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Marine Applications of the Fast
Marching Method
Santiago Garrido*, David Alvarez* and Luis E. Moreno

Robotics Lab, Department of Systems and Automation Engineering, Universidad Carlos III de Madrid, Madrid, Spain

Path planning is general problem of mobile robots, which has special characteristics

when applied to marine applications. In addition to avoid colliding with obstacles, in

marine scenarios, environment conditions such as water currents or wind need to be

taken into account in the path planning process. In this paper, several solutions based on

the Fast Marching Method are proposed. The basic method focus on collision avoidance

and optimal planning and, later on, using the same underlying method, the influence of

marine currents in the optimal path planning is detailed. Finally, the application of these

methods to consider marine robot formations is presented.

Keywords: fast marching, path planning, formations, vector field fast marching, trajectory planning

1. INTRODUCTION

Motion planning has been a very important field of research for many years. In the area of
autonomous marine vehicles, both surface and underwater vehicles, some important aspects that
are commonly optimized are travel time and safety conditions. This means that the path should
avoid known obstacles and hazardous areas while reaching the goal pose as fast as possible.

An example of an approach using these concepts can be found in Bellingham andWillcox (1996),
in which an underwater mission planning is proposed for optimizing energy consumption while
guaranteeing spatio-temporal coverage. Following a similar goal, in Hert et al. (1996) the problem
is formulated as a shortest path problem in order to guarantee the coverage of the terrain using a
sonar system.

Besides, in marine environments, uncertainties due to the wind and water currents are complex
and have a large impact on the path planning, as shown in Song et al. (2015). In order to deal
with the environmental influence, a level set method based on the Fast Marching Method was
proposed by Agarwal and Lermusiaux (2011). In Petres et al. (2005), an Anisotropic version of the
Fast Marching Method (AFM) is used for submarine vehicles. This method provides collision free
paths and their convergence is guaranteed, however, the water current model used does not take
into account the power of the motor of the vehicle. Song et al. (2017) proposed an improvement of
the AFM by using a multi-layered fast marching, which combines different environmental factors,
such as currents and wind with attractive/repulsive maps. The proposed strategies deliver very
interesting results, but do not guarantee the avoidance of local minima in the path planning due
to the manner used to create the velocity maps.

The FastMarchingMethod (FMM) and its evolution, known as the FastMarching Square (FM2),
have proven their value for path planning applications and robot motion because of their plasticity
and ease of use. They have been applied to many different path planning related problems such as:
indoors and outdoors (Garrido et al., 2017) robot motion, path learning (Gomez et al., 2017) or
unmanned aerial (Álvarez et al., 2015) and marine vehicles (Petres et al., 2005; Song et al., 2017).
However, all these methods are based on a scalar model of the environment. If vector fields are
present in the model, then the Fast Marching Method subjected to a Vector Field (FMVF) is a
better choice to perform the path planning.
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In the next sections of this article, an overview of how the
Fast Marching Method (FMM) works, as well as several path
planning versions based on the FMM are explained. Besides, their
basic characteristics and their use in marine-like environments
are shown.

2. THE EIKONAL EQUATION AND THE
FAST MARCHING METHOD

The speed of light traversing different materials is defined as v =
c/n, where v is the velocity in the specific medium, c = 300,000
m/s is the speed of light in vacuum and n is the refractive index
which depends on the material that is traversed. For example,
in water n = 1.33, while in glass n = 1.5, this difference
provokes that when a ray of light passes from water to glass the
ray changes its direction following the corresponding fastest path
in each material. In cases in which there is a continuous change
of refractive index, the path bends continuously, as in Figure 1.
As it happens in a mirage in a hot road, the layers of air closest to
the road are hotter than those that are further away. This creates
a gradient of refractive indices that causes the rays coming from
the sun to bend, therefore the driver has the optical illusion of
seeing a kind of puddle of water on the road.

