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The free energy principle (FEP) offers a variational calculus-based description for how

biological agents persevere through interactions with their environment. Active inference

(AI) is a corollary of the FEP, which states that biological agents act to fulfill prior beliefs

about preferred future observations (target priors). Purposeful behavior then results

from variational free energy minimization with respect to a generative model of the

environment with included target priors. However, manual derivations for free energy

minimizing algorithms on custom dynamic models can become tedious and error-

prone. While probabilistic programming (PP) techniques enable automatic derivation

of inference algorithms on free-form models, full automation of AI requires specialized

tools for inference on dynamic models, together with the description of an experimental

protocol that governs the interaction between the agent and its simulated environment.

The contributions of the present paper are two-fold. Firstly, we illustrate how AI can be

automated with the use of ForneyLab, a recent PP toolbox that specializes in variational

inference on flexibly definable dynamicmodels. More specifically, we describe AI agents in

a dynamic environment as probabilistic state space models (SSM) and perform inference

for perception and control in these agents by message passing on a factor graph

representation of the SSM. Secondly, we propose a formal experimental protocol for

simulated AI. We exemplify how this protocol leads to goal-directed behavior for flexibly

definable AI agents in two classical RL examples, namely the Bayesian thermostat and

the mountain car parking problems.

Keywords: active inference, free-energy principle, message passing, state-space models, Forney-style factor

graphs

1. INTRODUCTION

The free energy principle (FEP) offers an ambitious theory for how biological agents perceive and
interact with their environment (Friston, 2009, 2010). The FEP postulates that in order for an agent
to exist (and persist) under time-varying environmental conditions, it must minimize a free energy
functional under the agent’s internal (“generative”) model for environmental observations (Friston
et al., 2006).

Active inference, which is a corollary of the free energy principle, claims that natural agents act
to fulfill prior beliefs about preferred observations (Friston, 2010). These prior beliefs about future
observations are part of the agent’s internal model specification, and free energy minimization thus
ensures that the agent avoids surprising states.

Currently, the derivation of active inference algorithms on free-form dynamic models still
requires manual work. Automation of active inference processes might enable practitioners to build
more effective, flexible and scalable agents (de Vries and Friston, 2017). In addition, automated
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execution of active inference processes also requires the
definition of a formal experimental protocol that governs the
interaction between the agent and its environment.

The derivation of a free energy minimizing algorithm can
be automated through the use of probabilistic programming
(PP) techniques (Tran et al., 2016; Carpenter et al., 2017;
Minka et al., 2018). While most PP toolboxes offer free-form
modeling tools and automated derivation of flexible inference
algorithms, their generality often comes at the cost of increased
computational load. In contrast, dynamic models incorporate
model-specific structure that can be exploited to increase
algorithm performance. Here, message passing on a factor graph
description of the generative model is especially suited for
inference in flexibly definable dynamic models (Loeliger et al.,
2007; Cox et al., 2019).

The current paper details an experimental protocol and
simulation environment for the automated derivation and
execution of online active inference processes in a dynamic
context. Crucially, we illustrate how the message passing
approach and proposed experimental protocol cooperate to
automate the execution of structured active inference algorithms
on flexibly definable generative dynamic models. We address the
following questions:

1. How can online active inference processes be operationally
described by an experimental protocol?

2. How can active inference processes be automatically derived
within the given protocol?

With respect to the first issue, we describe a protocol that formally
captures the interactions between an (active inference) agent and
its environment. The protocol supports online simulations under
situated conditions.

Concerning the second issue, the current paper provides a full
message-passing based account of active inference, formulated in
a Forney-style factor graph (FFG) representation of the internal
model (Forney, 2001). The FFG formulation supports flexible
model definitions and automated (active) inference execution
by message passing-based free energy minimization. Crucially,
this automation absolves the need for manual derivations of
variational calculus problems and in principle scales up to
complex hierarchical and interdependent models, making the
approach suitable for industrial-sized applications.

The paper is structured as follows. Sections 2 and 3 offer
a short technical rehearsal to active inference and FFGs,
respectively. The experimental protocol is detailed in section
4. In section 5 we test our proposed protocol by simulating
two classical active inference applications, namely the Bayesian
thermostat and the mountain car. These simulations were
executed with ForneyLab, which is a freely available toolbox
for automated free energy minimization in FFGs that we have
developed in our research lab (Cox et al., 2019). Finally, we
discuss related work in section 6 and conclude in section 7.

2. ACTIVE INFERENCE

Friston (2013) considers the consequences of being alive for
the internal informational mechanics of natural agents. This

FIGURE 1 | The Markov blanket forms a statistical separation between an

agent and its environment. Arrows indicate the “generative” direction.

Conditioning on the Markov blanket renders information about the internal

states of the agent independent from information about hidden state of the

environment. Blanket states for the agent are the variables for controls ut and

observations xt. The solid diamond node in the Markov blanket links posterior

beliefs over the agent’s control variables to environmental actions, and the

solid square node in the Markov blanket passes environmental outcomes to

agent observations.

