
ORIGINAL RESEARCH
published: 20 January 2020

doi: 10.3389/frobt.2019.00151

Frontiers in Robotics and AI | www.frontiersin.org 1 January 2020 | Volume 6 | Article 151

Edited by:

Jonathan Timmis,

University of York, United Kingdom

Reviewed by:

Eiji Uchibe,

Advanced Telecommunications

Research Institute International (ATR),

Japan

Elio Tuci,

University of Namur, Belgium

*Correspondence:

Jean-Baptiste Mouret

jean-baptiste.mouret@inria.fr

Specialty section:

This article was submitted to

Evolutionary Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 23 October 2019

Accepted: 20 December 2019

Published: 20 January 2020

Citation:

Kaushik R, Desreumaux P and

Mouret J-B (2020) Adaptive Prior

Selection for Repertoire-Based Online

Adaptation in Robotics.

Front. Robot. AI 6:151.

doi: 10.3389/frobt.2019.00151

Adaptive Prior Selection for
Repertoire-Based Online Adaptation
in Robotics
Rituraj Kaushik, Pierre Desreumaux and Jean-Baptiste Mouret*

Inria, CNRS, Université de Lorraine, Nancy, France

Repertoire-based learning is a data-efficient adaptation approach based on a two-step

process in which (1) a large and diverse set of policies is learned in simulation, and (2)

a planning or learning algorithm chooses the most appropriate policies according to the

current situation (e.g., a damaged robot, a new object, etc.). In this paper, we relax the

assumption of previous works that a single repertoire is enough for adaptation. Instead,

we generate repertoires for many different situations (e.g., with a missing leg, on different

floors, etc.) and let our algorithm selects the most useful prior. Our main contribution is an

algorithm, APROL (Adaptive Prior selection for Repertoire-based Online Learning) to plan

the next action by incorporating these priors when the robot has no information about

the current situation. We evaluate APROL on two simulated tasks: (1) pushing unknown

objects of various shapes and sizes with a robotic arm and (2) a goal reaching task with a

damaged hexapod robot. We compare with “Reset-free Trial and Error” (RTE) and various

single repertoire-based baselines. The results show that APROL solves both the tasks in

less interaction time than the baselines. Additionally, we demonstrate APROL on a real,

damaged hexapod that quickly learns to pick compensatory policies to reach a goal by

avoiding obstacles in the path.

Keywords: data-efficient robot learning, model-based learning, repertoire-based robot learning, evolutionary

robotics, fault tolerance in robotics

1. INTRODUCTION

Reinforcement Learning (RL) algorithms have achieved impressive successes during the last few
years, from learning to play games from pixels to beating professional Go players, but at the
expense of enormous interaction time with the system. For example, they required up to 38 days
of game-play (real-time) for Atari 2,600 games (Mnih et al., 2015), 4.8 million games for Go (Silver
et al., 2016), or about 100 h of simulation time (more if real-time) to train a 9-DOF mannequin
to walk (Heess et al., 2017). This makes these algorithms suitable only for policy synthesis, i.e.,
creating a policy for a robot in simulation, but impossible to use for online learning in robotics,
that is, adapting online to a new system or a new situation. By the term “situation” we refer to any
perturbation in the dynamics of the robot caused by physical damages, faults in the actuators or
environmental changes, such as terrain condition.

Model-based reinforcement learning algorithms (MBRL) allow robots to learn policies with
less interaction time by alternating between learning a dynamical model of the robot from the
observed data, and using that model either for finding a policy (Deisenroth and Rasmussen, 2011;
Chatzilygeroudis et al., 2017; Kaushik et al., 2018) or for model predictive control (Williams et al.,
2017; Chua et al., 2018; Nagabandi et al., 2019). Since these algorithms optimize a policy (or plan

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2019.00151
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2019.00151&domain=pdf&date_stamp=2020-01-20
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jean-baptiste.mouret@inria.fr
https://doi.org/10.3389/frobt.2019.00151
https://www.frontiersin.org/articles/10.3389/frobt.2019.00151/full
http://loop.frontiersin.org/people/821446/overview
http://loop.frontiersin.org/people/873933/overview
http://loop.frontiersin.org/people/132119/overview

Kaushik et al. APROL

an action) using the learned dynamical model, they can be
highly data-efficient. However, MBRL does not scale well with
the dimensionality of the state-space as the amount of data
required to learn a model typically scales exponentially with the
dimensionality of the input space (Keogh and Mueen, 2010).

A promising way to address the “curse of dimensionality” in
reinforcement learning for online adaptation is to learn a model
in “task-space” of the robot that predicts how the outcomes
of elementary policies stored in a repertoire change in reality
compared to the simulated robot (Cully et al., 2015; Cully and
Mouret, 2016; Duarte et al., 2017; Chatzilygeroudis et al., 2018a;
Sharma et al., 2019). By the term “task-space” we refer to the
space where the operation of the robot is required (e.g., it can
be the x and y coordinate positions for a mobile robot). This
process splits the policy search problem in two parts: first, search
for a repertoire of policies in simulation, where large number of
interactions are possible; and second, on the real robot, search for
the most appropriate policy from the repertoire, which is usually
easier than directly searching on the original policy parameter
space. For instance, given a repertoire of elementary policies
that makes a six-legged robot (18D joint space) walk in different
directions (i.e., one policy for each walking direction on the
2D plane/task-space), we can learn a model to predict how this
2D task-space is transformed (i.e., a mapping from expected
transitions to the observed transitions of the robot on the
surface) when these policies are transferred to a damaged robot
(e.g., one missing leg) (Chatzilygeroudis et al., 2018a). With an
accurate prediction model, a planning algorithm can then select
a sequence of these elementary policies from the repertoire by
taking into account the outcome difference between the prior—
the intact robot in simulation—and the reality—the damaged
robot. For instance, for a mobile robot, this approach might
learn a transformation model in the 2D center of mass (COM)
position-space. In that case the input to the model is the change
in COM positions expected by the repertoire for the associated
policy and the target is the corresponding real observation on
the robot. Since the dimension of the task-space is often much
smaller than the state-space, this reduces the dimensionality of
the model, and therefore the amount of interaction time.

Like with any learning algorithm based on prior knowledge,
the effectiveness of the adaptation process depends critically on
the difference between the prior and the reality: the bigger the
difference, the worse it will perform (more interaction time,
lower quality policies). In this paper, we address this issue by
allowing the adaptation algorithm to select the most interesting
prior among a set of priors learned beforehand. In other words,
we learn several repertoires of elementary policies in simulation,
each with a unique situation (e.g., different damages), and the
robot adapts by both searching for the most suitable prior (i.e.,
the repertoire) and correcting their expected outcomes using a
model learned from the observations.

To do so, we propose to evolve several repertoires of
elementary policies for the robot using an evolutionary algorithm
calledMAP-Elites (Cully et al., 2015;Mouret and Clune, 2015) (in
simulation), each with a unique situation picked from a sub-set
of probable situations that the robot might face in reality. Each of
these repertoires associates different task-space transitions (e.g.,

relative displacement) with unique elementary policies. Using
each of these repertoires as “prior mean-functions” for Gaussian
processes (GP) regression models (Rasmussen and Williams,
2006), we learn as many models as the number of repertoires
from the observations on the real robot. Each of these models
maps expected task-space transitions stored in the corresponding
repertoire to the actual task-space transition on the robot. More
concretely, we iteratively learn a probabilistic model that predicts
how these repertoires transform themselves when applied on the
real robot as we collect more data from the real robot. Then,
instead of selecting a single global model for controlling the
robot, we pose this as a maximum a posteriori (MAP) estimation
problem of selecting the next elementary policy from one of the
repertoires, given the repertoires, the past observations and the
goal. We call this algorithm APROL (Adaptive Prior selection for
Repertoire-based Online Learning) (Figure 1). The main novelty
in APROL compared to the previous work is that it uses multiple
repertoires instead of one and adapt online by automatically
selecting the most suitable policy from one of those repertoires
based on the current situation.

