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The segmentation of continuum robots in medical images can be of interest for analyzing

surgical procedures or for controlling them. However, the automatic segmentation

of continuous and flexible shapes is not an easy task. On one hand conventional

approaches are not adapted to the specificities of these instruments, such as imprecise

kinematic models, and on the other hand techniques based on deep-learning showed

interesting capabilities but need many manually labeled images. In this article we propose

a novel approach for segmenting continuum robots on endoscopic images, which

requires no prior on the instrument visual appearance and no manual annotation of

images. The method relies on the use of the combination of kinematic models and

differential kinematic models of the robot and the analysis of optical flow in the images.

A cost function aggregating information from the acquired image, from optical flow

and from robot encoders is optimized using particle swarm optimization and provides

estimated parameters of the pose of the continuum instrument and a mask defining

the instrument in the image. In addition a temporal consistency is assessed in order to

improve stochastic optimization and reject outliers. The proposed approach has been

tested for the robotic instruments of a flexible endoscopy platform both for benchtop

acquisitions and an in vivo video. The results show the ability of the technique to correctly

segment the instruments without a prior, and in challenging conditions. The obtained

segmentation can be used for several applications, for instance for providing automatic

labels for machine learning techniques.

Keywords: minimally invasive surgery, continuum robots, computer vision, optical flow, automatic labeling

1. INTRODUCTION

Continuum robots, contrarily to industrial robots, do not present a succession of joints and rigid
links. Instead, a continuously curving, flexible structure is used, in conjunction with actuators
that govern its shape. Most of them are tubular in shape, which presents significant advantages
for minimally invasive surgery (Burgner-Kahrs et al., 2015). Examples of applications include
surgical specialties as wide as endovascular and cardiac surgery (Vasilyev et al., 2015; Devreker
et al., 2016), gastroenterology (Berthet-Rayne et al., 2018; Garbin et al., 2018; Zorn et al., 2018),
neurosurgery (Swaney et al., 2015), or fetal surgery (Dwyer et al., 2017).

Continuum robots are difficult to model mainly because they use miniature embedded actuation
systems. This creates slack, friction, or various nonlinear phenomena which limit the accuracy of
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existing models (Burgner-Kahrs et al., 2015). Moreover,
interactions with the environment impose external forces
on the continuum robot. State of the art mechanical models
allow computing the robot shape under external loads. Such
approaches, however, require integrating sensors in the body
of the robot in order to estimate either positions/orientations
or interaction forces with the environment (Kim et al., 2014;
Mahoney et al., 2016; Shi et al., 2017). Depending on the kind
of actuation and size constraints, this is not always possible,
and generally not an easy task. Moreover, integrating new
sensors in a robot is costly, and requires redesigning existing and
available systems.

Surgical vision techniques have been developed as a solution
for tracking surgical/continuum instruments and estimating
their shape. Vision is especially appealing for endoscopic
settings, because a video camera is usually included in the
surgical setup, which provides visual guidance to the surgeon.
As a result, many works have attempted to segment robotic
instruments in endoscopic images. Marker-based solutions have
shown promising results for both tool segmentation and 3D
pose estimation from 2D images (Cabras et al., 2017). Those
approaches, however, modify the instrument body to integrate
some markers, thus requiring new developments (such as choice
of materials, analysis of cleaning process,. . . ) for in vivo use.
In order to detect instruments in endoscopic images using
marker-less techniques, several approaches make use of color
information from the instrument (Doignon et al., 2005), or
restrict the search space using constraints related to the medical
setup, such as a rigid instrument passing through a trocar
in laparoscopy (Voros et al., 2007). Those approaches are
however not directly applicable to continuum robots, and/or
require human intervention for an initialization step (Pezzementi
et al., 2009). In parallel, marker-less approaches using machine
learning for pixel-wise instrument segmentation have been
developed (Bouget et al., 2017; Bodenstedt et al., 2018). Typically,
a training set composed of endoscopic images is manually labeled
by an expert, an algorithm learns the links between the labels
and some visual features and generalizes them to other surgeries.
Such approaches have shown promising results for segmentation
as well as for 3D pose estimation (Allan et al., 2018).

With the recent uptake of Deep Neural Networks in the
Surgical Vision community, interest has grown toward reduced
data approaches, i.e., approaches that require less data for
training. Transfer learning has been shown to be effective
to fine-tune a network using a reduced set of surgery-
specific images (García-Peraza-Herrera et al., 2016). Other
approaches using weakly supervised learning (Vardazaryan et al.,
2018) or partly unlabeled datasets (Ross et al., 2018) have
shown promising results, but some level of manual annotation
made by an expert is still required. In order to use fully
unsupervised learning, automatic labeling approaches have
been developed. These methods are usually based on object
saliency detection (Yang et al., 2013; Cheng et al., 2015; Cho
et al., 2015). Usually, assumptions are made about what makes
an object appear salient, e.g., local contrast differences or a
prominent position in the image. Other methods assume that
the foreground objects have more complex motions that the

FIGURE 1 | (Left) Last image of a 50 images sequence (5s) where the right

instrument is moving. (Right) Segmentation provided by VideoPCA (Stretcu

and Leordeanu, 2015). The salient part of the instrument near the tip is well

extracted but a large part of the background is also considered as foreground.

Moreover, despite the motion of the instrument, the shaft of the instrument is

not considered as foreground.

background (Stretcu and Leordeanu, 2015). This approach,
which extracts information from motion by performing a global
principal component analysis of the video sequence is partly
related to our work, in the sense that motion is a key element.
Nevertheless, as can be seen on Figure 1, the application of
the techniques proposed in Stretcu and Leordeanu (2015)
does not provide satisfactory segmentations even when tuned
to the problem at hand. The probable reason is that in in
vivo gastroenterology videos the background exhibits complex
motions due to physiological motion and interaction of the
instruments with the tissues. Therefore, specific tools are needed
for handling these videos.

