quality of each option, whereas, for
dynamic option sets, the challenge is to ensure the ability of the
system to continuously explore and reveal new alternatives.

Generally, options are not of the same quality—problems
which deal with same-quality options are referred to as
symmetry-breaking problems. Measuring the quality of the
available options is a design requirement and challenge. It is a
requirement since the quality of a particular decision depends

highly on the quality of the selected option. It is a challenge
since most works assume the individuals of collective systems
are able to perform noise-free assessments of option qualities,
that is, an objective assessment of quality exists and is agreed
upon among the different individuals in the swarm (Shackleton
et al., 2016; Valentini et al., 2017; Hamann, 2018a). Only recently,
research started to tackle this rather non-realistic assumption, as
discussed by O’Shea-Wheller et al. (2017) and Richardson et al.
(2018), where the influence of the differences in the assessments
at the individual level was analyzed and reported in terms of
the resultant decision-making process. For a realistic design of
decision-making processes, we need to consider sensor noise
and to include it in the models of individual agents of the
collective system. This may increase the complexity of how
to find consensus over the options qualities. Furthermore, we
need to design our individual behaviors such that exploration
for new options is optimized and option detection mechanisms
are integrated.

2. FROM THE NEGLECTED PIECES TO
DISSEMINATION AND DECISION-MAKING

In order to decide, the system needs to become aware of both
its stimuli and options. For stimuli, the information flow is
passively triggered through the perception of a subpopulation.
Individuals do not explicitly explore to gain information about
stimuli, instead, they merely receive information about changes
in their system or environment, once they occur. Options, in
turn, represent potential solutions that can be adopted in a
response to changes in the system’s conditions triggered by
specific stimuli. Hence, the information about the available
options is gained actively through an exploration process of
the individual agents. Consequently, designing the individual
behavior to demonstrate efficient detection and exploration
behaviors is a crucial prerequisite for a successful aggregation of
the information required for the decision-making process. Once
these pieces of information have become available, two steps
follow: First a fair dissemination (sharing) of the information;
secondly, a coherent voting mechanism to select one of the
discovered options.

2.1. Exploration
In artificial systems, the literature on collective decision-making
is mainly focused on voting mechanisms used to select a
particular option and consecutive effects. Whereas, the prior
exploration process that led to the identification of these options
is often ignored. It is mostly assumed that individuals have a
priori knowledge of options or at least know how to navigate
in space to discover available options, as observed in natural
systems such as bees (Menzel et al., 2005). However, individuals
in artificial systems need to be equipped with well-designed
mechanisms and tools to navigate through problem space
and to detect options, and furthermore infer their qualities.
The efficiency of searching strategies is application-dependent
and requires well-adapted exploration trajectories for a given
distribution of options in space (Bartumeus et al., 2005). This is
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challenging since (i) the distribution of options in the problem
space is unknown, and (ii) the system is associated with a
set of limitations, such as system size, travel speeds, sensor
coverage, time per measurements, and available total time (Kao
and Couzin, 2014). According to the nature of robotics systems
and their applications, the most critical limitations are due
to limited time, that is, deadlines for decisions (Khaluf et al.,
2014, 2016) and limited energy, that is, available energy at the
individual level and the amount that can be allocated to the
exploration process (Ratnieks and Shackleton, 2015; Wolf et al.,
2016). Therefore, more efforts need to be dedicated to the design
of efficient exploration strategies (in term of time, energy, and
coverage) to allow the emergence of more adaptive and accurate
decision processes.

2.2. Information Dissemination and
Well-Mixed Systems
Once any piece of decision-related information (i.e., stimulus
or option) becomes available for a subset of the individuals in
a collective system, the next challenge is to make the whole
system aware of this information in order to prepare for an
appropriate response. Sharing information in collective systems
is realized by both direct and indirect interactions among the
agents (Pitonakova et al., 2016; Meyer, 2017). Direct interaction
refers to individual-to-individual interactions. Whereas, indirect
interaction refers to communicating information through
the environment, using techniques such as stigmergy, e.g.,
pheromone trails in foraging ants (Dorigo et al., 2000). In the
context of decision-making processes, direct communication
is the most investigated model for interactions, in which the
knowledge of an individual agent is communicated by local
interactions at a shared central place (e.g., nest as observed
in honeybees (Seeley et al., 2012; Reina et al., 2018). Local
interaction models allow the collective system to be scalable
since its dynamics emerge from the information shared in the
neighborhood of each individual and no central component is
needed. However, other interaction models were also observed
in collective biological and physical systems, such as scale-free
correlations and networks (Cavagna et al., 2010; Hemelrijk and
Hildenbrandt, 2015) or small-world networks (Hlinka et al.,
2017). These models were claimed to lead to significantly better
results concerning decision coherence and response time.