2. RELATED WORK

2.1. Data-Efficient Learning in Robotics
To be useful for online learning in robotics, the algorithm should
allow the robot to learn within a very short interaction time
(ideally less a few minutes) (Chatzilygeroudis et al., 2018b). In
this direction, MBRL (Model-Based Reinforcement Learning)
algorithms showed promising results by allowing simple robots
to learn new skills within a few minutes of interaction with
the real world (Deisenroth et al., 2015; Chatzilygeroudis et al.,
2017; Chua et al., 2018; Kaushik et al., 2018). These model-
based approaches mainly fall into two categories depending
upon where the learning process is inserted (Chatzilygeroudis
et al., 2018b): (1) alternating between learning a model of the
dynamics and learning an optimal policy according to the model,
which is called model-based policy search (Deisenroth et al.,
2015; Chatzilygeroudis et al., 2017), and (2) learning a model
of the system dynamics, then using it along with a planner or
a Model-Predictive Control (MPC) loop (Williams et al., 2017;
Chua et al., 2018; Nagabandi et al., 2019), which is often called
adaptive model predictive control. Most of the experiments so far
have been based on episodic learning: after each trial, the robot
is reset to the same starting state. While this makes sense for
manipulation tasks, which can be reset easily, it is difficult to use
for locomotion tasks in the field.

While MBRL algorithms are more data-efficient than model-
free policy search approaches, learning a model that is good
enough to plan and control a complex robot requires a
large amount of data/observations. This contrasts with animal
behavior which can adapt to new situations (such as uneven
terrain, broken limbs) within a minute or even in seconds.
To accelerate the learning process and thereby increase the
data-efficiency, many recent papers propose to leverage prior
knowledge about the system dynamics, such as using a
known but low fidelity simulator or a parametric mathematical
model of the dynamics. In traditional robotics, data efficiency

Frontiers in Robotics and AI | www.frontiersin.org 2 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

FIGURE 1 | Overview: APROL uses multiple repertoire-based priors for fast online adaptation in unforeseen situations. (1) First, in a low fidelity simulator, we generate

multiple repertoires of elementary policies for various situations of the robot, such as being damaged, slippery floor, interaction with a novel object etc. A repertoire is

basically a discrete one-to-one association between elementary policies and their corresponding task-space transitions on the robot. (2) Then, we use those

repertoires as prior mean-function for Gaussian process regression models that learn to transform the task-space transitions in each of the repertoires to the

task-space transitions of the real robot using the past observations. (3) Finally, given the goal, APROL iteratively picks the most suitable elementary policies from the

most suitable repertoire at every replanning step to reach the goal in a minimum number of steps. In between every replanning step, the task-space transformation

models are updated with the past observations.

is achieved by simply identifying the parameters of such
mathematical models using the observed data from the real robot
(Hollerbach et al., 2016). In more recent approaches (Cutler and
How, 2015; Chatzilygeroudis and Mouret, 2018), a parametric
(Chatzilygeroudis and Mouret, 2018), or fixed (Cutler and How,
2015) model is “corrected” with a non-parametric model to
capture potentially non-linear effects.

Recently, meta-learning models of the dynamics showed
promising results for fast adaptation to new situation (Nagabandi
et al., 2019). Typically, they optimize the initial parameters for a
neural network based model of the dynamics of the robot such
that the model can be adapted quickly to match the true model
of the robot with a small number of observations. The main
challenges of this kind of meta-learning approaches is that (1) it
is much more computationally demanding than simply learning
the model (since each model needs to be evaluated on its capacity
to learn instead of its performance, and (2) they assume that a
single, well-chosen parametrization of the model will be a good
starting point for any future change, which is not guaranteed to
be true.

2.2. Gaussian Process Regression With
Non-constant Prior
One of the key elements of data-efficiency in MBRL is the
ability to use a prior (Chatzilygeroudis et al., 2018b) that comes
from simulation (Cully et al., 2015; Cutler and How, 2015;
Papaspyros et al., 2016; Saveriano et al., 2017; Chatzilygeroudis
and Mouret, 2018; Chatzilygeroudis et al., 2018a; Pautrat et al.,
2018; Nagabandi et al., 2019), either directly or via meta-
learning. Most previous algorithms leverage Gaussian processes
(GP) (Rasmussen and Williams, 2006; Deisenroth et al., 2013;
Chatzilygeroudis et al., 2018b) as data-driven models because
they work well with a few data and because it is easy to introduce
priors (easier than in neural networks).

A GP is an extension of multivariate Gaussian distribution
to an infinite-dimension stochastic process for which any finite
dimensions will be a Gaussian distribution (Rasmussen and
Williams, 2006). It is a distribution over functions, specified by
mean function µ(·) and covariance function k(·, ·):

f (x) ∼ GP(µ(x), k(x, x′)) (1)

As mentioned before, compared to neural networks, a GP
can easily include prior knowledge about the underlying
function (Rasmussen and Williams, 2006). In particular, we can
provide a prior “mean-function” to the GP model which is our
prior belief about the prediction when no data is available to train
the model (Figure 2). If µ(x) is the prediction mean and σ 2(x) is
the prediction variance of a GPmodel for any input x,M(x) is the
prior belief about the prediction mean of the model for the same
input x, σ 2

n is the prior noise and D1 : t is the set of t observations,
then the GP is computed as follows:

P(f (x)|D1 : t) = N (µ(x), σ 2(x)) (2)

where,

µ(x) = M(x)+ k
T(K+ σ 2

n I)
−1(D1 : t −M(x1 : t)) (3)

σ 2(x) = k(x, x)− k
T(K+ σ 2

n I)k (4)

Where, K is the kernel matrix with entries K[i, j] = k(xi, xj) and
k = k(D1 : t , x). As mentioned above, here k(·, ·) is the covariance
function or the kernel function.

In Bayesian optimization applied to robot learning, there
are many recent work that use non-constant priors coming
from simulation to model the cost function using GP (Cully
et al., 2015; Papaspyros et al., 2016; Pautrat et al., 2018). In
particular, Pautrat et al. (2018) uses several repertoires of policies

Frontiers in Robotics and AI | www.frontiersin.org 3 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

FIGURE 2 | Gaussian processes regression with non-constant prior—Plots show how the model fitting is impacted by the selection of prior mean-function. On the left

(A), the prior mean function is more similar to the true underlying function that the model tries to fit with four given data points. On the right (B), the prior

mean-function is very different from the true underlying function. As as result, in (A), the model fitting is very close to the true function. However, for (B), due to

selection of “wrong prior,” model fitting is far from the true function.

evolved for different situations that perform the same task, but
in different ways (i.e., different behaviors). Then it uses the
performance scores stored in each of the repertoires as prior
mean-functions to the GP to learn the performance function for
Bayesian optimization on the real robot. In effect, it learns as
many models as the number of repertoires. To select a policy,
a novel acquisition function called MLEI (Most Likely Expected
Improvement) is used which considers the likelihood of the prior
being close to the reality while computing expected improvement
of performance for a policy.

Many recent work also used priors from a simulator to learn
a “residual model” with GP, i.e., the difference between the
simulated and real robot instead of learning the system model
from scratch. For example, model-based policy search algorithm
like PILCO (Deisenroth and Rasmussen, 2011) or Black-DROPS
(Chatzilygeroudis et al., 2017) can be combined with simulated
priors and learn to control a cart-pole in 2–5 trials (Cutler and
How, 2015; Saveriano et al., 2017; Chatzilygeroudis and Mouret,
2018).

On the one hand, these contributions prove that using well-
chosen priors with GPs is a promising approach for data-efficient
learning; on the other hand all previous algorithms assume
that we know a good prior in advance. This is a very strong
and crucial assumption as a misleading prior can substantially
increase interaction time needed to learn to control the system.
In this paper, we relax this assumption and argue that by using
multiple priors for a subset of the possible set of situations and
allowing the algorithm to choose the best one for modeling and
planning improves online learning and adaption for robotics.

