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Soft robots have recently received much attention with their infinite degrees of freedoms

and continuously deformable structures, which allow them to adapt well to the

unstructured environment. A new type of soft actuator, namely, dielectric elastomer

actuator (DEA) which has several excellent properties such as large deformation and

high energy density is investigated in this study. Furthermore, a DEA-based soft robot is

designed and developed. Due to the difficulty of accurate modeling caused by nonlinear

electromechanical coupling and viscoelasticity, the iterative learning control (ILC) method

is employed for the motion trajectory tracking with an uncertain model of the DEA.

A D2 type ILC algorithm is proposed for the task. Furthermore, a knowledge-based

model framework with kinematic analysis is explored to prove the convergence of the

proposed ILC. Finally, both simulations and experiments are conducted to demonstrate

the effectiveness of the ILC, which results show that excellent tracking performance can

be achieved by the soft crawling robot.

Keywords: ILC, soft crawling robot, dielectric elastomer actuator, electro-adhesion actuator, knowledge-guided

data-driven modeling

1. INTRODUCTION

Currently, there is a great interest in using the soft robots for practical applications. In contrast
to conventional rigid (hard) robots, soft robots are constructed with compliant materials that can
be stretched, bent and twisted in new ways. Thus, soft robots possess the potential demonstrating
unprecedented adaptation, sensitivity and agility.

Soft actuators play the key role in the soft robots. In previous studies, many soft actuators
have been investigated, such as pneumatic muscle actuator (PMA) (Andrikopoulos et al., 2011;
Rolf and Steil, 2012; Onal and Rus, 2013), shape memory alloy (SMA) (Koh and Cho, 2009; Yuk
et al., 2011) and electroactive polymer (EAP) (Yeom and Oh, 2009; Lau et al., 2014; Godaba
et al., 2017). Among these actuators, dielectric elastomer actuators (DEAs) which is one of the
EAPs stand out in robotic applications due to their special properties including large deformation,
fast response, high energy density, low noise and biological muscle similarities. The muscle-like
properties and relatively simple actuation method of DEAs have contributed to developing several
bio-inspired soft robots, such as worm-like crawling robots (Shian et al., 2015; Mihai Duduta
and Wood, 2017; Cao et al., 2018a), underwater robots (Guo et al., 2012; Li et al., 2017) and
human-like robots (Carpi and Rossi, 2005; Liu et al., 2008; Wang and Zhu, 2016). There are two
notable work Qin et al. (2018) and Gu et al. (2018) should be pointed out. The work presented in
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Qin et al. (2018) focuses on the robot prototype with its motion,
while the work presented in Gu et al. (2018) emphasizes more on
the adhesion method.

The circular soft crawling robot proposed in Qin et al.
(2018) is investigated in this study, which is a promising
platforms for practical application or scientific research. This
robot uses the DE materials as the robot body, which can
not only provide large strain with high deformation, but
also realize the similar properties of the biological muscles
owing to their similarity. Besides that, four electroadhesion
actuators are employed as the robot feet to provide adaptive
and low-power bonding adhesion action on the ground surface,
which has been described in Gu et al. (2018). In Gu et al.
(2018), gave a detailed description of electroadhesion with
corresponding experimental demonstrations, which shows the
advantages of electroadhesion method. By comparing to the
traditional adhesion mechanisms such as suction cup (Longo
and Muscato, 2006), adhesive (Murphy and Sitti, 2007; Sangbae
et al., 2008), magnetic adsorption (Shen et al., 2014), etc.,
electroadhesion has two significant advantages: (i) simple
structure and easy to be manufactured; (ii) not subjected to the
effect of the working surface, only requires the working surface
can generate induced charges. However, due to the feature of
the electrostatic force and the strength limitation of the applied
voltage (electrostatic breakdown), the adhesion force caused by
the electroadhesion is much smaller than the vacuum suction
force or the electromagnetic force. Nevertheless, in this study,
due to the light weight of the robot itself, the required frictional
force is not large during its movement process. Therefore, the
defect of low adhesion force can be ignored in this study,
which makes electroadhesion an appropriate way. Similarly,
the electroadhesion method also enables the entire robot to be
fully electric-powered, which leads to a consistency with the
energy source. The use of DEA and electroadhesion actuators
render the robot to be light-weight and fast-response. Moreover,
inspired by the bionics, the robot can achieve stable locomotion
through alternating expansion/contraction of the body as well as
adhesion/release of the feet.

