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The emergence and development of cognitive strategies for the transition from

exploratory actions towards intentional problem-solving in children is a key question

for the understanding of the development of human cognition. Researchers in

developmental psychology have studied cognitive strategies and have highlighted the

catalytic role of the social environment. However, it is not yet adequately understood how

this capacity emerges and develops in biological systems when they perform a problem-

solving task in collaboration with a robotic social agent. This paper presents an empirical

study in a human-robot interaction (HRI) setting which investigates children’s problem-

solving from a developmental perspective. In order to theoretically conceptualize

children’s developmental process of problem-solving in HRI context, we use principles

based on the intuitive theory and we take into consideration existing research on

executive functions with a focus on inhibitory control. We considered the paradigm

of the Tower of Hanoi and we conducted an HRI behavioral experiment to evaluate

task performance. We designed two types of robot interventions, “voluntary” and “turn-

taking”—manipulating exclusively the timing of the intervention. Our results indicate

that the children who participated in the voluntary interaction setting showed a better

performance in the problem solving activity during the evaluation session despite their

large variability in the frequency of self-initiated interactions with the robot. Additionally,

we present a detailed description of the problem-solving trajectory for a representative

single case-study, which reveals specific developmental patterns in the context of the

specific task. Implications and future work are discussed regarding the development of

intelligent robotic systems that allow child-initiated interaction as well as targeted and not

constant robot interventions.

Keywords: child-robot interaction, problem solving, self-initiated interaction, robotics, education

1. INTRODUCTION

The emergence and development of problem-solving cognitive strategies are fundamental
mechanisms for human evolution. In the case of childhood, these mechanisms allow children
to generate and develop novel mental representations and schemata through playful exploratory
activities which gradually transform into deliberate problem solving strategies. These cognitive

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00015
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00015&domain=pdf&date_stamp=2020-02-18
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vasiliki.charisi@ec.europa.eu
https://doi.org/10.3389/frobt.2020.00015
https://www.frontiersin.org/articles/10.3389/frobt.2020.00015/full
http://loop.frontiersin.org/people/434262/overview
http://loop.frontiersin.org/people/144942/overview
http://loop.frontiersin.org/people/818013/overview
http://loop.frontiersin.org/people/818439/overview


Charisi et al. Child-Robot Collaborative Problem-Solving

mechanisms are dominant in a child’s development as a
combination of a series of interrelated, domain general cognitive
skills associated with the prefrontal cortex, such as inhibitory
control, shifting, working memory, and others which appear
under the umbrella term of Executive Functions (EFs). During
the last few decades, EFs have gained increasing attention in
developmental and educational research (Keen, 2011; Warneken
et al., 2014) and often they are associated with playful and
exploratory activities (Best and Miller, 2010).

One of the core elements for the development of exploratory
actions is a child’s curiosity and intrinsic motivation (Oudeyer
and Smith, 2016; Twomey and Westermann, 2018). This allows
for the child to exhibit sustained task attention and to proceed
from exploratory actions to intentional ones developing the
necessary planning skills. Planning, as a prototypical EF, is a
high-level cognitive process, which includes goal-directed action
sequencing and inhibition of competing impulses (Blakey et al.,
2016). Although the growth of EFs follows a common trend, it
has been indicated that their components do not develop as a
unit; rather, each individual EF follows its own trajectory which
might differ among individuals (Diamond, 2006; Best and Miller,
2010; Friedman and Miyake, 2017). Thus, an increasing body of
research on child development and learning focuses not only on
learning outcomes but on the individual differences of learning
process and the transition from one developmental stage to
another (Siegler and Crowley, 1991; Best and Miller, 2010; Brock
and Taber, 2017).

Among the prevalent methods used for the depiction of
child’s developmental process is the microgenetic analysis
(Piaget and Cook, 1952; Siegler and Crowley, 1991; Lavelli
et al., 2005; Montes et al., 2017). Microgenetic analysis focuses
on the collection of micro-behavioral data in a dense way
in order to capture the emergence and the dynamicity of
cognitive development. Individuals are observed over a period
of developmental change and the observations are conducted
before, during, and after an intervention to capture the process
of change. Observed behaviors are intensively analyzed, both
qualitatively and quantitatively with the aim to identify the
processes that give rise to the developmental change. The
microgenetic approach has been used in various contexts such
as inhibitory control (Flynn et al., 2004), memory (Schlagmüller
and Schneider, 2002), mathematics (Van der Ven et al., 2012),
and music-making (Charisi et al., 2018).

While individual trajectories are important for the
understanding of child’s cognitive development, existing
theories highlight the role of social interaction in child’s
learning (Bandura, 1971; Vygotsky, 1978; Tomasello, 1995).
For young children, the development of effective strategies for
problem-solving is often associated to scaffolding from the social
environment (Tomasello, 1995; Cragg and Chevalier, 2012);
collaboration is particularly beneficial for low-ability children
when there is an ability asymmetry (Sills et al., 2016).

Based on the above-mentioned theoretical accounts and
paradigms, the field of child-robot interaction has examined
the ways in which robotic agents might be suitable social
learning companions for children in various age-groups and in
different contexts such as in second language learning (Kennedy

et al., 2016; Kory-Westlund and Breazeal, 2019), in inquiry
learning (Wijnen et al., 2019), handwriting learning (Lemaignan
et al., 2016), story telling (Leite et al., 2017), problem-solving
(Ramachandran et al., 2018), and creativity (Alves-Oliveira et al.,
2017). As a recent review on social robots in education (Belpaeme
et al., 2018) indicates, social robots have consistently been
proved that might be helpful in immediate learning gains in the
specific contexts.

However, there are also some suggestions that robots that
support child learning should limit their social behavior at
targeted times based on the cognitive load and the engagement
of the child (Kennedy et al., 2015; Belpaeme et al., 2018).
However, the majority of the existing research in the field of
child-robot interaction refers to studies with imposed canonical
robot interventions which do not allow children to develop their
exploratory skills and exhibit self-initiated voluntary interaction.
In addition to this, most of the existing work focuses only on the
learning outcomes (Charisi et al., 2016) without examining the
development of learning process as it occurs and the emergence
of possible patterns.