In general, the path that a ray of light follows (along any
media) is the minimum in travel time. Therefore, the refractive
index works as a viscosity or speed index that slows down the
expansion of the light wave. Therefore, the path of a single
ray of light among the wave expansion can be represented by
its gradient.

One way to characterize the position of a front in expansion
is to compute the arrival time, T, in which the front reaches each
point of the space. For one dimension, the time of arrival value
can be obtained simply considering that the traveled distance, x,
is the product of the speed, F, and the time, T.

x = F · T (1)

Then, the one dimensional spatial derivative of this function is:

dT(x)

dx
=

1

F(x)
(2)

FIGURE 1 | The resulting path of the light when the refractive index changes

continuously.

and therefore, the magnitude of the derivative of the arrival
function T(x) is inversely proportional to the speed.

When considering multiple dimensions, the same concept is
valid and the solution is found by substituting the derivative by
the gradient, since the gradient is orthogonal to the level sets
of the arrival time function T(x). In this way, the movement of
the front of the wave can be characterized as the solution of a
boundary condition problem. If the propagation speed depends
only on the position, then equation 2 can be reformulated as the
Eikonal equation:

∣

∣∇T(x)
∣

∣ F(x) = 1. (3)

The Fast Marching Method (FMM) proposes a solution of the
Eikonal equation for a grid map in which the velocity values at
each point represent the refractive index. This artificial refractive
index represents the cost function for the wave expansion. This
method was originally proposed for a rectangular orthogonal
mesh in Sethian (1996). As demonstrated in Yatziv et al. (2005),
the FMM is an O(n) algorithm where n is the total number of
grid points. The algorithm relies on an upwind finite difference
approximation to the gradient as a first order solution of the
differential equation.

The FMM is used for problems in which the speed function
never changes of sign, which means that the wave front always
moves forwards (no reflections are admitted). This characteristic
allows to use a stationary formulation, because the wave front
crosses each grid point only once. The wave propagation given
by the FMM represents a distance function that corresponds to
the Geodesic distance measured with the metric defined by the
refraction matrix. This matrix indicates the speed of the wave
front at each point of the grid.

2.1. Algorithm Implementation on an
Orthogonal Mesh
In general, the FMM can model any phenomena which evolves
as a wave front that propagates along its normal direction. Let Tij

be the time at which the wave front crosses the point (i, j) of a 2-
dimensional map, satisfying |∇T|F = 1, the Eikonal equation. F
represents the speed function and, therefore, F = Fij represents
the speed at each point of the map. As shown in Gómez et al.
(2019), themost common first-order discretization of the Eikonal
equation is given in Osher and Sethian (1988), which uses an
upwind-difference scheme to approximate partial derivatives of
T(x) (D±xij represents the one-sided partial difference operator in
direction±x):

Tx(x) ≈ D±xij T =
Ti±1,j−Tij
±1x

Ty(x) ≈ D
±y
ij T =

Ti,j±1−Tij
±1y

(4)

A simple solution to Equation (4) is proposed in Sethian (1999):
{

max(D−xij T,−D+xij T, 0)2+

max(D
−y
ij T,−D

+y
ij T, 0)2

}

=
1

F2ij
(5)
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in which1x and1y are the grid spacing in the x and y directions.
Substituting (4) in (5) and letting

T = Ti,j

Tx = min(Ti−1,j,Ti+1,j)
Ty = min(Ti,j−1,Ti,j+1)

(6)

Then, for a discrete 2D space as, the Eikonal Equation can be
written as:

max

(

T − Tx

1x
, 0

)2

+max

(

T − Ty

1y
, 0

)2

=
1

F2ij
(7)

Since the speed of the front is assumed to be positive (F > 0),
T must be greater than Tx and Ty whenever the front wave has
not already passed over the coordinates (i, j). Therefore, (7) can
be simplified as:

(

T − Tx

1x

)2

+

(

T − Ty

1y

)2

=
1

F2ij
(8)

Equation (8) is a regular quadratic equation of the form aT2 +
bT + c = 0, where:

a = 12
x +12

y

b = −2(12
yTx +12

xTy)

c = 12
yT

2
x +12

xT
2
y −

12
x1

2
y

F2ij

(9)

where, in order to simplify the notation, we assume that the grid
is composed of unit square cells, that is, 1x = 1y = 1.

