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Quadruped robots require compliance to handle unexpected external forces, such as

impulsive contact forces from rough terrain, or from physical human-robot interaction.

This paper presents a locomotion controller using Cartesian impedance control

to coordinate tracking performance and desired compliance, along with Quadratic

Programming (QP) to satisfy friction cone constraints, unilateral constraints, and torque

limits. First, we resort to projected inverse-dynamics to derive an analytical control law

of Cartesian impedance control for constrained and underactuated systems (typically a

quadruped robot). Second, we formulate a QP to compute the optimal torques that

are as close as possible to the desired values resulting from Cartesian impedance

control while satisfying all of the physical constraints. When the desired motion torques

lead to violation of physical constraints, the QP will result in a trade-off solution that

sacrifices motion performance to ensure physical constraints. The proposed algorithm

gives us more insight into the system that benefits from an analytical derivation and more

efficient computation compared to hierarchical QP (HQP) controllers that typically require

a solution of three QPs or more. Experiments applied on the ANYmal robot with various

challenging terrains show the efficiency and performance of our controller.

Keywords: locomotion controller, projected inverse-dynamics, quadratic programming, impedance control,

quadruped robots

1. INTRODUCTION

Recent improvements in mobile robotics indicate that it is possible to achieve autonomous
inspection and maintenance of critical industrial infrastructure in extreme environments
(e.g., off-shore plants and nuclear sites) within the next decade. The automation of
such processes will reduce their economic cost and increase the life quality of the
operators that can be moved away from operational hazards. Legged robots are the
most promising among ground robots for locomotion flexibility, being able to surpass a
varied set of obstacles. However, this comes at the expense of reduced stability compared
to wheeled robots. Quadruped robots offer a balance between efficiency and stability.
Algorithms that can generate precise but compliant motions while satisfying physical
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feasibility are required to control quadruped robots with a
large number of degrees of freedom. On the other hand, a
trade-off strategy is also required to coordinate multiple tasks
and constraints.

A good example for legged locomotion is the management
of the contact forces that need to provide sufficient support
to the body while not violating the non-slipping conditions
determined by the friction cones. An intuitive control technique
that can deal with these problems is the Virtual Model Controller
(VMC) (Pratt et al., 2001), which has been applied to state of
the art legged prototypes (Boaventura et al., 2012; Gehring et al.,
2013). The VMC determines the contact forces based on the
centroidal momentum model according to desired motions,
and then maps these forces into joint torques. Meanwhile,
the swing legs are controlled using joint PD controllers
tracking a desired reference trajectory. Therefore, VMC
controls swing legs and supporting legs separately and is not
a whole-body controller.

Another widely used control framework is the fully
optimization-based control (De Lasa et al., 2010; Saab et al.,
2013). This framework relies on solving an optimization
problem (usually quadratic) to minimize a cost function. The
dynamic model and desired end-effector motions are introduced
as equality constraints, while friction cones, torques, and
joint limitations are inequality constraints. The main benefit
of the optimization-based control is the integration of the
operational space tasks and the joint space dynamics in a single
problem. Furthermore, its formulation can be extended to solve
multiple tasks, which can be implemented using either weighted
optimization or strictly hierarchical optimization (Hutter et al.,
2014). Two popular implementations are the Hierarchical
Quadratic Programming (HQP) and the Weighted Quadratic
Programming (WQP). HQP uses a strictly prioritized control
framework based on null-space projectors; meanwhile, WQP
relies on tunable weight matrices. Despite the fact that HQP
solves two or more QPs, it is normally preferred toWQP because
it does not require tuning.

The QP-schemes outlined above optimize for joint
accelerations, contact forces, and joint torques, but only
joint torques are eventually used for control. Since only torques
are needed to control the robot, the original optimization
formulation can be simplified by reducing optimization variables
by considering reducing computation complexity as well. In
Bellicoso et al. (2016), the QR decomposition proposed in
Mistry et al. (2010) is employed to eliminate contact forces
from dynamic equations so that optimization variables are
reduced to two vectors. In Mansard (2012), a projector
considering the consistency of the inertia matrix is proposed
to separate the dynamic equations, and the optimization
variables are finally reduced to two vectors. A straightforward
decomposition is presented in Herzog et al. (2016) that directly
splits six rows corresponding to six dimensional floating
bases from the whole dynamic equation, thus removing
actuation torques from optimization variables. By contrast,
joint torques are the decision variables for the proposed
control technique in this paper, and only one QP needs to
be solved.