Although the DEA-based soft robots exhibit muscle-like
motions in various environments, the studies presented in Qin
et al. (2018) and Gu et al. (2018) mainly focus on the robot
modality which is based on the open-loop control. Only a few
studies on the robot control like (Cao et al., 2018a,b) are available.
In addition, there is a major practical challenge lies in the control
issue due to the electromechanical coupling and viscoelasticity
of the DE materials. Due to the significance of the “control” to
the whole system, this study mainly aims to explore the motion
control issue of the soft crawling robot for the better performance
and greater application value.

Currently, the researches on both open-loop and closed-loop
control are extremely limited. In Gu et al. (2015), a feed-forward
control approach is proposed for a planar DEA. However,
this control approach can not adjust the performance of the
control outputs due to the lack of feedback information. In
order to enhance the robustness of the control system, feedback
control schemes have been adopted in several studies, the notable
examples include the classical proportional-integral-derivative

(PID) control scheme presented in Rizzello et al. (2015) and Cao
et al. (2018a) and the cerebellum-inspired adaptive controller
proposed in Wilson et al. (2016), Cao et al. (2018b). It should
be pointed out that these previous researches on controlling
DEA is primarily restricted with isolated actuators in simple
geometries, and the control effect depends on model accuracy
due to the model-based property (Rivera et al., 1986; Hong
et al., 2014). So far, although various soft robots driven by DEA
have been developed (Godaba et al., 2017; Tang et al., 2017),
few studies have focused on the motion control of the DEA-
based soft robots, which greatly hinders these soft robots from
practical application.

The main objective of this work is to address the precise
displacement tracking problem of a circular soft crawling robot
via iterative learning control (ILC), which is essential to both
motion control and motion planning. To our best knowledge,
this is a pioneering work in the field of DEA-based soft robot
with ILC, which will demonstrate the effectiveness of ILC in
the motion control of DEA-based circular crawling robot. ILC,
as an effective control strategy, is designed to improve the
current performance of uncertain systems by fully utilizing
the past control experience. Specifically, ILC is developed for
systems that are able to complete some tasks over a finite time
interval and perform them repeatedly. In such systems, the input
and output information of past cycles, as well as the tracking
objective, are used to formulate the input signal for the next
iteration, hence the tracking performance could be improved
iteratively. By comparing to traditional control techniques, such
as PID control and fuzzy logic control, there are a number of
distinct features about ILC. Primarily, ILC is designed to handle
repetitive tasks. The traditional control methods cannot deal with
or take advantage of the periodic nature. Under a repeatable
control environment, repeating the same feedback would yield
the same control performance. By incorporating learning, ILC
is able to improve the control performance iteratively. Apart
from this, the control objective is different. ILC tries to achieve
perfect tracking during the whole operation interval, whereas
most other control methods usually achieve asymptotic error
convergence in the time domain. Last but not least, ILC is a
partially model-free control method (Tan, 2003). As long as
an appropriate learning gain is chosen, the excellent tracking
performance can be achieved even when the system parameters
are unknown. There is one typical situation for its application
for explaining the advantages: when setting the robot in a
complex environment where each area has its own terrain
features, its optimal parameters are undoubtedly different in
each area. In this situation, because that the ILC can adaptively
adjust the parameters during the iteration, only a single set of
parameters needs to be determined when adapted to the complex
environment, without setting separate parameters for each type
of environmental information, which really improves robot’s
applicability and environment adaptability.

Simultaneously, the motivation of adopting ILC for the
soft robot control also comes from three aspects. Firstly, due
to the action principle of the DEA, generating a desired
sequence motion trajectory is essential to actuate the robot in a
cluttered environment. In addition, since the DEA only performs
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FIGURE 1 | The soft mobile robot prototype. (A) Top view of the soft robot.

(B) The bottom structure of the soft robot.

open-loop control in each action cycle, for the sake of improving
the performance of the robot’s motion trajectory tracking, the
input and output information of the DEA control system in
past cycles is generally used to formulate the input signal for
the next iteration which is totally repetitive tasks. Secondly, as
pointed out by Cao et al. (2018a,b), one of the main reasons
that deters us from controlling DEA-based soft robots is its
difficulty of obtaining accurate models. Therefore, the model-
free control methods can greatly reduce the workload, not to
mention its excellent tracking performances. Thirdly, it has been
proved that ILC is easy to be implemented. After first proposed
by Arimoto et al. (2010), ILC has been extensively studied with
significant progress in theory (Bien and Xu, 1998; Bristow et al.,
2006), as well as wildly applied in practice, such as industrial
robots (Barton and Alleyne, 2010), mobile robots (Ostafew et al.,
2013), manipulators (Tayebi and Islam, 2006; Cong et al., 2017),
electronic motors (Panda et al., 2008; Mohammadpour et al.,
2013), as well asmotion control of robotic fish (Li et al., 2016), etc.

