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Hand force estimation is critical for applications that involve physical human-machine

interactions for force monitoring and machine control. Force Myography (FMG) is a

potential technique to be used for estimating hand force/torque. The FMG signals reflect

the volumetric changes in the arm muscles due to muscle contraction or expansion.

This paper investigates the feasibility of employing force-sensing resistors (FSRs) worn

on the arm to measure the FMG signals for isometric force/torque estimation. Nine

participants were recruited in this study and were asked to exert isometric force along

three perpendicular axes, torque about the same three axes, and force and torque

simultaneously. During the tests, the isometric force and torque were measured using

a 6-degree-of-freedom (DoF) (i.e., force in three axes and torque around the same

axes) load cell for ground truth labels whereas the FMG signals were recorded using

a total number of 60 FSRs, which were embedded into four bands worn on the different

locations of the arm. A two-stage regression strategy was employed to enhance the

performance of the FMG bands, where three regression algorithms including general

regression neural network (GRNN), support vector regression (SVR), and random forest

regression (RF) models were employed, respectively, in the first stage and GRNN was

used in the second stage. Two cases were considered to explore the performance of

the FMG bands in estimating: (1) 3-DoF force and 3-DoF torque at once and (2) 6-DoF

force and torque. In addition, the impact of sensor placement and the spatial coverage of

FMGmeasurements were studied. This preliminary investigation demonstrates promising

potential of FMG to estimate multi-DoF isometric force/torque. Specifically, R2 accuracies

of 0.83 for the 3-DoF force, 0.84 for 3-DoF torque, and 0.77 for the combination of

force and torque (6-DoF) regressions were obtained using the four bands on the arm in

cross-trial evaluation.

Keywords: hand force/torque estimation, human-machine interaction, force myography, wearable sensors, multi-

output regression

1. INTRODUCTION

Hand force/torque estimation is essential for translating human intention into control commands
to external devices for various applications including human-machine interaction (Merletti et al.,
2004; Haddadin et al., 2008; Pervez and Ryu, 2008), laparoscopic surgery training (Hardon
et al., 2018), prosthetic control (Nielsen et al., 2010), tele-operation (Khurshid et al., 2016) and
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tele-assessments of home-based rehabilitation (Zhang et al.,
2016). For human-robot interaction, it is crucial for a machine to
detect an unexpected increase of contact force when the operator
tries to push the machine away to protect herself/himself from
injury in any hazardous situations (Haddadin et al., 2008; Pervez
and Ryu, 2008).

While traditional 6-degrees of freedom (DoF) force and
torque sensors, such as the ATI Mini45 6-DoF force/torque
transducer, could be used to detect force/torque exerted by
a person to an object, they are generally expensive, bulky,
and have to be attached directly to the object, which is not
applicable in movable situations where pervasive and non-
intrusive measurement of hand force/torque is critically needed.
A potential alternative is to use lightweight and inexpensive
sensors on the human upper limbs to measure the muscles
contraction to estimate the exerted force/torque (Hof and
Van den Berg, 1981; Cholewicki and McGill, 1994). Hand
force/torque is generated by the activation or contraction of
the corresponding muscles on the arm, and is a function
of the Muscle Activation Level (MAL) (Mills, 2005). Thus,
muscular signals generated from the activated motor units can
be picked up at the surface of the skin in the vicinity of the
electrode. Therefore, muscular sensing techniques such as the
surface electromyography (sEMG) can be used to estimate hand
force/torque (Mobasser and Hashtrudi-Zaad, 2005; Yang et al.,
2009; Kamavuako et al., 2013).

Surface electromyography (sEMG) is frequently relied upon
to provide non-invasive data of muscle activity. However, there
has been recent interest in the development of alternative
technologies to estimate hand movements and forces such as
Force Myography (FMG). The advantages of FMG include that
it does not require: (1) precise sensor placement regarding
muscle anatomy, (2) extensive skin preparation, and (3) the same
level of signal processing required in EMG datasets (Castellini
and Ravindra, 2014). To aquire the FMG signals, force-sensing
resistors (FSRs) are usually employed in a row/array that can
be worn around the forearm or wrist (Ravindra and Castellini,
2014; Xiao and Menon, 2014). An FSR is a polymer thick
film (PTF) which exhibits decreasing resistance with increasing
applied force to the active area. As the hand exerts force or
torque, the corresponding muscles located on the arm produce
deformation on the surface of the skin. These deformations
apply pressure to the surface of an FSR, and thus changing its
resistance. These changes in resistance can be translated into
corresponding changes in voltage that are digitized into the FSRs
signals. Different hand gestures or variations in force/torque can
result in distinct signal patterns that can be used for hand gestures
or force/torque estimation.

To the best of the author’s knowledge, there is no published
study that simultaneously estimates multiple-DoF force or torque
using FMG technology. Most of the current studies either using
sEMG or FMG only estimate forces in 1-DoF, e.g., finger flexion-
extension (Yang et al., 2009) or wrist pronation-supination
(Ison et al., 2015). However, in a real situation, the wrist can
perform multiple-DoF movements simultaneously, including
flexion-extension, pronation-supination, and radial-ulnar. Sakr
and Menon (2016) explored the feasibility of using FMG to

estimate 3-axis wrist torque including: pronation-supination,
radial-ulnar, and flexion-extension, by collecting each direction
separately. Data were collected using a 1-DoF load cell where the
participants exerted torque in one axis at a time, generating three
FMG data sets. Then, the three separate 1-DoF FMG data sets
were concatenated to train a model to predict the 3-axis torques.
However, this is not a real 3-DoF torque estimation, since in a
real situation, there are usually force/torque values distributed in
more than one degree at a time even the participants intentionally
focus on a single force/torque axis at a time.