Taken together, the current research in developmental
psychology and educational sciences indicate the importance
of child’s exploratory actions as a core strategy for the
development of problem-solving skills. However, existing studies
that investigate the impact of social robots in child’s learning
have mainly focused on imposed robot interventions. As a
result, one open and important question is whether a voluntary
interaction associates with child’s problem-solving process and
performance and what are the possible emerging patterns and
trajectories of problem-solving process in the case of a canonical,
such as turn-taking, and on-demand robot intervention. To
address this question we conducted a two conditions repeated
sessions study in which children solve a problem together with
a robot. The rest of the paper presents the methodology, the data
analysis and results of the study, which are discussed against the
existing literature.

2. METHODOLOGY

2.1. Research Question
There are many factors that influence children’s problem-solving
process. In the context of voluntary child-robot interaction, this
study explores how the robot’s intervention style of voluntary
(on-demand) interaction affect child’s problem-solving process
and task performance in contrast to a canonincal intervention in
the form of turn-taking setting.

2.2. Hypotheses
To address the above mentioned research question, based on
the existing theoretical and empirical work we develop a set
of hypotheses:

• H1: In a child-robot interaction problem-solving activity,
children that voluntarily interact with a robot are more
likely to show better performance and improvements in their
performance than children who interact in a turn-taking
setting. We expect that because children that voluntarily
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interact with the robot might have more opportunities for
exploration in problem-solving process.

• H2: Children who voluntary interact and who faced more
difficulties in problem-solving (e.g., younger children) would
ask more frequently for help by a present robot. We expect this
because children in challenging situations look to learn from
others (Vygotsky, 1978; Gelman, 2009).

• H3: In developmental problem-solving tasks, it is likely that
patterns of solution strategies emerge over time. We expect
that because of prior work on child’s construct emergence
(Gerstenberg and Tenenbaum, 2017).

2.3. Research Design
A behavioral exploratory study is designed to illustrate the
relationship between child-robot voluntary interaction and
child’s problem-solving process and performance, focusing on
the importance of exploration. In addition to being one of the
first studies that implement child’s voluntary interaction and
exploration while interacting with robots, this study adopts the
developmental design of a microgenetic approach, which allows
for patterns of child’s problem solving process to emerge and
involves the understanding of the “how” of the learning process
rather than only its outputs. This involves studying change while
it is occurring (Siegler and Crowley, 1991).

The micro-genetic approach is characterized by (i)
observations that span a period of rapidly changing competence;
(ii) the density of observation within this period is high, relative
to the rate of change of the knowledge or skills of interest; and
(iii) the observations of changing performance are analyzed
intensively, with the goal of inferring the representations
and processes that gave rise to them. For this reason, the
sample size in microgenetic approaches is typically small and
possible comparisons among conditions are approached mainly
in a descriptive and qualitative manner. The activities that
are designed for microgenetic analysis are characterized by
spontaneous and exploratory actions which gradually transform
into organized and deliberate behavioral manifestations and
contribute to the transition from sensori-motor to symbolic
representations (Siegler and Crowley, 1991).

The current educational literature is in consensus about the
role of exploration as one of the fundamental processes of child’s
problem solving in contrast to guided instruction (Dewey, 1902;
Whitebread et al., 2012). For this reason, the study follows a
two-condition design to contrast guided intervention with child’s
self-initiated interaction with the robot.

Wemanipulate robot’s intervention as follows: (i) in condition
1 (Cond1), the child is instructed to solve the task in collaboration
with the robot in a “turn-taking” scenario, which results in
a canonical cognitive intervention by the robot and (ii) in
Condition 2 (Cond2) the child is instructed to solve the task
independently, having the option to ask the help of the robot
whenever (if) this is needed, which results in an “on demand”
intervention by the robot. Thus, the children have a self-initiative
role and they are free to select if and when the robot would
contribute to the solution of the task.

For the execution of this study, the participants are
administered the Tower of Hanoi (ToH) task (Hinz et al., 2013)
which is characterized by incremental task complexity. They are
individually tested in 4 sessions of approximately 10 minutes
each (Figure 1). First, a Baseline Session (BL) is conducted
without any robot intervention. This session is followed by
two Intervention Sessions during which the robot intervenes by
suggesting the next optimal movement in the ToH after a child’s
movement; finally, a fourth session is conducted as Evaluation
Session (EV) without the presence of the robot. An experimenter
is present during the sessions who follows a predefined protocol
(see complementary material); however, her role is restricted to
provide initial instructions only. In order for us to eliminate
any possible procedural bias during the experimental session,
the experimenter is sitting inside the room avoiding exhibiting
any attention to the child’s interaction with the robot and the
task performance.

2.4. Participants
Participants includes N = 20 (13 boys) typically developing
children with an average age of m = 7.7, SD = 1.4). Of
those children, four are 6 years old (yo), seven 7 yo, three 8 yo,
three 9 yo, two 10yo, and one 11yo. Given the developmental

FIGURE 1 | Behavioral study design with four repeated sessions per condition.
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nature of the current study with N = 4 repeated sessions per
child, the sample size is identified to 20 children. The decision
for the specific sample size is supported by the fact that this
microgenetic exploratory study requires a different approach
than experimental studies with detailed analysis of children’s
behavior development and typically is performed with smaller
sample sizes than the ones in experimental research. Lastly,
the selected sample size is in accordance to similar previous
long-term child-robot interaction studies e.g., N = 19 children
(Leyzberg et al., 2018) and N = 14 children (Kory-Westlund and
Breazeal, 2019). One child from Cond2 (voluntary interaction)
did not complete the evaluation session and six children from
Cond2 did not complete the baseline session; however, we
decided to take into consideration their performances during
the intervention sessions, since this would provide further input
to our observations of the developmental process. The children
in this age differ in the degree of intrinsic motivation for task
engagement and cognitive abilities. This variability in the sample
provides further opportunities for the identification of various
developmental patterns during problem-solving activities, which
is one of the purposes of this study.