The main contribution for this paper is that the model-free
iterative learning controller is adopted to eliminated the demand
ofmodel accuracy which simplifies the difficult modeling process,
and several simulations with relevant experiments are conducted
to prove its effectiveness. The rest of this paper is organized
as follows. Section 2 introduces the robot platform and its
kinematics analysis. In section 3, the dynamical model of the
soft robot is built. Section 4 presents the ILC design and its
convergence analysis. Furthermore, the efficiency of the proposed
ILC scheme is verified by both simulations and experiments in
section 5. Finally, the conclusion is given in section 6.

2. SOFT ROBOT DESIGN

A soft crawling robot is designed and fabricated as illustrated
in Figure 1. The robot mainly consists of a circular DEA
and four electroadhesion actuators, which work together to
achieve flexible 2D planar crawling. In addition, four passive
omnidirectional wheels are mounted on the robot to reduce the
moving frictional resistance.

2.1. Robot Body
Figure 2 illusitrates the manufacturing process of the robot
body. The DEA is essentially a VHB4910 membrane sandwiched
between compliant electrodes. Initially, the membrane is

FIGURE 2 | The fabrication process of the robot body. (a) Initial state of the

Di-electric elastomer film. (b) Pre-stretching processing. (c) Coating the

electrodes. (d) Generating the deformation.

subjected to 4 × 4 equal-biaxial pre-stretching with the radius
of 100 mm under the constraint of two annular Acrylic frames.
Two compliant electrodes are smeared evenly on both surfaces
of the membrane to obtain a conductive region. When the high
voltage applies, the membrane will result in a thickness reduction
and area expansion caused by voltage-induced Maxwell stress
(Zhigang, 2010). Moreover, the membrane will restore to its
original state under the action of internal elastic contraction force
when the voltage is off.

With regard to the specific actuation principle, the electro-
mechanical response of DEA relies primarily on the Maxwell
force and blocking force, which determine its nature of stretching
and contraction (Zhao et al., 2018).

As shown in Figure 3, the Maxwell stress perpendicular to
the surface of the DE membrane is generally considered to
describe the mechanical response of the electrical stimulation,
which is essentially the electric field force in the electric field
formed between the compliant electrodes on both sides of the
membrane. Thus, the specific magnitude of the Maxwell stress
can be described by:

σM = ε0εrE
2 = ε0εr(V/d)2, (1)

where ε0 represents the vacuum dielectric constant, εr represents
the relative dielectric constant of the material, V is the voltage
applied across the membrane, and d is the distance between the
two compliant electrodes.

The blocking force refers to the force required to restore
the fully energized actuator in the lateral dimension, which is a
resistance that needs to be overcome during the actuation. It can
be calculated by:

σblock = Fy/Ay = (x0y0z0ε0εrE
2)/(yAy), (2)
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FIGURE 3 | The actuation principle of a DEA. V is the voltage applied across the membrane, Ay indicates the cross-sectional area in the y direction and Fy presents

the blocking force in the y direction.

FIGURE 4 | Schematic of the robot foot. (A) Exploded view, (B) dimensions of

the electrode pattern.

where Ay indicates the cross-sectional area in the y direction.

2.2. Robot Feet
Figure 4 illustrates the composition of an electroadhesion
actuator. The electrode pattern with the dimensions shown in
Figure 4B is first designed and printed on a ordinary paper. Later
on, the area enclosed by the lines is scribbled with graphite by
a 2B pencil for creating a conductive region. Finally, pieces of
VHB4910 membranes are used to bond the conductive layer to
the Acrylic board and its foot connector. It is worth mentioning
that the insulation property of the VHB layer also helps to prevent
the electrodes from short-circuit via external substances.

As shown in Figure 5, when the electroadhesion actuator
is subjected to a high voltage, the two electrodes accumulate
separately positive and negative charges. Furthermore, the
electric field generated by the charged electrodes causes
opposite induced charges on the substrate, thereby creating an
electroadhesion force (electrostatic attraction force) between the
actuator and the substrate (Shintake et al., 2016). Besides, a paper
layer is served as an insulating layer to prevent the inductive
charges on the substrate from neutralizing the charges on the

FIGURE 5 | The working principle of a EA.

electrodes. After the absence of a voltage, the charges on the
electrodes disappear as well as the electroadhesion force, thereby
leading to a reversible adhesion.

2.3. Locomotion
Figure 6A shows the labeling of the four electroadhesion
actuators (EAs). Due to the interaction of the four feet, the
robot is able to achieve 2D motion. Figure 6B schematically
demonstrates a periodic single-dimensional movement of this
soft robot by the following actuation sequence.

