
ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/frobt.2020.00054

Frontiers in Robotics and AI | www.frontiersin.org 1 May 2020 | Volume 7 | Article 54

Edited by:

Eliseo Ferrante,

Vrije Universiteit

Amsterdam, Netherlands

Reviewed by:

Michael Crosscombe,

University of Bristol, United Kingdom

Heiko Hamann,

University of Lübeck, Germany

Julian Petzold,

University of Lübeck, in collaboration

with reviewer HH

*Correspondence:

Volker Strobel

vstrobel@ulb.ac.be

Specialty section:

This article was submitted to

Multi-Robot Systems,

a section of the journal

Frontiers in Robotics and AI

Received: 20 November 2019

Accepted: 26 March 2020

Published: 12 May 2020

Citation:

Strobel V, Castelló Ferrer E and

Dorigo M (2020) Blockchain

Technology Secures Robot Swarms: A

Comparison of Consensus Protocols

and Their Resilience to Byzantine

Robots. Front. Robot. AI 7:54.

doi: 10.3389/frobt.2020.00054

Blockchain Technology Secures
Robot Swarms: A Comparison of
Consensus Protocols and Their
Resilience to Byzantine Robots
Volker Strobel 1*, Eduardo Castelló Ferrer 1,2 and Marco Dorigo 1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2MIT Media Lab, Cambridge, MA, United States

Consensus achievement is a crucial capability for robot swarms, for example, for

path selection, spatial aggregation, or collective sensing. However, the presence

of malfunctioning and malicious robots (Byzantine robots) can make it impossible

to achieve consensus using classical consensus protocols. In this work, we show

how a swarm of robots can achieve consensus even in the presence of Byzantine

robots by exploiting blockchain technology. Bitcoin and later blockchain frameworks,

such as Ethereum, have revolutionized financial transactions. These frameworks are

based on decentralized databases (blockchains) that can achieve secure consensus in

peer-to-peer networks. We illustrate our approach in a collective sensing scenario where

robots in a swarm are controlled via blockchain-based smart contracts (decentralized

protocols executed via blockchain technology) that serve as “meta-controllers” and

we compare it to state-of-the-art consensus protocols using a robot swarm simulator.

Additionally, we show that our blockchain-based approach can prevent attacks

where robots forge a large number of identities (Sybil attacks). The developed

robot-blockchain interface is released as open-source software in order to facilitate

future research in blockchain-controlled robot swarms. Besides increasing security, we

expect the presented approach to be important for data analysis, digital forensics, and

robot-to-robot financial transactions in robot swarms.

Keywords: swarm robotics, blockchain technology, Byzantine fault-tolerance, resilient robotics, verifiable robotics

1. INTRODUCTION

Disasters, such as the collapse of a nuclear plant (e.g., Fukushima) or the release of petroleum
into the environment (e.g., the Deepwater Horizon oil spill), present huge challenges and require
quick and efficient responses. For example, it might be crucial to determine the average presence
of radiation in a contaminated area (Brown et al., 2016). For security and efficiency reasons, on-
site intervention might be better delegated to autonomous robots; and, to make the response
more effective and mitigate potential adverse effects, the robots might have to perceive and act
in different places at the same time. The coordination of such distributed activities by a central unit
of control is not ideal as it makes the system less reliable (single point of failure) and possibly
less efficient (communication overheads, delay in the collection of data, and in the release of
control commands). Robot swarms, that communicate and collaborate in a peer-to-peer manner,
are excellent candidates for these situations.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00054&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vstrobel@ulb.ac.be
https://doi.org/10.3389/frobt.2020.00054
https://www.frontiersin.org/articles/10.3389/frobt.2020.00054/full
http://loop.frontiersin.org/people/361984/overview
http://loop.frontiersin.org/people/312551/overview
http://loop.frontiersin.org/people/395113/overview

Strobel et al. Blockchain Technology Secures Robot Swarms

One important capability that robot swarms need to have to
cooperate effectively is to be able to make collective decisions.
Accordingly, collective decision-making is a well-studied subject
in the field of swarm robotics (Schmickl et al., 2009; Montes
de Oca et al., 2011; Reina et al., 2015; Valentini et al., 2016b,
2017). In general, to make a collective decision, robots in a swarm
need to share their information and to aggregate this information
using a distributed consensus protocol. The prevailing consensus
protocol for averaging the values held by the individual entities
in the swarm is the linear consensus protocol (LCP) (Olfati-
Saber and Murray, 2004). However, this consensus protocol and
most other protocols used in swarm robotics make the unrealistic
assumption that all the robots in the swarm work as expected.