analysis leads to the conclusion that natural agents appear to
exchange information with their environment so as to maximize
Bayesian evidence (i.e., minimize free energy) for an internal
model of sensory data. We consider the system of interacting
agent and environment as drawn in Figure 1. Both the agent
and environment are considered dynamical systems with hidden
state dynamics. The environment executes a process (yt , zt) =
Rt(zt−1, at), where at is an action, zt a latent state vector and yt
is the output signal. The agent holds a generative probabilistic
model pt(x, s, u) for the environmental process, where x, s, and
u are sequences of observations, internal states and controls. The
action at time t in the environmental process is represented in the
agent’s model by control variable ut and environmental output
(yt) by sensory variable (“observation”) xt . The agent has a single
goal, namely minimizing free energy, which roughly corresponds
to minimizing (precision-weighted) prediction errors for its
sensory inputs x (Rao and Ballard, 1999; Friston and Kiebel,
2009; Huang and Rao, 2011). Minimizing free energy leads to
posterior beliefs over both the states s (which affects predictions
and thereby prediction errors) and controls, which are observed
by the environment as actions that lead to changes in the sensory
inputs. These changes in sensory inputsmay also affect prediction
errors. Thus, inference for the states and controls both lead to
free energy minimization. Technically, in order for a natural
agent to persevere, it must be both physically and statistically
separated from its environment. This statistical skin is called
a Markov Blanket, which comprises the sensory and action
variables. Sensory variables are affected by internal states of the
environment but do not directly affect internal environmental
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states. Similarly, actions are affected by internal states of the agent
but do not directly affect internal states of the agent.

Because active inference reasons from observations toward
controls, the inference process requires the definition of an
“inverse” probabilistic model which is sometimes called the
recognition model qt . Full Bayesian inversion of pt is in general
intractable, so the agent resorts to approximating Bayesian
inference by minimizing a variational free energy functional,
defined by:

F[qt] =

∫

qt

qt(s, u) log
qt(s, u)

pt(x, s, u)
(1a)

= − log pt(x)
︸ ︷︷ ︸

surprise

+

∫

qt

qt(s, u) log
qt(s, u)

pt(s, u|x)
︸ ︷︷ ︸

posterior divergence

(1b)

Minimizing Equation (1) renders the free energy an upper
bound on surprise (negative log-evidence), while simultaneously
approximating the (generally unavailable) true posterior
pt(s, u|x) with the recognition model qt . In order to render this
optimization process tractable, the recognition model is often
factorized (Attias, 1999), where a fully factorized recognition
model is referred to as the “mean-field” assumption.

In order to equip the agent with a sense of “goal-directedness”
or “purpose,” the internal model extends over future states
and incorporates counter-factual beliefs about desired future
outcomes, also referred to as target priors (Parr and Friston,
2018). These target priors lead to high surprisal for observations
that are unlikely under the agent’s preferences. Free energy
minimization then produces (approximate) posterior beliefs over
controls that are believed (by the agent) to avoid these undesired
(surprising) observations. In the current paper we set the target
priors ourselves, but more generally these priors might be set
by contextual processes such as other agents or higher-level
temporal layers. These ideas are further discussed in section 7.

Previous accounts of active inference introduce an expected
free energy that steers goal-directed behavior via a prior over
control (Friston et al., 2015; Friston K.J. et al., 2017). Instead,
we will employ the internal model formulation by Parr and
Friston (2018), which explicitly includes counter-factual prior

beliefs over future observations in order to steer behavior. This
leads to a unified model specification that allows us to optimize a
single free energy functional (see also de Vries and Friston, 2017).
Minimizing this functional by message passing simultaneously
captures inference over current states (perception) as well as
future controls (action/policy planning).

Practical models for active inference that are suitable for
industrial application may be complex, layered and embedded in
a volatile context. Manual derivation of free energy minimizing
algorithms for active inference algorithms will then become
prohibitively tedious and error-prone. A graphical representation
of the internal model will aid with visualization of complex
models and allows for automated derivation of message passing
algorithms. The next section introduces Forney-style factor
graphs as a graphical framework for automatic derivation of
active inference algorithms.

3. INFERENCE BY MESSAGE PASSING ON
FORNEY-STYLE FACTOR GRAPHS

A Forney-style factor graph (FFG), also known as a “normal”
factor graph, offers a graphical description of a factorized
function (Forney, 2001). Excellent and detailed introductions
to FFGs are available in (Loeliger, 2004; Korl, 2005). While
related graphical formalisms such as Bayesian networks, Markov
random fields and bipartite factor graphs offer essentially
equivalent formulations (Forney, 2001; Loeliger, 2004), the
FFG formalism is especially suited for representing dynamical
models (Loeliger et al., 2007). Specifically, the FFG representation
requires only a single node and message type, while retaining the
explicit representation of variable relations through factor nodes.

As an example factorization, in this section we consider the
function of Equation (2), which splits into four factors:

f (x1, x2, x3, x4) = fa(x1) fb(x1, x2, x4) fc(x2, x3) fd(x4) . (2)

In this paper, we assume that the function f is a probability
distribution. The FFG for this factorization is drawn in Figure 2

(middle), together with the equivalent bipartite factor graph
representation (left) for comparison. In an FFG, variables

FIGURE 2 | Bipartite factor graph (left) and Forney-style factor graph (FFG) (middle) for the model of Equation (2), together with the message passing schedule for

computing (Equation 3b) (right). In a bipartite factor graph, solid nodes represent factors and round nodes represent variables. In an FFG, edges represent variables

and all nodes represent factors, where solid nodes indicate observations.
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correspond to edges and factors are represented by nodes. A node
is connected to an edge only if the variable of the edge is an
argument in the factor. For instance, node fc connects to edges
x2 and x3 since fc = fc(x2, x3).

Now assume that we observe x3 = x̂3 (technically: x3 is a
variable that takes on value x̂3) and are interested in computing a
posterior distribution for x4. The observation of x3 then imposes
an additional constraint δ(x3 − x̂3) on the model, which clamps
this variable to its observed value. Following (Reller, 2012), we
indicate observations by a small solid node, see Figure 2 (right).