2.3. Repertoire-Based Learning in Robotics
Repertoire-based approaches also use prior knowledge from
simulation to make learning more data-efficient. Their key
principle is to learn a large and diverse set of policies in
simulation with a “quality diversity” algorithm (Mouret and
Clune, 2015; Pugh et al., 2016; Cully and Demiris, 2018), then
use an optimization or search process to pick the policies that
works best in current situation (Cully et al., 2015; Cully and

Mouret, 2016; Duarte et al., 2017; Chatzilygeroudis et al., 2018a;
Sharma et al., 2019). The most prominent algorithm of this
family is “Intelligent Trial-and-error (IT&E)” (Cully et al., 2015).
Before deployment a repertoire of policies for an intact robot
is evolved in simulation using the MAP-Elites (Mouret and
Clune, 2015) algorithm such that many alternative but good
ways of performing the task are found. For instance, there are
many ways of walking with a 6-legged robot: a tripod gait
with the 6 legs, a jumping gait in which all the gaits are used
simultaneously, a limping gait with only 5 legs, etc. For each
of these families of gaits, there exist a well-optimized gait that
performs the tasks (walking) in a specific way. If an adaptation
is needed, IT&E searches for the most appropriate gait in the
repertoire using Bayesian optimization, that is, it models the
performance function on the real robot with GP and uses the
uncertainty of the GP prediction to balance exploration and
exploitation during the search process. Importantly, IT&E uses
the performance scores computed in simulation as the “prior
mean-function” for the GP model (section 2.2) so that the robot
has initial “guesses” about the performance of each policy of
the repertoire. Thanks to this two-step learning process, IT&E
allows a damaged six-legged robot (12D joint space) to find out
compensatory policies (36D space) within 2 min of interaction
with the robot. However, since the robot has to be reset back
to the original state after each episode (this is an episodic
learning algorithm), IT&E cannot be used “as is” to adapt on
the field.

The repertoire-based learning algorithm that is the closest
to the present work is “Reset-free Trial and Error” (RTE)
(Chatzilygeroudis et al., 2018a). Like in IT&E, RTE searches for a
repertoire of diverse policies using MAP-Elites. However, instead

of searching for many ways of performing a single task, the
repertoire captures the best way of performing many variants of
the task. In the hexapod robot case, each policy reaches a different
points around the current positions of the robot; for instance, one
policy to walk forward, one policy to walk backward, one policy
to turn right by 30◦, etc. On a damaged robot, this repertoire
needs to be modified since policies that are supposed to make the

Frontiers in Robotics and AI | www.frontiersin.org 4 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

FIGURE 3 | Repertoire-based learning in robotics: First, a repertoire of elementary policies is evolved for the robot using a known but imperfect simulator. This

repertoire associates potentially every discretized task-space (or outcome-space) transitions to unique elementary policies. Then, during deployment of the real robot,

a Gaussian process model is learned which transforms this “prior” task-space in such a way that the outcomes of policies on the real robot match with the new

transformed task-space. RTE (Chatzilygeroudis et al., 2018a) uses this model with Monte-Carlo tree search to pick the policies in a sequential manner from the

repertoire to solve the target task.

robot move forward do not lead to the same behavior anymore
due to the damage as well as the reality gap with the simulator.
For instance, a policy that is supposed to make the robot move
forward might make it turn right because of a damage to a leg.

To adapt this repertoire during deployment, RTE learns a
Gaussian process model to predict how the expected outcomes
of these policies change on the real robot. For instance, it learns
that the policy that was supposed tomove forward actually makes
the robot turn right, which is useful if the robot needs to turn
right. More precisely, this model is a probabilistic transformation
from the expected outcomes to observed outcomes using the data
obtained during execution of the elementary policies on the robot
(Figure 3). To choose the next policy, RTE uses Monte Carlo
Tree Search (MCTS), that is, a planning algorithm, so that it can
exploit the uncertainty predictions of the GP when planning a
sequence of elementary policy (e.g., move forward for 30 cm,
turn right for 30◦, etc.). Note that, similar to IT&E, RTE also
uses the outcomes of the simulator (stored in the repertoire) as
prior mean-function for the GPmodel, which makes the learning
process very data-efficient. RTE showed that a damaged hexapod
(single blocked leg) robot can recover 77.52% of its capability
through online adaptation compared to an intact robot.

Using a repertoire of pre-learned policies assumes that the
repertoire contains some policies that will work in the current
situation (e.g., with a damaged robot). However, since the
repertoires are evolved without anticipating different situations
the robot might face in reality, it is possible that none of the
policies work [although experiments show that a single repertoire
allow robots to adapt to surprisingly many situations (Cully
et al., 2015)]. A way to relax this assumption is to provide many
repertoires (several dozens) and make the algorithm choose the
most likely one according to the observations. This approach
was recently proposed for Bayesian optimization, that is, for
episodic learning, by Pautrat et al. (2018). To do so, Pautrat

et al. (2018) introduced a new acquisition function that combines
the likelihood of the repertoire given the observations (how
well the prior matches the observations) and the expected
improvement (how much we would gain if the policy π works
as expected on the robot). Thanks to this algorithm, Pautrat
et al. (2018) showed that a damaged hexapod (in simulation)
can learn to climb stairs with <10 trials by using multiple
repertoires generated for various damage conditions and various
stair heights. The present work follows a similar line of thought
but extends it to the reset-free learning approach introduced by
the RTE algorithm.

3. PROBLEM FORMULATION

We consider a system whose transition in the task-space depends
not only on the current task-space state and the policy, but also
on the current situation (e.g., icy vs. rocky terrain for mobile
robot). Then, task-space transition dynamics of such systems can
be written as:

st+1 = st + F(st ,πθ , c)+ w (5)

where, st , st+1 are the locations in task-space at time-step t
and t + 1, respectively, πθ is the open-loop policy/controller
parameterized by θ , c ∈ C specifies the current situation,
w is the Gaussian system noise and F(·, ·, ·) is the task-space
transition function of the system. Note that, C can potentially be
an infinite set, which means that the system can face infinitely
possible situations during its deployment that can change its
transition dynamics.

We assume that we neither have access to F(·, ·, ·) nor have
knowledge about the current situation c. However, we have
access to a low fidelity simulator of the system F̂(·, ·, ·) and a

Frontiers in Robotics and AI | www.frontiersin.org 5 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

set C′ ⊂ C of probable situations that the system might face
during deployment. The goal is to drive the system from a
starting task-space state s0 to the target task-space state sg in a
minimumnumber of steps by executing a sequence of elementary
policies. Here, elementary policies are open-loop policies that
are applied for a short period of time (a few seconds) on the
robot which cause a small change in the task-space state of
the robot.

In other words, we consider a robot that follows Equation
(5) and might face any situation, such as broken joints,
slippery floor, or a novel object to manipulate during its
mission. These situations cannot be predicted beforehand
and the robot is not equipped with any specialized
sensor either to observe such situations. Now, if such
situations arise, instead of aborting its mission, the robot
has to figure out a sequence of compensatory policies to
continue its mission and accomplish the goal as quickly
as possible.

4. APPROACH

4.1. Overview
APROL allows a robot to “learn while doing” instead of “learning
and then doing.” Our approach is based on three main stages
(Figure 1):

1. Before deployment of the robot, several repertoires of
elementary policies are generated for the robot with
an evolutionary algorithm called “MAP-Elites” using
a relatively low-fidelity simulator of the real robot
(section 4.2). Each of these repertoires are generated
for a unique situation or circumstance that the robot
might face during its mission, such as a broken limb,
a novel object to interact with, or different terrain
conditions, etc. Each of these repertoires is basically a
one to one association between the evolved elementary
policies and the corresponding transitions they cause on
the robot.

2. At every replanning-step, using the past observations from
the real robot, we learn a probabilistic mapping g : S 7→
S, where S is the task-space, for each of the repertoires
to predict how the task-space-transitions in the repertoires
transform themselves when corresponding policies are applied
on the real robot (section 4.3). This transformation models
are learned using GP, because (i) we can set a prior
mean-function for the GP which is the prior belief about
the underlying function that the GP needs to fit, (ii)
instead of deterministic prediction, GP outputs a probability
distribution, which allows us to incorporatemodel uncertainty
in the planning stage. For every repertoire, we learn this
model using the expected outcomes of the repertoire itself as
prior mean-function.