Instead of focusing on a pure vision-based approach, this
paper makes use of an information which is rarely used in
surgical vision: the robot kinematics. As explained before,
mechanical models for continuum robots are inaccurate and
error-prone. They can nevertheless be combined with image
data for enhancing the quality of pose estimation (Tran et al.,
2017; Vandini et al., 2017) or tracking (Pezzementi et al.,
2009; Reiter et al., 2014). Similarly to approaches purely based
on images, current methods making use of kinematic data
typically build over image segmentation techniques, using either
machine learningmethods (with hand-labeled images) ormanual
initialization. In this paper, we propose a novel method, which
makes use of robot forward and differential kinematics, together
with optical flow methods, in order to produce pixel-wise
image labels. The method is fully automatic, and does not
require any human intervention for labeling the data. One key
element of using differential kinematics is that in specific cases
it is less affected by nonlinearities than the forward kinematic
model. Let us consider, for instance, a continuum robot with
a single bending section actuated with cables. One of the
main contributors to nonlinearities is friction (Do et al., 2015;
Ha et al., 2018), which is most important when the actuator
changes direction (see Figure 2). At those moments, the speed
computed by the model may be non-zero, while the actual robot
speed will be zero due to friction. The difference between the
model-predicted and actual robot speed will be integrated over
time, leading to large position errors in the kinematic model.
Outside of those moments, however, the differential kinematic
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FIGURE 2 | Typical relations between proximal motor position and distal angle

for the cable-actuated bending DOF of the STRAS robot (Zorn et al., 2018).

The straight line shows the theoretic model relation, while the hysteretical

curves show the actual relation for a given configuration of the passive shaft of

the robot. Different colors correspond to different ranges of motor motions and

highlight the complex behavior of this joint. The actual relation also changes

when the shape of the shaft is modified.

model will be correct, while the forward kinematics may keep
a large error due to previously integrated errors. This behavior
is illustrated in Figure 2 by the case of the robot considered for
experimental validation in this study. The curves for the model-
predicted (straight line) and actual link between the position
of the motor driving the instrument bending and the distal
bending angle do not superimpose well, with large errors of up
to 20◦, whereas the slopes of the curves, which are linked to the
differential kinematics, are quite similar as long as the considered
configuration is far away from a change of direction for the
motor (low slope areas inside the hysteresis). This effect is more
complex when considering multi-DOF continuum robots, but
the validity of the differential kinematic model can nevertheless
be considered better far away from direction changes in the
motor input.

The paper is organized as follows: first, section 2 describes the
technical foundations of the method. Then, the proposedmethod
is described in depth in section 3. Sections 4, 5, respectively,
present the experimental validation conditions and the results,
and section 6 concludes the paper.

2. DIFFERENTIAL KINEMATICS AND
OPTICAL FLOW

This section presents the theoretical foundations needed for
presenting the method in the next section. General results
concerning forward and differential kinematics of continuum
robots are presented, as well as how they can be used for
generating virtual optical flow images.

2.1. Continuum Robot Kinematics
Let us consider the model of a continuum inextensible robot as a
function g(q, s) ∈ SE(3), which is a homogeneous transformation
function describing the position and orientation of the robot
central line for given joint variables q ∈ R

n and an arc-length
s ∈ [0, L], L being the total length of the robot. x(s) ∈ R

3 is the
translational part of g, i.e., the position of the robot centerline at
an arc-length s. g and x are defined in the robot base frame r.

Various methods are available in the literature to compute
the robot forward kinematics, either by direct computation if
constant curvature can be assumed (Webster and Jones, 2010),
or using iterative schemes and Cosserat rod theory for more
complex cases (Dupont et al., 2010; Burgner-Kahrs et al., 2015).
Once the forward kinematics has been obtained, the differential
kinematics represented by the Jacobian J(q, s) can be obtained
either analytically or by using the finite differences method :

J(q, s) =









∂g(q,s)
∂qi
...

∂g(q,s)
∂qn









(1)

Like the forward kinematics, the Jacobian matrix depends both
on the current joint configuration q and on the considered arc-
length s of the robot. For a known (small) time step, one can
compute the robot displacement ẋ for any point s along the robot
centerline by using ẋ(s) = J(q, s)q̇.

In this paper, without loss of generality, we consider the case
depicted in Figure 3, where a cable-actuated robot is inserted
in an endoscope (Zorn et al., 2018). In this case, the joint
variables q are the insertion length of the robot in the channel, the
differential length of the two antagonist cables used for bending
the robot, and the rotation of the robot base around the axis of
the channel. Using the formalism presented inWebster and Jones
(2010), together with robot specific properties (i.e., diameter and
length of the actuated and passive sections), one can compute
the robot forward and differential kinematics analytically for any
joint position q. Details about the kinematic model equations of
the considered robot are available in Appendix.

Let us further introduce the vector δ ∈ R
n, which can be

added to q in order to change the robot pose. δ will be used in
the following of this paper as a corrective vector on q, which will
be optimized in order to extract relevant pixel-wise labels of the
tool. As such, the positions q and dq (or q̇) always correspond to
the nominal values.

Finally, let us note that in the following we are only interested
about 3D positions and linear velocity. The Jacobian matrix J
is therefore reduced to a 3 × 3 matrix, expressed in the robot
base frame.

2.2. Optical Flow
Optical flow refers to a set of computer vision methods, which
have been developed to infer the displacement between two
images. Classical methods are typically keypoint-based, thus
only providing the flow in regions of the image with sufficient
texture. Densification methods based on various criteria have
been proposed in the literature to solve this problem (Wedel
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FIGURE 3 | Schematic describing the general situation, where a continuum robot is in the field of view (FOV) of an endoscopic camera. P(s) is the projection of the

centerline of the robot at arc-length s onto the image plane.

and Cremers, 2011). Recently, deep learning approaches have
shown promising results for fast and accurate dense optical flow
estimation (Ilg et al., 2017). Interestingly, such approaches can
learn from 3D rendered scenes, for which an accurate ground
truth optical flow is known, and generalize well to other types
of video images.

In this paper, we use the state of the art FlowNet2.0
algorithm (Ilg et al., 2017), which can compute dense flow maps
in a few hundred milliseconds given a pair of input images. An
example with in vivo endoscopic images is shown on Figure 4.
For all flow values considered later on, we use the magnitude-
direction model, where the magnitude represents the norm of the
flow vector while the direction represents the angle of the flow
vector w.r.t. a horizontal reference vector. For visual display of
the optical flows, we use the HSV color space, where the direction
is mapped to the hue H, the magnitude to the value V, and the
saturation is set to the maximum for enhanced visualization. In
the following of the paper, optical flow images obtained using the
FlowNet2.0 algorithm are noted F̂ .