The full procedure to compute the solution of FMM is detailed
in Algorithm 1. The algorithm classifies the points of themap into
three sets: frozen, open and unvisited. Frozen points are those for
which the arrival time cannot change anymore. Unvisited points
are those that have not been processed yet. Finally, open points
are those which can be considered as an interface between frozen
and unvisited regions of the map, belonging to the propagating
wave front.

In the first step of the algorithm, the initialization, all the cells
in the map are initialized with an infinite value (or the maximum
value in the computing architecture) and set as unvisited, except
for the starting point (the goal point in a path planning problem)
which is set with an arrival time of 0 and considered as the first
open point.

At each iteration, the open point with the smallest value of
T(x) is set as frozen. Then, the arrival time of its von-Neumann
neighbors is analyzed (if they are not labeled as frozen) by solving
Equation (8). The value of a cell is updated if the computed arrival
time is smaller than the actual one (UPDATE in Algorithm 1).
This procedure continues until all points are set as frozen or the
starting point of a path planning problem is reached.

Figure 2 shows the first steps of the algorithm, in which
different colors are used to identify the different level sets. In
the center, the dark blue point is the source of the wave. The
gray points near the corners represent open points which will

Algorithm 1: Fast Marching Method

1: procedure FMM(X, x0)
Require: A grid map X of sizem× n, source point x0.

Initialization.
2: for all x ∈ X do

3: T(x)←∞;
4: end for

5: T(x0)← 0;
6: frozen← x0;
7: open← N (x0); ⊲ Neighbors of x0.
8: open← X\(frozen ∪ open);

Iteration.
9: while frozen 6= X do

10: x1 ← argmin
x∈open

d(x);

11: for all xi = N (x1) ∈ T∩ /∈ frozen do

12: UPDATE(xi);
13: open← open ∪ {xi};
14: end for

15: open← open\{x1}; ⊲ Updating sets.
16: frozen← frozen ∪ {x1};
17: end while

18: end procedure

be solved in the next iterations, Finally, the white circles are
unvisited areas. The computed arrival time function starts at the
minimum value (T = 0) and grows toward larger values of T,
forming a level-set solution with a unique global minimum. If
the solution is shown using the time of arrival as the third axis, a
funnel potential is formed, as it is appreciated in the right image
of Figure 2.

Finally, since the time of arrival function has a funnel-like
shape, a vehicle’s path toward its goal point can be extracted
using the gradient descent method. Figure 3A shows an example
of a path computed with FMM. Note that, although the path
is optimal in time, it traverses the environment too close to
the obstacles and, besides, forces the vehicle to perform abrupt
turns. In Figure 3B, the resulting expansion of the wave based
on the FMM can be appreciated. The different colors in the
image indicate different arrival time sets, being the dark blue the
smallest values while the red area corresponds to larger arrival
time points. Note that, while the computed path is the shortest
is distance and time of arrival, it is not a feasible path since the
autonomous ship would need to travel too close to the coast, with
a great danger of collision or run aground.

2.2. The Fast Marching Square Method
The Fast Marching Square Method (FM2) was introduced by
Garrido et al. (2008) and consists on applying the basic FMM
twice. Using this method, paths with an adequate smoothness and
sufficient safety distances to the obstacles can be computed. The
following procedure describes how the FM2 computes paths:

1. The environment is modeled in the same way as when
using the FMM, a binary grid map (see Figure 3). The cells
belonging to obstacles are labeled in black (a 0 value) and
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FIGURE 2 | (Left) Wave propagation using the FMM. Different colors represent different arrival times. In gray, the points of the next iteration. In white, unvisited points.