3. Using the past observations and the given goal, APROL picks
the best policy from one of the repertoires and applies it on the
robot for one replanning-step (section 4.4). Then the process
repeats from step 2.

Algorithm 1: Generate Priors

Require: S ∈ R
ns ⊲ Task-space

Require: 2 ∈ R
nθ ⊲ Policy space

Require: C = {c0, c1, ..., cn} ⊲ Probable situations

Require: bot_sim ⊲ Simulator of the robot

Require: feval(.) ⊲ Performance function

Require: Nmax ⊲Max evaluation

1: R = {} ⊲ Empty set of Repertoires

2: for c in C do

3: 5 = map_elites(bot_sim,2, c, S, feval ,Nmax)

4: Insert repertoire5 inR

5: end for

6: ReturnR

Algorithm 2: Planning using APROL
Require: R = {5051, ...,5n} ⊲ Set of repertoires

Require: G ⊲ The task/goal

Require: task_planner

Require: D = φ ⊲ Empty observations set

1: T = {gp0, gp1, · · · , gpn} ⊲ Initialize models

2: while task not solved do

3: s = get_current_state()

4: sg = task_planner(G, s) ⊲ Current sub-goal

5: π∗ = argmaxπ∈5,5∈R P(sg |π ,D,5)P(5|D)P(π)
6: Execute π∗ and record data in D

7: Update transformation models T with D

8: end while

4.2. Generating Repertoire-Based Priors
We assume that the robot can be controlled by a low-
level elementary policy πθ (typically, an open-loop policy)
parameterized by θ ∈ R

nθ and that any point on the task-space
can be described by a vector s ∈ R

ns . In simulation, the task-
space transition caused by the policy πθ can simply be written as
1sθ . Additionally, we assume that a set C′ = {c0, c1, .., cn}, which
is a subset of all the possible situations C is available. Then, for
each situation c ∈ C

′, we use an iterative algorithm called “MAP-
Elites” (Cully et al., 2015; Mouret and Clune, 2015; Vassiliades
et al., 2017) to evolve a repertoire of elementary policies in
simulation, such that a wide range of task-space transitions can be
captured in the repertoire (Cully et al., 2015; Cully and Mouret,
2016; Duarte et al., 2017) (see Algorithm 1). Nevertheless, other
quality diversity algorithms (Pugh et al., 2016; Cully and Demiris,
2018) could also be used to generate the repertoire with almost no
influence on the behavior of APROL.

To start with, MAP-Elites discretizes the task-space into some
regions or cells, each of which is identified using a cell identifier
(cell_id), which is a unique key to specify a cell. At the beginning,
MAP-Elites randomly initializes some policies and test them
in simulation to find out the task-space transitions 1sθ and
their performance score rθ . Then, they are included in the
repertoire as tuples of policies, their corresponding transition,
the performance score and the cell id as (πθ ,1sθ , rθ , cell_id).
Here, the performance is a user defined function with which some
constraints can be imposed on the behavior of the robot. For
example, we can set a lower performance score for a policy if it
produces higher joint torques on the joints. That wayMAP-Elites
will prefer the policy with lower torque if two policies produce
same task-space transition on the robot. After this initialization,

Frontiers in Robotics and AI | www.frontiersin.org 6 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

MAP-Elites performs the following three steps iteratively until
the maximum number of valuations are reached:

1. Randomly picks a tuple from the repertoire and adds a small
random variation to the policy.

2. Simulates the policy to get the task-space transition,
performance score and the cell_id to create a new tuple.

3. Inserts the new tuple into the repertoire if no tuple exists with
the same cell_id, or, replaces an existing tuple with the same
cell_id but with a lower performance score (discards the new
tuple otherwise).

Thus, each repertoire is a set of tuples (πθ ,1sθ , rθ , cell_id), where,
no two tuples have the same cell_id. One thing to be noted here is
that although MAP-Elites is computationally expensive, it can be
parallelized on large clusters to compute the repertoires before
deployment of the robot. It is worth mentioning here that we
use CVT variant of MAP-Elites (Vassiliades et al., 2017) that uses
centroidal voronoi tesselation to discretize the task-space into
the user specified number of homogeneous geometric regions. In
CVTMap-Elites, the number of cells remains fixed irrespective of
the dimensionality of the task-space, making it scalable to a very
high dimensional task-space.

4.3. Learning the Transformation Models
With Repertoires as Priors
Here, we use the same approach that RTE (Chatzilygeroudis
et al., 2018a) used to learn the transformation model with the
repertoire as priors (see Figure 3). Since the policies in the
repertoires come from a simulator, how they change the state
of the system is an approximation of the reality. Moreover, if
the real situation of the robot (e.g., different floor conditions,
novel object to interact with, mechanical damage etc.) is different
from those of the repertoires, then the corresponding transitions
for the policies will not align perfectly with the real system.
However, transitions that we observed in the simulation can be a
“prior” (i.e., prior in Bayesian model learning) to learn the actual
transitions we see on the real system, provided the situation of
the robot in simulation is somewhat close to the real situation.
Thus, we use GPs to learn the transformation models of the task-
space from simulation to reality, where we use the transitions
stored in the repertoires themselves as prior mean-functions to
these models.

Suppose, an arbitrary policy πθ from a repertoire produces a
task-space transition 1sθ on the simulated robot. Now suppose,
the same policy πθ produces transition of 1sθ ,real on the real
robot. We can learn a model to predict this transformation of
1sθ to 1sθ ,real. More concretely, we learn a probabilistic model
using GP, where input is 1sθ , the target is 1sθ ,real and the
corresponding prior mean is 1sθ itself. If f (1sθ) is the function
that transforms the task-space from simulation to reality, then
for each prediction dimension d = 1, 2, ...n, the GP can be
computed as:

P(fd(1sθ)|Dd
1 : t) = N (µd(1sθ), σ

2
d (1sθ)) (6)

where,

µd(1sθ) = Md(1sθ)+ k
T
d (Kd + σ 2

n I)
−1(Dd

1 : t

− Md(1sθ 1 : t)) (7)

σ 2
d (1sθ) = kd(1sθ ,1sθ)− k

T
d (Kd + σ 2

n I)kd (8)

Where, Dd
1 : t = {fd(1sθ 1), fd(1sθ 2), . . . , fd(1sθ t)} is the set of

dth dimension of the observations on the real robot, Md(.) is
the dth dimension of prior mean from the repertoires such that
Md(1sθ) = 1sθ [d], σ

2
n is the prior noise, Kd is the kernel matrix

with entries Kd[i, j] = kd(1sθ i,1sθ j) and kd = kd(D
d
1 : t ,1sθ).

We use squared exponential kernel given by:

kd(1sθ ,1s′θ) = σ 2
se exp(−

||1sθ −1s′θ ||2
l2

) (9)

Where, σse and l are hyperparameters. We initialize one GP
model for each of the repertoires and train them iteratively as we
collectmore observations from the real robot during deployment.