2.3. Virtual Optical Flow Rendering
In order to put the robot differential kinematics in relation
with the optical flow F̂ , we introduce the notion of virtual
optical flow maps. Let us consider a time instance t, at which
the robot joint values q(t) are known. As described above, one
can compute the forward kinematics of the robot g(q(t), s), as
well as the Jacobian matrix at any point along the robot shaft,
J(q(t), s) (in the following the dependency to t is omitted for
clarity). Moreover, let us consider that the endoscopic camera is
calibrated with intrinsic parameters K, and that radial distortions
are compensated. The hand-eye calibration from the camera base
frame to the robot base frame, given by the homogeneous matrix

Tr
c or equivalently rotation Rrc and translation trc , is considered

as known.
From the above-described situation, one can first project the

robot in the estimated pose onto the image. For any point of arc-
length s ∈ [0, L], one can obtain the projected position on the
image plane P(s) by computing:

Pc(s) =





X(s)
Y(s)
Z(s)



 = Rrc g(q, s)+ trc (2)

Phom(s) = K







X(s)
Z(s)
Y(s)
Z(s)

1






(3)

Pc(s) represents the 3D position of the robot centerline at
arc-length s expressed in the camera frame, and Phom(s) is
the projection in the image in homogeneous coordinates.
Coordinates of P(s) in pixels in the image are the first two rows of
Phom(s). By considering that the diameters of the different parts
of the robot are known by design, the whole robot shape can be
rendered on the image plane, obtaining a binary image maskM,
as shown on Figure 3.

One can use a similar principle for generating virtual optical
flow images. The overall idea is to populate the maskM with the
projections of the local 3D speed values onto the image plane.
This is done by discretizing the central-line and, for each of
the obtained discrete values, by assigning the projection of the
centerline speed v(s) to the local area of the mask around point
P(s). v(s) is obtained as:

v(s) = Jim(Pc(s))R
r
c J(q, s)dq (4)

with Jim(Pc(s)) = K1 : 2,1 : 2

(

1
Z(s)

0 − X(s)
Z(s)2

0 1
Z(s)

− Y(s)
Z(s)2

)

(5)
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FIGURE 4 | Two examples (one per row) of optical flow estimation on in vivo endoscopic images. (A) First image; (B) Second image; (C) Zoom on differential image;

(D) FlowNet2 output flow map.

FIGURE 5 | Example of projected mask M (top row) and virtual optical flow maps Fv (bottom row). (Left) Output of the kinematic model for a given q and dq.

(Right) Output of the model for q+ δ and the same dq.

Jim(Pc(s)) is the so-called image Jacobian, which relates the 3D
velocity of a physical point to the apparent 2D velocity of its
projection in the image plane. This computation assumes that
time-steps are small enough for the Jacobian-based computation
to be valid. The resulting image is called Fv.

A few properties of the virtual optical flow map are worth
noting. First, the flow magnitude is set to 0 outside ofM. This is
because the robot kinematics does not provide any information
allowing us to infer the speed values for the environment (the
organs and tissues).

Second, the obtained virtual flow map will depend on
both the robot pose g(q, s) and on dq. Joint values q will
typically be obtained from sensors placed on the different
motors driving the robot joints. dq can then be obtained
by differentiation of q at time t, such as dq(t) = q(t +

dt) − q(t). If we now apply a corrective vector δ on q (see
definition of δ in section 2.1), the robot shape equation will
then be described by g(q + δ, s), affecting the pose of the robot
and therefore the mask M (top-right on Figure 5). Moreover,
the robot Jacobian will also be affected, which means the
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FIGURE 6 | Schematic describing the optimization workflow. The dashed box outlines the Particle Swarm Optimization process.

flow values in Fv will also change, as illustrated on Figure 5

(bottom row).

3. OPTIMIZATION-BASED AUTOMATIC
LABELING

This section presents the optimization-based approach which
was developed for automatic labeling of continuum robots
in endoscopic images. The proposed method uses the tools
described in section 2 in an iterative optimization scheme, in
order to infer the maskM that best fits with the continuum robot
in the images.

3.1. Optimization
This subsection describes the actual optimization routine
applied on each processed image. The overall workflow of the
optimization is depicted on Figure 6. First, the dense optical flow
F̂ is computed by using two consecutive images in the video
sequence. Second, the nominal robot pose parameters q and
the value of dq are extracted from sensors at the motors side,
as described above. Finally, the iterative optimization process is
started. The optimizer iterates on the variable δ defined in the
previous subsection, in order to minimize a cost function f . The
cost function and optimization algorithm are described in the
following subsections.

3.1.1. Cost Function
We define the cost function as a sum of four terms (all terms
depend on δ but the dependence is omitted in the following
for clarity):

f = αfdirect + βfh1 + γ fh2 + fq (6)

fdirect is a direct comparison of optical flow values between the
estimated and virtual optical flow. It is defined as the normalized
average of the direction and magnitude differences between F̂

and Fv:

fdirect =
1

2

1
∑

i=0

1

Ci

∑

x,y|F̂(x, y, i)− Fv(x, y, i)|M(x, y)
∑

x,y M(x, y)
(7)

where x, y are pixel indices, and i represents the third dimension
of the optical flow maps, 0 for direction and 1 for magnitude
values [e.g.,Fv(x, y, 0) is the virtual optical flow direction at pixels
x,y]. Ci are normalization terms set at the maximum possible
values of the directions differences (180◦, which is the maximal
angular difference due to circular wrapping) and magnitude,
respectively. This ensures that fdirect values are always between
0 and 1.

fh1 compares histograms of flow between the inside and
outside of the current robot mask. The intuition behind
this term of the cost function is that the robotic arm
should move independently from the environment (which,
in surgical situations, moves following complex physiological
motion patterns). Therefore, histograms of flow values should
be uncorrelated if the projected maskM is well-aligned with the
robot in the image. On the contrary, if the mask partially overlaps
with the environment, flow values inside and outside the mask
will both contain values of speeds from the environment and
from the robot, and will thus be correlated. In order to express
this as a cost function, let us consider the mask M obtained by
projection of the robot shape on the image. The mask can be
enlarged by performing a morphological opening operation with
a structuring element e. We define N = M ⊕ e − M, which
covers an area around the original mask M (i.e., a contour).
We then compute the histogram of flow values in the regions
defined by M and N . For a given flow image F , the histogram
pF is obtained in three steps. First, the directional part of F is
quantized into N bins, yielding an array B with the bin values
and a 2D array Fd containing the quantized orientation values.
The histogram can then be computed in two steps :

mF (i) =
∑

x,y

δ
Fd(x,y)

B(i)
F(x, y, 1) (8)

pF (i) =
mF (i)

∑

x,y mF (i)
(9)

where i is the bin number, and δ is the Kronecker symbol. The
histograms computed this way are normalized flow direction
histograms weighted by the flow magnitude (Equation 8).
The weighting gives more importance to local flow directions
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which are associated with a large magnitude. This allows
to attenuate the impact of directions which are ill-defined
when the magnitude approaches zero. The histograms are then
subsequently normalized (Equation 9). In order to compute fh1
we calculate the flow histograms inside and outside the robot
mask, i.e., p

