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Within the field of robotics and autonomous systems where there is a human in the

loop, intent recognition plays an important role. This is especially true for wearable

assistive devices used for rehabilitation, particularly post-stroke recovery. This paper

reports results on the use of tactile patterns to detect weak muscle contractions in the

forearm while at the same time associating these patterns with the muscle synergies

during different grips. To investigate this concept, a series of experiments with healthy

participants were carried out using a tactile arm brace (TAB) on the forearm while

performing four different types of grip. The expected force patterns were established

by analysing the muscle synergies of the four grip types and the forearm physiology.

The results showed that the tactile signatures of the forearm recorded on the TAB

align with the anticipated force patterns. Furthermore, a linear separability of the data

across all four grip types was identified. Using the TAB data, machine learning algorithms

achieved a 99% classification accuracy. The TAB results were highly comparable to

a similar commercial intent recognition system based on a surface electromyography

(sEMG) sensing.

Keywords: motion intent, wearable sensors, upper-limb, tactile sensing, assistive devices

1. INTRODUCTION

The motivation behind this work lies in empowering individuals with mobility impairments
to rehabilitate after stroke or similar debilitating conditions. With an aging population (World
Health Organisation, 2014), keeping people active and independent for as long as possible is
becoming increasingly important. The number of occupational therapists and physiotherapists in
the UK is not sufficient to cover the needs of this aging demographic (McHugh and Swain, 2013).
Rehabilitation robots have shown a potential to alleviate this problem by assisting in controlled,
repetitive movements typically provided by the therapists. By recognizing patients’ motion intent,
the wearable rehabilitative devices can further assist in performing the desired movement. These
devices should provide just enough force to move the limbs as intended keeping the patient in the
control loop (Warraich and Kleim, 2010).

Intent recognition has been the subject of numerous studies and various sensing modalities
have been used over the years. The consistency and accuracy of motion intent recognition
devices varies though depending on the conditions (patient strength, skin moisture etc.). Muscle
contraction gives rise to two types of signals, electrical and mechanical. The former, in the form
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of electromyography (EMG) has been implemented in many
commercial products for motion intent recognition (Thalmic
Labs, 2015b; Wearable Devices Ltd., 2019). Most recent
research has shifted toward the observation of the mechanical
signals produced during muscle contraction, namely
mechanomyography (MMG) and force myography (FMG),
also referred to as tactile imaging. Over the last few
decades EMG motion intent recognition has been widely
implemented in assisted living (Kiguchi and Hayashi, 2012),
rehabilitation (Rehab-Robotics Company Limited, 2017) and
prosthetic systems (Atzori et al., 2014). Nonetheless, EMG
controlled systems have still not reached acceptable, consistent
performance as indicated by (Farina et al., 2014). One of the
main inconsistency factors is that the electric potential detected
on the surface of the skin as a result of muscle contraction could
be affected by skin impedance, while adipose tissue can induce
crosstalk. Despite the acknowledged limitations of EMG devices
the electromyography device market is expected to grow in the
years to come (Technavio, 2018). This shows that there is a
demand for understanding and measuring muscle activity that
can be incorporated in motion intent recognition systems and
integrated into wearable rehabilitation devices.

More recent works report results of the integration of EMG
sensors with other means of sensing such as force sensing (Guo
et al., 2015; McIntosh et al., 2016). Motion intent recognition
studies have observed the mechanical signals produced as a
result of the contraction of the muscles (Yap et al., 2016). Two
different approaches have been implemented; MMG and FMG.
MMG detects low frequency muscle vibrations and their velocity
and intensity, usually through the use of accelerometers (Islam
et al., 2013). FMG observes muscle architectural changes during
contraction that can be monitored by force or stiffness changes
on the skin surface (Phillips and Craelius, 2017). A plethora
of research on the use of MMG considers the characterization
of muscle activity and fatigue as well as the diagnosis of
neuromuscular disorders (Islam et al., 2013), sometimes in
combination with sEMG (Tarata, 2009). More recent research
has focused on using MMG as a control input for prosthesis
and medical rehabilitation devices (Ding et al., 2017a,b). In Ding
et al. (2017b) the MMG based system, which used an inertial
measurement unit, with an accelerometer and a gyroscope,
achieved a 94% accuracy when distinguishing between the fingers
performing tapping motions.

The idea that the volumetric and shape changes that take place
inside the muscle can be monitored on the skin surface and used
as an indication of motion intent was first captured byMoromugi
et al. (2004). They implemented push buttons with load sensors
indented in the skin to capture “muscle stiffness” for the purpose
of actuating a prosthetic hand. Wininger et al. (2008) performed
one of the first studies implementing FSR sensing to predict
grip force in hand prostheses. Using a grip dynamometer, they
mapped the readings measured during gripping and the pressure
exerted by the forearm on the force measuring cuff. After testing
the concept on healthy young adults, they concluded that this
is a useful alternative to EMG. Furthermore, a high resolution
tactile sensor system developed by Schürmann was used in a
proof of concept study to create tactile images of the anterior

forearm (Castellini and Koiva, 2013). It was later shown that
pressure sensing is not only a cheaper alternative to sEMG but
it also provides better measurement consistency (Ravindra and
Castellini, 2014). The same sensory technology was embedded
and tested in a tactile sensor bracelet (Koiva et al., 2015). A
feasibility study on FMG technology was performed by Cho
et al. (2016) which resulted in a classification accuracy of over
70%, while Xiao and Menon (2017) proved its robustness during
on-the-fly verification. However, to the authors’ knowledge,
the majority of such systems have been used in high muscle
engagement conditions which did not demonstrate the ability
to differentiate subtle variations involved in different hand
poses or during low-strength gripping. Furthermore, existing
motion intent recognition systems rely heavily on machine
learning (Yu and Lee, 2015) for data classification, which lacks
transparency in the decision making process. Consequently, the
control of these wearable devices can hinder user safety. This
paper aims to fill the identified gaps in the body of knowledge
toward further development of wearable, upper-limb, stroke
rehabilitation devices.