In general, the interaction model influences mainly two
features of collective decisions; (i) the degree of decision
coherence, that is, the percentage of individuals that are
committed to the same opinion (Khaluf et al., 2017a), and
(ii) the speed of decision-making via the propagation speed
of information in the system (Sumpter et al., 2008). Another
individual parameter that plays a main role in how to improve
information sharing is the spatial distribution of information,
which is defined indirectly by the motion pattern and density
of agents (Stradner et al., 2013; Khaluf et al., 2017b). These
two parameters influence how well-mixed the system is, that is,
whether each individual has an equal chance to interact with any
other individual. A well-mixed system state and how to get there
quickly facilitates reachability of decision-related information in

the collective system (Torney et al., 2015). Therefore, designing
individual motion patterns with respect to resulting information
flows and densities is a key challenge.

2.3. Voting Mechanisms
The emergent decision at the system level is essentially affected by
the voting mechanism that is applied by the individuals. Voting
mechanisms describe the logic of commitment to a particular
option. Thesemechanisms are obviously highly relevant and have
been intensively studied across the literature of decision-making
in artificial collective systems. Hence, they are of lower interest
here. However, it is still important to notice that some system
characteristics such as the density of the collective system or
the underlying interaction model influence the usefulness of a
particular voting mechanism. For example, using the majority
rule as decision-making mechanism (Scheidler et al., 2016) is
difficult in sparse systems (Khaluf et al., 2017b). Consequently,
during the design of a collective decision-making process, it
is not only the selection of a voting mechanism but also the
verification of effective conditions at the individual level, that
then enables a successful application of that voting mechanism.
Another understudied aspect is to provide the collective system
with capabilities to switch between different voting mechanisms
based on current conditions (e.g., neighborhood densities,
information about available options, etc.). Currently, when
designing collective artificial systems, often a voting algorithm is
assigned to the system before analyzing the emergent decision-
making dynamics (Kanakia et al., 2016).

3. THE EMERGENT SYSTEM MEASURES

The system level is the upper level at which the opinions adopted
by the individuals—based on their collected information and
interactions—emerge to form a united and coherent entity. As
mentioned above, the main goal of this paper is to draw attention
to missing pieces in designing collective decisions. Accordingly,
we highlight a key set of system features and show how handling
of stimuli and options is essential to achieve these.

3.1. Decision Coherence
The coherence of a collective decision describes the degree of
agreement in the system, that is, the percentage of individuals
who commit to a majority opinion. Coherence is improved by
sharing information efficiently, that depends on the interaction
model (as discussed in section 2), the motion model and
the density of the system (see Figure 1). Particular interaction
models, such as scale-free models, were found to result in high
coherence. Similarly, some motion patterns, such as flocking,
show a coherent response to stimuli, for example, in predator
attacks (Romanczuk et al., 2009). Another influence on coherence
is the individual’s sensitivity to assess qualities of the available
options (see section 1.2). This sensitivity influences whether
a consensus (or alternatively a good enough coherence) is
achieved about the option quality, which is fundamental for the
subsequent decision-making process.
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3.2. Speed vs. Accuracy
A collective system can either decide fast or accurately. Another
important quality of a collective decision is associated with the
well-known trade-off between speed and accuracy. This challenge
exists already for static option sets (see section 1.2) but gets
more relevant for options evolving over time (Franks et al.,
2003). Deciding fast about the known set of options at a given
time may limit the accuracy of the decision-making process
even more so because better options may appear later. This also
relates to the more general secretary problem (Freeman, 1983).
In light of the speed-vs.-accuracy tradeoff, we see how important
it is to choose an appropriate mechanism to handle and share
decision-related information. For example, a high sensitivity
to changes in temporal or qualitative features of options may
lead to more accurate decisions (by accounting for all options’
updates), but slows down the convergence to a stable decision.
Similarly, relying on efficient interactions and well-mixed system
states can accelerate the convergence to a decision, but may miss
some available options and hence limit accuracy (see Figure 1).
A useful technique is to postpone the decision-making process if
the quality of the currently available options is too low and hence
taking the risk of waiting for better options (Freeman, 1983;
Reina et al., 2017). This family of decision-making processes is
referred to as value-based decision making (Pirrone et al., 2014).
A large list of works cover both types of option sets. However,
often it is assumed to be a static set that is known a priori. This
assumption doesn’t hold for unknown environments that our
artificial collective systems will face in applications.