Our analysis includes 72 sessions with 113 tasks from 20
children. Of those, 10 children (4 females and 6 males) (M = 7.9,
SD = 1.44) are assigned to Cond1 and 10 (3 females, 7 males)
(M = 7.6, SD = 1.57) to Cond2. None of the children has
any previous experience with the chosen task and any robotic
platform; to eliminate any possible novelty effect, we conduct an
introductory session with all participant children during which
we perform the manipulation check to examine the legibility of
robot behaviors.

This research study was approved by the committee on the
Use of Humans as Experimental Subjects of the Joint Research
Center of the European Commission; parental informed consent
was obtained for all participants and all children assented
to participate.

2.5. Materials
2.5.1. The Robot

The robot platform considered in the study is Haru (Gomez
et al., 2018), a tabletop robot for research on social robotics
(Figure 2). It presents different modalities for actuation. It can
move in 5 degrees of freedom (base, neck, eyes tilt, eyes roll,
eyes stroke). The eyes have LCD screens that can play any video.
LEDs are present in the mouth and eyebrows of the robot,
and it incorporates a set of speakers and microphones. Besides
the microphones, the robot uses an external Kinect camera
for perception.

The different actuators can be controlled in real time. Also,
all these elements can be combined to generate open-loop
robot macro-actions mixing movement, eye motion or sounds
(see Figure 3). These macro-actions are denoted behaviors in
this study.

The robot is tele-operated from a control station making use
of the Wizard of Oz (WoZ) technique. In the field of human-
robot interaction, the WoZ technique is commonly used when
the focus of the research is on the interaction design as a step
before the development of the autonomous system (Steinfeld

FIGURE 2 | The Haru Robot with mouth LEDs in green and normal eyes on

LCDs.

et al., 2009; Hoffman, 2016). The control station receives the
images from the Kinect camera, and can be used to control
directly the different actuators of the robot. Furthermore, the
station allows activating pre-designedmacro-actions (behaviors).
For our study, we designed a set of minimally social behaviors
combining the different actuators, as described below in section
2.7. This station is used in the study by the Wizard of Oz (WoZ)
to control the robot, mainly by activating the corresponding
behaviors adequately.

2.5.2. Apparatus: The Tower of Hanoi

The task considered is the Tower of Hanoi (ToH), which has
a rich history in cognitive science as a problem-solving task
(Simon, 1975). It involves three vertical pegs and a fixed number
of colored disks with graduated sizes that fit on the pegs. At the
outset, all the disks are pyramidally arranged on one of the pegs
with the largest disk on the bottom (Figure 4). It requires the
arrangement of disks from an initial starting point to a specified
end point in the minimum number of moves, allowing the move
of one disk at a time and never stacking a larger disk on a smaller
one. Any number of disks may be used; the minimum number of
moves for a solution is 2d − 1, where d is the number of disks.

The ToH task has been used to measure children’s planning
abilities as well as inhibitory control; for the optimal solution,
it requires the use of goal management, in which participants
involve inhibition of impulsive moves that bring the child
superficially closer to the goal, but are unhelpful for the
longer-term solution. However, Miyake et al. (2000) note
that participants may use simpler perceptual strategies making
successive moves that lead to the display looking more like the
desired end state.

The solution of the ToH requires that the child sets necessary
subgoals which gradually lead to the solution of the task.

2.6. Settings and Procedure
The study has been conducted in a primary school during a
summer campus in Spain. A classroom is especially arranged for
the setting of the study (see Figure 5). In the setting, a table is
placed on which the physical instrument of the ToH (see section
2.5.2) and the Haru robot (see section 2.5.1) are deployed, and
where the children play the game.
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FIGURE 3 | A routine generator application is used to combine the different actuators of the robot (motion of 5 degrees of freedom, eye videos, sound, etc.) to define

the open-loop behaviors.

FIGURE 4 | The Tower of Hanoi task.

The teleoperation station for the Wizard of Oz is placed at a
corner of the classroom, hidden from the children participating
in the study. In order for us to minimize any deception effect
because of the teleoperation of the robot, in the beginning
of the study, we inform the children about the manner the
robot is programmed and teleoperated. However, we have the
teleoperation station hidden from the children in order to avoid
any distraction. A Kinect camera is located on a vantage point.
The video from this camera is fed to the WoZ to facilitate the
teleoperation of the robot and the status of the game. Finally, a
video camera for data collection is also placed in a reasonable
distance from the child to eliminate any possible distraction.

Each individual child participated in four sessions over 1
week. Before the sessions all the children participated to a
familiarization session (see section 2.7.3) and they were given to
complete the manipulation check (see section 2.7.2). Each of the
four sessions of the study was 10–15 min long. In the first session

(baseline), the experimenter welcomed the child and asked for
his/her assent to participate to the study; she then introduced
the Tower of Hanoi rules and let the child solve the game alone.
Each time the child completed a task the experimenter was asking
whether the child would want to repeat the same task or continue
with a more challenging one gradually increasing the number
of the disks. In the end of the session the experimenter asked
the child whether he/she wanted to continue the next day. In
the second session the experimenter introduced the robot and
explained the role of the robot depending on the condition. After
the end of the four sessions, the children were interviewed about
their perceptions of the robot’s social competence. However,
those results are not reported in this study.

Regarding the procedure followed by the robot, the WoZ
is in charge of activating the corresponding robot behaviors
(described in the next section) in a timely manner. Furthermore,
the WoZ estimates the state of the game to indicate the robot
suggestion during its turn in Cond1, or to provide help when
asked in Cond2 (the next movement is provided by the robot
through its LEDs, indicating the color of the disk and the peg
to be moved to). TheWoZ also determines when a child is asking
for help in Cond2 either verbally or through a button.