Even using the more established sEMG technology, there
are only a few published studies exploring multiple-DoF wrist
force/torque sensing. Shahmoradi et al. (2015) proposed a
method for estimating 3-DoF wrist force from sEMG acquired
from the upper limb, for prosthetic control for trans-radial
amputees. The authors first classified the sEMG signals into three
classes (force axes) and then applied a neural network regression
to associate the classified sEMG signals to corresponding wrist
forces. The R2 accuracy of each DoF regression was reported
to be high at around 0.92. However, the result was based on
the randomized 5-fold cross validation for the second stage
regression, where the training and testing data are mixed in
time sequence and is not practical in a real use situation.
Furthermore, the error introduced by the first stage classification
would reduce the overall accuracy. Jiang et al. (2008) proposed
a generative model called non-negative matrix factorization
(NMF) to estimate 3-DoF wrist torque (flexion-extension, radial-
ulnar, and pronation-supination) from sEMG. They achieved an
R2 accuracy of 0.78 for 2-DoF force estimation (excluding the
pronation-supination), but a poor accuracy was obtained for all
3-DoF force estimation together.

In this study, we explored the feasibility of using the
FMG signals to simultaneously estimate 6-DoF hand force
and torque exerted around the wrist joint. We recruited nine
healthy participants to perform a sequence of six isometric wrist
movements and a free exertion of isometric force and torque
combined while wearing an array of 60 FSRs in four bands on
the arm to collect the FMG data. A 6-DoF load cell was used
to record the wrist force/torque to be used as the ground-truth
data. The data was recorded while the participants maintain
their forearm in the same position for all force and torque
exertion sessions. A two-stage regression strategy was employed
to enhance the performance of the FMG bands: in the first stage,
the FMG signals were fed into a regression model to derive
the 6-DoF output which was then used as input for the second
stage regression. By employing the two-stage regression, the
mutual information between different DoF signals was utilized
to improve the accuracy. Three regression algorithms including
general regression neural network (GRNN), support vector
regression (SVR), and random forest regression (RF) models
were employed, respectively, in the first stage and GRNN was
used in the second stage. Two cases were considered to explore
the performance of the FMG bands in estimating force/torque
in: (1) 3-DoF force and 3-DoF torque combinations and (2) 6-
DoF force and torque space. In addition, the impact of sensors
placement and the spatial coverage of FMG measurements were
studied. Sakr and Menon (2017) was a preliminary investigation
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for the best placement of the FMG bands on the arm for 3-DoF
hand force prediction. In this paper, an extensive study for the
best placement within four landmarks on the arm for FMG bands
for improving the accuracy of 3-DoF force and torque prediction
and 6-DoF force/torque prediction was provided.

The findings from the present study would expand the
existing knowledge of using FMG for 1-DoF to multiple-DoF
force/torque estimation. In addition, it provides guidelines for
the research community about the best placement of the FMG
bands for better force/torque sensing that can be combined with
high density sensors technology (Koiva et al., 2015; Rasouli et al.,
2015; Castellini et al., 2018) for the optimal sensing of hand
force/torque in multi-DoF.

2. PROPOSED SYSTEM AND
EXPERIMENTAL SETUP

The system for data collection was composed of two parts. The
first one was the force-sensing bands that capture the muscle
contractions resulting from exerting force/torque. The other part
was the custom rig that has a 6-DoF force/torque load cell built
inside to collect the true values of the exerted force/torque.

2.1. Force-Sensing Band
Four customized force-sensing bands were designed to record
FMG signals from the participant’s working arm. Each band
contains 16 force sensing resistors (FSRs, Model 402 from
Interlink Electronics), except the wrist band which has 12 FSRs.
The FSRs were arranged in series in each band and spaced 2 cm
apart from each other. Snaps were placed on either side of the
force-sensing band to allow the band to be securely donned. The
FMG signals were digitized from the FSRs using a voltage divider
circuit with a 4.7 k resistor that controls the sensitivity of the FSR
and input voltage of 3.7 V. An ATMega328 microprocessor was
used to facilitate the data collection and transmission. The FSRs
were sampled at 10 Hz and the raw values were timestamped and
transmitted to an on-site computer via a Bluetooth connection
and saved in a file for offline processing. As the frequency of
human hand motion is typically < 4.5 Hz, the 10 Hz sampling
rate is sufficient for the purposes of this study (Xiong and Quek,
2006; Cho et al., 2016).

Toward the understanding of the effect of sensor placement
and spatial coverage of FMG on the arm to the hand force/torque
sensing around the wrist joint, four bands were simultaneously
donned on the participants’ arm while they completed a
predefined protocol. The FMGbands were placed at the following
four positions on the arm, respectively: (1) approximately 2.3
cm proximal to the wrist, identified by the surface land-marks
of the radial and ulnar styloid processes (2) mid-way between
the band at position 1 and the point on the forearm with the
widest circumference (3) the point on the forearm with the
widest circumference, and (4) the upper arm about 2 inches
above the elbow. While the widest part of the forearm is
characteristically associated with the muscle bellies of intrinsic
forearm’s musculature, for the purpose of results reporting, this
land-mark is referred to as “the muscle belly of the forearm.”

FIGURE 1 | The participant holds the plastic sphere that accommodates the

6-DoF load cell during the data collection. The shoulder joint abduction angle

is about 45◦ and the elbow angle is approximately 90◦. The four bands

positions are labeled as (1) the wrist band, (2) the midway band, (3) the muscle

belly band, and (4) the upper arm band.

The placement of these four bands used for all the participants
is shown in Figure 1.