4.4. Model-Based Planning in Presence of
Multiple Priors
Once GP models are initialized, the robot is deployed in the
environment. We assume that the main task/goal of the robot
is sub-divided into a sequence of goals in the task-space by a
high-level task-planner (e.g., path planning algorithm, such as
A*) and the robot has to achieve the first sub-goal by applying
a suitable policy from one of the repertoires. For example, for a
mobile robot, the main task is to reach a particular position in
the room. Then the high-level planner will sub-divide this task
into a sequence of sub-goals along the shortest path, avoiding
the obstacles in the room. Note here that, since high-level task-
planner gives the next sub-goal for the robot to achieve, it can also
be replaced with a human operator giving high-level commands
(such as move left, push object right, grab etc.) remotely to the
robot. At every time step, the high-level task planner re-plans
the sub-goals according to the current task-space location of the
system. Now, given the next sub-goal sgt , the past observations
obs0 : t−1 and the repertoiresR = {50,51, ...,5k}, we can frame
the next policy selection problem as a maximum a posteriori
(MAP) estimation problem as follows:

Let, πθ be any elementary policy and P(5|obs0 : t−1) be the
probability of the repertoire 5 to match the actual situation,
given the past observations. Then, the next elementary policy π∗

θt

is given by

π∗θt = argmax
πθ∈5,5∈R

P(πθ |sgt , obs0 : t−1,5)P(5|obs0 : t−1)

= argmax
πθ∈5,5∈R

P(sgt |πθ , obs0 : t−1,5)P(πθ)
∑

π ′
θ
∈5′ ,5′∈R P(sgt |π ′θ , obs0 : t−1,5′)

P(π ′θ)P(5|obs0 : t−1)

(10)

Ignoring the denominator (being constant),

π∗
θt
= argmax
πθ∈5,5∈R

P(sgt |πθ , obs0 : t−1,5)P(πθ)P(5|obs0 : t−1)

(11)

Frontiers in Robotics and AI | www.frontiersin.org 7 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

Equation (11) gives the MAP estimation of the next
elementary policy from the repertoires to be applied on the robot
to achieve the current sub-goal sgt in one-step.

Now, P(πθ) is the prior belief over the elementary policies.
One option is to set it equal for all the policies in the repertoires.
However, setting equal (positive) probability for the ones that
have transition1sθ in the neighborhood of the desired transition
(sgt − st) and setting zero for the others will improve the
optimization time by eliminating the need to evaluate all the
policies in the repertoires. One thing to be noted here that taking
a very small neighborhood might degrade the performance of
the algorithm.

P(sgt |πθ , obs0 : t−1,5) is the Gaussian likelihood of the
transition to sgt given the repertoire 5 (i.e., GP with prior mean
function from 5), observations obs0 : t−1 and the elementary
policy πθ . This can be computed using the mean and variance
prediction of the GP transformation model learned using
obs0 : t−1 with the repertoire 5 as mean-function. Here, the
input to the GP is 1sθ , which is the task-space transition
corresponding to πθ in the repertoire 5. To be more precise, if
µ(1sθ) and 6(1sθ) are the mean and the diagonal covariance
predicted by the GP model for an n dimensional task-space, then
P(sgt |πθ , obs0 : t−1,5) is computed as follows:

P(sgt |πθ , obs0 : t−1,5) = 1

(2π)n/2|6(1sθ)|1/2

exp
(

− 1

2
(sg − µ(1sθ)

T)6−1(sg − µ(1sθ)
)

(12)

P(5|obs0 : t−1) represents the likelihood of a repertoire being
able to represent the reality for the robot. To compute this
quantity, first we define a closeness score ψ5 that represents how
close the mappings of the repertoire 5 are compared to real
world observations.

ψ5 = e−k||1sθ−1sθ ,real||2 , k > 0 (13)

where, 1sθ ,real is the observed transition on the robot after
applying a policy πθ taken from the repertoire 5 and 1sθ is the
corresponding transition stored in the repertoire. Now, for a real
robot, 1sθ ,real can be stochastic for a given policy. Moreover, for
different policies from the same repertoire ψ5 can be different.
This makes ψ5 stochastic in nature. Thus, the overall score of
the repertoire can be defined as the expectation of ψ5. However,
to compute a good estimate of the true expectation, it will require
several observations from all the repertoires, which will make the
adaptation process slow. On the other hand, imperfect estimation
of the expectation of ψ5 with small number of observations
from the repertoires might make the algorithm greedy toward
any repertoire that, by chance, has given higher ψ5 for the
selected policies. To have a balance between exploration and
exploitation of these repertoires, we borrow the concept of Upper
Confidence Bound (UCB) from the multi-armed bandits problem
formulation (Sutton and Barto, 1998). Thus, instead of estimating
the expectation by taking the mean of the scores, we compute the

UCB as follows:

ψucb5 =
∑

ψ5

N5
+m

√

ln(n)

N5
(14)

Where, n is the total number policies executed on the robot so
far, N5 is the number of times the policies were used from the
repertoire5 and m is a positive constant. Note that since we use
UCB1 (Auer et al., 2002), theoretically m =

√
2. However, we

left m as a tunable hyperparameter of APROL for specifying the
amount of exploration. Normalizing these UCB scores will give
higher probability value to those repertoires which have higher
“mean score” and to those repertoires that are not tried enough
compared to others on the real robot:

P(5|obs0 : t−1) =
ψucb5

∑

5′∈R ψucb5′
(15)

Combining everything, at every time-step, optimizing the
Equation (11) gives the optimal policy to be used for the
current sub-task. Since our policy space is discrete and Equation
(11) is fast to evaluate (it does not involve the simulator), we
can simply evaluate all the elementary policies π from all the
repertoires to find out the optimal according to Equation (11)
(see Algorithm 2).

5. EXPERIMENTAL RESULTS

We evaluate APROL on two simulated tasks: (1) object
pushing task with a robotic arm and (2) goal reaching task
with a damaged hexapod. Additionally, we demonstrate
the effectiveness of APROL on a damaged six-legged
robot (hexapod) which has to reach the target position in
an arena as quickly as possible by avoiding obstacles in
the path. We evaluated the following baselines for both
the tasks and compared the results to APROL with 40
replicates:

• CP-L (Close Prior with Learning): Using APROL with only
one repertoire that is very close to the reality. For example, in
the object pushing task, if the test object is a cube, then the
repertoire used in this case can be of a cuboid or a slightly
larger or slightly smaller cube. For the hexapod task, the floor
friction used for the repertoire can be close to the floor friction
during test time. Another option is to use a repertoire for two
blocked legs and at the test time hexapod has only one of
those legs blocked. Since CP-L is basically APROL with the
closest prior to the real situation, it is the best APROL can
be expected to perform with multiple repertoires. So, we want
APROL to perform as close as possible to the CP-L baseline in
the experiments.

• SP-L (Single Prior with Learning): Using a randomly chosen
prior repertoire for learning. Here, the chosen repertoire need
not necessarily be closer to the reality. In the Hexapod task,
this baseline is exactly RTE as we used the author provided
implementation of RTE. However, for the object pushing task,
we used APROL with a randomly chosen repertoire. Thus,
in this task SP-L is close to RTE in the sense that (1) both

Frontiers in Robotics and AI | www.frontiersin.org 8 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

use a single repertoire, (2) both transform this repertoire
according to the observed data using a probabilistic model,
and (3) incorporate the probability estimates to decide the next
controller to be applied on the robot.

• SP-NL (Single Prior, No Learning of model) In this baseline,
we use APROL with one randomly chosen repertoire
for adaptation and ablate the learning of transformation
model. Without updating the transformation model using
observation from test time, it assumes that the chosen
repertoire perfectly matches with test object/damage (i.e.,
the reality).

• APROL-NL (APROL with No Learning): In this baseline,
we use APROL with several prior repertoires. However, we
ablate the learning of transformation model. Thus, it assumes
that one of the repertoire will perfectly match to the test
object/damage. However, this assumption is not true since
we do not include the repertoire that matches with the test
object/damage.

All the simulated experiments were implemented in
python. For both the tasks, we used the pybullet physics
simulation library (Coumans, 2013). For comparison with
RTE (Chatzilygeroudis et al., 2018a) in the hexapod task we
used the author provided code https://github.com/resibots/
chatzilygeroudis_2018_rte. For the GP model, we used gpy
library (GPy, 2012). A video of the experiments is available here :
http://tiny.cc/aprol_video.

5.1. Object Pushing With a Robotic Arm
The goal here is to push objects of various shapes and sizes to
different goal locations in a minimum number of steps. In this
task, we assume that the robot has access to its model (so that
it can be controlled in Cartesian space) and to the center and
orientation of the object from a vision system (for instance, a
QR code on the object). However, the robot does not have any
knowledge about the shape and size of the objects. The objective
is to adapt to push these objects of unknown shapes and guide
them to the target position.