2.7. Design of Robot Behaviors
2.7.1. Overview of Robot Behaviors

We constructed a simple behavioral repertoire for the robot
that supported the illusion of agency focusing mainly on goal-
directed actions and avoiding expressive actions. The robot
behavior design was considered as a combination of (i) the type
of the behavior and (ii) the timing of the behavior performance.
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FIGURE 5 | The setting of the study. The children play at a table where the robot (A) and the ToH instrument (B) are deployed. The Wizard of Oz sits in a hidden

location with the teleoperation computer, and it is supported by a Kinect camera. An additional video camera is used to record data.

Regarding the type of behaviors, for the purposes of the current
study we designed a set of sonic and gestural non-verbal robot
behaviors. In order for us to minimize any possible effect on the
expectations that verbal interaction might elicit and on children’s
intention for initiation of the interaction with the robot, we
included only non-verbal behaviors.

More specifically, for the design of different types of behaviors,
we used body and eye movements as gestural robot behaviors,
sounds, and LED lights to design eight robot behaviors (see
Table 1). These behaviors were all functional, targeting mainly
child’s cognitive engagement with the task - with the exception of
the starting and ending greetings. The set of behaviors included
two types of greetings, two types of providing feedback, three
types of task-related behaviors, and one type for indicating that
the robot was processing information. In order for us to eliminate
any effect which could be related to the type of behaviors of
the robot, we kept to the minimum variation of the types of
robot behavior. The design of all behaviors was based on previous
literature from the field of HRI, design and psychology and were
based on minimalistic principles (Saulnier et al., 2011; Cha et al.,
2016).

Regarding the timing of intervention, it only related to the
cognitive task-related suggestion of the next optimal movement.
The robot could give suggestions either in a turn-taking setting
(Cond1) or in a setting of voluntary interaction (on-demand,
Cond2). For the turn-taking setting, the robot would intervene
in turns with the child by providing feedback on the previous

movement made by the child, followed by a suggestion for
the next task-related optimal movement. For the voluntary

interaction setting, the robot would intervene only in the case in

which a child would ask for help. The child could ask for help

either verbally or with the use of a help button.

TABLE 1 | Robot behavior repertoire.

Robot intention Robot executed behavior

Greeting hello to the kid The robot rotates the basis (45◦ right, 90◦ left, 90◦

right, 45◦ left) it stands still, it rotates the eyes (45◦

right, 90◦ left, 90◦ right, 45◦ left), it performs sound

Indicating the start of

the game

The robot performs a dancing movement and looks

at the task

Indicating child’s turn Robot looks at the task and looks at the child

Indicating processing

current information

Looks at the task, sequence of different colors LED

around the eyes moving toward outside

Suggesting the next

movement

Instant suggestion of the color of the Disk and the

number of Peg (visual projection on the screen of

the eyes and the body

Informing that the

movement was optimal

Looks at the task—looks at the child and green

happy (once)

Informing that the

movement was

suboptimal

Repeatedly looks at the task looks at the child (x2)-

wiggles NO

Greeting goodbye to

the kid

Repeated rotation of the eyes (45◦ right, 90◦ left,

90◦ right, 45◦ left, LED white softer, fading sound

2.7.2. Manipulation Check

We conducted a manipulation check for the confirmation of
the legibility of the robot’s behavior. It was designed as a single
group-session with all participant children. During the session,
the robot performed the designed behaviors and we asked the
children to indicate their perceived robot intention in the form
of a written task. The experimenter and the research group
facilitated the session by introducing the robot, explaining the
purpose of the session and guiding the performance of the
behaviors and the gathering of children indications. In total
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N = 20 children participated to the manipulation check.
We included four action-directed behaviors (Greeting hello to
the kid, Informing that the movement was optimal, Informing
that the movement was suboptimal, Greeting goodbye to the
kid); finally we examined two additional expressive behaviors
(happy and sad) in order to justify children’s understanding of
the current task. The results of the manipulation check show
that 71, 43% of children’s answers were accurate regarding the
legibility of robot’s behaviors. More specifically the behavior with
the higher percentage of legibility was the Sad behavior with
100% correct answers. These results justified that the children
understood the current task. This was followed by the “Informing
that the movement was optimal” behavior with 91, 67% correct
answers. The least legible behavior was the “Greeting hello to the
kid” behavior with 50%, which was confused with the “happy”
expressive behavior. However, given that the manipulation check
was performed in a de-contextualized manner we expected that
there might be a confusion between the goal-directed and the
expressive actions which are not mutually excluded.

2.7.3. Familiarization Phase

For the elimination of any novelty effect on children’s behavior,
following the manipulation check, we allowed the children
to informally interact with the robot. This informal activity
lasted 10 min and was designed to be unstructured. Each
child was free to interact with the robot at his or her
willingness and the researchers did not impose any kind of
interaction. All the children remained into the classroom for the
informal activity.

3. METRICS AND ANALYSIS

Audio and video recordings of the study sessions were recorded
with two cameras for later transcription and off-line analysis. A
first iteration of the recorded sessions observation as well as the
initial hypotheses of the study lead us to the development of the
annotation scheme. As it was expected, since the robot did not
exhibit any verbal behavior, the child-robot verbal interactionwas
minimum. The only case the children were addressing verbally to
the robot was during the Condition 2 of the voluntary interaction
when they asked for help verbally—in addition to the option of
asking for help with the use of a button. For this reason, the verbal
interaction data reported in this paper only includes child’s verbal
behavior of “asking for help.”

The recorded video was used to transcribe children’s task-
related behavior as well as social interaction with the robot and
verbatim. However, for the purposes of the research question
addressed in this paper, we only report the task-related behavior.
Participants’ behaviors were manually annotated off-line by an
instructed annotator. Because of the objective nature of our
coding scheme (disk movements, asking for help Cohen’s K
and breaking the rules), which did not require any subjective
interpretation of children’s behavior, we run a set of sessions
during which the two coders annotated the same extracts. During
those sessions, any minor disagreement was discussed with the

first author of the paper, which resulted in a consensus of
the coding.