2.2. 6-DoF Force/Torque Acquisition
A custom-built rig was designed to measure the isometric hand
forces and torques exerted onto the load cell in X, Y and Z axes,
denoted as FX , FY , FZ , TX , TY , and TZ , respectively, in the rest
of the paper. Figure 2 shows the custom-rig used for collecting
the exerted force/torque. It is composed of a base that holds
a hollow plastic sphere accommodating an ATI Mini45 6-DoF
force/torque transducer. The resolution of FX , FY , and FZ is 1

8

N and the resolution of TX and TY is 1
376 Nm and TZ is 1

752
Nm, respectively. The surface of the sphere was made rough to
prevent hand slippage during the experiments. The transducer
was connected to an interface power supply box to power it, as
well as conditioning its signals to be used with a data acquisition
system. The output of the interface power supply was connected
to a data acquisition device (DAQ) from National Instruments
(NI USB 6210).

A customized LabVIEW (© 2014) software was designed to
collect both the applied force/torque from the transducer and the
FMG signals from the FSR bands, with a visual chart showing the
exerted force/torque values during the data collection. A laptop
was used to run the LabVIEW software and connect to the FSR
bands via Bluetooth and the transducer through a DAQ. The
FMG and load cell data were synchronized and saved in a .CSV
file for offline processing and analysis.

2.3. Experiment Protocol and Procedure
An experimental protocol was designed to collect the FMG
signals and the exerted 6-DoF force/torque data for this study.
Initially, each subject sat comfortably on a height-adjustable
office chair, maintaining an upright position where the elbow
angle was about 90◦ and the shoulder joint abduction angle was
approximately 45◦. The four bands were firmly and comfortably
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FIGURE 2 | The 6-DoF force and torque data acquisition system. The left

image shows the plastic sphere that houses the 6-DoF load cell and the right

image shows a cross section sketch of the rig.

worn on specified spots on the participant’s arm as in Figure 1.
Then, the subject held the sphere on the custom-rig in his/her
palm (Figures 1, 2) and started exerting isometric forces and
torques in one of the 6-DoF with a predetermined order and
duration. Each subject performed this protocol for five trials. In
each trial, the subject tried to exert isometric forces in X, Y, and Z
axes sequentially for 40 s for each axis while intended to keep the
elbow and shoulder fixed in the initial position, the resultant force
values are forming an approximate sinusoidal wave in each axis.
Then, the participant tried to exert torques around the wrist joint:
pronation-supination (TX), flexion-extension (TY ) and radial-
ulnar (TZ) sequentially for 40 s for each axis. In the above session,
the participant was instructed to exert force/torque each time in
one axis, for the purpose of ease and to cover a relatively full range
of each force/torque axis in the first 6 sessions of each trial. After
that, the participant exerted both force and torque freely in a
combination of different axes, we called this session “free-degree
session.” During each trial, a visual chart was showed to display
the exerted force/torque values with the resultant waves, to
visually help the participant tomaintain the sinusoidal wave form
(except in the free-degree sessions) but without any limitations
on the values or the speed of the force/torque exertion. The
subjects were regularly checked whether they are feeling any
fatigue in their arm muscles and they were allowed to rest their
hands between the trials for few minutes if needed. At the end,
there were 2,000 samples for each force/torque axis and the free-
degree. During each trial, the FMG signals from the four bands
and the six force/torque readings from the load cell were recorded
and saved.

2.4. Participants
Nine healthy subjects with no known neuromuscular disorders (5
females and 4 males) aged (24± 2) participated in this study. The
subjects were given a detailed oral description of the procedure.
They affirmed their voluntary participation in an informed and
written consent, and this protocol was approved by the Office of
Research Ethics at Simon Fraser University.

3. DATA PROCESSING AND ANALYSIS

3.1. Data Processing
The data has been recorded using a total of 60 FSRs embedded
in four bands. The number of sensors (active sensors) that were
in touch with the participant skin during the data collection were
manually recorded. In data processing, the inactive sensors data
were removed. The number of active sensors varied from one
participant to another based on the size of the participant’s arm
at the bands’ positions. The average number of the active sensors
used was 9, 10, 12, and 14 for band 1, band 2, band 3, and
band 4, respectively.

Then, a high pass first order Butterworth filter with a cut-off
frequency of 0.5 Hz was applied to remove the linear trend of
each channel in the FMG signals. For both the true label and
FMG signals, a low pass 5th order finite impulse response (FIR)
filter with a cut-off frequency of 4Hzwas applied usingHamming
window which was selected empirically.

After that, the five trials’ data of each subject were divided into
training and testing data, i.e., using one of the 5 trials as testing
data and the remaining trials as training data, as described in
section 3.3. Then the raw FMG signals were normalized using
the minimum and maximum values of the training FMG data of
each participant.

3.2. Two-Stage Regression Method
A two-stage regression processing was used with the
preprocessed data, as shown in Figure 3. As stated in section
3.1, the FMG data were preprocessed and separated into training
and testing data. The motivation for using two-stage regression
is to capture the correlation among both the FMG signals and
the exerted force/torque, and among the multi-axis force/torque
themselves. In the first stage, the FMG training data (➊) were
paired with each of the six true labels (➋) to train six models
(➌) for the 6-DoF force/torque estimation, respectively. Then
these models were used to predict training (➎) and testing (➏)
outputs using the FMG training (➊) and testing data as inputs
to the models (➍), respectively. In the second stage, as shown
in the bottom panel of the figure, the force/torque estimated
from the training data (➎1st stage training output) were used
again together with the true labels (➋) to train six models (➐),
which were used to estimate the final 6-DoF output (➑) using
the testing outputs of the first stage (➏).

In the first stage, the derivative of the FMG signals were
also used as a part of (➊) and (➍), respectively. This derivative
information captures the trend of FMG amplitude change.