F̂⊙M
and p

F̂⊙N
, where ⊙ is an element-wise

multiplication operator. Since the histograms are normalized,
they can be compared using standard probability density
comparison metrics. In this work, we chose the Jensen-
Shannon distance. The Jensen-Shannon distance is defined as
the square root of the Jensen-Shannon divergence, which is itself
defined as the symmetric version of the Kullback-Leibler (KL)
divergence (Cha, 2007) :

JS(a, b) =

√

KL(a, a+b
2 )+ KL(b, a+b

2 )

2
. (10)

Compared to the KL divergence, it is symmetric, bounded
between 0 and 1, and satisfies the triangle inequality. In our case,
since we aim at minimizing the correlation between histograms
of flows inside and outside the robot mask, the cost function fh1
is defined as:

fh1 = 1− JS(p
F̂⊙M

, p
F̂⊙N

). (11)

fh2 is similar to fh1 in the sense that it also compares histograms
between the masks M and N . It does, however, directly
compare color histograms from the source image. The underlying
assumption is that the background is more or less visually
uniform, and likely visually different from the robot appearance.
Therefore, for computing fh2 we compare inside and outside
histograms using simple color features. Taking the input image
I and the mask M as input, we start by representing the
image in the HSL color space. HSL is similar to the well-
know HSV space, except that Luminance replaces the Value.
Luminance is a weighted sum of the R, G, and B components
using factors representative of the human perception, so that L =

0.2125R + 0.7154G + 0.0721B, and is therefore closer to human
light intensity perception than the simple Value (Plataniotis
and Venetsanopoulos, 2000). The Jensen-Shannon distance is
computed for each of the components of the HSL representation
using the same process as for fh1. We define fX = 1 −

JS(pX⊙M, pX⊙N ), where X stands for H,S, or L. fh2 is then
expressed as:

fh2 =
3
√

fH fSfL (12)

Finally, the last term of the cost function, fq, is a penalization term
on the pose parameters themselves. It is defined as :

fq = λ

dim(δ)
∑

i=0

1

1+ exp(a(δi + bi))

1

1+ exp(a(−δi + bi))
(13)

where λ, ai and bi are constants. This function allows penalizing
large deviations δ. If a is chosen large enough, the function
is almost flat and with very low values when all components
δi ∈ [−bi, bi], while quickly (and smoothly) reaching value λ

as one component of δ approaches one of the bounds. Specific
values of a and bi must be chosen depending on the allowed
pose parameters variations, which can themselves be linked to the
estimated errors bounds in the mechanical model. Any λ ≫ 1 is
acceptable, since fdirect , fh1 and fh2 are all bounded by [0, 1].

3.1.2. Optimization Algorithm
The above-defined cost-function is a sum of four terms, which
involve local computations (which is mainly due to the fact
that Fv only contains informations inside the projected mask
M). Therefore, it cannot be assumed to be either smooth or
convex. For this reason, we chose a global stochastic optimization
algorithm, Particle Swarm Optimization (PSO) (Poli et al.,
2007). PSO generates a number N of candidate solutions by
random sampling of the search space, and makes those so-
called particles evolve over time, based on simple formulae
governing their position and velocity. The algorithm makes
little assumptions about the problem to be optimized, and does
not require computing the gradient of the cost-function, which
makes it well-suited for global optimization of potentially non-
smooth functions. Moreover, within an iteration, cost function
evaluations for each particle are totally independent, which
makes the algorithm parallelizable (Mussi et al., 2011). Finally,
PSO can return the overall minimum as well as the values and
cost function evaluations for each independent particle. As we
will see in the next subsection, this property is interesting in
our context.

3.2. After Optimization: Enforcing Local
Consistency
Since the PSO algorithm is stochastic, it does not guarantee
convergence to the true minimum. Moreover, the cost function
is based on some assumptions which may be violated. This
is especially the case for the hypothesis on the independence
of optical flows between the instrument and the environment,
which underlies the histogram comparison term fh1. For instance,
the optical flow may be misestimated, or parts of the background
may temporarily move in synchrony with the robotic instrument.
In these cases, the optimizationminimummay not correspond to
the actual pose parameters of the instrument.

In order to detect and filter out those false convergences,
we introduce some metrics meant to assess the consistency
between successive optimization results. Let us note R(t) =

{(δj(t), f (δj(t)), j ∈ [1,N]} the output of the PSO algorithm after
convergence, at time instance t. This set represents the positions
of the N particles after evolving through the PSO algorithm, with
their associated cost function values. The overall minimum is
fmin(t) = argminj f (δj(t)).

In order to enforce local temporal consistency, we compare
sets of results at successive time instances. Let us note those
time instances t1 and t2. After independent optimization using
the above-described algorithm, the respective result sets are R(t1)
and R(t2).

Let us note T = g(q(t), L) and To = g(q(t) + δ, L) with
t ∈ {t1, t2}. T and To are homogeneous transformations from
the robot base to the tip before and after correction with a
vector δ, respectively. The relative tip pose correction can then
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be computed as dT = T−1To. The translational part of dT is
noted dV . This vector represents the tip displacement created
by applying the correction δ, and expressed in the initial tip
frame of the robot. It is dependent on both the considered frame
(time t), as well as on the value of δ. Its full notation is thus
dV(t, δ)

Finally, we define the tip local distance D(i, j) as :

D(i, j) = ‖dV(t1, δi)− dV(t2, δj)‖ (14)

where i and j are indices of elements in R(t1) and R(t2). Large
values of D(i, j) indicate an important change of estimated offsets
of the pose parameters between images at t1 and t2. The distance
D(i, j) is better suited for estimating closeness of results than
directly comparing values of δ because it is in the task space,
therefore less sensitive to kinematic singularities which may
arise (for instance, if the robotic arm is straight, any rotation
of the arm leads to the same pose, and the PSO may output
many particles with low cost values but with very different
rotation values).

The algorithm for local temporal consistency check can be
described the following way:

• Initialization: sort the elements of R(t1) and R(t2) according to
their cost function values. The elements with lower costs are
set as first elements: (δ1(t1), f1(t1)) and (δ1(t2), f1(t2))

• Compute D = D(1, 1) and fc_ref =
√

f1(t1)f1(t2)

• For (i, j) in [1,N]2:

• Compute D(i, j) and fc(i, j) =
√

fi(t1)fj(t2)
• If D(i, j) < D and fc(i, j) < 2fc_ref set D = D(i, j)

At the end of the process, the couple of particles from both
optimization outputs having the closest D distance, as well as
a pooled cost function fc low enough (< 2fc_ref ) is selected.
The selected particle from R(t1) is the result of the optimization
after consistency check. The particle from R(t2) is not used as
the information from the second image is redundant with the
information obtained from the first image. Note that during
the iterations fc_ref is never reset. This is done in order to
select a good enough couple of particles (i.e., with a pooled cost
function fc close to the minimum value), while having consistent
δ corrections.