We annotated in total 72 individual sessions. In each one,
more than one task could be included, depending on the duration
of child’s task performance. This resulted in the annotation of 113
tasks from 3 to 7 disks of the Tower of Hanoi. The annotation
scheme included (i) the occurrence of task-related actions (disk
movement); (ii) the use of help button or child’s verbal asking
the robot for help; and (iii) the instances of breaking the rules of
the game. In addition, we chose N = 4 case studies (see section
4.3), which correspond to 16 sessions (BL, Interventions and EV)
to annotate the characterization of the child’s task-related action
(optimal or suboptimal, see below).

We observed that because of the canonical robot intervention
in the sessions of the turn-taking condition, the sessions in
Cond1 lasted longer than the ones in Cond2. For this reason,
we normalized the sessions duration taking into consideration
the optimal number of movements per task. However, we did
not consider the sessions duration in our data analysis because
robot’s canonical interventions in Cond1 (turn-taking) and the
on-demand intervention in Cond2 would create an imbalanced
comparison between the two conditions. For this reason, our data
analysis only focused on children’s task-related actions.

Using the off-line video annotation tool ELAN1, we manually
annotated the data according to the annotation scheme.

3.1. Task Performance
To measure the performance of a given task, we annotate
individual movements and compute the difference between the
number of movements L and the optimal number of movements
Od for the number of disks d of the task. In order to compare
this metric for tasks with different number of disks, we then
normalize this value by the optimal number of moves in task
as follows:

K =
1L

Od
=

L− Od

Od
(1)

where d varies from 3 to 7 disks and Od = 2d − 12. Please
note that, as defined, higher values of the metric K indicate lower
performance.

Since the child was free to choose whether after the completion
of one task she/he would continue to the next task by increasing
the number of disks or not, we considered for our analysis the
total number of tasks per disk, which might exceed the number
of participants.

In the following analyses, we ran a Kolmogorov–Smirnov test
to check the normality of the data. Based on the Komogorov-
Smirnov result, we used non-parametric Wilcoxon test for paired
samples to check the difference in children’s problem-solving
performance (learning) by comparing the results of the baseline
and the evaluation session, and Mann–Whitney’s U-test for non-
paired samples to compare the results of the evaluation session
between the two conditions.

1https://tla.mpi.nl/tools/tla-tools/elan/
2Values in this study are O3 = 7, O4 = 15, O5 = 31, O6 = 63, O7 = 127.
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3.2. Voluntary Interaction
In Cond2, we designed a voluntary HRI setting with an “on
demand” robot intervention as an indicator of child’s intrinsic
motivation for problem-solving. We annotated and counted the
instances in which the child was explicitly asking the robot for
help either verbally or using a help-button. We normalized the
number of instances with respect to the number of optimalmoves
per disk Od to obtain a measure for help H. This normalization
was done to obtain comparable values for different tasks.

3.3. Task Improvement
As being a developmental study, we also analyse the development
of child’s task performance K along the different sessions.
Thus, we analyzed the improvement between (i) the first
and the last task of the baseline; and (ii) the last task of
each session and the first task of the following session, by
computing the difference of normalized extra moves metric K in
both cases.

3.4. Developmental Process
The Tower of Hanoi game can be represented as a graph (the
Hanoi graph) (Knoblock, 1990; Hinz et al., 2013), as illustrated in
Figure 6, in which each node represents a legal disposition of the
disks on the pegs (for instance, for the 3-disk case, the node 112

represents the smallest disk in the 2nd peg, and the other disks in
the 1st peg) and edges represent valid movements between nodes.

For d disks, there are 3d nodes. Under a certain positioning of
the nodes, the graphs resemble the Sierpinski gasket (Hinz et al.,
2013). We used this model to manually annotate each sequence
of movements and relate it to the optimal path, understood
as the solution with the minimum amount of moves Od. Due
to the high cost of manual annotation, we carried out these
annotations for all tasks but only for subgoals with a maximum
of 5-disks, i.e., d ≤ 5.

We annotated the type of movements as follows: (i)
Optimal/sub-optimal: optimal moves refer to the moves which
are on the optimal path toward the solution or function as
recovery actions (sub-optimal) toward the optimal path; and (ii)
Auxiliary: Auxiliary movements refer to those that use a third
peg as a scaffold for the optimal solution of the task. Within a
task of a certain number of disks there are subgoals; these are
instances of milestones of a subpyramid that leads to the task
solution (see Figure 6).

4. RESULTS

We used the above-mentioned metrics to address the research
questions and the corresponding hypotheses as follows.

FIGURE 6 | Graph representation of the ToH game for d = 3 disks. Each node represents one disposition of the disks. Red color represents the optimal path

between the initial disposition and one solution. In blue dashed, auxiliary movements (movements between sub-graphs leading toward the solution).
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4.1. Task Performance in Turn-Taking and
Voluntary Interaction (Hypothesis 1)
We hypothesize that children in Cond2 (voluntary interaction)
would be more likely to show better performance in the
evaluation session than children in Cond1 (turn-taking).
To explore this hypothesis, we consider (i) children’s task
performance and (ii) task improvement over the four sessions,
with a focus on the evaluation session. We note that, during the
intervention sessions, children in Cond2 had the opportunity
to perform more movements than children in Cond1 since in
Cond1 the robot provided canonical intervention in a turn-
taking setting.

4.1.1. Task Performance

For each task, we assess the value of K (normalized extra moves),
as detailed in section 3.1.

Mean performance metrics are summarized in Table 2 (BL
and Cond1) and Table 3 (Cond2). The average is presented in
relation to the incremental task complexity (number of disks d
with d = 3...7). For the baseline, we integrate the performance
of participants in both conditions as there is no difference in
the setting.

As expected, in the baseline, we observe an increase in the
normalized extra moves K for the task with increased difficulty
(more disks), ranging from 0.40 (d = 3) to 1.17 (d = 5). In the
intervention session of Cond1 the normalized number of extra
movements seem to not be associated with the increased difficulty
of the task ranging from 0.12 (d = 6) to 0.43 (d = 3) with
relatively small deviation from the optimal solution path during
the robot’s canonical intervention. However, in the intervention
session of Cond2, the extra movements range was between 0.45
(d = 4) to 1.18 (d = 6) which is a larger deviation from the
optimal path than in Cond1. As expected, the task performance
is linked to the difficulty of the task in terms of number
of disks.