A tactile arm brace (TAB) design and testing was performed
and reported in Stefanou et al. (2018b), where common tactile
patterns were identified with healthy participants. The questions
we set to answer in this paper include:

• What is the performance of tactile sensing as a means of
understanding motion intent under low strength conditions?
How does it compare with the current approaches?

• How do tactile features relate to the muscle physiology? Are
these features common within a population? Could a more
transparent decision making system be developed?

Section 2 gives an overview of our user study and describes the
grip types used and their muscle synergy analyses. The results
of this study are presented in section 3 which compares the
forearm’s tactile signatures to its expected physiological states
and employs machine learning techniques to classify the state of
the hand. Section 4 compares the TAB performance to the Myo
armband (Thalmic Labs, 2015c) based on sEMG.

2. METHODOLOGY

One of the main aims of this study was to establish the potential
of the TAB in distinguishing between different hand motions
produced by different combinations of muscle engagement. This
section introduces the experimental set-up and procedure during
this participant study followed up with analyses of the muscle
contractions associated with the grips performed.

2.1. The Experimental Set-Up
The TAB is a low-cost sensorised arm brace (Figure 1). It consists
of an armband fitted with 8 force sensitive resistive (FSR) sensors
uniformly distributed around the user’s forearm. Its purpose is
to monitor the normal interaction forces, as detailed in Stefanou
et al. (2018b), capturing tactile signatures of the forearm.

A gripping device was developed for these experiments. It
comprises two load cells under a handle (Figure 1) (Stefanou
et al., 2018a) and has a resolution of 0.27N and sensitivity of
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FIGURE 1 | The experimental set-up included the tactile arm brace (TAB), the gripping device and a forearm support. An Arduino MEGA with a custom-made shield

was used to capture the sensor data and transfer it to MATLAB in real-time.

0.17N. An average error of 1.79% was calculated in the range of
0N and 9.81N. The acquisition of the TAB and gripping device
data was done using an Arduino MEGA on which a custom
made board was mounted to provide 16-bit analog inputs with
a sampling rate of 89Hz. Calibration of the TAB FSR sensors was
performed prior to the experiments where the force on each TAB
sensor was recorded as a function of time. The two load cells were
also calibrated using a set of known weights. The communication
between the Arduino, where all sensor data were captured, and
the computer was synchronous.

2.2. Participant Study
Experiments were performed with 20 healthy participants, 10
male and 10 female. Ethics approval from the University of
the West of England Ethics Committee was acquired as well as
informed written consent from all participants. The TAB sensing
surfaces were placed three quarters of the way up the length of
the forearm.

2.2.1. Experimental Procedure
Four different types of static grips were chosen (Figure 2),
representative of grips typically used in activities of daily living
and based on the feasibility and comfort of the gripping device.
These included four prismatic grips; three precision grips, with
2 (Figure 2A), 3 (Figure 2B) and five fingers (Figure 2C), and
a power grip using all 5 fingers (Figure 2D). The forearm was
placed on the support in the supination position as shown
in Figure 1.

The participants were given visual instructions on a monitor
and verbal guidance during trials. Their seat height was adjusted
accordingly so that they could comfortably place their forearm
on the 3D-printed support shown in Figure 2. The experiment
was repeated four times, once for each grip type, where each
type of grip was performed 5 times. To create a variability in
the sensor waveform profiles, the participants were instructed
when to start gripping but were allowed to choose how quickly
to grip and when/how quickly to let go. The instructions were
given as follows:

• GRIP (t); initiate gripping
• PREPARE (t+7); warning to release the grip, if they have not

done so already
• 3s allowed for rest
• GRIP (t+10).

2.3. Grips and Muscle Synergy
This section analyses the four grip types shown in Figure 2.
The activity of the forearm muscles during each grip type
determines the tactile signatures expected to be recorded
by the TAB. The contribution of each forearm muscle to
each grip type was determined based on its anatomical
and physiological parameters. The hand configuration,
the placement of the fingers, the wrist angle and the
supination/pronation of the forearm were taken into account
when analysing the TAB sensor readings and the features that
can distinguish the griping and relaxed states and the four
grip types.
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FIGURE 2 | Photographs of the four grip configuration used with the gripping device. During the experiments the forearm always rested on the arm support shown in

the supination position. (A) Grip1, the prismatic precision grip with two fingers. (B) Grip2, the prismatic precision grip with three fingers. (C) Grip3, the prismatic

precision grip with five fingers. (D) Grip4, the prismatic power grip with five fingers.

Previous studies have indicated that individual finger force
contributions during 5-finger precision (trapezoid) gripping are
proportional to each finger’s strength (Radwin et al., 1992). The
first three gripping configurations used are precision grips. The
fourth grip type used, Figure 2D, is a power grip, with the
thumb adducted. All four grip types have a prismatic shape
and they were all performed with the forearm in the supination
position resting on a 3D-printed support. The grips were selected
according to the detailed taxonomy of human grasps presented
by Feix et al. (2016). Table 1 details these four grips and the
percentage force contribution of each finger as found in the
studies by Radwin et al. (1992) and Kinoshita et al. (1996)1. The
grip force limits used during the experiment for each grip type
are presented in Table 1.