At the first step of the loop, only the foot EA1 is subjected to
the voltage while all the others are not powered. thus the EA1

adheres to the substrate. At the second step, the EA3 and the DEA
are activated simultaneously, without powering on the remaining
EAs. As a result, EA3 produces an electroadhesion force to fix
itself on the substrate, and the robot body extends under the drive
of DEA’s expanding. Thus, the EA1 is pushed forward. The third
steps repeats the first step with the same voltage signals, causing
the EA1 to be attached on the substrate. Without the voltage
induced Maxwell stress, the DEA will return to its original state.
Consequently, the EA3 is pulled toward the DEA’s center and
hence the entire robot moves forward. Therefore, by repeating
the above actuation sequence, the soft robot will gradually move
forward cycle by cycle. By reversing the actuation sequence of
EA1 and EA3, the soft robot can move backwards.
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FIGURE 6 | The locomotion of the soft robot. (A) The feet number; (B) the

periodic movement; (C) the direct tracking experiment.

Benefit from the isotropy brought about by the
circular structure, the soft robot is able to achieve
omnidirectional motion easily which is particularly suitable
for unstructured environments.

Figure 6C shows a simple trajectory tracking motion in 2D
plane. During the test, an external camera is used to obtain
the trajectory information (the “red” line in the figure) as the
feedback signals to realize the C-shaped trajectory tracking. As
can be seen, the soft robot is able to track the C-shaped trajectory,
which shows that the soft robot can achieve omnidirectional
motion by using the appropriate sequences of the actuation.

3. KNOWLEDGE-BASED MODELING

Modeling the dynamics of the robot body is critical to the motion
controller design. Due to the difficulty of the soft robot modeling,
a data-driven ILCmethod is investigated in this study. Moreover,
a knowledge-based model framework is used to build a simplified
dynamic model of the DEA that can be used to export the
generalization of the proposed ILC scheme.

It should be explained here that the modeling is only for DEA,
not including EA, and so as the control scheme mentioned in
section 4. This does not mean that the EAs is ignorable, but just
because the actuation for them is relatively simple which does not
require a complicated processing. Furthermore,the main motion

FIGURE 7 | The dynamic model of the DEA, where k, x is the stiffness and the

displacement of a linear spring, respectively, xh presents the spring

deformation, kh presents the spring stiffness, and ch shows the viscous friction

coefficient. Otherwise, Factive is the active driving force, Fpassive means the

whole passive resistance generated by the model, ζ illustrate the frictional

resistance force during the motion, and m̃ is the equivalent mass of the

whole system.

of the robot is generated by the DEA. The EAs are play roles of
alternating adhesive via sequential control. The main topic of the
motion control of this study focuses on the motion trajectory
tracking. Hence, the paper mainly focuses on controller design
for the DEA. Thus, for its simple actuation process, we will not
elaborate the EA on its modeling and control.

Consider that only the change of displacement and the
driving force between the EA feet during the crawling of
this soft robot are focused on in this work, the junctions
between the DEA and the EA feet are selected as the feature
points (see Figure 6A). Moreover, the change of displacement
between the corresponding feature points is defined as the robot
displacement. In view of the similarity between DE materials
and biological muscles in terms of viscoelasticity, a simplified
spring-dashpot model mentioned in Gu et al. (2017) is employed
to describe the single-dimensional physical properties of the
DEA. Figure 7 shows a schematic representation of a dynamic
model based on a series of spring-dashpot sets. According to
the previous work pointed out in Cao et al. (2018c), a relatively
simple third-order system has been used to describe this system.
The static tensile force is described by a linear spring with
a stiffness k. The spring-dashpot parameters include spring
deformation xh, spring stiffness kh and viscous friction coefficient
ch (h = 1, 2, 3). The model uncertainties mainly come from the
equivalentmass m̃ of the system and the frictional resistance force
ζ during the motion. Therefore, the dynamic equations can be
given by

m̃ẍ = Fpassive + Factive − ζ sign(ẋ), (3a)

Fpassive = −kx−

3
∑

h=1

khxh, (3b)

khxh = ch(ẋ− ẋh), h = 1, 2, 3. (3c)

The voltage induced compression force Factive can be considered
as the product of an equivalent Maxwell stress and an
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equivalent cross-sectional area of the actuator associated with
the deformation. Since the Maxwell stress is proportional to the
square of the electric field, Factive can be written as

Factive = g(x)V2, (4)

whereV is the applied voltage and g(x) is a function of the change
of displacement x related to the deformation. Furthermore, it is
found that g(x) is a linear function via the experimental analysis,
thus (4) can be rewritten as

Factive = (αx+ β)V2, (5)

where α and β are the coefficients of the first-order polynomial,
the units are N · cm−1 · kV−2 and N · kV−2. The specific value
will be obtained by the experiment.