The second stage regression was employed for the purpose
of utilizing the mutual information between the multi-axis force
and torque. This is essential because there is always more than 1-
DoF active at a time even though the intention of the participant
was to exert force/torque in a specific direction. This can be
clearly shown in Figure 9 where TY has considerable values in
the trial of focusing on FZ . Similarly, FY and TY have significant
values in the trial of focusing on TX . In addition, the two-stage
method added extra features to the FMG signals by utilizing
the output from the first stage models. Thus, the total features
for the second stage were the raw FMG data, their derivative,
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FIGURE 3 | Illustration of the two-stage regression scheme. In the first stage, the FMG training data (➊) were paired with each of the six true labels (➋) to train six

models (➌) for the 6-DoF force/torque estimation, respectively. Then these models were used to predict training (➎) and testing (➏) outputs based on the FMG training

data (➊) and testing data (➍), respectively. In the second stage, as shown in the bottom panel of the figure, the estimated force/torque (➎1st stage training output) were

used again together with the true labels (➋) to train six models (➐), which are then used to estimate final 6-DoF output (➑) from the testing output of the first stage (➏).

the predicted 6-DoF force/torque from the first stage, their
derivative, and spherical coordinate system transformation. The
spherical coordinate system transformation was used to transfer
data in cardinal space to the spherical coordinate system, for
example, the force in X, Y, and Z directions was transformed to
the corresponding spherical coordinates.

3.3. Regression Algorithms
Three regression algorithms were employed to model the FMG
signals to the 6-DoF force/torque. These regression algorithms
were successfully employed in regression problems for processing
bio-signals like FMG and sEMG in several applications such as
detecting single-finger forces (Castellini and Ravindra, 2014),
hand prothesis control (Adewuyi et al., 2016; Connan et al.,
2016), and estimation of knee joint angle (Benbakhti et al., 2014),
and are briefly introduced as follows:

3.3.1. General Regression Neural Network (GRNN)
GRNN is able to handle multiple-output regression problems and
has faster training speed than the typical back-propagation neural
networks (Specht, 1991; Al-Mahasneh et al., 2018). Figure 4
demonstrates the structure of the GRNN used in this study.
The GRNN network consists of four layers (Luh et al., 1999).

First, the input layer has as many neurons as the number of
input variables. Once the input goes through each unit in the
pattern layer, the relationship between the input and the response
would be recorded and stored in the unit. Thus, the number of
units in the pattern layer is equal to the number of observations
in the training sample. Then, the summation units perform a
dot product between a weight vector and a vector composed of
the signals from the pattern units. There are only two neurons
in the summation layer for each output. One neuron is the
denominator summation unit and the other is the numerator
summation unit. The denominator summation unit adds up the
weight values coming from each of the hidden neurons. The
numerator summation unit adds up the weight values multiplied
by the actual target value for each hidden neuron, as in (4). The
addition of one element in the output vector requires only one
summation neuron and one output neuron.

Ŷ(x) =

∑n
i=1 Yi exp

[−D2
i

2σ 2

]

∑n
i=1 exp

[−D2
i

2σ 2

]

(1)

where D2
i = (X − Xi)

T .(X − Xi)

Frontiers in Robotics and AI | www.frontiersin.org 5 November 2019 | Volume 6 | Article 120

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Sakr et al. Isometric Force/Torque From Force Myography

FIGURE 4 | The GRNN architecture. The input X1,. . ., Xn are the FSRs

channels, and the output FX ,. . ., TZ are the 6-DoF force/torque.

Where X is the input sample and Xi is the training sample
memorized in the unit in the pattern layer. The output of the
input sample Xi is Yi.D

2
i is the Euclidean distance from theX and

Xi. It signifies how much the training samples can contribute to
the estimated output of that particular test sample. If the distance
D2
i is small, then the exponential in (4) will be a large value

which means that the training sample will contribute more to the
output estimation and vice versa. While if D2

i is zero, then the
exponential returns one which means that the estimated output
is the same as the training sample output. Finally, σ is the only
unknown parameter which called spread constant. It was tuned
in the training process to get the optimum value where the error
is very small.

3.3.2. Support Vector Regression (SVR)
Support Vector Regression (SVR) is one of the Support Vector
Machine (SVM) techniques which is used for handling regression
problems. SVR maps the input data to a higher-dimensional
feature space where the data can be separated using the linear
regression (Drucker et al., 1997). SVR does not suffer from the
local minim problem since model parameter estimation involves
solving a convex optimization problem (Bishop, 2006). Nu
Support Vector Regression (ν-SVR) was used, as the ν parameter
used to control the number of support vectors in the resulting
model. We used the Radial Basis Function (RBF) kernel as in
(5) it enables nonlinear mapping for the input data. Besides it
has a small number of hyper parameters, which reduces model
selection complexity (Wang et al., 2003).

k(x, y) = e
−

‖x−y‖2

2σ2 (2)

Where ‖x− y‖2 is the squared Euclidean distance between the
two feature vectors and σ is the bandwidth of the RBF function.

3.3.3. Random Forest Regression (RF)
Random Forest is a technique that can be used in regression and
classification problems. It was introduced by Breiman (2001).
The main idea is to train several decision trees, constituting a
“Forest,” using a random sample of the dataset. After that, each

tree is used independently to predict the output of a new data
point. The final output of the whole forest is the combination of
all these predictions, for example by averaging all of them. By
using decision trees, a complex problem is splitted into smaller
ones, which can be tackled efficiently using simple predictors.

The Random Forest algorithm (Friedman et al., 2001) starts by
randomly drawing a sample of the training data before building
the tree. To grow a random-forest tree, a subset of the input
features is selected randomly. Then, for each terminal node of
the tree, a split point among the training data is chosen such
that the information gain is maximized. This node is then splitted
into two children nodes. These steps are done recursively until a
minimumnode size is reached. The output is a Forest of ensemble
trees {Tb}

B
1 , where Tb is the tree number b and B is the total

number of trees in the forest. In regression problems (like the case
in this thesis), when a new point x is fed to the random forest, the
predicted output f (x) is calculated according to (6):

f (x) =
1

B

B
∑

b=1

Tb(x) (3)

Criminisi et al. (2010) studied the effects of several parameters
on the performance of the random forests. For example, they
found that underfitting is likely to happen when the tree depth is
small. In addition, increasing the depth may lead to the problem
of overfitting. They also showed that as the forest size becomes
larger, the decision boundaries reached by the random forest
becomes better and smoother. When to comes to classification
problems, the number of classes has almost no effect on the
performance of the random forest.