The pose and involvement of each hand digit and the wrist
in each grip type determine the expected magnitude of the

1The maximum strength and the individual fingers’ force contributions to Grip3, a

prismatic 2 finger grip, grip No.8 in NCD Risk Factor Collaboration (NCD-RisC),

were not found hence the tripod grip, grip No.14, values were used fromKinoshita’s

study (Kinoshita et al., 1996).

forearm muscle contractions. The contribution of each muscle
and its proximity to individual TAB sensors, with any damping
effects caused by the soft tissue, determine the expected tactile
signature of the forearm. A detailed diagram of the forearm cross-
section anatomy, just below the elbow, was used to associate each
TAB sensor with the muscles in its proximity (Figure 3, each
sensor annotated as S1-S8). The digit flexor muscles, the flexor
digitorum superficialis (FDS) and flexor digitorum profundus
(FDP) (Nordin and Frankel, 2001), flex the four fingers and the
diagram provides details of their correspondences to the TAB
sensors. The cross-section area of each muscle shown in Figure 3

has a direct correlation to its strength capacity (Cutts et al., 1991).
The muscle compartments that control the middle finger joints
are expected to produce the highest forces followed by the ones
that control the index and ring fingers. This is important as
each of the four parts of the FDP and FDS muscles has different
proximities to the TAB sensors, and is thus expected to produce a
different tactile signature. The interosseous membrane (Skahen
et al., 1997) that divides the forearm into the anterior and
posterior compartments is tensed when the forearm is in the
supination position (McGinley and Kozin, 2001). This leads to
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TABLE 1 | The four grips performed during the experiment, the respective forces achieved with each one and the individual digit contributions (Radwin et al., 1992;

Kinoshita et al., 1995, 1996), as well as the maximum force limits the participants in this study were instructed to not exceed.

Contribution (%) Trials: max force

GRIP Grip type I M R L Thumb Strength Force % of

position max. (N) strength

Grip1 Precision, 100 N/A N/A N/A Abducted 152.2 0.5 kg/4.9N 3.2

prismatic

Grip2 Precision 43 57 N/A N/A Abducted 121.8 1.0 kg/9.8N 8.0

prismatic

Grip3 Precision 35 26 20 19 Abducted 100 1.5 kg/14.7N 15

prismatic

Grip4 Power 25 35 25 14 Adducted 402 2.0 kg/19.6N 4.9

prismatic

FIGURE 3 | These histograms present the force distributions detected by each TAB sensor when performing Grip1, the 2-finger precision grip. The blue histograms

present the TAB forces when the hand is relaxed and the orange when it’s gripping. The approximate sensor locations are also indicated.

effective damping that confines anymuscle contraction effects (in
particular in the inner forearm layer) to the compartment of its
origin. This especially affects non-superficial muscle contraction
effects on the TAB sensors.

2.3.1. Individual Grip Type Analysis
During Grip4 (Figure 2D), the thumb is adducted, which means
that the extensor pollicis longus muscle is active. This does
not happen with the three precision grips. The digit flexors
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have a high activity, from highest to lowest in order, these
are the FDS, the FDP and the flexor pollicis longus (FPL).
Furthermore, the wrist extensor muscles engage to a smaller
extent as they contract to tighten the digit flexor tendons. Given
the nature of the grip and the wrist orientation, the ulnar wrist
extensor is expected to play a bigger role during Grip4 than the
radial wrist extensor. In contrast to Grip4 (the power grip), in
Grip1 (Figure 2A), Grip2 (Figure 2B) and Grip3 (Figure 2C) the
thumb is abducted and the ulnar deviation of the wrist is not as
prominent. The hand configuration in Grip4 engages the FDS
more than in the other grips as there is a higher PIP (proximal
interphalangeal) joint flexion (Nordin and Frankel, 2001). The
DIP (distal interphalangeal) joint flexion is lesser though in
this configuration compared to the others implying lower FDP
engagement. Therefore, differences between the two are expected
to be seen on the ventral radial part of the forearm. During Grip1
andGrip2 only some parts of the FDS and FDPmuscles are active,
flexing the index and middle fingers. The middle finger has a
higher force contribution than the index in Grip2 (Table 1), the
3-finger precision grip. It is therefore assumed that the parts of
the muscles responsible for the actuation of the middle finger
produce a greater contraction and hence a larger force on the TAB
sensors in its proximity. The thumb abduction, actuated by the
abductor pollicis longus (APL), is expected to be greater in Grip3
than Grip2 in order to position the thumb in opposition to both
the index and middle fingers.

The expected sensor responses for each grip type are presented
in Table 2; they are classified as Low/Medium/High.

2.4. Data Labeling
To label the data with the state of the hand for each grip type,
gripping or relaxed, the onsets and terminations of gripping
were determined using the gripping force measurements. An
algorithm was developed to determine gripping instances by
checking whether the grip force threshold of 0.49N has been
exceeded and whether any proximal grip/release events have
occurred. A release event is identified only after a grip event and
when the grip force is<0.69N. Another criterion for determining
the release event is whether at the midpoint between the possible
release point and the corresponding grip point the grip force is
higher than a certain threshold (which varies between the grip
types). All thresholds used in the algorithm were based on the
sensitivity and accuracy of the gripping device and determined
by trial and error. Each data point was labeled with a number
that indicates the configuration of the hand (one of four grip
types presented in Figure 2) and whether the hand was gripping
or relaxed.

3. RESULTS AND ANALYSIS

The TAB sensor readings were scaled across all grip types
using the minmax normalization technique between 0 and 1,
for each participant individually. While the hand adopts each
of the four different finger configurations without exerting
any force on the gripping device, the tactile signature on the
TAB changes. However, the tactile signatures have variations
across the participants, i.e., the relaxed signature of one user

TABLE 2 | Expected muscle contraction and TAB sensor responses for the four

different grips, Grip1, Grip2, Grip3, and Grip4 (Figure 2).