For optimization-based approaches, operational tasks are
bounded to joint space dynamics by optimization constraints.
Consequently, tuning parameters, such as impedance gains
require several trials. A seminal control technique called
operational space control (OSC), presented first in Khatib
(1987), provides us with the analytical solution to derive
joint torques from desired operational tasks. OSC has been
extended to hierarchical OSC by iterative null-space projection
for legged robots (Sentis and Khatib, 2006; Sentis et al., 2010;
Lee et al., 2016). In Mistry and Righetti (2012), the orthogonal
projector proposed by Aghili (2005) is applied to OSC with
the consideration of reducing complexity. Subsequently, in Lin
et al. (2018) and Xin et al. (2018), we extend that approach to
involve the analytical Cartesian impedance controller proposed
in Albu-Schaffer et al. (2003) and QP optimization. This paper is
a further extension of our previous works under the framework
of projected inverse dynamics.

The formulation proposed in this manuscript is a synergistic
integration between the analytical Cartesian impedance
controller and the QP. The method enables compensation
of model errors while operating a trade-off strategy between
multiple constraints, thus improving the locomotion capability
traversing steep and slippery terrains. Specifically, the
contributions of this paper come from combining the following
components in a single control pipeline:

• Analytical Cartesian impedance control, based on the
orthogonal projected inverse-dynamics, which allows us to
analyze a legged robot using a mass-spring-damper model
against disturbances.

• Perturbation estimation using the impedance behavior
to evaluate disturbances including external forces and
model errors.

• QP optimization that performs a trade-off strategy to
relax trajectory tracking when feasibility constraints are
close to violation, which is critical when walking in
extreme environments.

Finally, the proposed pipeline and controller are extensively
validated on the torque controllable quadruped robot ANYmal
(see Figure 1) in various scenarios.

2. PROBLEM FORMULATION

In this section we consider the general problem of constrained
inverse-dynamics for quadruped robots, including a discussion
of the controllability of quadruped robots. Then we present the
projected inverse-dynamics to deal with constrained dynamics,
which we will use to derive our locomotion controller for
quadruped robots.

2.1. Dynamic Model of Quadruped Robots
The rigid-body dynamics equation of a floating base system
under contact constraints is

Mq̈+ h = Bτ + J⊤c λ (1)
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FIGURE 1 | A quadruped robot, ANYmal, with potential external disturbances

Fx and contact forces λc within friction cones during static walking.

where q = [x⊤
b

θ⊤]⊤ denotes the vector of actuated joint
positions (θ ∈ R

n) and floating base position and orientation
(xb ∈ SE(3)), M ∈ R

(n+6)×(n+6) is the inertia matrix, h ∈

R
n+6 is the generalized vector containing Coriolis, centrifugal

and gravitational effects, τ ∈ R
n+6 is the vector of torques,

Jc ∈ R
k×(n+6) is the constraint Jacobian that describes k linearly

independent constraints, λ ∈ R
k is the generalized constraint

force vector that enforces the condition of Jcq̈ + J̇cq̇ = 0 (or
Jcq̇ = 0), and

B =

[

06 0

0 In

]

(2)

is the projector into actuated joint space with n dimensional
identity matrix In.

It should be noted that Jc = [Jcb Jcs ], whereby Jcb ∈ R
k×6

and Jcs ∈ R
k×n. Jcb encodes the effect of contact constraints on

the floating base, with its rank providing direct insights into the
controllability properties of the robots (Mistry et al., 2008). For
quadruped robots, with the assumption of point contacts, there
is k = 3× nc where nc denotes the number of legs in stance. The
case of rank(Jcb ) < 6 (such as during a trotting gait with only two
stance legs, and static walking with three stance feet in a line) is
called truly underactuated (Hutter et al., 2014) whichmeans there
are not enough contact constraints to independently control
the six unactuated base coordinates xb. The case of rank(Jc) −
rank(Jcb ) > 0 is called overconstrained which means we can
use redundancy to control the constraint/internal forces. Static
walking (except with co-linear feet) is a typical overconstrained
case, as rank(Jc) − rank(Jcb ) = 9 − 6 = 3 with one swing
leg. The proposed controller incorporating QP aims to control
the internal forces to satisfy contact constraints. Moreover, one
should note that we cannot independently generate the contact
forces for both static walking and trotting gait because of
rank(Jc)− rank(Jcb ) < rank(Jc).