By converting the above differential equations into a state-
space model, we can have

Ẋ = AX + Bu, (6a)

y = CX, (6b)

where

u =
Factive + f̃

m̃
, Factive ≥ 0, (7)

f̃ = −ζ sign(ẋ), (8)

X =
[

x1 x2 x3 x ẋ
]T

, (9)

and

A =













−k1/c1 0 0 0 1
0 −k2/c2 0 0 1
0 0 −k3/c3 0 1
0 0 0 0 1

−k1/m̃ −k2/m̃ −k3/m̃ −k/m̃ 0













, (10)

B =
[

0 0 0 0 1
]T

, (11)

C =
[

0 0 0 1 0
]

. (12)

Among the model parameters, the stiffness k mainly describes
the elastic properties under static conditions, α and β mainly
represent the electromechanical coupling relationship, m̃ reflects
the mass of the robot platform itself, and ζ is mainly
dependent on static properties such as friction coefficient when
considering only low-speed motion. The spring stiffness kh and
the viscous friction coefficient ch determine the robot’s dynamic
characteristics, reflecting the viscoelasticity and creep property.

4. CONTROLLER DESIGN

In this work, the control objective is to drive the robot to
follow a predefined target trajectory. To this end, the ILC
scheme is designed. On the basis of the analysis presented in the
previous section, the system dynamics of the robot in iteration
domain is

Xk = AXk + Buk, (13a)

yk = CXk, (13b)

where k is the iteration index and

uk ,
V2
k
(αxk + β)− ζ sign(ẋk)

m̃
(14)

is a virtual control input to the system (the actual control input
to the robot is the voltage Vk).

To facilitate the convergence analysis, it is assumed
that the target trajectory yd is generated by the following
dynamical system

Xd = AXd + Bud, (15a)

yd = CXd. (15b)

This is a common assumption in the area of ILC. Then, the
control objective is to find a sequence of uk such that the
system output yk can track the desired target yd as close
as possible.

4.1. ILC Design
From the modeling part, it is clear that CB = 0, i.e., consequently
the relative degree of the system is higher than one, which
motivates us to design a higher order ILC scheme. By noting the
property CAB = 1, a D2 type ILC law is proposed to the first-
order controller (only the last iteration information is referenced
in the scheme) (Yin et al., 2009)

Vk =

√

ukm̃+ ζ sign(ẋk)

αxk + β
, (16)

uk+1 = uk + γ ëk. (17)

where γ means the learning gain that determines the speed and
effect of the iteration, as the only parameter need to be set in the
whole process.

The convergence of the proposed controller is summarized
in Theorem 1.

Theorem 1. For the system (13), associated with the ILC law (17),
the tracking error ek will converge to zero as k → ∞, if γ ∈ (0, 2).

Proof:Denote ek , yd − yk, 1Xk , Xd −Xk, 1uk , ud − uk.
By considering the ILC law (17) and the definition of1uk, it gives

1uk+1 = ud − uk+1

= ud − (uk + γ ëk)

= 1uk − γ ëk. (18)
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Since 1Ẋk = A1Xk + B1uk and CB = 0, we can obtain

ėk = ẏd − ẏk

= C1Ẋk

= C (A1Xk + B1uk)

= CA1Xk (19)

which therefore implies that

ëk = CA1Ẋk

= CA21Xk + CAB1uk. (20)

By substituting (20) into (18), there has

1uk+1 = (1− γCAB)1uk − γCA21Xk

= (1− γ )1uk − γCA21Xk (21)

because CAB = 1.
As the solution of (13a) is

Xk(t) = eAtXk(0)+

∫ t

0
eA(t−τ )Buk(τ )dτ , (22)

then we have

1Xk(t) =

∫ t

0
eA(t−τ )B1uk(τ )dτ , (23)

provided that Xd(0) = Xk(0). Taking norm on both sides of
(23) yields

‖1Xk(t)‖ =

∫ t

0
ea(t−τ )b‖1uk(τ )‖dτ , (24)

where a ≥ ‖A‖ and b ≥ ‖B‖. Define ‖g(t)‖λ ,

supt∈[0,T] e
−λt‖g(t)‖, then (24) gives

‖1Xk(t)‖ ≤ beat
∫ t

0
e(λ−a)τdτ‖1uk(t)‖λ

= b
eλt − eat

λ − a
‖1uk(t)‖λ. (25)

Hence we have

‖1Xk(t)‖λ = sup
t∈[0,T]

e−λt‖1Xk(t)‖

≤ b sup
t∈[0,T]

1− e−(λ−a)t

λ − a
‖1uk(t)‖λ

≤ b
1− e−(λ−a)T

λ − a
‖1uk(t)‖λ

, O(λ−1)‖1uk(t)‖λ (26)

for a sufficiently large λ > a.