Grip1 Grip2

TAB

sensor

Muscle

activation

Expected

change

Muscle

activation

Expected

change

S1 FDS(I),FPL Medium FDS(I,M),FPL Medium

S2 ECR-longus, FPL Low-Medium ECR-longus, FPL Low-Medium

S3 ECR-brevis Medium ECR-brevis Medium

S4 APL Low-Medium APL Low-Medium

S5 ECU Medium ECU Medium

S6 ECU Low FDP(M) Low

S7 FDP(I) Low FDP(I,M) Low-Medium

S8 FDS(I) Medium FDS(I,M) High

Grip3 Grip4

TAB

sensor

Muscle

activation

Expected

change

Muscle

activation

Expected

change

S1 FDS(I,M),FPL Medium FDS(I,M),FPL Low-Medium

S2 ECR-longus, FPL Medium ECR-longus, FPL Low-Medium

S3 ECR-brevis Medium ECR-brevis Medium

S4 APL Low-Medium APL Low

S5 ECU Medium ECU Low

S6 FDP(M,R,L) Medium FDP(R,L) High

S7 FDP(M,R), FDS(L) Medium-High FDP(M,R), FDS(L) Medium-High

S8 FDP(I,M),

FDS(I,M,R,L)

Medium-High FDP(I,M),

FDS(I,M,R,L)

High

is different to the relaxed signature of another user. This is
due to the participants’ different forearm sizes and shapes,
TAB placement and fit, as well as the muscle to adipose
tissue ratios. All these factors that affect the signature on
the TAB, as would be expected, are especially evident when
the hand is in one of the relaxed states. Not only does the
force magnitude of the detected changes vary, but also the
prominence of some force changes at certain parts of the
forearm is higher than at others in different participants across
hand configurations.

3.1. Tactile Signatures—A First Glance
The force measurements around the forearm in the gripping
and relaxed states for all participants are visualized in
Figures 3–6, one for each grip type. At first glance, it is
obvious that the data are not normally distributed and that
generalizing for all participants may not be feasible. In order
to further break down the data distribution and gain a
better understanding of the results, bivariate histograms were
produced (Figure 7). These visualize the frequency density of the
individual sensor readings with respect to the grip force for each
grip type.

Figures 3–6 show how the muscles engage during each grip
type (indicated by red circles) and the response of each of the
TAB sensors when the hand is gripping (orange histograms) and
relaxed (blue histograms). The force frequency distribution of
some sensors is significantly different in the relaxed and gripping
states for particular grip types. For example, there is a clear
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FIGURE 4 | These histograms present the force distributions detected by each TAB sensor when performing Grip2, the 3-finger precision grip. The blue histograms

present the TAB forces when the hand is relaxed and the orange when it’s gripping. The approximate sensor locations are also indicated.

distinction between the relaxed and gripping force distributions
of S6 for Grip2, Grip3, and Grip4. A very strong bi-modal
distribution is visible for Grip4 (Figure 6) while a clear shift of
the median can be seen in Grip3 (Figure 5). Grip1 and Grip2,
that differ only by the use of the middle finger have very similar
tactile signatures when gripping, with the exception of the TAB
sensors situated on the volar/ulnar side of the forearm; ie. S7 and
S8. The distributions have longer tails and higher frequencies,
around 0.8 which can be explained by the parts of the FDS
and FDP muscles that flex the middle finger (annotated with
“M” in the forearm cross-section diagrams), which are located
in the proximity of those two sensors. This is one example
that demonstrates that despite variations across participants,
the results do agree with the physiological analysis performed
and expected tactile signatures as tabulated in Table 2. It was
expected that Grip1 and Grip2 would cause similar forces on
all TAB sensors with the exception of S7 and S8. Comparisons
with Grip3 where the remaining parts of the FDP and FDS
muscles, located in the inner/ulnar part of the forearm, are
engaged as well, indicate that not only are the S7 and S8

responses higher but also that S6, located at the ulnar side
of the forearm, is sensitive to Grip3 as expected (Table 2).
Overall, the results agree with the analysis performed and the
expected outcomes.

Figure 7 shows the S6 readings against the grip force during
Grip3 (scaled as indicated earlier). S6 was chosen because of
its location in a region of the forearm where prominent force
changes take place. This can be also seen in the histogram of
S6 in Figure 5 (Grip 3). The relaxed state data are presented in
Figure 7A and the gripping data in Figure 7B. While relaxed,
the recorded grip force mainly ranges between 0 and 5% of
the maximum recorded. There is no correlation between the
force measured by S6 and the one measured by the gripping
device. The variability of the forces recorded when the hand
is relaxed could be due to the variability of TAB tightness
on the participants’ forearm, sensor hysteresis or increased
blood flow in the forearm (as a result of gripping). This
behavior was observed in all relaxed sensor data (S1–S8). In
Figure 7B, the TAB readings correspond to gripping forces
ranging between 20% and 60% of the maximum recorded
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FIGURE 5 | These histograms present the force distributions detected by each TAB sensor when performing Grip3, the 5-finger precision grip. The blue histograms

present the TAB forces when the hand is relaxed and the orange when it’s gripping. The approximate sensor locations are also indicated.

force. In the 3D plot, a more normalized distribution is
visible, in contrast to the histograms presented in Figures 3–
6 which do not break down the gripping force. The visible
diagonal indicates a linear correlation of the grip force with
the TAB S6 force readings. This happens despite the variability
in the relaxed contact forces recorded across participants
(Figure 7A) caused mainly by TAB fit and forearm adipose tissue
content. This could be a result of the general increase in the
physiological cross-sectional area (PCSA) of the forearm and
S6 location near the radius bone. However, it is also, more
specifically, an indication of muscle activity in the proximity of
the sensor.

3.2. Separability of Tactile Signatures
Following initial data analysis, statistical analysis was used to
determine whether the four grip configurations of the hand
while relaxed or gripping are statistically different and thus
separable. That would provide some indications on the possible
predictive algorithm that could be used to classify the data
and statistical evidence of the tactile signatures mapping to the

muscle synergies involved in each grip type. The data were split
in eight groups; with the hand relaxed or gripping in the 4
positions shown in Figure 2. The separability of all these states
is important for the development of predictive algorithms that
are transparent and based on physiological cues. For the creation
of a generalized model, that can perform well with all TAB
users, it is paramount that there are similar patterns across
the participants.