The integral for computing the posterior distribution is shown
in Equation (3a). A direct approach to solving this integral might
be tedious and error-prone. Conveniently, the distributive law
allows us to pull unaffected integrands out of integrals, thus
unpacking the total integral into a product of sub-integrals, each
of which can be interpreted as amessage over an edge of the factor
graph, cf. Figure 2 (right) and Equation (3b):

f (x4|x3 = x̂3)

∝

∫∫∫

f (x1, x2, x3, x4) δ(x3 − x̂3) dx1 dx2 dx3 (3a)

=

∫∫
1

︷ ︸︸ ︷

fa(x1)

2
︷ ︸︸ ︷
∫

fc(x2, x3) δ(x3 − x̂3) dx3 fb(x1, x2, x4) dx1 dx2
︸ ︷︷ ︸

3

× fd(x4)
︸ ︷︷ ︸

4

(3b)

= −→µ
3
(x4)
←−µ

4
(x4). (3c)

Consecutive computation of these messages then leads to the
solution of Equation (3c), where the (unnormalized) posterior
function results from the product of the two colliding messages

3 and 4 .
For efficiency reasons the message normalizing constants are

often ignored, and messages are represented by a probability
distribution with corresponding sufficient statistics. The message
can then be interpreted as an information summary for the

variable of the corresponding edge. For instance, message 3
in Figure 2 (right) represents the probability distribution for
x4 given the information in the large box at left-hand side of

message 3 . While an FFG is principally an undirected graph,

we often draw arrows on the edges in order to anchor themessage
direction. A forward message −→µ aligns with the edge arrow, and
a backward message←−µ aligns against the edge direction.

Crucially, the message passing approach to inference allows
to reuse pre-derived solutions to specific message updates
for elementary factors across multiple models. Implementing
these solutions in a look-up table allows us to automate
the derivation and execution of message passing algorithms.
Well-known algorithms such as (loopy) belief propagation
(Forney, 2001), variational message passing (Dauwels, 2007),
expectation maximization (Dauwels et al., 2005), and expectation
propagation (Cox, 2018) have all been formulated as message
passing procedures on an FFG.

3.1. Example: Equality Node
In order to exemplify the derivation of a reusable message update
rule for an elementary factor, we consider the equality factor (see
also Korl, 2005; Cox et al., 2019), defined as

f=(x, y, z) = δ(z − x) δ(z − y) . (4)

In contrast to a variable in a bipartite graph (Figure 2, left),
a variable in an FFG can connect to at most two factors.
The equality factor resolves this situation by constraining the
information about three variables to be equal (Equation 4). Edges
constrained by equality factors can then effectively be regarded as
a single variable that is shared among connected factors.

An update for the equality node is computed by Equation (5b),
for which the schedule is graphically represented by Figure 3

(left). It can be seen that this schedule fuses information from
two branches into a single message, much like Bayes rule does.
Indeed, in FFGs, equality nodes are often used to connect prior
information about a variable with likelihood-based information
about that variable.

−→µ
3
(z) =

∫∫

−→µ
1
(x)−→µ

2
(y) f=(x, y, z) dx dy (5a)

= −→µ
1
(z)−→µ

2
(z) . (5b)

3.2. Dealing With Nonlinear Factors
The modularity of the message passing approach allows to make
local approximations. Through local linearization, we can pass
messages through nodes that encode nonlinear constraints. Here

FIGURE 3 | Message updates for the equality node (left) and the nonlinear node (right).
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we consider the factor of Equation (6), where g(x) is a nonlinear
differentiable function:

fg(x, y) = δ(y− g(x)) . (6)

The forward message is expressed as Equation (7a) and drawn in
Figure 3 (right).

−→µ
2
(y) =

∫

−→µ
1
(x) fg(x, y) dx (7a)

= −→µ
1
(g−1(y)) . (7b)

When the incoming message 1 is in the exponential family,
it can be conveniently parameterized by its sufficient statistics.
However, because of the nonlinear transformation, the outgoing
message is no longer guaranteed to be a member of the
exponential family, which may lead to intractable updates.
Therefore, we trade some accuracy for computability by making
a local linear approximation to the node function. We choose the
approximation point x̂ as the mean of the incoming message, and
expand g locally as

g̃(x) = g(x̂)+ Jg(x̂)(x− x̂) , (8)

where Jg(x̂) is the Jacobi matrix at the approximation point (or
the first derivative in the scalar case). By substituting Equation (8)
in Equation (6), we can obtain approximate but tractable message
updates. This local linearization strategy for nonlinear factors will
be used in section 5.2.

4. ONLINE ACTIVE INFERENCE IN FACTOR
GRAPHS

In section 2 we mentioned the agent’s internal model pt , which
expresses the agent’s prior beliefs about how the environmental
process generates observations from actions. In the current
section we propose a simulation protocol for online active
inference execution by the agent.

4.1. Model Specification
We consider an agent with a state-space model (SSM)
factorization for its internal model, given by

pt(x, s, u) ∝ p(st−1)

t+T
∏

k=t

p(xk | sk)
︸ ︷︷ ︸

observation

p(sk | sk−1, uk)
︸ ︷︷ ︸

state transition

p(uk)
︸ ︷︷ ︸

control

p′(xk)
︸ ︷︷ ︸

target

.

(9)

where x, s, and u are sequences with ranges that are implicitly
given by the model specification at the right-hand side. Note how
the model of Equation (9) differs slightly from a standard SSM
factorization (Koller and Friedman, 2009), because it includes
additional “target” priors p′(xk) over desired future outcomes. A
factor graph representation of Equation (9) is shown in Figure 4.
Also note that the probability distribution for the internal model
has a subscript t to indicate that the model is time-varying. We
will consider these aspects in more detail below.