Interestingly, in the evaluation session in Cond1, task
performance K ranges from 1.59 (d = 7) to 3.51 (d = 5),
and the deviation from the optimal solution is higher in the first
task of the session than in later stages with increased difficulty.
However, in the evaluation session of Cond2, K is smaller than
for Cond1, ranging from 0.6 to 2.55 which indicates a smoother
transition from the intervention to the evaluation session in the
voluntary interaction case. It should be noted that in many cases
the Standard Deviation of the selected metrics is relatively large,

which indicates a large distribution, most likely because of the
small sample size.

4.1.2. Task Improvement

Figure 7 shows the distribution of task performance for BL
and EV sessions considering both conditions. We observe that
the median value is higher in evaluation than in baseline,
indicating an overall learning effect. In addition, we computed
individual differences in task performance 1K between EV
and BL session. It should be noted that, since we measure the
difference in normalized extra movements, a negative difference
indicates task improvement. Our descriptive results show an
average 1K = −0.326 (or 35% if instead of difference
we compute the percentage decrease), which also reflects a
better average performance in the EV session. However, the
results from the Wilcoxon test between BL and EV value
distributions showed no statistical significance (p = 0.286,
a = 0.05). As discussed below, due to the increasing difficulty
of the task in the EV session, our findings might indicate a
learning tendency.

In addition, we performed a Mann–Whiteney’s U-test to
check the statistical difference between EV sessions in Cond1
and Cond2. Statistical distributions are illustrated in Figure 8.
Results show significance of p = 0.038 (a = 0.05). The interval
of confidence for the difference between Cond1 and Cond2 is
between 0.020 and 1.237, which means that the performance is
significantly higher in Cond2 than Cond1.

Lastly, we looked at the possible association of those results
with the age of the children (Figure 9). Our results show that in
the evaluation session of Cond1 most of the children of any age
perform larger numbers of movements than in Cond2.

TABLE 3 | Task performance metrics 1L and K in Cond2 (voluntary interaction)

per session and per number of disks.

d Cond2-Intervention Cond2-Evaluation

t 1L K Mean (SD) t 1L K Mean (SD)

4 7 6.86 0.45 (0.17) 1 9 0.6 (0)

5 12 20.5 0.66 (0.10) 2 31 1 (0.15)

6 10 74.5 1.18 (0.11) 2 161 2.55 (1.41)

7 – – – 4 – 1.15 (0.38)

t represents the number of considered tasks.

TABLE 2 | Task performance metrics 1L and K in Baseline (left column) and in Cond1 (turn-taking) per session and per number of disks.

d Baseline Cond1-Intervention Cond1-Evaluation

t 1L K Mean (SD) t 1 L K Mean (SD) t 1L K Mean (SD)

3 18 2.78 0.40 (1.24) 1 3 0.43 (0) – – –

4 16 15.38 1.03 (0.79) 6 4.67 0.31 (0.17) – – –

5 5 36.40 1.17 (0.99) 13 4.69 0.15 (0.10) 2 109 3.52 (2)

6 – – – 14 7.28 0.12 (0.11) 4 112 1.78 (0.33)

7 – – – – – – 5 201.6 1.59 (0.45)

t represents the number of considered tasks.
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FIGURE 7 | Distribution of task performance K for BL and EV sessions in both conditions. Median values are displayed.

FIGURE 8 | Statistical distribution of task performance K in evaluation sessions of both conditions. Median values are displayed.

4.2. Children’s Tendency for Self-Initiated
Robot Interaction (Hypothesis 2)
We hypothesize that in the voluntary interaction the participant
children who faced more difficulties in solving the task (e.g.,
younger children) were more keen to ask the robot for help.
We expected this because child’s learning often occurs in
collaborative settings with the scaffolding by others (Vygotsky,
1978). To explore this hypothesis, we considered (i) the number
of the instances the individual child asked for help (asking for
help) in relation to the task performance (extra movements)
and (ii) the age of the child. Because of the incremental nature
of the task, there were more opportunities for children to ask
for help; for this reason, we normalized the scores in order to
be comparable.

We assess child’s voluntary interaction in relation to the task
performance during Cond2 as well as the task improvement in
the evaluation session.

During the robot intervention in voluntary interaction, we
observed a trend for more instances of asking for help in
less demanding tasks by younger children (Figure 10). More

specifically, for d = 4 tasks, children of average age 6.8 years

exhibit H = 0.26 asking for help behavior. For d = 5

tasks, children of average age 7.5 years exhibit H = 0.16
asking for help behavior. For D6, children of average age 8.3

asked for help H = 0.03 instances and for d = 7 the only
child that managed to perform the task with 7 disks in the
intervention session was a 10 year-old who didn’t ask for help
at all.
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FIGURE 9 | Individual task performance K versus age in the evaluation

session for Cond1 and Cond2.

FIGURE 10 | Average H metric of child’s asking for help in Cond2 vs. child’s

age, presented according to number of disks.

In addition, we considered the score of extra movements for
these children. As shown in Figure 11 in total 9 out of 10 children
asked for help during the robot intervention. Of those, 6 children
showed increased number of extra movements ranging fromK =

1.11 to K = 1.66 with low number of instances of asking for
help (normalized range from H = 0.00 to H = 0.096). On the
contrary, three children exhibit increased number of instances
of asking for help, ranging from H = 0.18 to H = 0.82, with
decreased number of extra movements, ranging from K = 0.25
to 0.097.

4.3. A Single Case-Study, Pattern
Emergence, and Inter-individual
Differences (Hypothesis 3)
To gain a more refined understanding of the problem-solving
process and to identify possible patterns in action sequences,
we map the developmental trajectories of the task solution
for N = 4 selected children. The selection of the specific

FIGURE 11 | Representation of K vs. H to represent normalized number of

movements with respect to help by the robot.

case studies was based on their representiveness in terms
of the solution path that the children followed during the
sessions. In this section we analyse one single case study and
we selectively juxtapose instances from the remaining three
case studies.