The two-sample Kormogolov-Smirnov (KS) test, run in
Matlab using the kstest2 function (MathWorks, 2018), was
chosen to make the necessary comparisons as it does not
assume Gaussian distribution. After testing each TAB sensor
data normality, it was concluded that the data do not adhere
to a Gaussian distribution (this is also evident in Figures 3–6).
In this two-sample KS test, the hypothesis with regards to the
distribution of a dataset is rejected by comparing the p-value with
the significance level Alpha (default value of 0.05). D, the test
statistic, is an indication of the “distance,” or difference, between
the two samples’ distributions when using the kstest2 function.
When it is 0, the data follow the exact same distribution as
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FIGURE 6 | These histograms present the force distributions detected by each TAB sensor when performing Grip4, the 5-finger power grip. The blue histograms

present the TAB forces when the hand is relaxed and the orange when it’s gripping. The approximate sensor locations are also indicated.

the specified one, the higher the value the greater the difference
between the two data distributions.

No statistically significant similarity was found when
analysing and comparing the individual sensor datasets for
each grip type across participants. This was attributed to the
differences in the forearm shapes and their adipose tissue-to-fat
content ratio, as well as experimental errors and confounding
variables. The latter includes the tightness of the TAB on each
individual, the spacing of the TAB sensors and the surface
area covered by the eight sensors in relation to the total
circumference of the forearm (the larger the circumference the
lower the coverage and thus the lower the sensing resolution).
Nonetheless, statistically significant differences were found
between the relaxed and gripping states across all 20 participants.
The KS test statistic value, D, calculated for the relaxed state
datasets across participants (for the individual grip types)
was under 0.1. Therefore, 0.1 was set as a critical test value
to determine statistically different distributions. Thus, any
statistical difference between two data samples would need to be
confirmed by both the null hypothesis and the critical test value.

3.2.1. Finger Pose Signatures
The TAB data for the relaxed state were compared between the
four hand grip configurations. Individual participant data were
used with the two-sample KS test. The hypothesis tested was that
the TAB sensor readings of different grip configurations belong
to the same distribution. The test was run for each of eight TAB
sensors and in each case the hypothesis was rejected in more
than 99% of the data while the value of D always exceeded the
critical value (0.1), with one exception. These results suggest
that, even when no force is exerted on the gripping device, the
position and cross-sectional area of the muscles that hold the
joints at the four different hand grip configurations give rise to
distinct tactile signatures. D values ranged from 0.14 to 0.999,
indicating that the forearm undergoes greater changes in some
areas than others while transitioning between the four hand
configurations. However, this observation was not consistent
amongst all participants.

Even in the relaxed state where the force differences are subtle
the results agree with the grip analysis and muscle contractions.
For example, between Grip3 and Grip4, the ventral radial part of
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FIGURE 7 | These are the deconstruction of a single histogram from Figure 5. They present the force distribution of the S6 data against the gripping force recorded

during Grip3 when the hand is (A) relaxed and (B) gripping.

the forearm was expected to provide information to distinguish
between the two (section 2.3.1). S1 and S2 would be the features
to look out for, rather than the sensors at the ulnar part of
the forearm (in particular S6 which is in the proximity of the
FDP). Looking at individual participant S1/S2 data, the statistical
distance (D) between the two distributions was over 0.5 while
for S6, in most cases, it was under 0.2. However, the importance
of these features was not clear when all participant data were
considered. D values were lower than 0.2 in most cases for
the force distributions or S1 or S2 at the two different hand
configurations. Furthermore, the tactile signatures of Grip1 and
Grip4 in the relaxed state were the most similar despite the two
hand configurations being very different.

Overall, the force density distributions on the TAB sensors for
each hand configuration and across participants were different.
This is an indication that the creation of a generalized model
is probably unfeasible with the current data. Nonetheless, the
tactile signature differences of the four hand poses in the relaxed
state were found to be more significant than these variations
across participants, as the KS statistic value, D, was found to
be much higher. The sensors with the tighter distributions, and
higherD value would be the most useful features for classification
of the four different hand grip configurations. However, given
the variability of the tactile signatures across the participants, a
combination of all TAB sensor responses would be needed to
determine the hand pose.

3.2.2. Relaxed vs. Gripping
How can the TAB differentiate a hand gripping from being
relaxed? What is the TAB sensors’ response to different grips?
Are these features common across participants? The 2-sample
KS test was used to compare the relaxed and gripping sensor

data. Figure 8 presents the force readings of all participant data
for each of the four grip types. S3 records distinct force changes
across all grip types. This sensor is not near the digit flexors which
are responsible for gripping but is in the proximity of the radial
bone where there is a low adipose tissue content forming a more
rigid contact surface. As the large digit flexor muscles contract,
their stiffness and PCSA increase (PCSA being proportional to
muscle force), in turn increasing the forearm’s cross sectional
area. This generates higher normal and shear forces on the arm
brace, the former being monitored by the TAB sensors. These
forces are transmitted more efficiently on the brace by the more
rigid parts of the forearm. Thus, S3 can be a consistent general
indicator of gripping but possibly not as good of a feature for
differentiating grips.

The force distributions at S8, S7, and S6 agree with the grip
analysis (section 2.3.1). The combination of these three sensors
provide good features for predicting the grip type.When different
parts of the FDP and FDS muscles engage during gripping
there is a clear separability in the recorded force distributions.
As expected (Table 2), the S6 data have the best separability
during Grip4 (Figure 2D). This is evident in Figure 8D and
the higher KS statistic values, D, calculated when the little and
ring fingers engage. Despite the broad force density distributions
across participants, there is a clear separability of the relaxed
and gripping states in the S7 and S8 data. These two, as
expected, are better predictors of Grip2 and Grip3 than S6, due
to their proximity to the corresponding muscles. For Grip1,
what was surprising was the similarity of the S1 relaxed and
gripping distributions.The results of the remaining sensors are in
agreement with the expected outcomes presented in Table 2.

Comparisons of Figure 9 and Figure 8C show how the
separability of the Grip3 data is much clearer in a single
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FIGURE 8 | The figure presents the force readings of each TAB sensor (using all participant data) for the four different hand configurations; (A) Grip1, (B) Grip2, (C)

Grip3, and (D) Grip4.

participant’s data. The force variance observed on S4 between the
gripping and relaxed states is probably due to the lower adipose
tissue content in that region of the forearm. The same applied to
S1 but despite the sensor’s proximity to the flexor muscles this
was not the case for all participants.