Ten-fold cross validation on the training data and grid search
were used to find the optimal values for the model parameters
for the three algorithms, where the average accuracy of the 10
iterations is considered as the metric to compare between the
different values of the algorithm’s parameters, as it is usually done
in common practice (Refaeilzadeh et al., 2007). This was done
with every 4 training trials in the 5-fold cross-trial evaluation.

3.4. Data Analysis
The regression models were initially trained with the training
data set using the two-stage process as described in section 3.2.
The performance of the trained models was tested on the testing
data set, by subsequently comparing the estimated force/torque
values in 6-DoF with the true force/torque values recorded by
the 6-DoF load cell, respectively. To quantify the performance
of the resultant model, the coefficient of determination (R2) was
employed as the performance metric. (R2) indicates how well the
model fits the data. It was calculated as in (7), R2 with a value of 1
indicating the model perfectly fits the data and R2 of 0 completely
does not fit the data.

R2i = 1−

∑N
n=1(ŷi(n)− yi(n))

2

∑N
n=1(yi(n)− yi(n))2

(4)
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where N is the number of data points, yi(n) is the true value of the

ith force/torque, ŷi is the corresponding estimate value and yi(n)
is the mean of the ith force/torque sequence over N data points.

Two cases were considered to study the suitability of using
FMG signals to predict multi-DoF force/torque. The first case was
involving building a FMG-based model to predict 3-DoF force
and another one to predict 3-DoF torque. The second case was
more extensive where a single model was used to predict the 6-
DoF force/torque simultaneously. In each case, the regression
model composed of two stage: the first stage used SVR, RF,
and GRNN, respectively and the second stage used GRNN. We
have tried all the three algorithms in the second stage and we
found that there is no significant difference between them. For
simplicity, we reported the GRNN results only in the paper. In
addition, there are two reasons to use GRNN in the second stage
regardless of different algorithms in the first stage. First, GRNN
has a fast training speed (Specht, 1991) which is important to the
two-stage model to decrease the required computations. Second,
GRNN is able to handle multiple-output regression problems
(Specht, 1991). This means that it needs only a single model to be
trained to predict all the six outputs which simplifies the whole
two-stage model.

The performance was calculated using the predicted
force/torque values from the second stage compared to the true
labels. We used cross-trial evaluation scheme in the two cases,
where one trial within each subject was left for testing while the
remaining four trials were used to train the regression model,
this was done five times where in each time the testing trial was
different, then the average accuracy was calculated across the
five trials. This is motivated by studying the data consistency
across different trials and also it is closer to the real situation.
A two-way ANOVA was conducted to examine the effect of the
two independent variables (the regression algorithms (applied
in the first stage) and the FMG band combinations) to the
dependent variable (the average R2 of second stage force/torque
estimation), for the two cases. Post-hoc pair comparison (Tukey
HSD) was further conducted if there was any significant effect
of the variables on the accuracy. The significance level was
set to α = 0.05.

4. RESULTS

The data were successfully collected from all nine subjects each
for five trials, except the last trial of subject 2, which was excluded
due to the band slipping during the data collection. Thus, there
were a total of 14,000 data points for each subject (five trials times
six specific axes and one free 6-DoF sessions, 400 samples on each
session). For subject 2, the data included only 12,000 samples and
thus the cross-trial test was conducted in 4-fold and the average
accuracy was from only four trials.

Figure 5A shows an example of data from a subject during
trials where the participant focused on exerting force in one axis
X, Y, or Z at a time. The force values in X, Y, and Z axes were
considered as the coordinates of the points in the figure. It is
shown that the points from the trial of focusing on one axis (e.g.,
X-axis) has the largest value in X-axis while the remaining axes

(Y and Z axes) have small values. It is shown that the forces in
three axes always active even though the intention is to focus on
one axis at a time, but with the highest value in the axis which
was intentionally desired and small values in the other axes. This
justifies why the force data points in the trial that focus on X-
axis are around the X-axis and the same observation for the other
axes. Figure 5B represents an example of the free-degree trials,
where the participant exerted force/torque freely in all axes.

It is noticeable that the data points are distributed among all
three axes as the participant did not focus on a specific axis.

Since the applications in the real-world may require various
types of limb force/torque monitoring in terms of estimating
one axis at a time or estimating combined axes, we designed
the protocol to cover these needs where there were sessions that
focused on one axis at a time and the others were covering
the combined axes. In addition, this design allows to have
sufficient data points from each axis to train themodel to estimate
accurately. Also, we choose the sinusoidal wave to be the pattern
of the exerted forces/toques to cover a relatively full range of each
force/torque axis.

Figure 6A shows a sample trial of the normalized FMG signals
from band 3 data vs. the exerted force in X-axis (Fx). It is shown
that the FMG signals have a correlated pattern like that of Fx. As
mentioned in section 3.4 there is two cases were considered to
study the viability of using FMG signals to predict multi-output
force/torque. In the following subsections, the accuracies of the
regression models is presented for these two cases.

4.1. Case 1: Two Models for 3-DoF Force
and 3-DoF Torque Regression Respectively
The first study explored the accuracies of using FMG in
estimating 3-DoF force and 3-DoF torque separately. One
regression model was trained to estimate the force in X, Y,
and Z axes, and another model was trained to estimate the
torque around 3-axis: flexion-extension, pronation-supination,
and radial-ulnar. The input to the force model was the FMG
signals collected during the trials of force exertion in X, Y, and
Z, and the input to the torque model was the FMG signals of the
torque exertion trials.