By taking the λ-norm on both sides of (21) and applying (26),
there has

‖1uk+1‖λ = (|1− γ | + γ ‖CA2‖O(λ−1))‖1uk‖λ. (27)

Since |1 − γ | < 1, there exists δ > 0 such that |1 − γ | + δ < 1.
By selecting a sufficiently large λ, the following inequality can
be satisfied

γ ‖CA2‖O(λ−1) < δ.

There convergence of ‖1uk‖λ, i.e., 1uk, has been proven.
According to the convergence of 1uk and the inequality (26), it
is obvious that limk→∞ 1Xk = 0. Since ek(t) = C1Xk(t), the
convergence of ek(t), t ∈ [0,T], can be obtained immediately. �

5. SIMULATION AND EXPERIMENT

In order to verify the effectiveness of the proposed ILC scheme,
both simulations and experiments are conducted in this section.

5.1. System Identification
To evaluate the performance of the proposed method, a
preliminary evaluation through simulation is conducted so as
to reduce the cost of the experiment as well as expedite the
experimental process.

The previous studies of the DEAmodeling are generally based
on the theory of DE material (Zhu et al., 2010; Li et al., 2013;
Gu et al., 2017). However, the results of these studies can not
totally satisfy the control purpose because the model is described
in a set of differential equations and it is quite difficult to be
used in model-based controller design (which can make the
controller too complex). In this subsection, a data-drivenmethod
is employed to identified the knowledge-based model the DEA as
mentioned in section 3.

To obtain the specific parameter values in the framework by
means of system identification, the experimental setup as shown
in Figure 8 has been developed, which consists of a EA foot (EA3)
fixed with a force sensor while the others are free, and a camera
used to record the change of displacement between the feet EA3

and EA1.
During the identification experiment, the DEA is driven by an

identification signal that is a sinusoidal voltage sweep signal with
the frequencies from 0.2 to 1 Hz, the amplitude of 0.36 kV and
the offset voltage of 3 kV (the minimum actuate voltage is 1.8
kv). Then, the MATLAB System Identification Toolbox is used to
estimate the parameters of the dynamic model. The identification
result is shown in Figure 9A. The identified parameters are listed
in Table 1. In addition, the equivalent mass m̃ is 0.12 kg and the
frictional resistance force ζ is measured to be 0.1m̃g, where g
presents the gravity acceleration.

It is also important to emphasize that the robot in this
study has obvious creep property, which is a property described
by the viscoelasticity subjected to changes in load response
over time. The creep property is mainly manifested as: the
output deformation of the material with the constant load
increase gradually as time goes by. The trend is briefly that
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the deformation initially increases rapidly in a short time, then
gradually slows down with time passing by, and finally maintains
stable. The creep response can be described by a different set of
time constants, which in this model are primarily simulated by
ch/kh (h = 1, 2, 3). Therefore, another conditional constraint
occurs in the identification process when considering creep
characteristics: the time constants should be incremented step by
step. In this way, the representation should comply with c1/k1 <

c2/k2 < c3/k3. It can be found from Table 1 that the final
adjusted parameters satisfy the above constraints. Consequently
the identified model meets the constraints under “viscoelasticity,”
which means that it has a certain physical property mapping.

After the identification, several signals with different forms
(sine waves and triangle waves) and different frequencies are
employed to validate the identified model, and the results are
shown in Figures 9B,C.

FIGURE 8 | The experiment setup for system identification. Force sensor is

used to measure the magnitude of the Factive, and the camera is employed to

record the displacement.

As can be observed from the model validation results, the
model simulated outputs can roughly match the actual system
outputs and accordingly the creep under different voltage signals
can be well predicted by this model. However, the simulated
outputs do not 100% match the actual output exactly (according
to the measured data, the fits between the model and actual
system outputs mentioned above are all greater than 85%). More
specifically, there is always a slight lag in the initial stage of the
response. There are mainly two reasons: (i) there is a deviation in
the model identification process, especially for the linearization
operation applied to the actual model. After all, the identification
process has not been done very accurately, it is just a simplified
model. (ii) The intrinsic viscoelasticity with other properties
of the DE material will cause some model uncertainties that
cannot be predicted and eliminated during the modeling process.
Therefore, this deviation cannot be eliminated by barely model
parameter adjustment. Such deviation can be considered as part
of themodel uncertainties. This further embodies the importance
of the control system, which can be solved by using a robust
controller to compensate the uncertainties.

Obviously, the model developed in this paper is just a
simplified version compared to the actual model of the DEA.