(Right) The final result represented using the time as a third axis.

FIGURE 3 | Fast Marching Method based path planning example. (A) The binary map used in the path planning and the path computed with FMM from start to end

point. (B) The time of arrival map computed with FMM. (C) The resulting path using the FM2 method. (D) The time of arrival map obtained with FM2.

the cells corresponding to free space are labeled in white (a
1 value).

2. The first time the FMM is applied over the binary map, each
cell labeled as an obstacle is used as wave source, expanding
several waves at the same time. The resulting value of each
cell in the map indicates the time the wave needs to reach the
closest obstacle, therefore, it is proportional to the distance
from obstacles since the wave moves at a constant speed
in the whole map. Reversing the meaning of these values,
they can be interpreted as the speed of the vehicle (and the
speed of the wave expansion). This way, the resulting map is
understood as the maximum admissible speed at each point
of the environment, so that if the autonomous ship is near
to obstacles, the admissible speed is lower than when is away
from the obstacles. Finally, the speed values are rescaled to fix
a maximum cell value of 1.

3. Then, the FMM is applied again over the environment. This
time, the robot’s goal point is used as wave source (a unique
wave source to ensure one global minimum). The wave is
expanded over the map until the initial point of the vehicle
is reached. At each cell in the environment, the speed at which
the wave expands is taken from the map computed in the

previous step. It is important to keep in mind that this speed
is lower the closer the vehicle (wave) is to obstacles. Figure 3D
shows the time of arrival map resulting of this process.

4. Finally, gradient descent is applied over the time of arrival map
from the starting point of the ship, and moving toward its goal
point (the global minimum of the resulting map), obtaining
the optimal path in terms of time of arrival, smoothness and
safety, as shown in Figure 3C.

It is important to note that, when using this method in a real
autonomous vehicle, the user must be aware of two critical
aspects. First, the resolution used to model the environment
where the robot moves. Since FMM is a grid based method, the
higher resolution used, the better model of the environment and
movement of the vehicle, at the cost of computational time, as
shown in Gómez et al. (2019). Second, the user should consider
the cells of value equal to 1 in the speed map as the maximum
speed the vehicle is able to use (or the user wants to consider).

Next, some interesting modifications of the speed map,
which allow to achieve different behaviors of the wave
expansion (and therefore the computed paths) are going to
be explained.
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FIGURE 4 | Different speed maps and paths obtained by modifying α- and β-values. In (A), the original map is shown with the path computed using the basic FMM

method. In (B–D), the velocity maps computed with β = 1 for all images, and α = 1, α = 1.2, α = 0.4, respectively.

FIGURE 5 | Fast marching expansion wave with a rectangular obstacle in the

middle. The upper part of the environment is subjected to a unitary vector field

pointing to the right. In the lower part, the field points to the left.

2.2.1. The Flexibility of the Speed Map in FM2

Although the paths generated by the FM2 are good in terms of
safety and smoothness, those paths can often be improved in
terms of the traversed distance. For this reason, an adjustment
parameter, α, that modifies the speed map to improve the
planned path is proposed.

To perform the adjustment, each cell of the speed map, Fij, is
raised to the power indicated by this parameter as in:

newFij = Fα
ij (10)

When the value of α is lower than 1, the values in the speed map
increase causing a lightening of the cells, which allows the wave
expansion to use larger speeds. This causes the path to traverse
the map closer to the obstacles. On the contrary, if the value is
larger than 1, the cells are darkened causing paths stay further
away from the obstacles.

Besides, it is commonly interesting to saturate the values in
the speed map. For this reason, a value β is defined in the range

of 0 and 1. The saturation is performed as follows: every cell in
the speed map, Fij, with a greater value than β is set to one. Since
the speed map is a distance function, this means that the wave
moves at the maximum speed in all the cells in the map whose
distance to the closest obstacle is greater than β . Therefore, the
value of this parameter depends on the deceleration capabilities
of the vehicles in use.