2.2. Projected Inverse Dynamics
The dynamics Equation (1) can be divided into two subspaces:
the motion space where the acceleration can be chosen freely,
and the constraint space where the acceleration is fixed
and constraint forces can be chosen. Working with the two
subspaces allows us to satisfy contact constraints independently
of joint motion. Paper (Aghili, 2005) proposes an orthogonal
projector derived only from kinematic parameters without
consideration of constraint dynamic consistency, leading to
a much simplified solution compared to Sentis et al. (2010).
The employment of this orthogonal projector is the key
for analytical Cartesian impedance control and optimization
variable reduction.

The constraint equation Jcq̇ = 0 implies that any admissible
generalized velocity must lie in the null space of matrix Jc, i.e.,
q̇ ∈ N(Jc). We can use the pseudoinverse of Jc to compute
the orthogonal null space projector P as P = I − J+c Jc,
such that R(P) = N(Jc), Pq̇ = q̇, PJ⊤c = 0, and P2 =

P⊤ = P. Since the vectors lying in N(Jc) denote the motions of
torso and any end-effector in the air, we call N(Jc) the motion
space. It should noted that any vector could be projected into
motion space by pre-multiplying with the projection matrix
P. Then the complimentary projection I − P projects vectors
into the constraint space N(Jc)

⊥ = R(J⊤c ). Subsequently, we
can split Equation (1) into two equations of two orthogonal
spaces (motion space and constraint space) using the above
two projectors:

PMq̈+ Ph = PBτ = τm (3)

(I− P)(Mq̈+ h) = (I− P)Bτ + J⊤c λ = τ c + J⊤c λ (4)

and then torque command τ = τm + τ c. Constraint torques
τ c in Equation (4) do not contribute to the motion of the
system, but system motion will affect contact forces due to q̈ in
Equation (4). We wish to invert PM in Equation (3) to solve
q̈, and then substitute that result into (4) to determine contact
forces. However, PM is not invertible due to the rank deficiency
of P. The contact constraint dictates that (I − P)q̇ = 0, and
its derivative

(I− P)q̈ = Ṗq̇ (5)

Substituting Equation (5) into Equation (3) yields

Mcq̈+ Ph− Ṗq̇ = τm (6)

where Mc = PM + I − P is invertible and named as constraint
inertia matrix. Then we get

q̈ = M−1
c (τm − Ph+ Ṗq̇) (7)

Substituting Equation (7) into Equation (4) yields the equation
that can determine the contact forces

J⊤c λ = (I− P)[MM−1
c (τm − Ph+ Ṗq̇)+ h]− τ c (8)
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By replacing τm and τ c with their original definitions in terms of
τ , Equation (8) becomes

J⊤c λ = (I− P)[−(I−MM−1
c P)(Bτ − h)+MM−1

c Ṗq̇] (9)

It should be noted that the utility of Equation (7) is key for the
derivation of the analytical impedance control law in section 3
and the reduction of optimization parameters in section 4 to τ

instead of [q̈⊤ τ⊤]⊤.

3. CARTESIAN IMPEDANCE CONTROL IN
MOTION SPACE

3.1. Applying Cartesian Impedance Control
to Underactuated Systems
Since contact forces have been removed from the projected
inverse dynamics of Equation (3), we can design a Cartesian
impedance controller to achieve a desiredmotion performance in
motion space without considering contact constraints. First, for
the four stance legs case, only the torso requires desired motion,
the torso is therefore considered an end-effector. The objective
of Cartesian impedance control is to dictate the disturbance
response of the robot. If a given Cartesian location x of the end-
effector is subject to an external disturbance Fx we would like to
prescribe the motion at x as

3dë+Ddė+ Kde = Fx (10)

where e = x − xd is the motion error between the current pose
and the desired pose, 3d, Dd and Kd are the desired Cartesian
inertia, damping, and stiffness matrices that define the Cartesian
impedance behavior. On the other hand, adding the external
disturbance into the general dynamic equation Results in

Mq̈+ h = Bτ + J⊤c λ + J⊤x Fx (11)

where Jx is the Jacobian matrix mapping external forces/torques
to joint space. Project Equation (11) into the motion space

PMq̈+ Ph = PBτ + PJ⊤x Fx (12)

Next, we employ Mc to transform Equation (12) to operational
space. Equation (12) can be rewritten as

Mcq̈+ Ph− Ṗq̇ = PBτ + PJ⊤x Fx (13)

Pre-multiplying by JxM
−1
c gives

Jxq̈+ JxM
−1
c (Ph− Ṗq̇) = JxM

−1
c PBτ + JxM

−1
c PJ⊤x Fx (14)