5.1.1. Elementary Policy

We encode the elementary policy (open loop controller) of the
robot with two parameters in [0, 1]. These two parameters specify
a straight line connecting two points around the center of the
object taking into account the orientation of the object. For
given control parameters, the robot’s end effector follows the line
specified by the parameters in 2 s (see Figure 4).

5.1.2. Policy-Repertoires

We pre-generated policy repertoires for seven different objects
(Figure 5) using the MAP-Elites algorithm in simulation. To
evolve these repertoires, we did not assign any performance score
for the policies. Since the goal of the task is to reach different
positions on the 2D surface, therefore, the task-space is the
2D coordinates on the plane. In the repertoires, every policy
corresponds to a unique task-space transition of the objects on
this plane. Note that we exclude the exact repertoire that matches
with the test object in all the experiments except for CP (very
close prior) variants. For this task, MAP-Elites evaluated 300,000

FIGURE 4 | The elementary policy for the object pushing task: (1) A 2D vector

specifies the start and end position of the end-effector on the surface around

the object. The first element of the vector specifies the angular position of the

starting point on a circle around the object relative to its current orientation.

Similarly, the second element specifies the final end effector position on the

same circle. (2) During execution, the end effector follows the straight line

connected by these two points using inverse kinematics of the arm. (3) The

object can be moved to the goal position by sequencing multiple such policies.

policies to generate each of the repertoires. Thanks to the cluster
of computers, several repertoires could be evolved in parallel in
∼5 h of computation.

5.1.3. Execution

At every replanning-step (2 s), the robot uses the A* path
planning algorithm to plan a shortest sequence of sub-goals in the
task space to reach the goal. Then it attempts to achieve the first
sub-goal by picking the optimal elementary policy from one of
the repertoires using APROL. After every step, the robot updates
its transformation models using all the past observations. We
did not optimize the hyperparameters of the GP here. This is
because GPs get only a few data points to learn the model and
for small number of data points hyperparameter optimization in
GP often doesn’t give good results. We set σse = 0.03 and l = 0.3
for the kernel function (Equation 9). These steps are iteratively
performed until the object reaches its final goal.

Figures 6A,B shows that APROL performs as good as that
of using a very close prior (CP-L) to the reality, i.e., the test
object. This shows that APROL is able to learn to adapt the
transformation model according to the best prior quickly, which
allows it to pick policies that align with the desired transitions on
the task-space.

APROL outperforms the baseline APROL-NL (task B), which
is the ablated version of APROL by removing the model
learning phase. It shows the importance of the online adaptation
of the repertoires in APROL using the learned GP models.
Again, for both the test objects, APROL outperforms the single
prior variants with and without learning the transformation
models (SP-L, SP-NL).

Frontiers in Robotics and AI | www.frontiersin.org 9 January 2020 | Volume 6 | Article 151

https://github.com/resibots/chatzilygeroudis_2018_rte
https://github.com/resibots/chatzilygeroudis_2018_rte
http://tiny.cc/aprol_video
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

FIGURE 5 | Priors used in object pushing task with APROL. Note that in test time with APROL, we do not use the exact repertoire (crossed objects in the image) that

matches with the test object.

5.2. Goal Reaching Task With a Damaged
Hexapod
This task is performed both in simulation and on a real hexapod
robot. In this task, the robot might encounter various situations,
such as damage to one or more legs (e.g., blocked joints or a
lost leg) and various friction conditions of the floor (e.g., very
low, moderate, and very high friction co-efficient). The goal
here is to reach the specified position in minimum number
of control-steps. Here, the robot has the knowledge of its
position and orientation (e.g., from SLAM or visual odometry
system). Additionally, we assume that the robot has the complete
knowledge of the obstacle positions as well as dimensions.
However, the robot does not have any knowledge about the
damage to its legs and floor friction condition.

5.2.1. Elementary Policy

The robot has six identical legs, each of which has 3 degrees
of freedom (DOF). The first DOF (θ0) controls the horizontal
movement of the leg and the seconds and the third DOFs
(θ1 and θ2) control the elevation of the leg. θ2 is set equal to
the negative of θ1 always to make the final segment of the leg
parallel to the body. Therefore, there are 6× 2 = 12 independent
joints in the robot. Each of these joints are controlled with three
parameters: the amplitude, the phase, and the duty-cycle which
are used in a periodic function of time to produce joint positions.

These 3×12 = 36 parameters define the elementary policy for the
robot (see Cully et al., 2015 formore details about this controller).

5.2.2. Policy Repertoires

Before deployment, policy repertoires for various situations were
generated for the robot using MAP-Elites in simulation. More
precisely, we generated repertoires for three different friction
co-efficients (0.6, 1.0, 5.0) of the floor and various leg damage
conditions (single and two leg damages/blocks). Out of 108
possible combinations, we selected randomly 57 combinations
to generate the repertoires for the hexapod. Each repertoire
contains discrete mappings from 36D policy to 2D task-space
transitions of the robot on the surface. Note that, in this
task, the task space is simply the center of mass position of
the robot. Thus, repertoires have transitions of the center of
mass of the robot for different policies. For this task, MAP-
Elites evaluated 500,000 policies in simulation to generate
each of the repertoires. Thanks to the cluster of computers,
several repertoires could be evolved in parallel within 12 h
of computation.

5.2.3. Execution

At every replanning-step (3 s), the robot uses the A* planning
algorithm to plan a shortest sequence of positions that the robot
has to follow to reach the goal by avoiding any obstacle in

Frontiers in Robotics and AI | www.frontiersin.org 10 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

FIGURE 6 | Comparison of APROL with various single prior and multi-prior variants on an object pushing task with a robotic arm. The goal is to push the objects of

various shapes and sizes to different goal positions as quickly as possible. Here, CP, very Close Prior to the reality; SP, Single random Prior; L, with learning the

transformation model using GP; NL, Not learning the transformation model with real observations and simply using the expected transitions stored in the repertoire.

Asterisks in the plot represent statistical significance (p-value) using Wilcoxon-Mann-Whitney test. For example, ****p < 0.0001, ***0.0001 ≤ p < 0.001,

**0.001 ≤ p < 0.01, and *p < 0.05. Higher number of asterisks signifies higher statistical significance between two box plots. (A) With a triangular shaped test object,

APROL performs at least as good as using a very close prior to the test object (CP-L) and outperforms all the single repertoire based baselines. (B) With a bar shaped

test object, here APROL performs better than APROL-NL, which does not learn the transformation models with observed data. Also, APROL significantly outperforms

single repertoire-based baselines.

the path. Then it tries to reach the first sub-goal by selecting
and executing the most suitable elementary policy from one
of the repertoires using APROL. After every execution, the
transformation model for the repertoire from which the policy
has been selected is updated with all the previously observed
data. Similar to the previous experiment, we did not optimize the
hyperparameters of the GP here due to small number of data. We
set σse = 0.03 and l = 0.3 for the kernel function (Equation 9) in
this task. After each execution (3 s duration), the robot re-plans
the sequence of positions using A∗. The process continues until
the robot reaches the goal position.

In the simulated hexapod goal reaching task, we evaluated
each of the variants with 40 replicates. Figure 7 shows that
APROL performs at least as good as that of using a very close
prior (i.e., CP-L variant) to the reality (i.e., the exact leg damage
and very similar floor friction). Note that with APROLwe did not
include the repertoire that exactly matches with the real situation

of the robot. This suggests that APROL is able to quickly figure
out the most suitable repertoire to use it as prior for learning the
transformation model, and from which it accordingly selects the
most suitable policies.

APROL outperforms the baseline that uses multiple priors but
without any learning of the transformationmodels (APROL-NL).
That is, in APROL-NL, we assume that one of the repertoires

will exactly match the reality. However, since this assumption is

not true, APROL performs better than this baseline. Additionally,
APROL outperforms the single prior baseline with and without

learning the transformation models (SP-L, SP-NL). Note that,
SP-L is exactly RTE in this task.