4. EXPERIMENTAL VALIDATION

This section presents the experimental validation details, the
robotic system used, the implementation details, as well as the
various testing conditions.

4.1. System and Images
This study makes use of the STRAS robotic arm. STRAS
is a flexible endoscopy robot designed for complex
endoluminal operations such as Endoscopic Submucosal
Dissection (De Donno et al., 2013; Zorn et al., 2018). The robot
arms are 3.5 mm diameter flexible cable-actuated instruments.
Each arm has 3◦ of freedom controlled by independent motors:
the insertion of the instrument in the channel, the rotation of the

instrument along its own shaft, and the bending of the tip. The
motors encoders are used to compute the joint variables q, which
in turn can be used for computing the forward and differential
kinematics, as detailed in Appendix.

During the operation of the robot, the surgeon sends
commands through a dedicated user interface to teleoperate the
robot, while using the images from the endoscopic camera for
guidance. This system has a fixed focal, and therefore camera
calibration can be performed in the lab and remain valid
during in vivo use. We used standard calibration procedures
from Zhang (2000) for obtaining the camera calibration matrix
K as well as the distortion parameters (5 parameters distortion
model). Images are distortion-corrected in real-time using the
OpenCV library, therefore points in the 3D space can be
projected on the distortion-corrected image using the calibration
matrix K.

In order to project 3D points from the robot model onto
the images, the hand-eye calibration matrix Tr

c is also required.
In this work, since the flexible arms pass through the working
channel of the endoscope, we set Tr

c to its nominal value using the
CAD model of the endoscope. While this is not exact –especially
in the case where the robot tip is very close or very far from the
exit of the working channel, as shown in Cabras et al. (2017), it
was considered sufficient in this study. It would be possible to
also optimize parameters of the hand-eye transformation at the
cost of adding a fewmore optimization variables, but this was left
out of the scope of the present paper. In fact, the uncertainty of
the hand-eye calibration is often partly compensated by the offset
δ, leading to a good 2D projection of the tool onto the image
plane. Further research will consider optimizing the hand-eye
calibration parameters in the future, especially for full 3D pose
estimation of the robot.

To validate the proposed algorithm, we acquired two different
datasets (see Figure 7). The first one was generated on the
benchtop, by teleoperating the robot in front (and in interaction
with) a plastic model of the human digestive anatomy (1,000
images, 100 s long). This model was manually moved by an
operator in all directions during the robot teleoperation in order
to simulate physiological movements. Displacements obtained in
the images are complex because the model features 3D shapes.

The second dataset (2,000 images, 200 s long) was obtained
during an in vivo experiment in a porcine model. The surgeon
performs an actual colorectal Endoscopic Submucosal Dissection
by teleoperating the STRAS robot. The study protocol for this
experiment was approved by the Institutional Ethical Committee
on Animal Experimentation (ICOMETH No.38.2011.01.018).
Animals were managed in accordance with French laws for
animal use and care as well as with the European Community
Council directive no. 2010/63/EU. Images feature smoke, tissue
cutting, and specular reflections. The dataset is particularly
challenging because images were not acquired at the beginning
of the surgery. The instrument is almost always in interaction
with the tissues, which increases errors in the kinematic models
due to external forces and wrenches imposed on the instrument.
Note that this dataset features two robotic arms which were used
during the surgery, but only the kinematic information from the
right arm was used.
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FIGURE 7 | (Left) View of the tip of the STRAS robot, showing the endoscopic camera, the deploying working channels, and the flexible robotic arms. (Right)

Sample images from the lab (top row) and in vivo (bottom row) datasets, featuring robot and environment movement, as well as tool/tissue interaction. Note that the

visual appearances of the instruments are significantly different between both sets.

4.2. Implementation Details
The proposed algorithm was implemented in Python, using tools
from OpenCV (Bradski, 2000) and numpy (Oliphant, 2007) for
images and arrays manipulations, respectively. Optical flow was
computed using the publicly available Tensorflow GPU code
from the authors of the algorithm (Ilg et al., 2017) and the full
pre-trained FlowNet2 model. Both video and optical flow images
have a resolution of 760 × 570 pixels, and the motors encoders
outputs and video images were synchronized with a time step
dt = 100 ms.

Particle Swarm Optimization was implemented in python
using a combination of the pyswarm library (Lee, 2014) and
pathOS for multiprocessing support (McKerns et al., 2011). The
algorithm was setup using different sizes of the swarm N and
different iterations numbers i. Other parameters of the PSO
algorithm, φp and φg , which are scaling factors determining the
evolution of the particles at each iteration (how far away from
the particle and swarm’s best known position, respectively; Poli
et al., 2007) were set to their default value of 0.5. Finally, after
the consistency check, the final result obtained was considered
of poor quality and therefore discarded if it did not satisfy the
following constraints: f1(t1) < 0.4 and f1(t2) < 0.4 and D <

2mm. These thresholds have been set to be conservative and reject
most incorrect/inconsistent results. Further research is needed to
determine optimal values.

For the cost function, α, β , and γ were, respectively, set to
0.1, 0.25, and 0.5. Those values were chosen in an ad-hoc fashion
based on the relative scale exhibited by the different terms on the
considered pilot images, so as to confer to them the same relative
importance in the cost function. For computing h1 and h2, 10
successive dilations with a 5 pixels wide rectangular structuring
element e were performed. fq(δ) was computed with λ = 10,
a = 200, and b set in such a way that the search space is
bounded by ±35◦ for the bending angle at the tip of the robot
and the rotation angle, and ±5 mm for the robot insertion in
the channel. These values were chosen larger than the observed
hystereses effects on each joint (see on Figure 2 for bending),
in order to take into account potential errors originating from
robotic homing positions, hand-eye calibration errors, or from
external forces applied on the instrument.

The algorithmwas run on a Intel Xeon processor with 20 cores
in order to take advantage of themultiprocessing implementation

of PSO. FlowNet was run on a Nvidia 1080GT GPU. Average
runtime of the full optimization routine for one pair of images
was between 9 and 15 s depending on the parameters of the PSO
algorithm. This is at least one or two orders of magnitude too
slow for online use of the algorithm. However, this is mostly
due to the multiple array initialization/manipulation routines
used in the cost function evaluation, which is in turn called a
large number of times during the optimization process. A careful,
optimized C++ implementation, or a parallel implementation
using Cuda on a GPU may provide significant speedups.