Figure 7A shows the average R2 of the force in X, Y, and Z axes
across all subjects using GRNN, SVR, and RF in the first stage and
GRNN in the second stage regression. While Figure 7B shows
the average R2 of the torque estimation around X, Y, and Z axes
across all subjects. The accuracy was calculated by comparing the
true labels vs. the predicted force/torque value from the second
stage regression and averaging the resulting accuracies across
the trials and DoFs. It is shown that all regression algorithms
have comparable estimation accuracies for both 3-DoF force and
torque. In addition, it is clearly shown that increasing the number
of FMG bands used, increased estimation accuracy and decreased
the standard deviation across subjects.

Using all bands achieved the highest average R2 for 3-DoF
force estimation with 0.79 ± 0.06, 0.83 ± 0.04, and 0.81 ± 0.06
using GRNN, SVR, and RF, respectively. Similarly, for 3-DoF
torque estimation with average accuracies of 0.80 ± 0.02, 0.84 ±

0.02, and 0.82 ± 0.02 respectively, using the same algorithms.
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FIGURE 5 | An example of the force values in X, Y, and Z that a participant exerted in few trials. The coordinates of each point are the force values in N in 3-DoF. (A)

Represents the trials at which the participant focused on exerting force in one axis at a time. (B) Represents the trials at which the participant exerted force freely in all

axes.

While decreasing the number of FMG bands to 3, the accuracy
was slightly decreased or remained steady. The combination of
bands 1, 2, and 3 (on the wrist, forearm midway and forearm
muscle belly) achieved the highest accuracy among all triple-band
combinations for both force and torque estimation. The average
accuracies using combination of bands 1, 2, and 3 for 3-DoF force
estimation were 0.78 ± 0.06, 0.82 ± 0.06, and 0.80 ± 0.06, and
for 3-DoF torque estimation were 0.80 ± 0.02, 0.84 ± 0.02, and
0.81 ± 0.02 using GRNN, SVR, and RF, respectively.

For double-band combinations, the combination of bands
2 and 3 achieved the highest accuracy among all double-band
for both 3-DoF force and torque estimation. The accuracies for
force estimation were 0.78 ± 0.06, 0.80 ± 0.06, and 0.79 ±

0.07 using GRNN, SVR, and RF, respectively. While torque
estimation accuracy using the same bands combination were
0.77 ± 0.03, 0.81 ± 0.02, and 0.79 ± 0.02 using the three
regression algorithms, respectively.

In the more challenging situation of using single FMG band to
estimate multi-DoF force/torque, a moderate accuracy for both

3-DoF force and torque estimation was still achieved. Among the
four placement positions used, the band on the forearm muscle
belly (band 3) achieved the highest accuracy. In this situation,
the average accuracies for force estimation were 0.71 ± 0.06,
0.73 ± 0.06, and 0.72 ± 0.06, using GRNN, SVR, and RF,
respectively. Similarly, torque estimation accuracies were 0.71 ±

0.04, 0.75 ± 0.03, and 0.73 ± 0.04 using the same regression
algorithms, respectively.

The two-way ANOVA showed significant effects of the band
combinations [F(14,404) = 18.1, p < 0.00001] and regression
algorithm [F(2,404) = 3.54, p < 0.05] to the mean R2 of
hand force/torque estimation; there was no significant interaction
effect of the band combinations and regression algorithms. The
Post-hoc test (Tukey HSD) on the effect of band combinations
showed that among the 4 single band positions, band 3 achieved
significantly higher R2 compared to band 1 (p < 0.05) and band
4 (p < 0.00001), and band 4 had the lowest accuracy compared
to other 3 single bands (p < 0.01). There was no significant
difference between the accuracies of using single-band band 3
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FIGURE 6 | Samples of the normalized FMG signals from band 3 vs. the force exerted in X-axis in one trial for 40 s. (A) Presents one of the best signals where the

FMG signals follow the same pattern as the force exerted in X-axis. (B) Presents one of the worst examples of FMG signals vs. FX signals.

and the combinations involving multiple bands. As expected,
there was also no significant difference of R2 between using any
of the double-band combinations, triple- and quad-bands, except
the double-band combination (bands 1 and 4) has significantly
lower accuracy than those of using triple-band 1, 2, and 3 (p <

0.05) and all 4 bands (p < 0.05). The Post-hoc test on the
effect of algorithm showed that the R2 of using GRNN was
significantly lower than that of SVR (p < 0.05). In addition, there
was no significant difference between either RF and GRNN or
RF and SVR.

4.2. Case 2: One Model for all 6-DoF Force
and Torque
The second case was more challenging where only one FMG-
based model was used to estimate the force/torque in 6-DoF.
Figure 8 demonstrates the average estimation accuracies (6-DoF
R2) across all subjects using GRNN, SVR, and RF in the first stage
and GRNN in the second stage. Similar to 3-DoF force/torque
results, all regression algorithms performed with comparable
accuracy. In addition, it is clearly shown that the accuracy

significantly surged when using all bands compared to single
band. The accuracy using all bands almost double the accuracy
using band 4 only.

Using all bands achieved the highest accuracy among all band
combinations. The average 6-DoF R2 were 0.71±0.05, 0.77±0.05,
and 0.74 ± 0.05 using GRNN, SVR, and RF, respectively. Using
triple-band combination, the accuracies were slightly decreased.
Among all triple-band combinations, the combination of bands
1, 2, and 3 achieved the highest accuracy of 0.70 ± 0.05, 0.75 ±

0.05, and 0.72 ± 0.05.
Decreasing the spatial coverage of the used FMG bands to

double-band combinations, the accuracy was decreased by 0.04
on average compared to using all 4 bands. Similar to 3-DoF
force and torque results, combination of bands 2 and 3 achieved
the highest accuracies among all double-band combinations with
an average accuracy of 0.66 ± 0.06, 0.72 ± 0.06, and 0.69 ±

0.06 using GRNN, SVR, and RF, respectively. Using single-band,
band 3 also has the highest accuracy with an average R2 of
0.58± 0.06, 0.63± 0.06, and 0.61± 0.06 using GRNN, SVR, and
RF, respectively.
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FIGURE 7 | (A) Shows the average 3-DoF R2 across all subjects for force estimation in X, Y, and Z axes using GRNN, SVR, and RF, respectively, in the first regression

stage and GRNN in the second stage. (B) Shows the average 3-DoF R2 across all subjects for torque estimation in X, Y, and Z axes using same regression algorithms.