Additionally, we have demonstrated the capability of APROL
in a real hexapod damage recovery and goal reaching task
(Figure 8) with total eight replicates.We show that, with APROL,
the damaged robot learns to select the compensatory policies to
reach the goal by avoiding the obstacle in the path. Here the
robot reaches the goal positions by avoiding obstacle (a wooden
box) with 100% success (within maximum 30 steps). Compared
to the intact robot (with single repertoire generated for the intact
robot itself), the damaged robot was able to recover its capability
upto 88% in terms of the time it took to reach the final goal.
One thing to be noted here that this was a challenging task not
only due to the damage, but also due to the reality gap between
simulation and the reality. As a result, in this task even the exact
prior repertoire gives very high mismatch in the behavior when
applied in the simulation and on the real robot. A video of all the
experiments is available here: http://tiny.cc/aprol_video.

6. DISCUSSION AND CONCLUSION

Prior knowledge is key to rapid adaptation, be it in repertoire-
based learning, meta-learning, or model-based policy search.
However, the effectiveness of the prior knowledge is highly
dependent upon how relevant it is to the current scenario or
situation that the robot is facing during deployment. In fact,
a wrongly chosen prior might hinder or prolong the learning

Frontiers in Robotics and AI | www.frontiersin.org 11 January 2020 | Volume 6 | Article 151

http://tiny.cc/aprol_video
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

FIGURE 7 | Comparison of APROL with different single prior and multi-prior variants on simulated hexapod goal reaching task. In this task, the hexapod has to

recover from random leg damages and reduced floor friction to reach the goal as quickly as possible. Here, CP, very Close Prior to the reality; SP, Single random Prior;

L, with learning the transformation model using GP; NL, not learning the transformation model with real observations and simply using the expected transitions stored

in the repertoire. Asterisks represent p-value using Wilcoxon-Mann-Whitney test. For example, ****p < 0.0001, ***0.0001 ≤ p < 0.001, **0.001 ≤ p < 0.01, and

*p < 0.05. Higher number of asterisks signifies higher statistical significance between two box plots. In this experiment, APROL performs as good as that of using a

very close prior to the real situation (CP-L) and outperforms all the single repertoire based baselines.

FIGURE 8 | Goal reaching task with a real hexapod with blocked leg.

process instead. For example, a policy repertoire that is generated
for a robot to walk on a flat surface is not a good prior
for a robot that has to walk on stairs (Pautrat et al., 2018).
Unlike, Chatzilygeroudis et al. (2018a) in this work we relax the
assumption that a single repertoire-based prior will be able to
capture all the situations. Instead, we allow the robot to choose
the best prior among many repertoire-based priors to achieve
faster adaptation. It is to be noted that for episodic learning,
Pautrat et al. (2018) also reached a similar conclusion.

We believe APROL can find its application in many different
fronts, such as fault tolerance or damage recovery in robotics,
adaptation to sudden changes in environmental conditions,
transferring controllers learned in simulation to the real robot
etc. For example, in case of robots deployed in places (e.g., space,
deep sea, radio-active zones) where a human has to control

them remotely with high level commands (e.g., move in different
directions, grab or push object, etc.), the built-in controllers may
not give the desired effect if any fault occurs in their joints. In
such situations, using APROL, a robot can learn to use alternative
controllers to accomplish the command. Again, for complex
robots, a policy learned in simulation often gives slightly different
outcomes on the real robot. In such situations also, APROL can
learn to pick alternative policies to have the desired outcome.

Compared to model-based reinforcement learning

(Deisenroth et al., 2015; Chatzilygeroudis et al., 2017), APROL
is faster as it does not perform optimization on the policy

parameter space. Instead, APROL learns to “select” the most

suitable elementary policy from the given repertoires according

to the current situation and the goal. However, APROL has

to evaluate the outcomes of all the policies stored in the

repertoires using the Gaussian processes model, which has cubic

time complexity. Therefore, with more and more data points,
optimization of the policy between two replanning steps of the
robot becomes slower and slower. To mitigate this problem, we
can incorporate several strategies. One option is that instead
of learning the GPs from all the past observations, they can
be learned from M recent observations, where M can be a
hyperparameter based on the desired optimization speed that we
want to achieve. Learning from M recent observations will also
allow the robot to continue its mission if multiple changes in
the situation occur over the time (e.g., plane surface, then very
rough surface, and then very slippery surface). Another option
is to use sparse GPs (Quiñonero-Candela and Rasmussen, 2005)
or local GPs (Park and Apley, 2017) or neural networks with
uncertainty (Gal and Ghahramani, 2015). Another important
thing to be noted here that in this work we assumed that
the task-space is much smaller than the full state-space of

Frontiers in Robotics and AI | www.frontiersin.org 12 January 2020 | Volume 6 | Article 151

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

the system. This assumption is true in most of the cases in
robotics. We do not expect the algorithm to scale for problems
with very high dimensional task-space. This is because the
number of observations required to learn the models will grow
exponentially with the task-space dimension causing adaptation
time longer. However, we can expect APROL to scale well to
problems with very high dimensional state-space as long as their
task-space is smaller (e.g.,<10 dimensional).

There are several hyperparameters associated with APROL
and the most of them are linked to the MAP-Elites algorithm
and GP models. One of the most important parameter that
is associated with MAP-Elites is the amount of discretization
of the task-space. Since we used the CVT variant of MAP-
Elites (Vassiliades et al., 2017), we can specify the number of
cells we want to generate after the discretization of the space.
Now, a coarse discretization can be detrimental for APROL
since there will be less number of elementary policies in the
repertoire and hence there will be less diversity. On the other
hand, a very fine discretization will produce lots of cells in the
space and thus there will more diverse policies in the repertoire
which will help APROL for better adaptation. However, higher
number of cells will require higher number total evaluations
in Map-Elites. As a result, it will increase the time required
to generate the repertoires in simulation. Again, since APROL
evaluates potentially all the policies from all the repertoires at
every replanning step, higher number of policies means higher
optimization time. Another important decision in APROL is the
number of repertoires. If the number of repertoires is small, then
they will represent less diverse situations that the robot might
face. As a result, if the real situation of the robot is not close to any
of the repertoires, then APROL might not show any significant
improvement over using just a single repertoire. On the other
hand, taking a large number of repertoires might prolong the
adaptation time. In the situation where the number of repertoires
is very high, the exploration parameterm in the Equation 14 will
play a major role in deciding the adaptation time. A higher value
of m will encourage more exploration of the repertoires, thereby
prolonging the adaptation time.

One limitation of APROL (as well as repertoire-based
learning, such as RTE) is that instead of learning a transition
model in full state-space of the robot, it learns a transformation
model of the task-space assuming that task-space transition is
independent of the current state of the robot. This assumption
is not always true (e.g., for the end effector of a robotic arm).
However, in both our experiments, this assumption holds. This
is because, for the hexapod, we reset the joints between each

replanning step of the robot. That makes the effective full state
of the robot equal to position and orientation only, which are
independent of each other for the hexapod since our repertoires
consider only the “change in position” from the current position.
Similarly, for the object pushing task, we consider both position
and orientation of the object, which is the same as that of the full
state of the object. Thus, APROL ismore suitable formostly robot
locomotion tasks as well as tasks where, to some extent, the above
mentioned assumption holds.

In spite of using a finite set of policies for adaptation or
learning, so far, repertoire-based approaches have been able to
show many promising results in real robotic systems. Thanks to
evolutionary algorithms, such as MAP-Elites, the key element of
such promising results is the diversity of the policies stored in the
repertoires. As it happens in nature, due to this diversity, many
such policies can still “survive” (i.e., work on the robot) even
if any catastrophic event (such as joint failure) happens during
the mission. We believe, repertoire-based adaptation algorithms,
such as APROL will open new frontiers in the direction of rapid
adaptation for robotic systems in the real and uncertain world.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request
tothe corresponding author. Code for this work can be found
in the following githubrepository: https://github.com/resibots/
kaushik_2019_aprol.

AUTHOR CONTRIBUTIONS

RK contributed to the conception, design, and experimentation
of this research work. PD contributed in performing the
experiments with the robot and J-BM supervised this research
work. All authors contributed to manuscript revision, read, and
approved the submitted version.