For our analysis, we assessed all movements as optimal or
suboptimal and mapped it to the visual representation of the
ToH solution presented above (see Figure 6). We used the
visualization to map the sequence of child’s task-related actions
and to define possible emerging patterns.

4.3.1. Baseline Session

4.3.1.1. Optimal performance
The child “Sophie,” aged 8 years, participated in Cond1 of
the study. During the baseline session, without the presence
of the robot, Sophie understood the rules of the game
and showed a positive stance toward the game and the
activity. She started solving the task with d = 3 disks,
without facing any difficulty. We observed that toward the
end of the solution, Sophie increased the pace of her task-
related actions. This has been registered as a typical behavior
that was observed repeatedly in all participant children and
can be explained by the cognitive theories that describe
child’s perceptual strategies making successive moves that
lead to the display looking more like the desired end state
(Miyake et al., 2000).

4.3.1.2. Deviation
Then, Sophie proceeded to the next task with d = 4 disks. While
in the beginning of the task, we observed an increased pace in her
actions, after the movement 4, the solution pace was diminished
and, as shown in Figure 12, she started deviating from the
optimal solution path. The point she started to deviate was the
instance where she should perform an auxiliary movement and
inhibit inappropriate move selection. This demand appears at
specific points where there is a mismatch between the end goal
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FIGURE 12 | A developmental representation of individual child’s problem-solving path of the baseline. The figure shows a pattern of frequent deviation from the

optimal solution path.

of the problem and a current subgoal. This was a typical behavior
that appeared in the Baseline session in all the four case studies
we evaluated.

4.3.1.3. Recovery
After four movements, Sophie understood that she was not on
the optimal solution path of the task and she started performing
recovering actions. We observed an increased pace of her actions
during the recovery which might be explained by theories that
focus on executive function of planning (e.g., Miyake et al., 2000).

4.3.1.4. Inhibitory control points
The solution of the d = 4 disks ToH task requires from the
child at least three instances of inhibitory control. At those points
the child should perform an auxiliary movement in order not to

deviate from the optimal solution path. However, Sophie did not
make use of the auxiliarymovement which resulted in a canonical
deviation from the optimal solution path as appears in Figure 12.

4.3.1.5. Child-initiated interaction
In condition 2, we annotated the child initiated interaction
indicated by the instances of the child’s asking for help as
described in section 4.2. The microgenetic assessment provides
further insights on the timing of child-initiated interaction. As
expected, we observed that the majority of the instances appear
on the nodes where the child had more than one options to
perform the next movement with higher probability to deviate
from the optimal path. This coincides with the auxiliary actions
that indicate the child’s inhibitory control.
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4.3.1.6. Pattern emergence of developmental sequences
The pattern which appears in Sophie’s baseline for the d = 4 disks
task appeared in all the four case studies we analyzed. In a similar
way, a typical solution path in turn-taking condition consisted of
optimal moves only following the diagonal axis of the triangle.
In the evaluation session, the child exhibits canonical deviation
from the optimal solution path with an improvement from the
baseline, and a more frequent deviation from the optimal path
than the one exhibited in the intervention session.

4.3.1.7. Pattern emergence of temporal aspects
To illustrate how the problem-solving trajectory develops over
time, we examine the speed of the moves throughout the
task. Figure 13 shows a selected set of representative examples
from the analyzed cases with the duration of each move (in
seconds), in addition to a moving average of the last three
movements. We observe an increase in speed (short duration)
in the last movements of a subgoal for all the analyzed
children. Additionally, we observe that the increase in the
speed of movements toward the final solution of the tasks
is associated with optimal movements, while increase in the
speed of movements between subgoals of the same number
of disks is associated with suboptimal movements such as
exploratory actions.

4.3.2. Robot Intervention Session

In the second and the third session Sophie participated to
the robot intervention session in Cond1 in which Sophie was
instructed to solve the ToH task together with the robot in a

turn-taking setting. Sophie looked engaged with the robot and
she clearly perceived all the intended behaviors of the robot. She
selected to repeat the task with d = 4 disks which she solved
in the optimal way in collaboration with the robot. As shown in
Figure 12, her performance was optimal in the task with d = 5
disks as well when solving the task together with the robot.

While an optimal solution was typical for all children in
Cond1, children in Cond2 showed different patterns of task
solution, which differ depending on the frequency child asked
the robot for help. In the examined case studies we observed
solutions with (i) canonical deviation from the optimal solution
at the points which required auxiliary movements (ii) instances
of child breaking the rules of the game and (iii) solutions with
extensive exploratory actions which lead to a final solution with
the use of large number of extra movements.

4.3.3. Evaluation

In the last session, Sophie selected to solve again the d = 5 disks
task, without the help of the robot. While in the intervention
session, Sophie solved the task together with the robot following
the optimal path, in the evaluation session she regularly deviated
by the optimal as shown in Figure 12. The pattern of Sophie’s
deviation from the optimal path in the evaluation resembles the
one in the Baseline with the four disks task, in having the critical
points of the use of auxiliary movements as necessary for the
continuation of the optimal solution. However, Sophie’s pattern
of solution seems improved in the evaluation session since she
achieved to use inhibitory control in four out of eight critical
points. This indicates the dynamic nature of problem-solving

FIGURE 13 | Examples of speed of optimal and suboptimal actions in association with the subgoals of the problem-solving task.
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process in incremental tasks which requires special attention to
the design of robot intervention.