We replace Jxq̈with ẍ− J̇xq̇ andmultiply by3c = (JxM
−1
c PJ⊤x )

−1

3cẍ+3cJxM
−1
c (Ph− Ṗq̇)−3cJ̇xq̇ = 3cJxM

−1
c PBτ + Fx (15)

where3c is named as the constraint-consistent operational space
inertia matrix. For the moment, we will assume full actuation
B = I. In the latter, we will deal with the underactuation
constraint separately. Then, if we replace all non-linear terms

with hc and τ with J⊤x F, we can compactly write the above
equation as

3cẍ+ hc = F+ Fx (16)

where F is the operational forces due to actuation. In order to
achieve the impedance response of Equation (10), we can define
the control law as

F = hc + 3cẍd − 3c3
−1
d

(Ddė+ Kde)+ (3c3
−1
d

− I)Fx (17)

We notice that if we sacrifice the ability to shape the inertiamatrix
by specifying 3d = 3c our control law simplifies to

F = hc + 3cẍd −Ddė− Kde (18)

The advantage of the above control law is that we do not need
to measure the external disturbances Fx (e.g., with a force/torque
sensor) to realize the impedance response.

On the other hand, by assigning 3d = 3c, the impedance
gains of Equation (10) can still be tuned by analytical techniques
based on different configurations (see in Angelini et al., 2019),
whereas HQP controllers rely on manual trial and error tuning.

Remark. It should be noted that if Jx is rank deficient, JxM
−1
c PJ⊤x

is not invertible, and we cannot determine 3c = (JxM
−1
c PJ⊤x )

−1.
This may happen, for example, for the case when the robot is
trotting (only two point feet on the ground) or for a swing leg
when the leg is in singularity configuration. In these cases we
can approximate 3c by computing a singularity robust inverse of
JxM

−1
c PJ⊤x , for example, by Singular Value Decomposition (SVD)

with zero or near-zero eigenvalues removed.

3.2. Imposing Underactuation Constraints
The previous derivation of the control law (Equation 18) for
Cartesian impedance control is based on an assumption of B = I.
In fact, a quadruped robot is a typical underactuated system, i.e.,
the definition of B in Equation (2) is not an identity matrix. We
need to satisfy the additional underactuation constraint

τm = Bτm (19)

Our control law of Equation (18) is defined in operational space.
Although in general J⊤x F 6= BJ⊤x F, we may still be able to satisfy
(19) by adding constraint forces in constraint space

τm = J⊤x F+ (I− P)τ 0 = BJ⊤x F+ B(I− P)τ 0 (20)

and we can solve for τ 0

(I− B)J⊤x F = −(I− B)(I− P)τ 0 (21)

τ 0 = −[(I− B)(I− P)]+(I− B)J⊤x F (22)

Subsequently, the Cartesian impedance control law in motion
space with consideration of underactuation becomes

τm = J⊤x F− (I− P)[(I− B)(I− P)]+(I− B)J⊤x F (23)
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FIGURE 2 | The base pose and the swing foot position are controlled by two Cartesian impedance controllers.

Furthermore, as described in Mistry and Righetti (2012), it could
be simplified to

τm = (PB)+J⊤x F (24)

where F is defined in Equation (18).
The above Cartesian impedance controller could also be

applied to swing legs by replacing Jx with corresponding Jacobian
matrix of a swing foot. If we define the Jacobian matrix of torso
and one swing leg as Jb and Js, respectively, the only difference
is Js ∈ R

3×(n+6) due to the point foot while Jb ∈ R
6×(n+6).

Furthermore, let Fb ∈ R
6 and Fs ∈ R

3 represent the control law
of Equation (18) for torso and swing feet, resulting in the torque
command of motion space as follows

τm = (PB)+(J⊤b Fb +

nlegs
∑

i=0

ωJ⊤s,iFs,i) (25)

where weight ω is 1 when leg i is in swing, and 0 otherwise.
Figure 2 depicts the case of two Cartesian impedance controllers
applied to base and one foot, respectively.

3.3. Model Error Estimation and
Compensation
One of the benefits of Cartesian impedance control is that the
impedance response of Equation (10) provides us with a way to
estimate the disturbances using motion errors

F̂x = 3dë+Ddė+ Kde (26)

It should be noted that F̂x contains external disturbances as well
as model errors. Considering the existingmodel error, the control
law of Equation (18) becomes

F = ĥc + 3̂cẍd −Ddė− Kde (27)

where ĥc and 3̂c denote the approximate items in computation.
Substituting Equation (27) into operational space dynamics of
Equation (16) yields

3̂cë+Ddė+ Kde = (hc − ĥc)+ (3c − 3̂c)ẍ+ Fx (28)

Further, the above equation implies F̂x = (hc − ĥc) + (3c −

3̂c)ẍ+ Fx where not only external disturbances are involved, but
also model errors. In the case where small external disturbances
exist, Equation (28) can be used to estimate model errors.