Also note that at time step t, the agent has assumptions about
how the environment will evolve over the next T + 1 time steps
since we can run this model forward and generate observations
xk for k = t, t + 1, . . . , t + T. The horizon T is determined by
the information content of the target priors p′(xk). These target
priors are generally set by states of contextual processes, i.e., not
by this agent but rather by other agents (or higher level processes)
that encode unsurprising future outcomes for this agent. In order
to distinguish the predictive model for observations p(xk|sk) from
the context-based target prior for observations p′(xk), we label the
latter factor with a prime.

We refer to a sequence of future controls u =

(ut , ut+1, . . . , ut+T) as a policy. Through inference, the posterior
over policies becomes dependent on the hidden state sequence s.
Prior to inference however, the model requires the definition of a
prior belief over policies that constrains attainable control states.
In a more general formulation of the internal model, we would
write a prior over policies p(u) = p(ut , ut+1, . . . , ut+T). Here, for

simplicity, we assume p(u) =
∏t+T

k=t p(uk).

FIGURE 4 | The Forney-style factor graph for the agent’s generative model (Equation 9).
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Next to the internal model, we assume that the agent
has access to a variational distribution, also known as the
recognition distribution,

qt(x, s, u) (10)

that encodes the agent’s posterior beliefs about all latent states.
Because the future is by definition unobserved, the recognition
distribution includes the future observation variables as well.
The distinction between the agent’s prior (“generative”) beliefs
pt(x, s, u) and posterior (“recognition”) beliefs qt(x, s, u) will
be finessed below. At the start of the simulation (say at
t = 1), we will set q1 to an uninformative distribution. As
time progresses, observations become available and subsequent
inference iterations will tune qt to more informed distributions.
Often, but not necessarily so, the recognition distribution is
assumed to be fully factorized (this is themean-field assumption).
In the present article we assume a structured factorization for
the recognition distribution that is solely induced by the internal
model factorization (Bishop, 2006). In general, we may write

qt(x, s, u) = q(x, s|u) q(u) .

Since actions onto the environment are real-valued interventions,
we will generally enforce a deterministic posterior belief over
policies, i.e.,

q(ut , . . . , ut+T) =

t+T
∏

k=t

δ(uk − υk) , (11)

where υk (upsilon) are parameters that are to be determined in
the free-energy minimization process (see section 4.3). In order
words, while the prior belief over policies p(u) may contain
uncertainties, we will fix the posterior belief over policies q(u) on
a single concrete sequence.

As time progresses, at each time step, the agent interacts with
its environment through exchanging actions and observations,
followed by processing the observations. Technically, everything
that the agents does can be described as updates to its internal and
recognition models. We distinguish three phases per time step:
(1) act-execute-observe, (2) infer (process observations), and (3)
slide (move one time slice ahead), see Algorithm 1. Next, we
consider each step in more detail.

4.2. The “Act-Execute-Observe” Step
Since we assumed that the posterior beliefs over control states
were constrained by δ(uk − υk), we will select the action at time
step t as

at = υt . (12)

Algorithm 1 The online active inference algorithm

Require: p1(x, s, u) and q1(x, s, u) //model specification
1: for t = 1 to∞ do

2: Act-Execute-Observe // update to pt(x, s, u)
3: Infer // update to qt(x, s, u)
4: Slide //move one time slice ahead
5: end for

Technically, in a factor graph context, we will let the agent be the
owner of the control state ut and the environment is the owner
of action variable at . The agent and environment are coupled
at the agent’s Markov blanket by an interface factor δ(ut − at).
Message passing from the agent to the environment will now pass
the agent’s posterior belief q(ut) = δ(ut − υt) over control state
ut to the action, leading to at = υt . Next, this action is imposed
onto the environmental process Rt that generates outputs yt by

(yt , zt) = Rt(zt−1, at) , (13)

where zt refers to the dynamic states of the environmental
process. Here, we call environmental processing the execution
phase. In similar fashion to the action-interface, if we let yt refer
to the output variable and ŷt is the value of the environmental
output at time t, then an observation-interface node δ(xt − yt)
at the agent’s Markov blanket leads to an incoming message
δ(xt− ŷt) from observation variable xt . In a real-world setting, the
agent does not know the model Rt nor the environmental states,
but still gets to observe the environmental output. Acting onto
the environment and observing the consequences can technically
be processed by the agent through updating its internal model to

pt(x, s, u) : = pt(x, s, u) δ(ut − υt) δ(xt − ŷt)
︸ ︷︷ ︸

action and observation

. (14)

The factor graph of the updated internal model is shown in
Figure 5. We use small filled diamond nodes to indicate causal
interventions (actions) and small square nodes for observation
variables. Note that when we multiply the model with a delta
distribution δ(ut − υt), we technically overwrite the prior p(ut)
and the open square for p(ut) is replaced by a black diamond
smaller square to indicate the intervention. Similarly, the target
prior p′(xt) is omitted because the observation δ(xt − ŷt) renders
it conditionally independent from the rest of the model.

4.3. The “Infer” Step
The internal model has changed as a result of acting and
observing. In the infer step, we process the consequences of this
change for themodel’s latent variables. Technically, we update the
posterior from qt−1 to qt by free energy minimization. Generally,
the recognition distribution will be parameterized by sufficient
statistics µ, so we can write qt(x, s, u) = q(x, s, u|µt) and free
energy minimization amounts to finding µt by

µt = argmin
µ

∫

q(x, s, u|µ) log
q(x, s, u|µ)

pt(x, s, u)
dx ds du

︸ ︷︷ ︸

free energy Ft(µ) at time step t

(15)

This minimization procedure can be executed through
variational message passing (VMP) in the factor graph for
the updated internal model pt(x, s, u). The inference process is
visualized in Figure 6. VMP involves iteratively updating single
(or a few) components of µ while holding the other components
fixed. In this procedure, it will be very useful to set the initial
value µinit

t to µt−1. With this initialization, in most cases, the
number of VMP iterations to convergence per time step will be
quite low.
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FIGURE 5 | The FFG for the act-execute-observe phase.