3.3. Adaptivity and Stability
Once decided, when to reconsider? A key feature in designing
artificial systems is adaptivity. Adaptivity represents the ability
of the system to modify its state as a response to particular
changes. The quality of the system’s state may have changed
making the current state less desirable than before or a new
state may have emerged that is more desirable than the current
state. In both cases, an adaptive system would switch to the
most appropriate known state. To implement adaptivity, revising
the latest decision (state) is necessary. In the literature, the
most common approach is by using noise at the individual
level to derive decision revisions (Balázsi et al., 2011; Biancalani
et al., 2014; Hamann et al., 2014; Khaluf et al., 2017b). This
approach allows individuals, who are committed to a particular
option to switch their opinion spontaneously, and may convince
their neighborhood to switch opinion, too. A cascading effect
may impact the global level and switch the system’s current
state. For example, the authors in Ioannou et al. (2011) call
for new mathematical approaches to help attaining insights into
how information about potential options needs to be acquired
in a collective system in order to build a proper response to
specific stimuli.

In the context of dynamic collective systems, adaptivity needs
to be balanced with stability. Stability can be defined in terms
of the rate at which the system changes its current state. High
stability corresponds to a low rate in switching states of the
observed systems, while a poor stability corresponds to a high
switching rate. Changes that require the system’s response can

occur to both stimuli and option sets. However, not every
change can be addressed nor should the system react to each
change. High rates of changes in the stimuli may drive the
system to instability and may keep the system in unproductive
transient states. Despite its intuitive importance, stimuli rates are
seldom discussed in research works on the design of artificial
collective systems. One notable exception is made by Herbert-
Read et al. (2015) who designed a flocking behavior where
consensus on a specific velocity should be achieved before a
deadline in order to avoid a predator attack (i.e., a hard deadline).
Therefore, it is a fundamental requirement when designing
the individual behavior to define an appropriate sensitivity
threshold (see Figure 1) to respond to any kind of stimuli
information. Hence, a reasonable balance between adaptivity and
stability can emerge without driving the system into chaos (i.e.,
disorder) (Strogatz et al., 1994). One approach is to provide
enough positive feedback, such that the system can still switch
opinions and to balance the rate of spontaneous switching at
the individual level (high individual noise), which functions as
negative feedback and hence keeps the system in an undecided
state (Khaluf et al., 2017b).

4. CONCLUSION

We have discussed a key process in artificial collective systems:
decision-making. Decision-making is fundamental to obtain
autonomy and is an essential building block of artificial
intelligence. Similarly, collective decision-making implements
autonomy on the global level for collective systems and
introduces an interesting two-level autonomy with a micro- and
a macro-level. We have highlighted key but neglected pieces of
collective decision-making processes. We argued that without
addressing

• how a collective system locally detects that a collective decision
is required (stimuli),

• and how a collective system explores and disseminates
potential alternatives (options)

we will not be able to engineer autonomous collective systems
that survive in the real world.

The requirement for a decision is perceived via certain stimuli,
of which the detection and decoding are major challenges. Hence,
the individuals of an artificial collective system need to have
both efficient algorithms and proper hardware to process specific
information of two forms: internal stimuli (e.g., change in system
needs) and external stimuli (e.g., dynamic environments).

The second main challenge is the exploration and detection
of potential options. Often in the literature of collective
decision-making in artificial systems, the system’s individuals
are assumed to explore efficiently and being able to identify
options when encountered. Nevertheless, gathering information
about potential options is a fundamental problem that is
directly related to changes occurring in system states. Depending
on the type of changes, different sets of options need to
be identified. For example, having low energy levels must
lead the individuals to explore for energy sources instead of
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shelter alternatives. Additionally to address properly option
challenge, the individual behavior needs to guarantee an
efficient and continuous exploration of the problem space
in order to discover unknown and revisit known options
(if still valid).

For the successful design of collective decision-making,
engineers need to fully consider the individual mechanisms that
are used to perceive decision signals via stimuli, to decode and
process these, and to adopt proper exploration and identifying
strategies to address options. Then the efficient dissemination of
that information in addition to proper voting mechanisms is a
key to a converging and adaptive decision-making process.

Our overall objective is to help guiding a complete design
process of collective decision-making for artificial systems, such
as in swarm robotics. Future research has to focus on these
understudied aspects to develop an efficient methodology
for all different phases of collective decision-making.

This way we will be able to prepare sufficient degrees
of autonomy for our future artificial collective systems in
real-world applications.
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