Figure 4 illustrates the effect of modifying α and β values. In
Figure 4A, the original map is shown with the path computed
using the basic FMM method, the start and end points are
marked with a red and purple point, respectively. Figures 4B–D
show the velocity map computed with β = 1 for all images,
and α = 1, α = 1.2, α = 0.4, respectively. The resulting
path is shown as a blue line. It is possible to appreciate that a
value of α larger than 1 makes the velocity map to have greater
values (darker in the image) which provoke the path to move
farther from obstacles. On the other hand, when α is lower
than 1, velocity values increase, allowing higher velocities around
obstacles. Besides, for all cases, a second path is drawn using a
dashed green line. This is the result of applying values β = 0.7,
β = 0.8, β = 0.5, respectively. In all cases, the saturation value
allows the path to move closer to obstacles, thus, reducing the
path length at the cost of increasing the risk.

3. FAST MARCHING METHOD SUBJECTED
TO A VECTOR FIELD (FMVF)

The methodologies explained in the previous sections share
a common key characteristic, in all cases the expansion of
the wave deals with scalar speed values. However, there are
situations in which a vector speed function may better reflect
the environmental conditions in the path planning process. For
example, in Garrido et al. (2016), a vector field is used to model
outdoors characteristics interesting in mobile robotics, such as
slopes or landslides.

In order to represent the movement of a ship in the water it
is necessary to, not only take into account its direction, but also
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FIGURE 6 | Comparison of the trajectories for different upwards and downwards tides. (A) Represents the function used to model the effect of tides in the estuary,

which point toward the ocean. (B,C) Show different paths obtained with FMFV when tides point upwards, and downwards, respectively.

FIGURE 7 | FM2 trajectory followed by the model of a USV.

the effect of several vector variables such as wind flow or water
currents. Mathematically, this can be done by computing a new
cost function as in:

Fij = Fscal_ij + Fvect_ij (11)

where Fscal_ij represents the influence of the scalar cost map and
Fvect_ij represents the external vector fields. Fvect_ij is computed as
the sum of external vector fields that affect the process. In the case
of a ship, wind, tides and marine currents.

In Figure 5, the effect of an external vector field on a wave
propagation calculated by the FastMarchingMethod subjected to
a Vector Field (FMVF) is shown. Note that there is a rectangular
obstacle in the middle shown, in black color, where the wave
collapses. It is easy to appreciate how the wave propagates faster
in the area where the vector field points in the same direction as
the expansion of the wave (upper part of the image).

It is important to note that the authors in Petres et al. (2005)
and Petres et al. (2007) treated this subject previously. In these
works, a normalization of the magnitude of the external vector
field is performed without taking into account the magnitude
of the scalar cost function. This makes a vector field with an
intensity of 1 to have the same effect on the final path than
one with an intensity of 10, minimizing the real influence of
the external field. However, in this work, the function that is
normalized is the total cost function:

f̃ = fdif + fvect (12)

where fdif is the cost function due to the distance to the obstacles
in the environment converted into a vector field by:

fdif = 1− Fij (13)

This way, the influence of the vector field over the velocity of
the vehicle depends on their magnitude as well as on the angle
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between them, i.e., it depends on scalar product, and therefore
the fvect can be defined as:

fvect(i, j) = 1−
〈

∇Ti,j · EFi,j
〉

(14)

Physically, this is equivalent to say that a force favors the ship
when both external vector field and vehicle are pointing to the
same direction.

It is very important to remind that the new cost function
defined in Equation (12) must always be positive, because in the
methods based on FMM the wave-front cannot move backwards.
More details on the algorithm can be consulted in Petres et al.
(2005, 2007).