FIGURE 6 | Schedule for infer phase. Light messages constitute a forward (filtering) pass, and dark messages constitute a backward (smoothing) pass.

4.4. The “Slide” Step
The slide step implements a time step increment and is best
understood by looking at the factor graph in Figure 7. Essentially,
we eliminate (marginalize out) the first time slice of the internal

and recognition models and add a time slice to the horizon. Then
we fix the indexing back to pt .

Formally, marginalization of the first slice and adding a slice
at the horizon leads to the following update of the agent’s
internal model:

pt+1(x, s, u) ∝

∫
first slice

︷ ︸︸ ︷

p(st−1) p(st|st−1, ut) p(xt|st)

action and observation
︷ ︸︸ ︷

δ(ut − at) δ(xt − yt) dst−1dutdxt
︸ ︷︷ ︸

close box (marginalization) for first slice, yielding new prior p(st)

·





t+T
∏

k=t+1

p(xk|sk) p(sk|sk−1, uk) p(uk) p
′(xk)





︸ ︷︷ ︸

unaltered mid-section slices

· (16)

p(xt+T+1|st+T+1) p(st+T+1|st+T , ut+T+1) p(ut+T+1) p
′(xt+T+1)

︸ ︷︷ ︸

add slice at horizon
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FIGURE 7 | Schedule and FFG extension for slide phase.

Here, we have processed the action and observation together
with sliding a time step in one update. The marginalization of
xt , st−1, and ut in the first slice of the graph can be executed
by message passing. In practice, we can simply re-use message

4 from Figure 6 (after re-normalization) as the new state prior
p(st). In order to maintain a horizon of T time steps, we add one
time slice of the state space model to the horizon (at time step
t + T + 1). Again, it is assumed that a contextual agent feeds the
target prior p′(xt+T+1).

Adding and deleting slices at each time step also provides
room for changing the model structure of the internal model
on the basis of current contextual information. For instance,
the observation model p(xt+T+1|st+T+1) does not need to be
the same as p(xt+T |st+T). The decision for the structure of
p(xt+T+1|st+T+1) can be postponed until time step t.

Because the recognition model is simply parameterized by
its sufficient statistics [qt(x, s, u) = q(x, s, u|µt)], we do not
require an explicit slide for the recognition model. In the
next “infer” step, the recognition model is simply initialized
with the present statistics (µinit

t = µt−1) and updated to the
new posterior statistics, without the need for redefining the
recognition model.

Once the internal model has slided forward by one slice, we
increment the time step index by

t : = t + 1 (17)

so as to obtain a generative model pt(x, s, u) again (see Equation
9), but now for an increased time step. The Slide phase is followed
by repeating the loop, starting with an Act-Execute-Observe step.

In summary, online active inference by a dynamic agent
proceeds according to updating both its internal and recognition
distributions at each time step according to Equations 9, 11, 15,
16, and 17. Actions and observations are technically processed
by appending delta factors to the agent’s internal model. The
effects of these internal model changes on the latent variables
in the model are inferred through free energy minimization,
which leads to an updated recognition distribution. Next, the

model slides forward one time slice and starts a new Act-Execute-
Observe step.

5. SIMULATIONS

In order to illustrate the operationability of the active inference
protocol, we simulate two classic active inference problems,
namely the Bayesian thermostat (Friston et al., 2012; Buckley
et al., 2017) and the mountain car (Friston et al., 2009; Sutton
and Barto, 2018; Ueltzhöffer, 2018). We use ForneyLab (version
0.9.1) as a tool for automated derivation of message passing
algorithms (Cox et al., 2019). ForneyLab (available from https://
github.com/biaslab/ForneyLab.jl) supports flexible specifications
of factorized probabilistic dynamic models (van de Laar et al.,
2018) and generates high-performance inference algorithms on
these models (Cox et al., 2019).

ForneyLab is written in Julia, a high-level programming
language for numerical computing. Julia combines an accessible
MATLAB-like syntax with C-like performance (Bezanson
et al., 2017). Julia’s excellent meta-programming capabilities
allow ForneyLab to define an intuitive domain-specific model
specification syntax, and to automatically compile message
passing schedules directly to executable Julia code. Furthermore,
Julia’s powerful multiple dispatch functionality enables efficient
scheduling and algorithm execution.

5.1. The Bayesian Thermostat
In this section we simulate an agent that can relocate itself
in a temperature gradient field. The agent aims to position
itself at a desired temperature relative to a heat source. Our
simulation setup is an adaptation of the setup described by
Buckley et al. (2017).

5.1.1. Environmental Process Specification

First we specify the environmental process. The temperature T

as a function of position z follows the profile

T (z) =
T0

z2 + 1
, (18)
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FIGURE 8 | Environmental temperature profile, showing environmental

temperature as a function of position.

where T0 = 100 represents the temperature at the location of the
heat source, see Figure 8.

The environmental process is steered by actions at that reflect
the velocity of the agent. The output of the environmental process
is the observed temperature by the agent. We assume that the
agent observes a noisy temperature, leading to the following
environmental process equations:

zt = zt−1 + at (19a)

yt ∼ N
(

T (zt),ϑ
)

. (19b)

In our simulation, we used initial position z0 = 2 and observation
noise variance ϑ = 10−2.