The two-way ANOVA showed both significant effects of the
band combinations [F(14,404) = 28.48, p < 0.00001] and
regression algorithm [F(2,404) = 10.44, p < 0.00001] to the
meanR2 of hand force/torque estimation; there was no significant
interaction effect of the band combinations and regression
algorithms. The Post-hoc test (Tukey HSD) on the effect of band
combinations showed that among the 4 single band positions,
band 3 achieved significantly higher R2 compared to band 1
(p < 0.0005) and band 4 (p < 0.00001), and band 4 had

the lowest accuracy compared to other 3 single bands (p <

0.00001). The accuracies of using any of the three single-band
in position 1, 2, and 4 were significant lower compared to any
of the band combinations involved more than single band (p <

0.05). However, the R2 of band 3 was only significantly lower
than those of using two of the double-band combinations: bands
1 and 3 (p < 0.05), bands 2 and 3 (p < 0.005), all triple-
band combinations (p < 0.00001), and all 4 bands together
(p < 0.0005). Among the 6 double-band combinations, only
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FIGURE 8 | Average R2 across all subjects for the force/torque estimation in 6-DoF using GRNN, SVR, and RF.

the combination bands 2 and 3 achieved a significant higher
accuracy than the combination of bands 1 and 4 (p < 0.05),
but there was no significant difference of R2 between using
any of the other double-band combinations. Interestingly, there
was no significant difference of R2 between the double-band
combination bands 2 and 3 and any of the combinations of triple-
and quad-band. That is using only 2 bands on the forearm is able
to achieve comparable accuracy as using 3 and 4 bands.

The Post-hoc test (Tukey HSD) on the effect of regression
algorithms showed that the R2 of using GRNN was significantly
lower than those of SVR (p < 0.00001) and RF (p < 0.05). There
was no significant difference between SVR and RF.

It was also interesting to see the improvements in the
regression accuracy using two-stage model compared to single-
stage. An ANOVA analysis was performed to compare between
the 6-DoF accuracy using all bands with single-stage model vs.
two-stage model. The accuracies (R2) have been significantly
improved (F = 53.37, p < 0.0001), from 0.69, 0.74, and 0.71
to 0.71, 0.77, and 0.74 using GRNN, SVR, and RF, respectively.

Figure 9A shows an example of a good estimation for the force
and torque in 6-DoF using all 4 bands from testing one trial from
the data of subject 3. The 6-DoF R2 for this trial is 0.90. On
contrary, Figure 9B shows an example of a poor estimation with
6-DoF R2 of 0.68 from testing the model with the third trial of the
subject 4 data. In addition, Figure 9 shows the order of exerting
force/torque on each axis specifically, and in the last part of each
chart shows the free-degree as the participant exerts force/torque
freely in any axis.

5. DISCUSSION

The results showed the viability of employing FMG signals
to estimate multiple-axis hand force/torque using regression

models. The FMG on the arm achieves acceptable accuracies
of 0.83 and 0.84 in 3-axis force and torque combinations and
0.77 in 6-DoF force/torque regression, averaged across nine
participants using the four bands on the arm. The result from
the present study is promising and has implications for various
applications. For instance, the FMG based technology could
be employed in human robot collision detection (Haddadin
et al., 2008), which will enable a ubiquitous and low-cost
solution for HRI safety through force/torque monitoring.
In tele-assessments of home-based rehabilitation, this FMG
based wearable 6-DoF force/torque sensing technology
offers potential to simultaneous multiple-DoF force/torque
estimation instead of only using a downward axis force
estimation (Zhang et al., 2016).

In this study, a sophisticated two-stage regression model was
proposed to enhance the estimation performance by utilizing
the mutual information between force/torque axes. Three major-
stream machine learning algorithms were explored in the first
stage regression of the model.

Another interesting finding is that the best placement of
the FMG band among the proposed four landmarks was the
forearm muscle belly. This finding suggests that the primary
location for isometric hand force/torque sensing should be
the forearm muscle belly, and the upper arm is not suitable
for wrist torque sensing. This finding also sheds light on the
design of the FMG band in real applications, i.e., the sensor
density should be increased along the forearm widest part
toward the lower forearm to effectively enhance the performance.
Knowledge gained from this study can be applied to human-
robot interaction safety assessment, design, and planning and
control (Pervez and Ryu, 2008).

The characteristics and categories of the muscles during
isometric hand force/torque exertion can help to explain the
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FIGURE 9 | (A) Is an example of the best performance on the force/torque estimation for one trial from the data of subject 3 where all 4 bands were used. (B) Is a

sample of the worst performance. The forces in both charts are in N while the torques are in Nm.

above phenomenon. First, band 3 achieved the highest accuracy
because the muscles on the forearm muscle belly including
anconeus, branchioradialis and pronator teres contribute actively
to all the 6 axes isometric force/torque generation, due to the
resistance from the object that the subject is pushing against
(Buchanan et al., 1986). Secondly, the exertion of the hand forces
FX , FY , and FZ also involves the activation of the muscles on
the upper arm, including long bicep brachii, short head bicep
brachii, and brachialis muscles (Buchanan et al., 1989). For
instance, to exert hand force in the X axis, the participant might

try to rotate the upper arm around the shoulder joint, and/or
adduct/abduct the shoulder. Lastly, the wrist torques (TX , TY ,
and TZ) are mainly resulted from the contraction of the muscle
on the forearm, which results the low accuracies of the band 4
on the upper arm for torque sensing. The result R2 = 0.83 for 3-
DoF force estimation achieved in this study is much higher than
those of the studies using the well-established sEMG technology
in estimating force for less dimensions, e.g., 2-DoF wrist torque
estimations with R2 = 0.78 (Jiang et al., 2008). Even in the
estimation of 6-DoF force/torque simultaneously in this study
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(which usually lead to increase the estimation difficulty), the
results is of comparable R2 = 0.77.