4.3. Metrics and Evaluation
In order to evaluate the output of the algorithm, images were
manually annotated in the form of binary masks. In total, 394
images weremanually annotated in the benchtop dataset, and 359
in the in vivo dataset. Using those binary masks as ground truth,
masks M generated by the kinematic model after applying the
optimized correction δ were then compared using the Precision,
Recall, and Intersection over Union (IoU) metrics.

In order to fully characterize the algorithm using the above-
defined metrics, several parameters were explored.

4.3.1. Sampling Strategy
Since the overall optimization runs in 9 to 15 s, it is unlikely that
we will be able, even with important code optimization, to make
it run in real time. This is, however, not an important problem
since successive images are redundant in content and therefore
only a few images should be used for generating high quality
labels for subsequent classifier training. In other words, we need
to sample images from the dataset. We evaluated two sampling
strategies. The first one, which we call Srand, is a completely
random sampling strategy. The second one, which we call Ssel
is based on the joint angles input. Since nonlinearities in the
robot kinematics are more likely to appear at direction changes
(see Figure 2), we select images which are sufficiently far from
those direction changes. Practically, q is differentiated in order to
obtain q̇. To remove local sensor noise, smoothing is performed
using the standard 3rd order Savizky-Golay algorithm. A simple
detection of sign changes in the last 500 ms is then performed
(zero being considered as a sign change). One should note that
this method only uses information obtained from before the
current timepoint, and is thus usable in real-time settings.

Frontiers in Robotics and AI | www.frontiersin.org 9 September 2019 | Volume 6 | Article 86

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Rosa et al. Automatic Segmentation of Continuum Robots

Finally, promising images from the previously selected images
are kept if:

• The projection of the robot tip at the nominal pose and shape
provided by g(q, L) is not close to the borders of the image, and

• If the robot speed at the nominal tip position, projected in the
image plane, is above a certain threshold.

These conditions are used to avoid situations where the robot
is actually outside the field of view because of modeling errors,
or where the real optical flow is very low due to projection
conditions (typically when the velocity of the robot is aligned
with the line of view). Practically, we use a window of 3/4 of the
image size for the first condition, and 2 pixels of robot optical
flow speed magnitude for the second condition.

For fairness of evaluation, the two sampling strategies should
present the same number of images. Ssel being the most
restrictive, it was applied to the beginning of the video (the first 2
min for the in vivo case, the first minute for the benchtop case),
thus providing 33 selected images for the in vivo dataset and 36
images for the benchtop dataset. The same number of images
was then extracted using random sampling on the same part of
the videos.

4.3.2. Optimization and Consistency Check
Another parameter which may influence the results is the
application or not of the consistency check. In order to test our
hypothesis that our optimization algorithm is effective and that
our proposed consistency check procedure helps filtering out bad
results, we considered three different test cases. Ono represents
the results obtained on a given test using the uncorrected
kinematic model, i.e., with δ = [0, 0, 0]. Ooptim represents the
case were the optimization algorithm is run on a single image,
without performing the consistency check. Finally, Ooptim+cc

represents the case were the full algorithm is run, performing the
optimization on two consecutive images in order to apply our
consistency check procedure.

4.3.3. PSO Parameters and Randomness
As explained above, we use the PSO algorithm for exploring the
space efficiently and in a parallelized fashion, while converging
to a low cost function value. Three sets of couples of number of
particles N and number of iterations i were tested. The nominal
case N = 100; i = 10 represents a good balance between a
large exploration of the search space and a reduced number of
iterations for speed. We compared the obtained results against
N = 50; i = 20 and N = 200; i = 5. The product
N × i is kept constant in an effort to call the cost function
evaluation a fixed number of times and therefore maintain
similar computation times.

Furthermore, for the nominal case, we also evaluated the effect
of the random component of the algorithm by running it three
times with different random seeds.

5. RESULTS

This section presents the experimental results obtained with the
proposed algorithm. Different effects and situations as detailed

in section 4 are explored in order to fully characterize the
performance of the algorithm.

5.1. Qualitative Results
Figures 8, 9 present examples of optimization results
obtained on both datasets (more examples provided in the
Supplementary Material). Figure 8 features many examples
where the optimized mask M almost perfectly matches with
the contours of the instrument in the image, despite challenging
conditions such as a very smooth optical flow around the
instrument contour, and parts of the instrument looking very
similar to its immediate surroundings [especially for the in vivo
case, where the blue dye used during the surgical operation
(Methylene blue) was very similar to the blueish hue of the
instrument tip].

Figure 9 features a few examples of incorrect results after
optimization. The top row shows a situation where the
instrument tip has a quite different aspect from the rest of the
instrument (in this case, the grasper has a metallic aspect while
the body is covered by a black sheath). In this particular case,
the image similarity metric fh2 in the cost function biased the
search toward this result. The second row shows an example
where optical flow estimations were made difficult by tool-tissue
interactions as well as shadows from the instrument. As a result,
the flow image F̂ features a greenish area which is much larger
than the tool area, making the flow similarity metrics fdirect and
fh1 less specific. Finally, the bottom row on Figure 9 shows an
example of incorrect result due to hand-eye calibration errors.
Hand-eye calibration errors cannot always be compensated by
modifying the robot pose parameters, especially when the robotic
arms gets very far or very close from the camera. In the latter case,
shown on Figure 9 in the bottom row, projection errors due to
incorrect hand-eye calibration are amplified because the object is
closer from the camera (i.e., a slight change of 3D position implies
a large projection error in the image plane). For the presented
case, errors are such that the corrections δ which could provide
a qualitatively correct result are outside of the search space. As a
result, the algorithm converges to a totally different pose. Note,
however, that these results show optimizations performed on a
single image; some of the incorrect results may be rejected by the
consistency check.

5.2. Validation of the Cost Function
In order to evaluate the effectiveness of the proposed cost
function independently of the convergence algorithm used, we
looked at how the values of the cost function correlate with the
Precision, Recall, and IoU metrics. For all the selected images
in both datasets (with Srand or Ssel), we performed random
modifications of δ around the nominal pose parameters q,
and evaluated both the cost function and the corresponding
Precision, Recall, and IoU. The results are a large sets of
cost function evaluations, for various images coming from two
datasets, in a variety of situations.