5.1.2. Internal Model Specification

The agent’s internal model follows the factorization of
Equation (9). The goal prior encodes a belief about a preferred
temperature x◦+ = 4, as

p′(xk) = N
(

xk|x◦+, 10
−2

)

. (20)

Furthermore, we endow the agent with an accurate model of
system dynamics

p(sk|sk−1, uk) = N
(

sk|sk−1 + uk, 10
−2

)

. (21)

However, in order to challenge the agent, we hamper the
observation model. Instead of the actual temperature profile
(Equation 19b), we use

p(xk|sk) = N
(

xk| − sk, 10
−2

)

, (22)

which simply specifies that the observed temperature decreases
with position. The internal model definition is completed by
specifying a prior for controls and a vague prior for the
initial state:

p(uk) = N
(

uk|0, 10
−2

)

(23a)

p(s0) = N
(

s0|0, 10
12

)

. (23b)

Substituting Equations (20–23) in Equation (9) then returns the
full internal model definition. One section of the generative

FIGURE 9 | One time section of the Bayesian thermostat model (excluding the

state prior).

model FFG is shown in Figure 9. A Julia code snippet1 for
constructing the internal model with ForneyLab is shown in
Figure 10.

After having specified the generative model, ForneyLab can
be used to automatically generate a message passing algorithm
for free energy minimization, see Figure 11. ForneyLab generates
Julia source code for the message passing algorithm, see
Figure 12 for a snippet of the generated code.

5.1.3. Simulation Results

The agent-environment system was simulated using the
experimental protocol as defined in section 4, for 100 time
steps and with horizon T = 2, with the additional constraint
that the agent is only allowed to act after t = 25. Execution
of the experimental protocol amounts to executing the
code of Figure 13. Note that this implementation of the
experimental protocol ensures that the agent never observes
the environmental states of the environment directly, but
rather only interacts with the environmental process through
the act, execute, and observe functions. This setup
emphasizes the idea that the environmental states (z) are not
(directly) observable. In principle, this setup is then applicable
to a real-world setting where the environmental process is not
a simulation.

The graphs of Figure 14 show the simulation results.
It can be seen that after the agent is allowed to act,
it quickly moves away from the heat source in order to
eventually settle at the desired temperature. Apparently, despite
the hampered observation model, the agent still attains the
desired goal.

1Code for the complete simulation is available at http://biaslab.github.io/materials/

ai_simulations.zip.
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x = Vector{Variable}(undef, T) # Observed states

s = Vector{Variable}(undef, T) # Brain states

u = Vector{Variable}(undef, T) # Control states (policy)

@RV s_t_min GaussianMeanVariance(placeholder(:m_s_t_min),

placeholder(:v_s_t_min)) # Internal state prior

s_k_min = s_t_min

for k = 1 :T # For present and future timepoints

@RV u[k] GaussianMeanVariance(placeholder(:m_u, var_id=:m_u_*k, index=k),

placeholder(:v_u, var_id=:v_u_*k, index=k)) # Control prior

@RV s[k] GaussianMeanPrecision(s_k_min + u[k], 1e2) # State transition model

@RV x[k] GaussianMeanVariance(-1.0*s[k], 1e-2) # Observation model

GaussianMeanVariance(x[k],

placeholder(:m_x, var_id=:m_x_*k, index=k),

placeholder(:v_x, var_id=:v_x_*k, index=k)) # Target prior

s_k_min = s[k]

end

FIGURE 10 | Julia code for building the internal model for the Bayesian thermostat with ForneyLab. In Julia, the prefix “@” indicates a macro. Under the hood, @RV

constructs the Forney-style factor graph for the specified random variables. The “:” prefix (e.g., :m_x) specifies a symbol that may be used for indexing.

placeholder indicates a placeholder for data that can be passed to the algorithm during inference.

algo = sumProductAlgorithm([s; u]) # Generate message passing algorithm code

FIGURE 11 | ForneyLab command for automated generation of the message passing algorithm for inference in the Bayesian thermostat simulation. The sum-product

algorithm implicitly assumes the recognition model of Equation (11). ForneyLab also supports generating message passing code for alternative constraints on the

recognition distribution (see e.g., Cox et al., 2018).

function step!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 20))

messages[1] = ruleSPGaussianMeanVarianceOutVPP(nothing, Message(Univariate, PointMass, m=data[:m_s_t_min]),

Message(Univariate, PointMass, m=data[:v_s_t_min]))

messages[2] = ruleSPGaussianMeanVarianceOutVPP(nothing, Message(Univariate, PointMass, m=data[:m_u][1]),

Message(Univariate, PointMass, m=data[:v_u][1]))

messages[3] = ruleSPAdditionOutVGG(nothing, messages[1], messages[2])

...

marginals[:u_1] = messages[2].dist * messages[19].dist

marginals[:u_2] = messages[9].dist * messages[20].dist

return marginals

end

FIGURE 12 | Snippet of the automatically generated inference algorithm code (T = 2) for the Bayesian thermostat. Upon inference, the step! function builds an

array of messages using pre-derived update rules (e.g., ruleSPAdditionOutVGG) and returns posterior beliefs over internal and control states.

5.2. Mountain Car
In this section we simulate an agent that aims to relocate and park
itself on a steep hill. However, the agent’s engine is too weak to
climb the hill directly. Therefore, a successful agent should first
climb a neighboring hill, and subsequently use its momentum
to overcome the steep incline on the goal-side. This task is also
known as the mountain car problem (Friston et al., 2009), which
is considered a classical benchmark in the reinforcement learning
literature (Sutton and Barto, 2018).