The next set of tests have been performed over a map of the
Tagus River estuary, in the so-called Mar da Palha, in the city
of Lisbon, Figure 6. In image A, the resultant wave expansion
as a function of arrival time can be seen. Colors vary from dark
blue for smaller to yellow for larger arrival time. This function
is used to model the effect of tides in the estuary, which point
toward the ocean (toward the dark blue area), inverting the
sign makes the tides point in the opposite direction. In images
B and C, different paths obtained with FMFV are shown. In
Figure 6B the tides point upwards, while in Figure 6C tides point
downwards, tides in both cases are identical in magnitude but
in opposite direction. An example computed for a case in which
the current is very close to zero, that is, the surface of the water
is almost stationary, is shown in blue, which is used to analyze
the influence of the introduction of a vector field of external
forces. The magnitude of the currents is increased by a 5% from
the yellow to the red test. It is clear that when the tide pushes
either upwards or downwards, the calculated trajectories move
away in comparison to the base trajectory (the blue one), since
the vehicle undergoes a force that tends to take it away from the
base path.

4. PATH FOLLOWING AND OBSTACLE
AVOIDANCE USING FAST MARCHING
BASED METHODS

In order to prove the smoothness of the paths computed with
FMM basedmethods, amodel of a real ship has been used to track
them using a pure-pursuit method. The model uses a real-time
control method for unmanned surface vehicles (USVs) based on
Chaos et al. (2009).

Figure 7 shows the trajectory of a ship in the Atazar reservoir.
Once the trajectory is computed with FM2, the path is followed
by the model using the pure-pursuit method. The control loop
uses the orientation error to compute the rudder angle that
best follows the path, then, pure-pursuit is used to calculate
the velocity of the ship taking into account the speed function
of FM2. As shown in Figure 7, the calculated trajectory drawn
in red, coincides with the poses of the ship reached using the
simulated model.

In addition, it is commonly interesting for robots to be able
to avoid obstacles while tracking their paths. Let us suppose
that a mobile object is detected by the sensors in a ship (e.g.,

a LIDAR sensor) covering the path computed with FM2. Also,
let us define a region of influence (roi) around the ship covering
the path. This area indicates the space in which any obstacle can
cause a collision. Using this information, the method uses a cyclic
execution described in Algorithm 2. First, a path from the start
to the end point is obtained using FM2. Then, pure pursuit is
used to follow the path toward the next intermediate goal point.
Next, if the end point is not reached, the roi is checked looking
for mobile obstacles. When no mobile obstacle is detected, the
path following continues with the original plan. However, when
a mobile object is detected in this area, the previously computed
path is no longer valid. In order to modify it, the velocity
map is updated including the mobile object as a new obstacle,
following the method explained in Garrido et al. (2013). The
base of this update is to include a mobile obstacle location as an
area with zero velocity (black in the velocity definition) which
forces the wave expansion to avoid it. Since the velocity map is
updated, a new path is computed (Second Potential). Therefore,
the resulting new path avoids the mobile obstacle considering it
as a static one during one control cycle.

Algorithm 2: Path Following and Obstacle Avoidance

1: procedure FOLLOW_PATH(X, xg , xa, xobs, roi)
Require: A grid binary map X of sizem× n, goal point xg , robot

actual position xa, location of obstacles at every iterations
xobs, region of interest around the ship roi.
First Potential.

2: vel = obtain_velocity_function(X)
Second Potential.

3: T = compute_FM2(xg , vel)
4: path = compute_path(x0,T)

Path Following.
5: rudder_angle = compute_angle(x0, path)
6: xa = pure_pursuit(xa, rudder_angle, vel)
7: while xa 6= xg do

8: if xobs_a+1 ⊂ roi ∧ xobs_a+1 6= xobs_a then

9: vel = update_velocity_function(vel, xobs_a+1)
10: goto Second Potential
11: else

12: goto Path Following
13:

Figure 8 shows a sequence (top to bottom) of how a ship
avoids another ship that acts as a mobile obstacle interfering its
trajectory. The different columns show the process using different
maps. In column A, a satellite image of the Atazar reservoir is
used to draw the ships and the path at each moment. In column
B, the inclusion of the obstacle in the speed map is shown. The
point where the obstacle is detected is modeled as an obstacle
(dark blue in the example) and the allowed speed around this
obstacle increases slowly, as happens around every static obstacle
in the map. In column C, on the right, the ship which follows
the computed path and its area of influence (a green circle)
are shown.
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FIGURE 8 | FM2 trajectory and path followed by the model of the ship avoiding the smaller ship moving from the left-upper corner. In (A1–A3) the sequence is shown

on a satellite image of the reservoir. In (B1–B3) the mobile obstacle is included in the speed map as a circle. In (C1–C3) the ship following the path, its area of

influence and the mobile obstacles are shown.

In the first row of Figure 8, the original computed path taking
into account only static obstacles is shown, together with the
area of influence of the ship at the starting position. In the
second row, the mobile obstacle is detected on the left side of
the ship and, therefore, included as a new obstacle. Because of
this change, the updated path avoids this area turning to the
right. Finally, in the third row, although the obstacle is still in

the area of influence, the ship can follow its path toward the
goal safely.

5. ROBOT FORMATIONS

The algorithm described next is an extension of previous works.
Firstly, in Garrido et al. (2013), the use of FM2 to control a
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robot formation in 2D environments was presented. Then, its
usage with unmanned aerial vehicles (UAVs) was treated in
Alvarez et al. (2014). In this section, its adaptation to marine-like
environments will be explained.

The algorithm for controlling the robot formation is based on
a leader-followers scheme. The leader can be a robot or even a
virtual leader. Using the leader as a reference, the poses for the
follower robots are defined by geometric equations to form the
shape of the formation. Therefore, the goal poses of each follower
along the path are a function of the leader’s pose.

In the proposed solution, the path of the leader is computed
without taking into account the other robots in the formation.
This may cause the followers to move too close to obstacles
or even collide with them. In order to avoid these situations,
a shape deformation scheme based on the two-level artificial
potential of FM2 can be used to calculate goal references to
the followers during leader’s navigation, as in reactive following.
The main idea is to integrate an attracting potential toward the
references of the formation (using the arrival time function)
and a repelling potential from obstacles and other robots
(the velocity/distances map).

Figure 9 shows an example of the use of the algorithm
on a triangle-shaped robot formation. A 2D shape is used
because it is easier to understand the behavior of the followers
to avoid colliding with obstacles and among themselves. In
Figure 9A, the main components of the robot formation are
defined. In Figure 9B, the geometric definition of a triangle-
shaped formation is presented, note that the tangential and
perpendicular vectors of the leader’s path are used as a reference.
In Figure 9C, the goals of the followers adapt to the path of
the leader’s orientation. In Figure 9D, the use of the repelling
potential to change the follower’s partial goal and avoid obstacles
in the environment is shown.

Algorithm 3 explains the integration of the control of
the shape of the formation while covering the path. In the
initialization (lines 2 to 7), the path for the leader is computed
using FM2. Then, the formation covers the path in a control loop
in which: first, the leader tracks its path (lines 9 and 10), then, new
goal poses for all the followers are computed based on formation
geometry (line 12) and closeness to obstacles (line 13). Finally,
paths for the followers are calculated and tracked (lines 14 to 17).
The control loop ends when the leader reaches its goal.

Figure 10 shows the use of this method in marine-like
environments. The formation uses a pyramid shape with a
squared base, the followers are located in the corners of the
square. The leader and the followers are submarines. The
numbers in the axis are related to the voxelization of the
environment. In the default shape, the formation is oriented
so that two submarines are located in the same vertical line
(up and down) and the other two are located in the same
horizontal line (right and left). The deformation function used
allows each corner of the shape to shrink the base toward its
center proportionally to the closeness to obstacles (as indicated
in the velocity map). The maximum allowed deformation is
a 70% of the total distance, to avoid collisions within the
formation. The part of the path the leader has already covered
is shown in red, while the part that is yet to be covered is

Algorithm 3: Robot Formation Control based on FMM

1: procedure ROBOT_FORMATION_CONTROL(X, xg , xla, xobs)
Require: A grid binary map X of size m × n, goal point xlg for

the leader of the formation, leader actual position xla.
First Potential.