This feature is useful for legged robots to carry unknown
objects. If we feed the model error (e.g., caused by adding
an object of unknown mass onto the robot) back into the
control law of Equation (18), the position errors due to
model errors will be removed. Therefore, the robot may
carry unknown objects by compensating for estimated model
errors. The control law in motion space with model-error
compensation becomes

F = ĥc + 3̂cẍd −Ddė− Kde+ F̂x (29)

where F̂x is constant by computing Equation (28) once at the
beginning of switching on model error compensation.

By contrast, HQP controllers cannot use motion errors to
estimate disturbances because the gains of HQP controllers
have different scaling. We will verify this point in the
experimental section.

4. QUADRATIC PROGRAMMING

The control scheme outlined above does not yet impose physical
feasibility on the contact forces and joint torques. In this section,
these constraints are introduced, and we present our quadratic
programming approach to handle them.
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4.1. Physical Constraints
The contact forces at the feet should be sufficient to prevent
the separation or sliding of the contact. Additionally, motor
torques typically have saturation values. To formalize the contact
force constraint, the force at each foot is divided into tangential
components λx and λy, and normal component λz . This leads to
the following constraints:

• Unilateral constraint to avoid loss of contact

λz ≥ 0 (30)

• Friction cone constraint to avoid slipping

µλz ≥
√

λ2x + λ2y (31)

where µ is the friction coefficient at the contact point.
The saturation of torque command gives.

τmin ≤ τ ≤ τmax (32)

4.2. Optimization Formulation
Our previous work (Xin et al., 2018) minimized a quadratic
cost function of the torque commands, thereby minimizing
the torques.

minimize
τ

1

2
‖τ‖22 (33)

where τ = τm+τ c. To track trajectories and to deal with external
disturbances, the Cartesian impedance controller (25) defines the
motion space torque command τm. This partial command is
included in the optimization using the linear equality constraint:

PBτ = τm (34)

The friction forces are computed from the optimization variable
τ based on (9) and simplified to be

λ = η + ρ (35)

where η = −(J⊤c )
+(I − P)(I −MM−1

c P)Bτ and ρ = (J⊤c )
+(I −

P)[(I − MM−1
c P)h + MM−1

c Ṗq̇]. Then we can transform the
unilateral constraint and friction cone constraint to be written
in terms of decision variable τ . The quadratic programming
problem is now formulated as:

minimize
τ

1

2
‖τ‖22

subject to PBτ = τm

ηiz + ρi
z ≥ 0

µ(ηiz + ρi
z) ≥

√

(ηix + ρi
x)

2 + (ηiy + ρi
y)
2

τmin ≤ τ ≤ τmax

(36)

where the index i signifies the ith stance leg.

4.3. Adding Trade-Off Between Multiple
Constraints
In practice, there may not be a physically feasible solution
that achieves both the desired motion and impedance behavior.
For example, tangential contact forces may increase due to
the desired acceleration for walking forward, causing contact
forces to violate the friction cone. To avoid a need for
replanning the desired motion, we propose a trade-off between
the constraints. The inequality constraints cannot be traded-off
because they enforce physical limitations and stability of the
system. On the other hand, the equality constraint enforces the
operational space tasks. We will sacrifice motion performance
to ensure feasibility of the physical (inequality) constraints
when there is no possibility of finding a solution that satisfies
both types of constraints. Here, we employ a trade-off of
the trajectory tracking control to seek a compromise in low
level control. The trade-off is implemented by moving the
equality constraint into the cost function to compose a least
squares optimization.

minimize
τ

1

2
‖PBτ − τm‖

2
2

subject to ηiz + ρi
z ≥ 0

µ(ηiz + ρi
z) ≥

√

(ηix + ρi
x)

2 + (ηiy + ρi
y)
2

τmin ≤ τ ≤ τmax

(37)