5.2.1. Environmental Process Specification
We start by defining the environmental process, which is similar
to the process defined in Ueltzhöffer (2018). We interpret the
environmental state zt = (φt , φ̇t), as the respective position and
velocity of the mountain car. The horizontal gravitational force

component of the hilly landscape depends upon the mountain
car’s position by [see Figure 15 (top)]

Fg (φ) =







−0.05 (2φ + 1) if φ < 0

−0.05
[

(1+ 5φ2)−1/2 + φ2 (1+ 5φ2)−3/2 + 1
16φ4

]

otherwise ,
(24)

Furthermore, we define a velocity-dependent drag as

Ff (φ̇) = −0.1 φ̇ . (25)

Through actions, the agent is allowed to set the engine
force, which is limited to the interval (−0.04, 0.04), by [see
Figure 15 (bottom)]

Fa(a) = 0.04 tanh(a) . (26)
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(execute, observe) = initializeWorld() # Let there be a world

(infer, act, slide) = initializeAgent() # Let there be an agent

# Step through the experimental protocol

a = Vector{Float64}(undef, N) # Actions

y = Vector{Float64}(undef, N) # Environmental outcomes

for t = 1:N

a[t] = act() # Evoke an action from the agent

execute(a[t]) # The action influences hidden environmental states

y[t] = observe() # Observe the current environmental outcome (update p)

infer(a[t], y[t]) # Infer beliefs from current model state (update q)

slide() # Prepare model for next iteration

end

FIGURE 13 | Code for executing the experimental protocol. The initializeWorld and initializeAgent functions specify closures that return functions for

interacting with the environment and agent. This construct allows for encapsulating hidden states in respective scopes for the agent and environment, and allowing

only indirect access to environmental states through returned functions.

FIGURE 14 | Active inference results for the Bayesian thermostat. After t = 25

the agent is allowed to act, moving toward the goal temperature x◦+ = 4.

Assuming unit mass for the mountain car, this leads to the
following discrete system dynamics:

φ̇t = φ̇t−1 + Fg(φt−1)+ Ff (φ̇t−1)+ Fa(at) (27a)

φt = φt−1 + φ̇t . (27b)

In our simulation, we choose initial position φ0 = −0.5 and
initial velocity φ̇0 = 0. The environmental process generates
outcomes as noisy observations of the current state with an
observation noise variance θ = 10−4 · I, where I represents the
2 × 2 identity matrix. This leads to the following environmental
system dynamics:

zt = g(zt−1, at) (28a)

yt ∼ N (zt , θ) , (28b)

where Equations (27a, 27b) are summarized by a transition
function g(·).

FIGURE 15 | (Top) The horizontal gravitational force component that acts

upon the agent as a function of position. (Bottom) The horizontal force

component of the engine as a function of action.

5.2.2. Internal Model Specification

For the internal model we define observation variables xk =
(ξk, ξ̇k), and encode the agent’s target to reach a desired state x◦+ =
(ξ◦+, ξ̇◦+) = (0.5, 0) at time t = 20 by defining a time-dependent
target prior

p′(xt) =

{

N
(

xt | 0, 10
12 · I

)

if t < 20

N
(

xt | x◦+, 10
−4 · I

)

otherwise .
(29)

In other words, we set a vague prior belief over short-term
observations (t < 20), but aim to reach and remain at the goal
state afterwards.

We endow the agent with an accurate model of the
environmental dynamics. These dynamics are captured by the
transition model for the internal states sk = (ζk, ζ̇k). Because
the current state is a non-linear function of the previous state
and action, we resort to local linear approximations of the system
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dynamics as explained in section 3.2. We choose the transition
model

p(sk | sk−1, uk) = N
(

sk | g̃(sk−1, uk), 10
−4 · I

)

, (30)

where g̃ represents the local linear approximation of g in
Equation (28a).

The observation model simply captures the observation noise

p(xk | sk) = N
(

xk | sk, 10
−4 · I

)

. (31)

FIGURE 16 | A factor graph visualization of one time slice of the agent’s

internal model for the mountain car problem (excluding the initial state prior).

The internal model is completed with a tight state prior and vague
control priors:

p(s0) = N
(

s0 | (−0.5, 0), 10
−12 · I

)

(32a)

p(uk) = N
(

uk | 0, 10
12

)

. (32b)

These priors specify an accurate belief over the initial state and
few prior constraints on control signals. Figure 16 shows one
time slice of the agent’s internal model.

5.2.3. Simulation Results

The simulation results1 for 30 time steps and with horizon
T = 20 are shown in Figure 17. Here, a naive policy (right
column) with full throttle to the right does not overcome
the steepest part of the incline, while the active inference
process (left column) infers the need to move left before
engaging full throttle to the right in order to reach the desired
goal state.

6. RELATED WORK

Languages and toolboxes for automated probabilistic inference
are increasingly studied in the research literature under the
label Probabilistic Programming (PP). Recent state-of-the-art PP
toolboxes such as Stan (Carpenter et al., 2017), Edward (Tran
et al., 2016), and Infer.NET (Minka et al., 2018) support a
broad spectrum of models and algorithms. However, dynamic
models incorporate specific structures that may be exploited for
improved algorithm efficiency. The SPM toolbox (Friston, 2014)
includes specialized routines for simulating active inference
processes, but offers limited modeling flexibility. ForneyLab
marries flexible model design with automated derivation of

FIGURE 17 | A naive policy in the mountain car task applies a full thrust to the right (right column). This naive policy is unable to make the agent traverse the barrier

raised by the gravitational force. In contrast, active inference (left column) automatically infers that the agent should first move left (away from its goal) and

subsequently use its momentum (and full forward thrust) to traverse the barrier.
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efficient structured inference algorithms on dynamic models
(Cox et al., 2019). Furthermore, because ForneyLab produces
inference algorithms as stand-alone (Julia) programs, these
algorithms can be manually optimized before execution.