5. DISCUSSION

In the current study, two main topics were addressed: First,
we evaluated children’s problem-solving task performance in
a “voluntary” HRI condition in contrast with a “turn-taking”
condition in a longitudinal setting. Second, we examined the
developmental trajectory of the process of problem-solving
via possible patterns of the sequence of actions over multiple
sessions. To address the first topic we captured children’s
performance of the ToH task in an incremental manner looking
at the role of the robot intervention on the task performance. To
address the second topic, we considered children’s deviation from
the optimal path of the solution which allowed us to highlight
the heterogeneity of children’s problem-solving trajectories. Our
goal was to observe children’s trajectories of problem solving, and
to create an HRI setting that allowed for voluntary childrobot
interaction with child-initiated robot intervention. Below we
discuss the main findings:

5.1. Exploration in Young Children’s
Problem-Solving
Our results indicate that participants in the “turn-taking”
condition exhibit less exploratory movements than in the “on-
demand” robot intervention condition. However, in challenging
tasks, young children that participated in the “on-demand” robot
intervention and had the possibility to performmore exploratory
actions outperformed young children that participated in the
“turn-taking” condition in terms of deviation of the optimal
moves. Thus, our findings provide initial indications regarding
young children’s need for exploratory actions in problem-solving
process in HRI settings and the efficacy of those actions in
challenging task performance.

5.2. Inhibitory Strategy Emergence and
Development
The cognitive strategy of inhibition has been characterized as
one of the main strategies used for the optimal solution of the
ToH task (Goel and Grafman, 1995). This strategy allows the
child to inhibit moves directly to the goal in order to make the
counter-intuitive move that leads to the optimal solution. We
identify the use of inhibitory strategy in all observed optimal
moves excluding the moves leading to a subgoal or the final
solution of the ToH. Our design allowed us to observe that
this strategy is not apparent to all young children, especially
in the more challenging tasks. However, the fact that our
cases increased the speed of their optimal movements only
toward the reach of a subgoal indicates that the analyzed
children used additional strategies for the task solution such as
implicit learning. Typically, this procedural learning is observed
by continuous improvement in performance over repeated
administrations of the same ToH problem, as shown by our
analysis of the learning effect.

5.3. Designing Robot Behaviors to Scaffold
Child’s Exploration
For the current study we used the Haru robot with minimally
designed social behaviors. Since our main focus was on the
type and timing of robot cognitive intervention rather than on
robot’s social behaviors, on purpose, we restricted the robot
behaviors into cognitive interventions providing suggestions in
a neutral non-verbal manner and feedback related to the task
performance only. Maintaining the same behavioral principles,
we designed an “on demand” robot intervention. This is one
of the few studies in HRI that provide children the space to
voluntarily initiate the robot intervention. Our results indicate
that there is a relationship between children’s intrinsic motivation
for exploration and robot intervention, since in many cases
the participant children did not ask for help by the robot and
preferred exploration which lead to increased task performance.
Additionally, the “on demand” intervention allowed for inter-
individual variability to be observed, with some younger children
being inclined for more exploratory actions, which might require
personalized robot interventions.

However, we observed that children’s deviation from the
optimal solution path in the specific task comes with certain
patterns. From a pedagogical perspective, these patterns can
be utilized in order for designers to develop targeted robot
interventions which allow the child to explore and experience
self-initiated interactions. In addition, at targeted instances of
the task, the robot intervenes in order to provide recovery in
child’s actions and scaffold the child’s problem-solving process
which would lead to better learning experience and outcomes for
the child.

This paper contributes to the field of HRI as one of
the few developmental studies which focuses on the process
rather than only on the final outcome of child’s activity and
provides indications about not only the what but the why of
collaborative problem solving in child-robot interaction. Further,
the suggestions of voluntary interaction contributes to the
current dialogue about the ways we need to develop value-
centered intelligent systems. In this way the child has the freedom
to initiate the interaction according to her needs.

6. LIMITATIONS AND FUTURE WORK

Deeper insight into the trajectories of children’s problem-solving
will allow us to construct dedicated theoretic models for the
emergence and development of children’s complex strategies.
In similar fashion to the work by Oudeyer and Smith (2016)
on modeling curiosity development, in future work, we also
intend to computationally model and simulate problem-solving
processes of increasingly complex tasks. Toward this end, we
intend to develop a robotic companion for dynamic assessment
and support of children’s tendency for exploration as one of the
catalytic stages for the emergence and development of relevant
cognitive strategies for problem solving. From a methodological
perspective, whilst most of the current longitudinal studies with
children in HRI include relatively small sample (i.e., Leyzberg
et al., 2018), we aim to investigate child-robot collaboration
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in problem-solving tasks in a longitudinal study with a larger
sample. In this way, we will be able to contribute to the dialogue
regarding child development in HRI settings with generalizable
results. In addition to this, we acknowledge that between the
interaction design of the two conditions lie further possibilities
for child-robot interaction in the context of collaborative
problem-solving activities. Our plans for future work include
additional possibilities for further types of interaction design.

Regarding the robotic system itself, we are currently
developing a fully autonomous system for the dynamic
assessment and autonomous robot intervention for the ToH task
to carry out a larger scale study considering a fully autonomous
interaction. This requires, from the perception part, to estimate
the state of the game, the individual child problem-solving
abilities and other individual characteristics. Tracking the state of
the gamemakes it possible for the robot to automatically evaluate
the task progress and thus take decisions accordingly.

Deeper data-driven analyses may further reveal characteristics
and causes of child development and the transition from
primitive cognitive and social actions toward more complex
behaviors. As discussed before, all children did not have
explicit conceptualized knowledge and strategies for problem-
solving of the ToH task. So interacting with this task could
be considered as a novel activity with many exploratory
opportunities, which is still an open area of research for HRI.
At the same time, it will be interesting to further investigate
what design principles would be applied in developing robots
that scaffold children to effectively transit from exploratory
actions to intentional behaviors. Individual pace differences
of this transition will require for the robot to be adaptively
intelligent by dropping old solutions when something shifts in
the child’s behavior, the task or the context. This demands a
dynamic approach of the conceptualization of problem-solving
cognitive activity in child-robot cognitive collaboration. Taken
together, our results are initial steps toward creating flexible

autonomous agents that self-supervise in realistic physical
environments by supporting human tendency for self-directed
problem-solving activities.
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