2: vell = obtain_velocity_function(X)
Second Potential.

3: Tl = compute_FM2(xg , vell)
4: pathl = compute_path(xla,Tl)
5: for all k followers in formation do

6: xpg_k = formation_geometry(xla, velk)
7: end for

8: while xla 6= xlg do

9: rudder_angle_l = compute_angle(xla, pathl)
10: xla = pure_pursuit(xla, rudder_angle, vel)
11: for all k followers in formation do

12: xpg_k = formation_geometry(xla, velk)
13: xpg_k = update_partial_goal(velk, xpg_k)
14: Tk = compute_FM2(xpg_k, velk)
15: pathk = compute_path(xka,Tk)
16: rudder_angle_k = compute_angle(xka, pathk)
17: xka = pure_pursuit(xka, rudder_anglek, velk)
18: end for

19: end while

shown in blue. The geometry of the formation is shown in
green. The past poses of the follower robots are shown as
small dots.

The path of the leader traverses the environment over the
valley formed by two peaks. Figure 10A shows the formation in
the firsts steps of the movement. Note that the follower moving
close to the bottom of the sea shrinks its position correcting its
height. In Figures 10B,C, when the formation approaches and
traverses the area around the peaks, all the followers except the
upper one need to shrink toward the center. These deformations
are provoked because the velocity map in the areas the followers
traverse have velocity values close to zero, indicating that an
obstacle is near. Therefore, the square based in shrunk to
increase the security of the path. In Figure 10D, the followers
are farther from obstacles and therefore enlarge the base of
the pyramid.

Figure 11 shows the distance of the leader and the followers
to the closest obstacle in the environment at every step of the
algorithm. The distance is measured in voxels, so the real distance
depends on the discretization used. Note how the distances are
smaller in the central part of the path, in which the robots
move between the peaks. Besides, the average deformation of the
followers (also measured in voxels) is shown as a dashed line.
Note that the deformation is larger when the distance to the
obstacles is smaller.

6. CONCLUSIONS

In this paper, the use of the Fast Marching Method for
marine-like environments is presented. Based on FMM, different
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FIGURE 9 | (A) Main components of the robot formation algorithm. (B) Reference geometric definition of a simple, triangle-shaped robot formation, note that the

definition is based on vectors u and v (tangential and perpendicular to the path, respectively). (C) Behavior of the partial goals depending on the leader’s pose. (D)

Behavior of the partial goals depending on the obstacles in the environment.

FIGURE 10 | Example of a formation of submarines with a pyramid shape. (A) Shows the formation in the first steps of the movement. (B,C) Show the iterations

when the formation traverses the area around the peaks. (D) Shows the formation approaching the goal point.
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FIGURE 11 | Distance of the leader and the followers to the closest obstacle in the environment at every step of the algorithm. Besides, the average deformation of

the followers is shown as a dashed line.

versions of the wave expansion and path planning solutions are
introduced, explaining the specific characteristics of eachmethod
and solutions, whichmay help a user to decide which FMMbased
method fits a particular application.

Besides, the usage of FMM based methods on real-time
path following, obstacle avoidance and formation control
are presented. On every section, simulated paths over
digital environments are shown in order to appreciate
the differences introduced by the proposed changes on
the basic FMM. It is important to note that any of the
explained FMM-like methods may be used to implement
these applications. However, formation control has not yet
been tested with the FMFV method, which is one the main
future works.

Besides, future work will also focus on improving the models
of the mobiles obstacles by using directional models and on
extracting numerical results the safety provided by FMM-like
path planning algorithms and the usage of robot formations in
marine-like environments. Also, the implementation of these
algorithms in a real autonomous marine vehicle is an important
future work.
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