The above formulation means that the QP optimization will try
to find the admissible torques that are as close as possible to
the torque command of motion space required for the desired
motion performance. It should be noted that if the QP needs
to trade-off the motion performance it will change the swing
trajectory more than the torso trajectory, as the torso contributes
more to contact forces than the swing leg. Alternatively, we could
add a weighting matrix to balance the modification of different
parts if it is necessary. However, we would then need to tune the
weighting matrix in practice. Therefore, we recommend using
a null space projection of the swing legs to project the cost
function, in order to enforce accurate swing leg performance.
After the QP provides the optimized torque command based on
the torso motion, we will add the dynamic consistent torques
for the swing legs. The QP in the null space of the swing
legs becomes

minimize
τ

1

2
‖Ns(PBτ − τm)‖

2
2

subject to ηiz + ρi
z ≥ 0

µ(ηiz + ρi
z) ≥

√

(ηix + ρi
x)

2 + (ηiy + ρi
y)
2

τmin ≤ τ ≤ τmax

(38)

whereNs = I− J+s Js, Js = Js,1 for static walking gait, Js =

(

Js,1
Js,2

)

for the gaits with only two supporting legs, such as trotting gait,
and Js = 0 for four stance legs case. The final torque command
will be

τ = τ ∗ + (I− Ns)τm (39)
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FIGURE 3 | An overview of the proposed locomotion controller with Cartesian impedance control and quadratic programming subject to physical constraints.

The controller proposed above is represented as a block diagram
in Figure 3.

Remark. One notices that the friction cone constraints are
quadratic constraints. Therefore, the quadratic programming
of Equation (38) is quadratically constrained quadratic
programming. In order to use standard active set methods, we
approximate the friction cone with a linearized 4-edge pyramid.
This results in a linearly constrained quadratic programming
problem, which is readily solved (Goldfarb and Idnani, 1983).

5. EXPERIMENTS AND DISCUSSION

To validate our proposed controller, three sets of experiments
were performed: a comparison the HQP controller, model
error compensation, and walking on challenging terrains.
This section treats each of the experiments in turn, and
provides a setup description, results, and discussion for all
of them.

The experiments have been performed using ANYmal,
a torque-controlled quadruped robot made by ANYbotics.
The robot weights ∼35 kg and has 12 joints actuated by
the Series Elastic Actuator (SEA). The control cycle runs
at 400Hz. The on-board computer running controllers
has an Intel 4th generation (Haswell ULT) i7-4600U (1.4–
2.1GHz) processor and two HX316LS9IBK2/16 DDR3L
memory cards. Experiment videos can be found in the
Supplementary Video 1.

5.1. Comparison With HQP Controller
To show the efficacy of our proposed controller, we compare
it with an HQP-computer. This comparison considers both
the computational efficiency and the capacity to estimate
external disturbances. Our implementation of the HQP
controller follows the original framework from De Lasa et al.
(2010), adding a dimension-reduction to that framework in
order to enhance computational efficiency. This dimension-
reduction, proposed in Herzog et al. (2016) removes the
motor-torque from the decision variables by using the
equations of motion of the robot. The remaining decision

variables are the torso and joint accelerations and the contact
forces. An active-set QP solver was employed to solve QPs in
both controllers.

5.1.1. Computational Efficiency
To evaluate the computational efficiency of the proposed
whole-body controller against the HQP-controller, we
compare their execution time on the robot hardware.
A comparison of average computation times while
executing a fixed static walking gait is provided
in Table 1.

The computation time analysis shows that our controller
is faster than the HQP controller. This is expected since our
controller only requires one QP although it computes a few
pseudo-inverses of matrices. By contrast, HQP needs to compute
more QPs and also needs to compute null-space projectors which
include pseudo-inverses as well. In fact, HQP needs to solve at
least twoQPs for dynamic feasibility and trajectory tracking tasks.
In order to save energy, a third QP has to be added to minimize
torque commands. Usually, those are the three fundamental QPs
required by HQP controllers (Bellicoso et al., 2019). For walking
gaits, if we separate swing legs and torso into different prioritized
tasks, one more QP has to be solved. In this experiment, the
HQP controller solved three QPs for the four-legged stance
phase and four QPs during a one leg swing. In Herzog et al.
(2016), the first QP is solved by pseudo-inverse when moving
friction cone constraints into a lower priority, which aims to
save computation time. But, based on Table 1, the computation
time of HQP is still greater than the proposed controller, even
omitting the computation time of QP1. Furthermore, Herzog
et al. (2016) also suggests parallelizing the computations of null-
space projectors and QPs. In that case, the total computation
time of HQP will be the sum of solving QPs, which is close to
our controller’s according to Table 1. What’s more, as pointed
out in Escande et al. (2014) and Herzog et al. (2016), the size of
decision variables can be reduced over the levels of hierarchies
by additional SVD, which could potentially improve the
computation efficiency of HQP even further. Readers should keep
in mind that we did not employ that technique in the comparison
of Table 1.
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TABLE 1 | The computation efficiency comparison between proposed controller (P.C.) and HQP controller during static walking.