TABLE 1 | The identified model parameters.

m̃(kg) 0.12

ζ (N) 0.1m̃g

k(N · cm−1) 3.456

α(N · cm−1 · kV−2) 3.6

β(N · kV−2 ) -0.25

k1(N · cm−1) 34.64 c1(N · cm · s−1) 0.4

k2(N · cm−1) 15.2 c2(N · cm · s−1) 5.067

k3(N · cm−1) 0.0396 c3(N · cm · s−1) 12

FIGURE 9 | The result of the model identification and validation. The solid line is the response output of the actual model, and the dashed line is the response output

of the identified model. (A) The identification result applying a sweep voltage signal. (B,C) Are validation results applying sine voltage signal and triangle voltage

signals, respectively.
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The reasons why this simplified model is still acceptable in this
study are as follows: (i) this is just a comparative simulation
model, while its accuracy does not have much effect on the
actual application (ILC works on iterative learning from zero
or even unknown, instead of referring to the parameters under
identifiedmodel); (ii) the excessive pursuit of model accuracy will
extremely increase the model complexity and the cost, which is
not the main focus in this work.

5.2. Simulation Results
After system identification, a mathematic dynamic model has
been explained clearly which will then be used in simulation
as the object model. Before simulating, it is necessary to
emphasize here that the amplitude of the trajectory should
be limited considering the displacement limitation with the
physical model (mainly subject to hardware limitation with the
characteristic of a high-voltage-induced breakdown, which is
expected to be avoided with the method of voltage-limitation,
equally to displacement-limitation). Thus, in order to maintain
the consistency of the simulation with the actual situation (for
subsequent physical verification), only the trajectories with the
limited displacement (less than 2 cm) are appropriate to be
given in this paper. Further more, the desired motion trajectory
is not commonly a cumulative displacement trajectory, but a
momentary displacement trajectory, that is, a single step length
under the robot’s movement at the current moment.

The parameters used in the simulation are given in Table 1.
According to the dynamic model and the proposed controller, a
simple trajectory (28) is first defined to verify the capability of
the scheme, which only contains the “rising” curve. Significantly,
in the design process, a smooth trajectory is discussed to be
necessary for preventing the problems such as “high voltage
breakdown” during the entire motion when the actual motion
conditions are considered.

yd,S (t) =























3t2

2000
(0 ≤ t ≤ 4)

−
3 (t − 20)2

8000
+ 0.12 (4 < t ≤ 20)

0.12 (t > 20)

, (28)

The initial input signals are set as u0 = 0 and γ = 0.05.
The simulation result on the this simple trajectory is shown in
Figure 10. As can be seen, the ILC control scheme can eventually
track the expected trajectory well. More specifically, its actual
motion trajectory gradually approaches to the target trajectory
with the number of iterations increases. After 50 iterations, the
output motion trajectory almost completely reaches the desired
motion trajectory.

In order to verify the generalization of the proposed ILC
scheme, another simulation is carried out. The target motion
trajectory is defined as (29) and Figure 11 shows the simulation
result. This trajectory is undoubtedly more complicated because
it contains more basic curves such as “rising,” “falling,” “turning,”
“peak,” “trough,” “regress.” In this way, the tracking effect of
this trajectory can reflect the expected effect of almost all the
remaining common curves, which makes it more representative.
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(0 ≤ t ≤ 5)

−
(t − 10)2
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+ 0.25 (5 < t ≤ 10)
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(t − 10)2

1000
+ 0.25 (10 < t ≤ 15)

3
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−3
(t − 30)2

1000
+ 0.25 (25 < t ≤ 30)

−
(t − 30)2

200
+ 0.25 (30 < t ≤ 35)

(t − 40)2

200
(35 < t ≤ 40)

0 (t > 40)

, (29)

In this simulation, the initial input signals are likewise set to
u0 = 0 and γ = 0.05. As shown in Figure 11, the output of the
control system can also substantially follow the desired motion
trajectory very well after 50 iterations.

For specific simulation data, the MAER illustrates the
convergence speed wand convergence accuracy in Table 2. After
30 iterations, the MAER can basically shrink to less than 2%,
which shows a great efficiency.

As can be discovered from the above results, benefiting from
the iterative optimization process of ILC, the control effect
(trajectory tracking performance) will become better and better
with the continuous repetitive experiments. Thus, under enough
iterations, the performance with the ILC will undoubtedly be
more excellent than other common controllers as they would
remain the same response during the repetitive situation.

In summary, the simulation results indicate that the proposed
ILC scheme performs well on the motion trajectory tracking of
the soft robot.