FUNDING

This work received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (GA no. 637972, project
ResiBots), the Chist-Era project HEAP, and the Lifelong Learning
Machines program (L2M) from DARPA/MTO under Contract
No. FA8750-18-C-0103. This manuscript has been released as
a Pre-Print at https://arxiv.org/abs/1907.07029 (Kaushik et al.,
2019).

REFERENCES

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis

of the multiarmed bandit problem. Mach. Learn. 47, 235–256.

doi: 10.1023/A:1013689704352

Chatzilygeroudis, K., and Mouret, J.-B. (2018). “Using parameterized black-box

priors to scale up model-based policy search for robotics,” in Proceedings of

ICRA (Brisbane, QLD).

Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., and

Mouret, J.-B. (2017). “Black-box data-efficient policy search for robotics,” in

Proceedings of IROS (Vancouver, BC).

Chatzilygeroudis, K., Vassiliades, V., and Mouret, J.-B. (2018a). Reset-free trial-

and-error learning for robot damage recovery. Robot. Auton. Syst. 100, 236–

250. doi: 10.1016/j.robot.2017.11.010

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., and Mouret,

J.-B. (2018b). A survey on policy search algorithms for learning

robot controllers in a handful of trials. arXiv [Preprint]. arXiv 1807.

02303.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). “Deep reinforcement

learning in a handful of trials using probabilistic dynamics models,” in 32nd

Conference on Neural Information Processing Systems (Montréal, QC), 4754–

4765.

Frontiers in Robotics and AI | www.frontiersin.org 13 January 2020 | Volume 6 | Article 151

https://github.com/resibots/kaushik_2019_aprol
https://github.com/resibots/kaushik_2019_aprol
https://arxiv.org/abs/1907.07029
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1016/j.robot.2017.11.010
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Kaushik et al. APROL

Coumans, E. (2013). Bullet physics library. Open Source 15:5. Available online at:

bulletphysics.org

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt

like animals. Nature 521, 503–507. doi: 10.1038/nature14422

Cully, A., and Demiris, Y. (2018). Quality and diversity optimization: a

unifying modular framework. IEEE Trans. Evol. Comput. 22, 245–259.

doi: 10.1109/TEVC.2017.2704781

Cully, A., and Mouret, J.-B. (2016). Evolving a behavioral repertoire for a walking

robot. Evol. Comput. 24, 59–88. doi: 10.1162/EVCO_a_00143

Cutler, M., andHow, J. P. (2015). “Efficient reinforcement learning for robots using

informative simulated priors,” in Proceedings of ICRA (Seattle, WA).

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian processes for

data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach.

Intell. 37, 408–423. doi: 10.1109/TPAMI.2013.218

Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A survey on policy

search for robotics. Found. Trends Robot. 2, 1–142. doi: 10.1561/23000

00021

Deisenroth, M. P., and Rasmussen, C. E. (2011). “PILCO: A model-based and

data-efficient approach to policy search,” in Proceedings of ICML (Bellevue,

WA).

Duarte, M., Gomes, J., Oliveira, S. M., and Christensen, A. L. (2017).

Evolution of repertoire-based control for robots with complex locomotor

systems. IEEE Trans. Evol. Comput. 22, 314–328. doi: 10.1109/TEVC.2017.27

22101

Gal, Y., and Ghahramani, Z. (2015). “Dropout as a bayesian approximation:

representing model uncertainty in deep learning,” in Proceedings of ICML (New

York, NY).

GPy (2012). GPy: A Gaussian Process Framework in Python. Available online at:

http://github.com/SheffieldML/GPy

Heess, N., Dhruva, T. B., Sriram, S., Lemmon, J., Merel, J., Wayne, G., et al. (2017).

Emergence of locomotion behaviours in rich environments. arXiv [Preprint].

arXiv 1707.02286.

Hollerbach, J., Khalil, W., and Gautier, M. (2016). Model Identification. Cham:

Springer International Publishing, 113–138.

Kaushik, R., Chatzilygeroudis, K., and Mouret, J.-B. (2018). “Multi-objective

model-based policy search for data-efficient learning with sparse rewards,” in

Conference on Robot Learning (Zurich), 839–855.

Kaushik, R., Desreumaux, P., andMouret, J.-B. (2019). Adaptive prior selection for

repertoire-based online adaptation in robotics. arXiv 1907.07029.

Keogh, E., and Mueen, A. (2010). “Curse of dimensionality,” in Encyclopedia of

Machine Learning and Data Mining, eds C. Sammut and G. I. Webb (Boston,

MA: Springer US), 314–315. doi: 10.1007/978-1-4899-7687-1_192

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Mouret, J.-B., and Clune, J. (2015). Illuminating search spaces by mapping elites.

arXiv [Preprint]. arxiv 1504.04909.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel, P., Levine, S., et al. (2019).

“Learning to adapt: meta-learning for model-based control,” in Proceedings of

ICLR (New Orleans, LA).

Papaspyros, V., Chatzilygeroudis, K., Vassiliades, V., and Mouret, J.-B. (2016).

“Safety-aware robot damage recovery using constrained bayesian optimization

and simulated priors,” in BayesOpt ’16 Workshop at NIPS (Barcelona).

Park, C., and Apley, D. (2017). Patchwork kriging for large-scale gaussian process

regression. arXiv [Preprint]. arXiv 1701.06655.

Pautrat, R., Chatzilygeroudis, K., and Mouret, J.-B. (2018). “Bayesian optimization

with automatic prior selection for data-efficient direct policy search,” in

Proceedings of ICRA (Brisbane, QLD).

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diversity:

a new frontier for evolutionary computation. Front. Robot. A.I. 3:40.

doi: 10.3389/frobt.2016.00040

Quiñonero-Candela, J., and Rasmussen, C. E. (2005). A unifying view of sparse

approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959.

Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. Cambridge, MA: MIT Press.

Saveriano, M., Yin, Y., Falco, P., and Lee, D. (2017). “Data-efficient control policy

search using residual dynamics learning,” in Proceedings of IROS (Vancouver,

BC).

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K. (2019). Dynamics-

aware unsupervised discovery of skills. arXiv 1907.01657.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

et al. (2016). Mastering the game of go with deep neural networks and tree

search. Nature 529, 484–489. doi: 10.1038/nature16961

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Vassiliades, V., Chatzilygeroudis, K., and Mouret, J.-B. (2017). Using

centroidal voronoi tessellations to scale up the multidimensional archive

of phenotypic elites algorithm. IEEE Trans. Evol. Comput. 22, 623–630.

doi: 10.1109/TEVC.2017.2735550

Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., et al.

(2017). “Information theoretic mpc for model-based reinforcement learning,”

in Proceedings of ICRA (Singapore).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Kaushik, Desreumaux and Mouret. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 14 January 2020 | Volume 6 | Article 151

https://doi.org/10.1038/nature14422
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1162/EVCO_a_00143
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1561/2300000021
https://doi.org/10.1109/TEVC.2017.2722101
http://github.com/SheffieldML/GPy
https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1038/nature14236
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/TEVC.2017.2735550
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Adaptive Prior Selection for Repertoire-Based Online Adaptation in Robotics
	1. Introduction
	2. Related Work
	2.1. Data-Efficient Learning in Robotics
	2.2. Gaussian Process Regression With Non-constant Prior
	2.3. Repertoire-Based Learning in Robotics

	3. Problem Formulation
	4. Approach
	4.1. Overview
	4.2. Generating Repertoire-Based Priors
	4.3. Learning the Transformation Models With Repertoires as Priors
	4.4. Model-Based Planning in Presence of Multiple Priors

	5. Experimental Results
	5.1. Object Pushing With a Robotic Arm
	5.1.1. Elementary Policy
	5.1.2. Policy-Repertoires
	5.1.3. Execution

	5.2. Goal Reaching Task With a Damaged Hexapod
	5.2.1. Elementary Policy
	5.2.2. Policy Repertoires
	5.2.3. Execution

	6. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