Controller Phase τm QP1 N1 QP2 N2 QP3 N3 QP4 Total (m/s)

P.C. Stance 0.203 0.064 0.267

Swing 0.147 0.095 0.242

HQP Stance 0.09 0.124 0.1 0.024 0.09 0.428

Swing 0.075 0.081 0.098 0.02 0.072 0.025 0.079 0.45

The results are the means of 2,000 samples, respectively. HQP controller needs to compute two null-space projectors Ni and solve three QPs during Stance phase, whereas one more

QP is added for swing leg control during Swing phase. The proposed controller only needs to compute analytical Cartesian impedance control τm and solve one QP. The computation

time of HQP is almost doubled compared to the proposed controller either in Stance phase or in Swing phase.

FIGURE 4 | The pushing forces and torso positions when pushing the robot down from standing still. (A) Measured and estimated pushing forces when running HQP

controller. (B) Torso height during pushing with HQP running. (C) Measured and estimated pushing forces when running the proposed controller. (D) Torso height

during pushing with the proposed controller running. The similarity in the response of both controllers shows that the effective torso stiffness is roughly equal, despite

the large difference in gains used. HQP cannot estimate disturbance forces whereas the estimated force of our controller is roughly close to the measured force.

5.1.2. External Disturbance Estimation
The ability of the two controllers to estimate external
disturbances is assessed on the robot by comparing their
response to similar force perturbations while standing still. The
operator pushed the torso along the vertical axis using about
30N force, and the recorded position displacements are used
to estimate the external perturbation received by the robot. As
would happen in practice, we only use the multiplication of Kd

and displacement errors as the estimated disturbance instead
of the entire Equation (28) since accelerations and velocities
are noisy.

Figure 4 shows the measured pushing forces and torso
heights, which have been obtained using the gains reported
in Table 2. The position errors caused by pushing forces are
similar between the two controllers, which means they produce
approximately the same effective stiffness. The force estimated by
the proposed controller is Kd,zez ≈ 35N. This estimation is close
to the measured pushing force 30N. However, the relationship
between the effective stiffness and the controller gains is not

straightforward for the HQP-controller. For this controller, the
gains map from an error to a desired acceleration, not to a
desired force, as is the case for our proposed controller. As a
result, the Kd gains of the HQP controller are much smaller
than the ones of the proposed controller, meaning the HQP
estimated force is 1.6N which is much lower than the received
external perturbation. A conversion factor could be found, either
based on the equations of motion or using experiments, such
as this one. However, the conversion factor would depend on
the robot configuration, which means the HQP-controller would
require extensive tuning to be able to perform disturbance
estimation. Therefore, the proposed controller is more suitable
for performing the forces estimation for the compensation of
constant external perturbations, such as the additional load
carried by the robot.

5.2. Model Error Compensation
Legged robots may be deployed to move small loads which may
not always be known; thus, it is important to adapt the robot
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behavior to maintain stable and efficient locomotion. Equation
(29) describes how the proposed controller may be modified to
use the external perturbation estimation to perform amodel error
compensation. For the experiment, the robot was loaded with a
10 kg mass and walked with and without activating the model
compensation, which has been enabled after about 23 s. Table 3
contains the gains of the proposed controller in the experiment.
The recorded video for this experiment can be found in the
Supplementary Material.

Figure 5 shows the snapshots from the experiments of
adding weight to walking with it. Figure 6 is the recorded
position error along the z axis during the experiment. After
enabling the compensation, the torso immediately rose as shown
in Figure 6 and continued its locomotion with a reduced
position error. It should be noted that the estimated model
error is about 65N. A bias of 35N has been added in this
experiment to account for friction and other uncertainties of
a real robot. The results demonstrate that the position error

TABLE 2 | Gains for HQP controller and the proposed controller used in the

stiffness comparison experiment.

Parameter Symbol HQP Proposed controller

Stiffness gains

for torso

Kd diag(40,40,40,60,60,60) diag(1000,800,500,200,200,200)

Damping gains

for torso

Dd diag(9,9,9,7,7,7) diag(250,250,90,10,10,10)

Although the gains are so different in the two controllers especially for torso control, the

torso showed similar stiffness performance.

can be reduced by model error compensation when carrying
unknown objects, which is useful for deployment of legged robots
in th real world. However, an important upgrade required to
deploy this feature in a real scenario is continuous real-time
model adaptation, which has currently been left as future work
to develop.