Overall, the results indicate that most of the sensors show
a statistically significant difference between the states which
suggests that a data-driven, linear algorithm may prove sufficient
at identifying these states, despite the broad force distributions.
Using the overall tactile signature of the forearm for motion
intent recognition would work better than just focusing on
particular regions. Also, as evident by the state separation
in Figure 9 a personalized system would work better than a
generalized one.

3.3. Principal Component Analysis (PCA)
Given the evidence of linear separability in the data, PCA
was performed, using the IBM SPSS software (IBM, 2019), to
determine the extent to which the TAB data variability of each
grip type across states can be expressed by linear components.
Eight different components that describe the variance in the
data were produced. Using the Keiser criterion only the ones
with an eigenvalue greater than 1 were considered. The Varimax
method was used and a maximum of 200 iterations were
allowed for convergence. It is recommended that the components

chosen describe 70–80% of the data variance. However, the
principal components (PCs) explain 60.5, 68.7, 65.7, and 77.4%
of the variance of Grip1-4, respectively. The lower values are
due to the physiological differences between the participants.
The results are in line with the grip analysis (section 2.3.1,
Table 2). The PCs’ highest correlations are observed with the
sensors placed in the proximity of the digit flexors, S6, S7
and S8, and S3. S3 was found to be a good indicator of
gripping but not of differentiating between the grip types
(section 3.2.2).

3.4. Tactile Signatures—Expectations vs.
Results
During multiple participant experiments, the forearm tactile
signature on the TAB mostly aligns with the muscle physiology
and muscle synergies. Some observed incoherence in the data
suggests that personalization of the TAB would greatly improve
its accuracy. The variability between participants that affects the
baseline readings and accentuates certain features over others can
be attributed to:

• Forearm shape – causes variations of the baseline readings
• TAB fit - tighter fit elevates the baseline readings, especially in

the proximity of the ulna and radius, a loose fit may not detect
muscle activity
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FIGURE 9 | The force density distributions, relaxed and gripping, from a single participant’s data when performing Grip3.

• Adipose tissue content - lowers the baseline readings and
dampens the output

• Forearm strength/muscle mass raises baseline and makes the
output more prominent

• Forearm circumference affects the distance between the
sensors and their proximity to individual muscles.

The tactile signatures of individual forearm muscle contractions
can be used to create a map of each muscle contraction
from the TAB response. This can be implemented in a
motion intent recognition system to actuate an exoskeleton,
instead of (or in combination with) training a machine
learning model on particular motions. The advantage of this
approach is that even unknown sensory inputs will provide
a reliable control input increasing the robustness of the
exoskeleton control.

4. TAB STATE PREDICTION

Machine learning techniques were employed to create
generalized models from the TAB data recorded in the
experiments. To start with, a model was created for each grip
type, individually, to predict whether the hand is gripping
or relaxed (binary classification). All grip types’ relaxed data
were then grouped together to predict which of the four
grip types is being performed when the hand is gripping (5
classes). Following that, the algorithms were ran on all relaxed
state data to create a model that discerns between the four
grip configurations and the subtle differences between the
four relaxed hand poses (4 classes). Finally, all TAB data

were used to classify the four relaxed and four gripping states
(8 classes).

4.1. Features
Engineered features were created and ranked to improve the
performance of the predictive algorithms for individual grip
types as well as for the overall dataset. Both the temporal and
spatial tactile patterns can provide characteristics of different
hand movements despite the differences in the TAB response
for each participant. It is, therefore, important to take into
consideration the history of each sensor’s readings (considering
the change of force within about 0.5 s) as well as the spatial
features which were generated from the differences between each
of the TAB sensor force readings. The differences of the sensor
readings could provide information on antagonistic muscle pairs
or combinations of muscle contractions. Concatenating these
features with the TAB sensor readings, a total of 44 features
were established. The first eight are the TAB sensor readings
[S1, ..., S8], 9–16 their derivatives [dS1, ..., dS8] and features 17-44
are the force reading differences between each pair of sensors; i.e.,
[S1 − S2, S1 − S3, ..., S7 − S8].

The most important of these features were extracted for
grip classification. Two approaches were taken to determine
feature importance. In the first, the features were ranked
using the Random Forests (RF) algorithm where the first 10
features were chosen for each classification scenario. The second
approach transformed the engineered features with the principal
components established using PCA. All individual sensor data, S1
- S8, and some spatial features were found to be important. For
Grip1 these included [S7−S3, S8−S2], forGrip2 [S8−S3, S5−S3],
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for Grip3 [S6 − S3, S7 − S6], and for Grip4 [S4 − S3, S8 − S4].
The temporal features, on the other hand, did not provide any
useful information. The results are in line with our initial analysis
as the spatial data that featured high on the importance list for
individual grips mainly involved S3. S6, S7, and S8 were also
key sensors in these spatial data. As seen earlier, S3 and S6 are
good indicators of gripping due to the high variability in their
data distributions during gripping. S8, S7, and S6 data are useful
features in distinguishing between the four grip types. A number
of machine learning techniques were employed to create models
and make state predictions. The models were trained on 80% of
the data and tested on the remaining 20% of participants’ data.

4.2. Learning the Tactile Features
Using the most important features calculated by the RF
algorithm and the PCA-transformed data, supervised learning
algorithms were implemented with a 10-fold cross-validation.
There are multiple learning algorithms that can be used for
classification purposes, both parametric and non-parametric.
The k-nearest-neighbor (kNN) (Akhlaghi et al., 2016), logistic
regression, random forests (RF) and support vector machines
(SVM) (Wolf et al., 2013) were all implemented using the python
scikit-learn library.