5.3. Experimental Results
To verify the effectiveness and the feasibility of the proposed
ILC scheme in the real-time application, experiments of motion
trajectory tracking are conducted in a wooden desk with the size
of 1.8× 2 m. The experimental platform is the soft robot detailed
in section 2. Each EA is actuated by an external voltage amplifier
(EMCO Q101-5) which can generate a maximum voltage of 10
kV. The DEA is actuated by an adjustable amplifier (Dongwen)
which could be controlled by a micro-controller. Furthermore,
an embeddedmicro-controller (Arduino UNO) is used to receive
the external sensor signals and calculate the specific execution
steps to control the specific actions of the robot through internal
procedures. In addition, an Opti-tracking system is adopted to
capture the motion of the robot precisely as well as get accurate
acceleration errors ë at every moment.

The proposed ILC controller is model-free and the feedback
information is off-line. However, the comparison between the
model-free control schemes can hardly reflect the specific
performance quantitatively. Hence, there is no comparative
analysis between different control schemes in this study.
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FIGURE 10 | The simulation results of S-type signal under different iterations. ITN indicates the iteration numbers.

FIGURE 11 | The simulation results of M-type signal under different iterations. ITN indicates the iteration numbers.

TABLE 2 | The convergence effect during the simulation.

ITN* 5% 10% 15% 20% 30% 50%

MAER**

S− type 47.53 18.75 7.39 3.76 1.11 0.51

M− type 52.28 24.78 13.26 7.17 1.78 1.42

Experiment 75.26 49.52 29.18 9.82

*ITN indicates the iteration numbers.

**MAER means Maximum Absolute Error Rate, its expression is MAER =
emax
ydmax

. emax

means the max error in the current iteration, ydmax presents the max displacement in the

desired trajectory.

Considering the cost of time and the overlapping between
the above two trajectories, we only apply the more complex
“M-shaped” trajectory in the experiment.

Similar to the simulation, the desired trajectory is given by
(29) and the learning gain is set as γ = 1. The initial control

input as the zeroth iteration is the same as that in the simulation.
Figure 12 shows the learning performance in each iteration cycle.

One point should be mention here that the actual input is the

voltage while the final output is displacement. Since that the
voltage curves have a great relationship with the displacement
curves according to the analysis in the section 3, the voltage
curves would not be characterized for the sake of brevity.

As can be found from the experimental results, the motion
trajectory at the first iteration has a very large tracking error
from the desired trajectory. After that, the tracking error is
gradually reduced under the control of the learning controller
cycle-by-cycle and it can be almost eliminated to be zero after
20 iterations (the MAER is within 10% referring to Table 2).
For the whole iterating time, it takes about 10 min to train a
perfect control solution out without repetition. And for more
details, we could find out that the overall trend with the motion is
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FIGURE 12 | Motion trajectory profiles in different iteration cycle and ITN indicates the iteration numbers. Sampling time is set as 1 s, and the iteration period is 40 s.

always consistent to the desired trajectory, while the optimization
progress is strengthened steadily. As an online-adjusting with
model-free controller (Tan, 2003), the ILC performs really good
compared with other typical controllers in the consideration of
adaptability and complexity. Hence, the experimental results also
reveal that the proposed ILC scheme is effective for the motion
trajectory tracking of the soft robot, equally it can help the system
to achieve pretty good tracking performance.

6. CONCLUSION

In this study, an ILC method is proposed and applied to a
DEA-based circular soft crawling robot in real-time which can
achieve precise motion trajectory tracking performance. Both
the simulation results and experimental results verify that the
effectiveness of the ILC for the motion control of DEA-based
soft robots. The main work of this study can be summarized
as follows.

(i) According to the feature of DE materials, an electrically
driven soft crawling robot combining the DEA with EAs
referring to Qin et al. (2018) is built. It has the advantages
of omnidirectional motion and periodic motion mode.
This is a kind of minimalist robot unit, which can be
assembled with other components in the future to realize
some more complex functional robots. Furthermore, with
the isotropy of the circular structure, the analysis of motion
characteristics can be greatly simplified.

(ii) A knowledge-based model framework, consisting of a series
of spring-dashpot sets that usually employed to simulate the
model of biological muscles, is used due to the similarities
between the DEA and the biological muscle. In this way, the
model of the DEA not only contains the priori knowledge
but also simplify the representation of the practical DEA
physical model, which can reduce the difficulty of the
controller design.

(iii) A partially model-free controller: ILC is employed for the
motion trajectory tracking control, which can eliminate
the difficulty of the accurate modeling. The periodic
motion mode of the robot is fully conformed to the
applicable range of the ILC controller. It is essential
that the ILC scheme can help to compensate the
uncertainties adaptively.

(iv) Both simulations and experiments are conducted to verify
the effectiveness of the developed soft robot and the
proposed control scheme. The results show that the
ILC scheme can help the robot to achieve excellent
motion trajectory tracking performance in the case of the
imperfect model.
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