5.3. Walking on Challenging Terrains
We tested the proposed controller for its ability to tackle
challenging terrains. We tested walking on a low friction surface
(PTFE Sheets, fiction coefficient of 0.22 as shown in Figure 7),
and the feasibly of climbing a significant incline (30◦ slope
in Figure 8). As perception is not the focus of this work,
the friction coefficient and slope angle parameters, to be used
by the controller in the optimization stage, are set manually.
Locomotion performance for these tasks may be seen in the
accompanying video.

We did not alter the step planning in our experiment, but
rather used the default ANYbotics static gait planner. This
means the planned locomotion trajectory was not optimized for

TABLE 3 | Gains of the proposed controller during carrying weight experiment.

Parameter Symbol Proposed controller

Stiffness gains for torso Kd diag(1000,800,1000,200,200,200)

Damping gains for torso Dd diag(250,250,250,10,10,10)

Stiffness gains for swing foot Kd diag(250,250,250)

Damping gains for swing foot Dd diag(20,20,20)

FIGURE 5 | Snapshots of carrying 10 kg weight with model error compensation. (A) Before adding the weight. (B) After adding the weight, the torso went down. (C)

The torso went up after enabling model error compensation. (D) Walking with the object with model error compensation.
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our particular tasks or evaluated for feasibility. Thus, during
execution, if the controller does not trade-off trajectory tracking
and constraint satisfaction, the robot may slip due to the inability
of the QP finding a feasible solution. We further evaluate this
trade-off by analyzing trajectory tracking errors when statically
walking on flat terrain, while varying the friction coefficient
parameter used by the controller.

As shown in Figure 9, the trajectory tracking error along the
z direction has an occasional sharp rise particularly when the
friction coefficient µ is equal to 0.1 and 0.08. This indicates that
trajectory tracking performance is sacrificed in order to maintain
the friction cone constraint. We also see that the cost function
value of QP increases, due to the increase of trajectory tracking
error. In theory, the value of cost function should be zero if
the trade-off is not triggered. The model error explains why the
deviation between PBτ and τm is not equal to zero even when

FIGURE 6 | Measured torso height during carrying 10 kg weight. At 10 s, the

weight is slowly lowered onto the robot, resulting in an increasing position

error. At 23 s the force compensation is enabled, after which the robot takes

two steps. The small difference between the initial and final position error

shows the efficacy of the disturbance compensation.

µ = 0.5. The controller in our previous work (Xin et al., 2018)
does not have this trade-off feature, and this is an improvement
over our previous work.

6. CONCLUSIONS

A semi-analytical locomotion controller incorporating
an analytical Cartesian impedance controller and a QP
optimization for quadruped robots is presented in the
paper. Cartesian impedance controllers can track desired
end-effector trajectories and can also be used to estimate
external disturbances. The disturbance estimation is applied
to model error compensation in the case of making a robot
carry unknown objects. The QP optimization guarantees
physical feasibility by sacrificing trajectory tracking if the
torque command required to track the desired trajectory does
not satisfy physical constraints. The benefit of this trade-off
strategy enables the robot to walk on synthetic ice and a 30◦

FIGURE 8 | ANYmal climbing up on a 30◦ slope.

FIGURE 7 | ANYmal walking on slippery synthetic ice. The estimated friction coefficient between ANYmal’s feet and the synthetic ice is 0.22. The friction coefficient in

our controller needs to be ≤0.2 in order to avoid slipping on the synthetic ice.
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FIGURE 9 | Tracking performance when walking with a static gait on high-traction flat terrain for different values of the friction coefficient used by the controller. (A)

Position tracking error of x direction. (B) Position tracking error of y direction. (C) Position tracking error of z direction. (D) Deviation between PBτ and τm. The

increasing errors for small friction coefficients show the trade-off in tracking performance made to guarantee feasibility of the friction cone constraint. In particular, a

behavior emerges in which the controller deviates from the target motion in z direction, in order to increase normal contact forces when walking with a small friction

coefficient. The trade-off between tracking error and constraint satisfaction is also visible in the increasing deviation between PBτ and τm.

ramp. Besides, the computation time is verified to be less than
other fully optimization-based whole-body controllers since
we only need to solve one QP with less decision variables
compared to other controllers. Future work will focus on
applying this control framework to dynamic gaits, such
as trotting.
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