Agent-environment interactions can be viewed from the
perspective of coupled dynamical systems (Beer, 1995). It was
recognized early on that a successful regulating agent must
include a model of its environment (Conant and Ashby, 1970).
Later efforts in the field of model-predictive control used this
idea to build controllers for industrial applications (Camacho
and Alba, 2013). Various reinforcement learning techniques have
also been applied to the mountain car parking problem (Kuss
and Rasmussen, 2004; Fürnkranz et al., 2012; Sutton and Barto,
2018), which can be extended to hierarchical contexts as well
(Barto and Mahadevan, 2003). A comparison between active
inference, risk-sensitive control (van den Broek et al., 2010) and
expected utility maximization is provided by Friston et al. (2015).
Further comparisons between active inference and reinforcement
learning can be found in Friston (2012), Friston et al. (2012), and
Friston and Ao (2012).

While the present paper considers a discrete-time formulation
of active inference, simulations of active inference (Friston
et al., 2009; Pio-Lopez et al., 2016; Buckley et al., 2017)
have also been formulated and performed in the continuous-
time domain (Friston et al., 2008). In the continuous-time
treatment, preferred states are encoded as attracting sets in
the dynamical system, and active inference leads the system
to these attracting sets over time. While the continuous-
time formulation allows for a more standard mathematical
treatment, the discrete-time formulation supports explicit
reasoning about targets at specific time-points and thereby more
easily supports specification of priors for value-seeking behavior
(Friston et al., 2015; Parr and Friston, 2017).

7. DISCUSSION AND CONCLUSION

This paper has described a message passing approach to
automating simulations of online active inference processes,
together with an experimental protocol that governs the
interactions between the agent and its environment. We have
tested our protocol on two synthetic applications, namely
the Bayesian thermostat and the mountain car parking tasks.
Through these examples we have addressed the questions
formulated in section 1, and illustrated how:

1. the proposed experimental protocol defines how to simulate
the interactions between an active inference agent and its
environment (section 4);

2. The ForneyLab toolbox allows for automatic scheduling
of message passing algorithms for variational free energy
minimization (section 5) in active inference agents.

The FFG formalism offers a modular decomposition of the
internal model definition, allowing flexible model adaptations
and intuitive visualization of complex models. Moreover,
message passing algorithms for free energy minimization

can be automatically derived on the FFG formulation
of the agent’s internal model. Automated derivation with
ForneyLab returns the inference algorithm as a Julia program,
which can be customized and executed in context of an
experimental protocol.

The proposed experimental protocol formulates the active
inference process at each time step as an interplay between
updating an internal (generative) model with actions and
outcomes (“act-execute-observe”), followed by updating the
recognition model (“infer”) with the (statistical) consequences
of the change in the generative model. Crucially, the agent and
its environment solely interact through the exchange of actions
and outcomes.

A current limitation of active inference with ForneyLab is
that high-dimensionalmodelsmay lead to numerical instabilities.
Message passing with improved numerical stability is described
by Loeliger et al. (2016). Furthermore, the specific message
update order as prescribed by the schedule may have an effect
on algorithm convergence. However, little theory still exists on
optimal scheduling strategies. An interesting idea was mentioned
in de Vries and Friston (2017), where it was suggested to
approach the scheduling problem as an inference process that is
itself subject to the free energy principle.

The presented approach to active inference relies fully on
automatable inference methods. This aproach scales in principle
to more complex applications that may be of interest to industry
as well. For example, the state space models in the examples
can be readily extended to hierarchical generative models (Kiebel
et al., 2009; Senoz and de Vries, 2018), which have been shown to
be quite powerful in modeling real-world dynamics (e.g., Turner
and Sahani, 2008; Mathys et al., 2014).

In order to construct hierarchical models, the policy
priors may optionally depend on higher-order states,

e.g., p(uk|s
(1)
k
), which renders prior constraints on control

context-dependent. Similarly, target priors may also be made

context-dependent, e.g., p(xk|s
(1)
k
). Contextual processes

may thus influence the agent’s behavior by modifying prior
statistics, which allows the model design engineer to propose
hierarchical and context-aware models. For example, when
higher-order states evolve over longer timespans, hierarchical
nesting leads to deep temporal models (de Vries and Friston,
2017;Friston K. et al., 2017).

Higher-order dynamics could also be learned by free energy
minimization (Ramstead et al., 2018). For example, the current
simulations internalize a fixed model of the environmental
dynamics. By including a prior belief over the dynamics in
the internal model, the agent might learn the environmental
dynamics from data (Ueltzhöffer, 2018). This adaptive agent
then exhibits epistemic behavior and will take action in order to
decrease uncertainty about the environmental dynamics (Friston
et al., 2016; Cullen et al., 2018). Moreover, the FFG paradigm
supports messages that are computed by local gradient or
sampling-based methods (Dauwels, 2007), and even allows for
learning complex updates from data with the use of amortization
techniques (Stuhlmüller et al., 2013; Gershman and Goodman,
2014). With these techniques, an adaptive agent might learn a
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rich and accurate model of its environment, leading to more
effective behavior.

In summary, the current paper has proposed a scalable
approach to automatic derivation of active inference
algorithms and a practical view on the implementation
of simulated active inference systems. We believe that
synthetic active inference holds great promise for future
engineering applications.
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