Spearman rank order correlation was used for estimating the
correlation between the cost function and the metrics, since no
linear correlation could be assumed a priori. The result is a
high negative correlation of the cost function values with the
considered metrics, with values of −0.67, −0.58, and −0.68
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FIGURE 8 | Examples of correct results obtained with our optimization algorithm. First two rows feature examples from the in vivo dataset, while the last two rows

feature examples from the benchtop dataset. The columns are organized as follows, from left to right: Endoscopic image, with contours of the mask M before (green)

and after (purple) optimization; Optical flow image F̂ with the same superimposed contours; Virtual optical flow image Fv before optimization; Virtual optical flow

image Fv after optimization.

FIGURE 9 | Examples of incorrect results obtained with our optimization algorithm. (Top) Incorrect extraction of the instrument tip. (Middle) Bad convergence due to

a badly estimated F̂ . (Bottom) Incorrect estimation due to hand-eye calibration errors. Columns are the same as in Figure 8.

for correlation of f with the Precision, Recall and IoU metrics,
respectively. This is illustrated on Figure 10, which shows the
95% confidence intervals after a 5-order polynomial fitting of
the performance metrics with respect to the evaluation function.
As can be seen from both Figure 10 and the Spearman rank
correlation values, a diminution of the cost function is correlated
with a positive variation of themetrics. Since all metrics represent

best performance when they tend to 1, this shows the overall good
performance of the proposed cost function.

5.3. Optimization Results
Figure 11 presents results obtained with the proposed algorithm
for the nominal case (N = 100 and i = 10), on the benchtop
and the in vivo datasets. A few observations can be made from
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these graphs. First, the raw kinematic model appears to provide
poor quality outputs. This is all the more true on the in vivo
dataset, which features ample tool-tissue interactions. Second,
the optimization appears to provide a net increase in all metrics
values (which was expected given results from section 5.2), while
the consistency check gives an additional improvement to those
values, especially in the in vivo case.

In order to quantitatively confirm these observations, we used
statistical tests. After assessing the normality of the data, we
performed a two-factor ANOVA. Factor S was the sampling
strategy (Srand or Ssel), and factor O was the optimization
type (Ono, Ooptim, and Ooptim+cc). The effect of each factor

FIGURE 10 | Ninety five percent confidence interval for a 5-order polynomial

fitting of the performance metrics (Precision, Recall, and IoU) as a function of

the evaluation function.

was assessed. When statistical significance was found, post-hoc
testing was performed using independent t-tests, with a Holm-
Bonferroni correction in order to account for multiple testing.
Finally, the size of the effect was also evaluated using the ω2 effect
size measure (Ialongo, 2016).

On the in vivo dataset, the image sampling strategy S was
found to have a significant influence on the results (p < 0.001
for all metrics), with a small effect size (ω2 ≃ 0.08 in all cases).
Actually, one can see on Figure 11 that the metrics are slightly
higher when using the image selection process than when using
pure random sampling even for the unoptimized cases. The
optimization type O was also highly significant for all metrics,
with much larger effect sizes (see Table 1). Post-hoc testing
confirmed that the optimization brings a clear improvement to
the results, with both Ooptim and Ooptim+cc giving better results
(i.e., higher metrics values on average), with high statistical
significance (p < 0.001) when compared to the results obtained
with Ono. Although a clear trend can be seen on Figure 11,
the consistency check did not provide a statistically significant

improvement when combined with the image selection Ssel (p >

0.05 for the comparison ofOoptim andOoptim+cc for the Precision,
Recall, and IoU). When used with the random sampling strategy

Srand, however, the consistency check brought higher Precision

(p < 0.01) and IoU (p < 0.05) values. These results show that if
the image selection procedure fails (for instance, if the kinematic

model is too disturbed by tool-tissue interaction, or if no good

images can be selected due to numerous direction changes in the

motor input), the consistency check will help filtering out low

quality optimization results.
Results obtained on the benchtop dataset are less contrasted.

One can see on Figure 11 that the image selection procedure Ssel
has little effect on the metrics, which is confirmed by the ANOVA

results: for the factor S, p-values are > 0.5 for all metrics, with

FIGURE 11 | Boxplots showing the evaluation metrics for N = 100; i = 10. (Top) In vivo dataset; (Bottom) Benchtop dataset.
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TABLE 1 | Summary of ANOVA results and effect size for optimization type factor

O, for the considered metrics and the three sets of parameters for the PSO.

In vivo dataset

N = 50 N = 100 N = 200

p-value ω
2 p-value ω

2 p-value ω
2

Precision < 10−5 0.27 < 10−5 0.32 < 10−5 0.43

Recall < 10−5 0.35 < 10−5 0.38 < 10−4 0.40

IoU < 10−5 0.34 < 10−5 0.43 < 10−5 0.51

Benchtop dataset

N = 50 N = 100 N = 200

p-value ω
2 p-value ω

2 p-value ω
2

Precision < 10−5 0.22 < 10−5 0.32 < 10−5 0.42

Recall 0.03 0.04 0.1 0.02 0.001 0.07

IoU < 10−5 0.21 < 10−5 0.24 < 10−5 0.33

a negative ω2 effect size (note that a negative effect size does not
reflect a negative effect on the results, see Okada, 2017 for details).
Actually, one can note that the results without optimization (Ono)
are much better than on the in vivo case. This is due to the
fact that, although the robot was teleoperated, movements are
overall smoother in this dataset, and tool-tissue interaction is
not as intensive as in the in vivo case. These combined facts
make the uncorrected kinematic model generally more correct
than in the in vivo case, making the image selection procedure
less critical for obtaining good results. On the other hand, the
optimization factor provided statistically significant increases for
the Precision and IoU metrics, with rather large effect sizes (see
Table 1). For those metrics, post-hoc testing showed that both
Ooptim andOoptim+cc gave better results (i.e., higher metrics values
on average), with high statistical significance (p < 0.001) when
compared to the results obtained without optimization (Ono),
when used with either Ssel or Srand. The effect of the consistency
check was not found to be significant when comparing Ooptim

and Ooptim+cc with post-hoc testing. In fact, in this dataset, ample
movement of the robot arm, combined with ample and constant
movement of the background, make the flow images F̂ easier
to estimate for the FlowNet algorithm. The smoother motion
also makes the differential kinematics less erroneous. Those two
combined factors reduce the effect of the consistency check
although a small trend toward an increase of Precision and IoU
can be observed on Figure 11.