The prediction accuracy was higher when using the chosen
engineered features in comparison with using solely the S1 −

S8 readings. Using all engineered features instead of only the
ones found to be of importance has no significant effect on the
results (h = 0). Being selective with the features decreases the
computational time without compromising the accuracy. The
results indicated that although the accuracy differences between
the algorithms were not significant, the SVM had the best
overall performance. When attempting to distinguish between
all grip types and gripping/relaxed, a total of 8 classes, only
about a quarter of the data were correctly classified. The kNN
algorithm was not able to capture the complexity of the features
as well as an ensemble method like RF. The SVM models,
which used a Gaussian kernel, also resulted in higher prediction
accuracy than kNNs and performed marginally better than RF in
determining the state of the individual grips and classifying all
grips and positions. The prediction accuracy using the principal
components of the TAB data was the highest in the classification
of Grip3. This could be due to the fact that the ratio of the
maximum force allowed during the experiment, to the maximum
that can be generated using that grip type is the highest for Grip3
(as evident in Table 1).

The high standard deviation of accuracy of all machine
learning algorithms demonstrates a great variation of the TAB
response within the participant pool. The training data and
validation data prediction accuracies differed and only about a
quarter of the data were correctly classified. Using the default
parameters of the scikit-learn library, the SVM model generated
with the features chosen using RF performed better than the one
with the PCA transformed features. An exhaustive search over
the gamma and C parameter values of the SVM was performed
using grid search. This revealed that the model performs best
when gamma is 1.0 and C is 1. Using the optimal parameter

values, the SVM model’s performance improved but it still failed
to reach the desired accuracy as evident in Table 3.

The model did not performwell when tested on the data of the
4 “unseen” participants (20% of the data). This indicated that the
variability across the population is not adequately captured with
such a small number of participants to allow for generalization.
The model was then trained on partial data from all participants.
The data were shuffled prior to being split into the hold-
out groups which meant that the training sample would most
probably include some data from all 20 participants. This raised
the model performance, a seen in Table 4. The most notable
improvements were made with 8-way classification (4 gripping
and 4 relaxed states) and on classifying the 4 relaxed hand
configurations where the differences are subtle. The accuracy
for both increased to over 95%. This indicates that using these
learning algorithms the model would need to be personalized to
the user.

The confusion matrix (Figure 10), shows the results of the 10-
fold cross-validation of the SVM model which was trained using
the principal component transformed features of partial unseen
data from all participants. The labels relaxed1/gripping1 represent
the relaxed/gripping states of the Grip1 hand configuration and
the same applies for the other three grip types. It can be observed
that the highest false negatives in the “one-vs.-rest” (training a
single classifier per class) SVM approach were found when trying
to distinguish between:

TABLE 3 | The classification accuracies (mean and standard deviation) achieved

using the SVM models trained on the PCA transformed features and the RF

selected features, with a 10-fold cross validation.

Feature acquisition PCA RF

Grip1 77.10 ± 9.01 81.42 ± 10.03

Grip2 84.78 ± 7.4 85.76 ± 8.70

Grip3 89.30 ± 6.06 93.43 ± 5.03

Grip4 83.54 ± 11.27 88.44 ± 8.55

All grips,

all positions
22.37 ± 9.86 27.14 ± 9.26

All grips and all positions 54.06 ± 11.35 56.13 ± 10.38

All positions (relaxed) 22.37 ± 9.86 23.97 ± 7.03

TABLE 4 | Training on all participants’ data.

Classification accuracy (%)

Features PC RF

Grip1 96.19 ± 0.20 97.06 ± 0.11

Grip2 97.61 ± 0.16 98.07 ± 0.17

Grip3 98.17 ± 0.10 98.96 ± 0.11

Grip4 99.10 ± 0.10 99.44 ± 0.06

All grips,

all positions
97.60 ± 0.04 93.75 ± 0.15

All positions (relaxed) 95.89 ± 0.26 96.75 ± 0.12

The classification accuracies (mean and standard deviation) achieved using the SVM

models trained on the PCA transformed features and the RF selected features, with a

10-fold cross validation.
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FIGURE 10 | The confusion matrix presenting results of the 10-fold cross-validation of the SVM model which was trained using the principal component transformed

features of partial unseen data from all participants.

• Grip3 and Grip4 which use all fingers; 1.6% of gripping3
was incorrectly classified as gripping4 and 1.5% of gripping4
as gripping3

• Grip2 and Grip3 with similar trapezoid shapes; 1.8% of
gripping2 was incorrectly classified as gripping3 and 1.2% of
gripping3 as gripping2.

Table 1 shows that the ring and little finger do not contribute
as much force as the index or middle finger during Grip3 which
contributes to its miss-classification as Grip2. Overall, Grip3 has
the highest false positive rate with 4.7%. Relaxed4 is the one
with the lowest false positive rate, with 0.9%. The relaxed states
were, overall, classified slightly better than the gripping states
possibly due to some difference in muscle engagement between
the participants. In summary, the highest miss-classification of a
state is for gripping3, 4.2%, the lowest for relaxed4 and relaxed2,
1.6%, with an average of 2.5% across all states.

The number of participants involved in this study was not
sufficient to allow creation of a generalizable intent recognition
model that can perform accurately (e.g., 90%) on the unseen
participants. Nonetheless, the TAB system performance achieved
an average classification accuracy of 99.96 ± 0.08% which is
comparable to the state-of-the-art motion intent recognition
systems not tested on weak muscle activations (Wolf et al., 2013;
Xiao et al., 2014; Li et al., 2017).

4.3. TAB vs. Myo Armband
4.3.1. Comparative Study
The two sensorised armbands, the TAB and the Myo, offer
two different means of detecting muscle contractions. The

first uses interaction forces on the forearm while the other
detects electrical signals that reach the skin surface. The TAB
experiments were replicated with the same participants using
Myo armband (Thalmic Labs, 2015c). The Thalmic Labs’ Myo
Gesture Control Armband (Thalmic Labs, 2015c) features an
Inertial Measurement Unit (IMU) and eight sets of sEMG.
These are accessed using the Windows SDK provided. The
Myo was chosen for comparison with the TAB for its ease
of use, adaptability to various forearm sizes and the number
of measurement points (8) which is the same as in the
TAB. The sEMG data were sampled at around 100 Hz.
Positioning of the Myo EMG sensors on the forearm was done
according to the manufacturers instructions (Thalmic Labs,
2015a).