Furthermore, during the data collection, we did not limit
either the max/min values of the exerted force/torque or the
speed of force/torque exertion, e.g., by using a predefined visual
chart to guide the force/torque exertion. This relatively freely
exerted force/torque would increase the inconsistency of the
data between trials, which is usually more of a challenge to
estimate compared to those using more constrained protocols
(Jiang et al., 2008; Nielsen et al., 2010; Kamavuako et al., 2013).
In addition, some subjects slightly rotated their elbow and/or
adducted/abducted their shoulder during the data collection
which made the data inconsistent between different trials and
possibly affected the accuracy. Even with these challenges, the
results from this study still show competitive accuracies. On the
other side, although the relatively less-restricted experimental
protocol poses challenges in signal processing and force/torque
estimation and thus decreases the evaluation accuracy, there
are practical values by doing this, as it reflects more to real
application scenarios compared to those restricted ones (Jiang
et al., 2008; Nielsen et al., 2010; Kamavuako et al., 2013). The
fact is that in real application scenarios, it is hard and unpractical
to ask the users to keep ideal consistency in force/torque
exertion along time in terms of force/torque range and arm/elbow
position. For instance, unexpected movements may happen
during real applications.

There is a phenomenon that, although the participant
intended to try exerting force/torque each time in one axis, the
forces and torques recorded by the 6-DoF sensors show that
there are usually more than one degree of force/torque active at a
time, as shown in Figure 5. This phenomenon repeated during
the rest segments, and was also reported in Kamavuako et al.
(2013) and Formica et al. (2012). This also implies that there is a
need to estimate multiple degrees of force/torque simultaneously
while using sensing technologies such as FMG, even when the
applications mostly rely on 1-DoF force/torque estimation at
one time. Mostly the mis-regression happens at the turn-around
points of these sinusoidal waves, where the force/torque axis
changes as shown in Figure 9B. This might have referred to
several reasons, as shown in Figure 6B the FMG signals from
the forearm muscle belly band did not follow the sinusoidal
pattern well compared to Figure 6A. In addition, there was a
variance in the amplitude of the exerted force which affected the
estimation accuracy as the training data did not finely represent
the testing data.

This degradation in the accuracy along with reducing the
number of FSR bands used affirms the previous finding in
Radmand et al. (2016); that is, higher FSRs density increases the
prediction ability, and suggests that only a single band on the
arm might not be sufficient for the estimation of 6-DoF forces
and torques.

6. LIMITATIONS AND FUTURE WORK

This study was limited to a lab setting purposed to study the
feasibility of using the prototype FMG bands to estimate the
hand force/torque based on the data mainly from 6 axes force

and torque plus a relatively limited data set of free 6-DoF
force/torque exertions. Future studies should expand the free 6-
DoF force/torque data collection to cover a sufficient amount
of points in the 6-DoF space for the model training to improve
the estimation performance of the band. The participants were
asked to exert isometric force/torque that formulate sinusoidal
waves with a visual feedback of the resultant pattern from the
values of the exerted forces and torques. As several factors like the
arm position and the type of movement (isometric or dynamic)
could affect the estimation accuracy in a real case scenario,
further exploration in situations more closely simulating a real-
life setting with less constrain of arm/elbow joint angle should be
conducted in the future study.

Based on the finding from this study that the position at the
forearm muscle belly achieves the best performance, future work
should design a high density FMG band that covers a large area
of the forearm starting from the forearm muscle belly to further
improve the regression accuracy. Notice that several issues have
not been included in this paper, but are crucial when applying
the FMG technology toward real scenarios, including reducing
training effort of the users and increasing the robustness of the
system with respect to the variation of the sensor set-up, such as
calibration work after DoFfing and donning the band and generic
model which is applicable between users. Our research group is
making effort to address these problems and the possible findings
will be published in the coming papers in the future.

7. CONCLUSION

The present study explored the viability of using the FMG on
the arm for 6-axis hand force/torque estimation, and examined
the effects of the FSRs density and location to the force/torque
estimation accuracy. Nine subjects participated in this study by
exerting isometric force/torque in 6 axes, while the FMG signals
were recorded by 4 FMG bands worn on the arm and the forces
and torques were recorded by a 6-DoF load cell to label the
data. A two-stage regression strategy was employed to enhance
the performance of the FMG bands, where three regression
algorithms including support vector regression (SVR), general
regression neural network (GRNN), and Random Forest (RF)
models were employed, respectively, in the first stage and GRNN
was used in the second stage. The resulting accuracies were tested
by 2-way ANOVA to find out the best location on the arm
for the hand force/torque estimation. The results showed that
FMG achieves a good performance in multiple-DoF force/torque
estimation, with an average R2 of 0.83 and 0.84 in 3-axis force and
torque combinations, and 0.77 in 6-DoF force/torque regression
were obtained using the four bands on the arm in cross-trial
evaluation. In addition, the results of 2-way ANOVA showed that
the location on the forearmmuscle belly (band 3) was the best for
isometric hand force/torque sensing using the FMG signals. The
findings from this study confirm the viability of using the FMG
signals from the arm for multi-axis isometric hand force and
torque around the wrist estimation, and knowledge gained from
this study will provide guidance for hand force/torque estimation
in terms of optimal FSR sensors placement and density.
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