Another interesting effect can be seen from Table 1: the
increase of the PSO parameters N seems to increase the effect
of the optimization (effect size of the optimization type factor O
in the ANOVA). As it is illustrated on Figure 12, the resulting
swarms at the end of optimization seem to all converge to
the same result, but with a higher density of low cost-function
particles in the case N = 200; i = 5, leading perhaps to
better results in this case. This result should however be weighed
against the average optimization time per image. As explained

in section 4.3.3, the product N × i was kept constant in order
to obtain similar computation times for all cases. In practice,
the optimization times obtained per images (average ± standard
deviation) are:

• 9.3± 3.8 seconds for N = 50; i = 20
• 12.2± 4.4 seconds for N = 100; i = 10
• 15.8± 4.3 seconds for N = 200; i = 5

It can be observed that increasing the total number of particles
also increases the computation time, even though the number
of iterations is reduced. In fact, the product N × i gives the
total maximum number of cost function evaluations. When a
smaller swarm is used with an increased number of iterations,
the particles will likely converge before the prescribed total
number of iterations, causing the PSO algorithm to terminate
with a lower number of cost function evaluations. In our case,
the N = 50; i = 20 case provides a 60% speedup over
the N = 200; i = 5 case. The case N = 100; i =

10 represents a good compromise between an increased effect
size of the optimization (see Table 1) and a reduced overall
computational time.

Finally, the influence of the stochastic essence of the PSO
algorithm was assessed by running the algorithm multiple times
on the same images with different random seeds. An example of
optimization results is shown on Figure 13. The general trend
is the same as the case presented on Figure 11. For the non-
optimized case Ono, one can note that the randomly selected
images perform poorly in this case (especially for the in vivo
case), which is a byproduct of the random sampling. The Ssel
case is perfectly identical to the case presented on Figure 11,
since the image selection procedure does not feature any
random component. Results obtained with optimization, with or
without the consistency check, are not statistically significantly
different between the results presented on Figure 13 and the
ones presented on Figure 11 (p > 0.05 for all combinations of
Srand and Ssel on one hand, and of Ooptim and Ooptim+cc on the
other hand). These results show that our proposed algorithm
is only marginally affected by the stochastic components in the
PSO algorithm.

6. DISCUSSION AND CONCLUSION

In this paper, we presented a novel method for automatic
labeling of robotic instruments in endoscopic images. The
proposed method is compatible with both rigid-body tools
(e.g., robotic laparoscopy tools) and continuum robots (e.g.,
flexible endoscopy tools), provided that joint values can be
obtained, and that a kinematic model of the robot is available.
Indeed, the proposed algorithm makes use of the robot’s
forward and differential kinematics, together with image and
optical flow measurements, in order to optimize a cost function
over the robot pose parameters. The resulting mask of the
robot shape projected on the image gives a pixel-wise binary
classification of the robot in the endoscopic image. A consistency
check procedure after the optimization was also proposed in
order to reject outliers. The proposed algorithm is particularly
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FIGURE 12 | 3D scatter plots representing the position of the swarm particles in the search space at the end of the optimization (on a single image, without

consistency check), for the different PSO parameters. The colors represent associated cost function values. (Top) In vivo dataset; (Bottom) Benchtop dataset. The

three axes are the three components of δ: the bending curvature [m−1], the robot rotation [rad], and the robot insertion [mm].

FIGURE 13 | Boxplots showing the evaluation metrics for N = 100; i = 10. (Top) In vivo dataset; (Bottom) Benchtop dataset. The random seed used is different from

the one in Figure 11.

interesting in two aspects. First, no human intervention is
required, in opposition to the tedious process of manual image
annotation and labeling. Second, the use of optical flow makes
the overall algorithm independent of the visual aspect of the

robot. This point is particularly important since the aspect
of both the instrument and the environment may change
during the surgery, for instance due to smoke or changing
lighting conditions.
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Validation was performed using a flexible robotic endoscopy
platform, with cable-actuated flexible endoscopic tools. Images
were acquired in a benchtop setting with phantoms of the
human digestive system, and in an in vivo setting during a
colorectal Endoscopic Submucosal Dissection performed on
a porcine model. The parameters of the algorithm were
extensively studied in order to characterize the behavior and
performance of the algorithm. Results show that the proposed
algorithm is robust, and allows providing good quality labels in
challenging conditions.

Nevertheless, the study has limitations which should be
acknowledged. First, the labels obtained using our method have
a reasonably good quality, with an IoU reaching high levels
especially in the in vivo images. Perfect labels are however not
obtained, for various reasons related to incorrect optimization
results not being rejected by the consistency check, or incorrect
kinematic model assumptions (in our study we used the
constant curvature assumption, which is an approximation).
The obtained noisy labels could be combined with approaches
robust to label noise, for instance random forests using bootstrap
aggregating (Breiman, 1996), or more recent neural network-
based approaches (Reed et al., 2014). A future, related direction
of work could be to run our algorithm on various in vivo datasets,
in order to be able to infer the average noise distribution in
the labels obtained, in combination with approaches such as
(Sukhbaatar and Fergus, 2014).

Another limitation to the present study is the fact that
validation was performed on a limited number of images. This is
in part due to the inherent difficulty and ethical questions raised
when organizing multiple experiments on animal models. The
limited number of images is however not really a problem for
the intended use of our algorithm. In fact, the main interesting
use of the algorithm could be for online classifier training, during
a given surgery. In this use case, labels would be extracted on
the fly as the surgery evolves, in order to train or fine-tune a
classifier for segmenting the tool. Extracting a few, relevant and
high quality labels using our approach would, in this case be
required to train a surgery-specific classifier. Having only a few
labeled examples usually causes the classifier to overfit on the
training data, which would not be a problem in this case since
it would be highly correlated to the data used for subsequent
inference queries. In this context, lightweight classifiers such as
the ones used in García-Peraza-Herrera et al. (2016), Rocha et al.
(2019) could be interesting to use. It should be noted that this use
case requires being able to run our algorithm substantially faster
than in the present study, which we believe is achievable thanks
to careful code optimization.

Finally, several other aspect of the algorithm may also
be improved in order to produce higher quality results. The
consistency check procedure could be made more robust by
considering more than two consecutive images, for instance in
a Bayesian Recursive Filtering approach (e.g., using a particle
filter) provided, once again, that the optimization time can be
reduced. Another interesting future line of work could be to
consider the uncertainty in the optical flow estimates in the cost
function as a weight, using for instance an approach such as (Ilg

et al., 2018). Finally, we will investigate how full pose estimation
could be achieved by combining the above-mentioned techniques
as well as adding the hand-eye calibration parameters in the
optimization variables. This last point is especially challenging
since 3D pose estimation is hard to retrieve from 2D images,
but we believe that the information added by the differential
kinematics on one hand and the optical flow on the other hand
could help reduce this uncertainty.
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