4.3.2. sEMG: Features and State Prediction
The same 44 engineered features as earlier were produced for the
Myo data. The temporal features included voltage changes over
0.5 s windows, as in Wolf et al. (2013). The RF algorithm was
used to rank the features and the 10 most important were chosen.
The temporal features ranked high in contrast to the TAB where
they ranked the lowest. In both, cases, however, the radial part
of the forearm provided key features. All participant data were
shuffled and a 10-fold cross-validation was performed using the
kNN, SVM and RF learning algorithms. The best performance
was achieved with the RFmodel (Table 5). The highest prediction
accuracy with the Myo data was achieved for Grip4, where the
force limit set for the experiment was the highest amongst the
grip types (Table 1). Higher forces engage more muscle fibers,
creating a higher potential difference and therefore stronger
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TABLE 5 | The classification accuracy achieved using RF on the Myo EMG

(10-fold cross-validation) data.

Random forest

Grip1 65.12 ± 6.92

Grip2 69.23 ± 10.00

Grip3 73.73 ± 11.19

Grip4 78.81 ± 9.11

All grips,

all positions
26.01 ± 2.956

All grips and relaxed 40.21 ± 11.22

All positions (relaxed) 40.56 ± 4.07

signals to be detected by sEMG sensors. Overall,the classification
accuracy for individual grip types seems to be dependent on
the grip force being used since Grip1accuracy < Grip2accuracy <

Grip3accuracy < Grip4accuracy.

4.3.3. Performance: TAB vs. Myo
The tactile and sEMG data have different types of key features.
Temporal features were important when classifying sEMG data,
which confirmed results from Wolf et al. (2013). With the TAB
tactile data the most prominent features were the eight raw
sensor readings followed by a number of spatial features. The
PCA transformed features performed at similar levels as the
RF selected features. The best performing algorithm was the
SVM. It is worth noting that more complex and computationally
expensive algorithms such as a recurrent neural network (LSTM)
were also implemented with similar accuracy to SVM. SVMs
are commonly used in this type of application, with examples
like NASA’s Biosleeve project (Wolf et al., 2013) and McIntosh’s
SVM implementation in a multimodal sensing (sEMG and FSR)
system (McIntosh et al., 2016).

Myo EMG data classification accuracy is highly dependent
on the gripping force which is not the case with the TAB data
classification. The TAB system confusion matrix was indicative
of its high performance (over 90%). The corresponding Myo
systemmatrix indicated its inability to correctly identify the data.
In the classification of the four relaxed hand configurations, the
majority of the data were classified as Grip1. Only 0.4% of the
relaxed power grip is classified correctly. The weak electrical
signals generated by low gripping forces seemed unable to reach
the skin surface. Cross-talk may be another reason for this
low-accuracy performance.

The results show that a motion intent recognition system that
uses tactile sensing can achieve high classification accuracy (>
90%) when personalized. Distinguishing between four different
static hand positions and 4 grips, in the same positions (a total of
8 classes), > 99% classification accuracy can be achieved. This is
comparable to the state-of-the-art systems that use sEMG, such
as NASA’s BioSleeve (Wolf et al., 2013). There were not enough
participants in this study to create a generalized TAB system. The
need for personalization is not unique to the TAB or the general
force/pressure approach when a small number of participants is
used. This has been recognized in similar studies that achieved

accuracy as high (Wolf et al., 2013; McIntosh et al., 2016). Under
the same conditions the Myo sEMG data classification did not
perform as well.The Myo data trained models were unable to
distinguish between the different classes. A more sophisticated
sEMG system may have been more sensitive to the low-strength
motions used and thus more capable of making distinctions
between the states.

This study proves that the TAB can achieve as high hand
motion classification accuracy as the state-of-the-art sEMG
systems (Phillips and Craelius, 2017). A more extensive study
with a broader range of motions would elicit the limitations of the
TAB and confirm the results obtained in this study. More testing
is required to identify the extent to which adipose tissue content
affects the TAB performance. Moreover, the sensor placement
with respect to the distance from the proximal elbow joint and
the ability to monitor particular muscles should be explored.
Algorithms such as SVMs have the potential to correctly classify
different data from the same participants. However, if a higher
accuracy is needed for a generalized model then a much larger
population is required in order to capture the distribution of
forearm sizes, shapes and adipose tissue and muscle content.
Especially since the resolution of the tactile signature was very
much dependent on the forearm circumference as the sensing
area was always constant.

5. CONCLUSIONS AND FURTHER WORK

The integration of the TAB in rehabilitative and assistive devices
is well justified through the experiments performed that emulated
low strength arm/hand conditions. It has been shown that the
forearm tactile signatures can be mapped to particular muscle
contractions. These could be used as a control input to a wearable
device the ability to respond to all sensory inputs appropriately
without having to “learn” motion primitives. Achieving such
transparency in the system would improve safety of wearable
autonomous devices. The TAB was able to detect the tactile
signature differences under such conditions and achieve higher
classification accuracies than the sEMG of the Myo armband.
The personalized model trained on partial PC-transformed data
from all participants achieved an accuracy of 95.9% when
distinguishing between the four relaxed hand positions. The
8-state (four relaxed and four gripping) classification accuracy
was 97.6%.

In this study the mechanical cues that arise as a result
of weak muscle contractions were captured by recording the
normal forces generated on an arm brace. The use of higher
sensitivity sensors, an array of which would cover the entirety of
the TAB circumference could improve the prediction accuracy
and the resolution would no longer be dependent on the
forearm circumference. This could potentially also provide
better data for the generalization of the system. Furthermore,
incorporating sheer force sensing in addition to the normal
force monitoring could further improve the TAB performance.
To conclude, this study with the TAB system has shown that
force myography is a promising motion intent recognition
technique that could be potentially useful for upper-limb
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rehabilitation devices providing the transparency required for
inherent safety.
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