Unfortunately, real-world operation will almost certainly
result in robots in the swarm that either fail (e.g., due to dust
blocking their sensors) or that are malicious (e.g., due to a
hacker who gains control). These failures can damage people,
nature, animals, and other robots, making the reliable detection
of failures a crucial task (Tarapore et al., 2019). We use the
term Byzantine robot—based on Byzantine fault-tolerance and
the Byzantine Generals Problem (Lamport et al., 1982)—as an
umbrella term to describe robots that show unintended or
inconsistent behavior, independent of the underlying cause. A
Byzantine robot can appear well-functioning to some part of
the swarm but faulty to others and might arbitrarily change its
behavior. An extension of the LCP capable of managing these
Byzantine robots is the weighted-mean-subsequence-reduced
(W-MSR) algorithm (LeBlanc et al., 2013). While W-MSR’s outlier
detection limits the influence of Byzantine robots as long as their
number is low, it breaks down as soon as their number is high or
an attacking robot forges pseudo-identities (Sybil attack).

To pave the way for real-world deployments, secure robot
swarms must continue to operate effectively in the presence of
Byzantine robots, potentially performing Sybil attacks. Peer-to-
peer networks are particularly prone to Sybil attacks: without
a trusted system, it is easy for a malicious agent to create an
unlimited number of new identities and gain a disproportionate
amount of power in the swarm (Douceur, 2002). We contend
that blockchain technology can be used to create such secure
robot swarms due to its decentralized nature, resilience, and
versatility. Blockchain technology was originally developed for
Bitcoin (Nakamoto, 2008), the first widely successful digital
peer-to-peer currency. In the context of Bitcoin, the blockchain
presents a tamper-proof financial ledger in a network of mutually
untrusting agents without relying on a central authority. The
Ethereum framework (Buterin, 2014) further demonstrated that
the blockchain cannot only be used for financial transactions
but can store snippets of programming code and come to
an agreement regarding their outcome. These snippets of
programming code are called blockchain-based smart contracts
(or smart contracts for short). Every node (robot in this article) in
the network runs a virtual machine and executes these snippets.
We show how smart contracts can provide the infrastructure for
implementing secure “meta-controllers” in robot swarms.

Blockchain-based meta-controller: We define a blockchain-
based meta-controller to be a controller that coordinates the
swarm at a higher level than the local controllers of the

individual robots. To this end, crucial information from the
individual robots is securely stored, aggregated, and processed
via a smart contract residing on the blockchain. This ensures that
information or control commands are based on a consensus in
the swarm.

We release our developed framework as open-source
software. It facilitates blockchain research in swarm
robotics by providing an interface between the robot swarm
simulator ARGoS (Pinciroli et al., 2012) and the blockchain
framework Ethereum.

In this article, we study whether robot swarms need
blockchain technology. To this end, we formulate the following
research questions:

• RQ 1: Can smart contracts be used to replace existing consensus
protocols in robot swarms?

• RQ 2: Can smart contracts be used to mitigate the effect of
Byzantine robots in robot swarms?

• RQ 3: Can smart contracts introduce scarce resources into robot
swarms and prevent Sybil attacks?

To address these research questions, we compare the two existing
protocols LCP and W-MSR to our blockchain-based approach in
a collective decision-making scenario (Figure 1) where the robot
swarm moves on a floor covered with black and white tiles and
has to determine the relative frequency of the white tiles in an
ARGoS environment. The scope of this study is strictly limited to
swarm robotics, where global communication is not available.

The remainder of this paper is structured as follows. Section 2
summarizes the fundamentals of blockchain technology.
Section 3 reviews related work in consensus achievement,
security issues, and blockchain-controlled robot swarms.
Section 4 lays the foundation for practical implementations by
describing the ARGoS-blockchain interface. Section 5 describes
the general framework for conducting the simulations in ARGoS
and the technical aspects of the used consensus protocols.
Section 6 presents and discusses the results of five sets of
simulations—in the presence and absence of Byzantine robots.
Section 7 extends the discussion to robustness, feasibility, and
scalability and draws directions for future work. Section 8
presents the conclusions.

2. FUNDAMENTALS OF BLOCKCHAIN
TECHNOLOGY FOR SWARM ROBOTICS

This section summarizes the main characteristics of blockchain
technology (section 2.1) and explains blockchain-based smart
contracts (section 2.2).

2.1. General Foundation
Blockchains are databases and computing platforms that are
replicated and shared among the participants (robots in this
work) of a peer-to-peer network (Figure 2). The pseudonymous
Satoshi Nakamoto originally devised the blockchain to record
digital coin transactions (transactions of cryptotokens) of the
cryptocurrency Bitcoin (Nakamoto, 2008). Shortly after, there
have been proposals to use the decentralized ledger for other

Frontiers in Robotics and AI | www.frontiersin.org 2 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 1 | The robots’ task is to determine the relative frequency of white tiles in an environment in which the floor is covered with black and white tiles. For each

robot, an instance of the Ethereum blockchain software is executed in a separate Docker container and the robots maintain a custom Ethereum blockchain network.

Via a blockchain-based smart contract, the sensor readings of the robots are stored and aggregated. When robots are within communication range, they exchange

their blockchain information. In contrast to classical approaches, the blockchain is able to mitigate the negative impact of malfunctioning or malicious robots and

allows the creation of a tamper-proof system, in which the messages of the robots are securely stored.

FIGURE 2 | A blockchain is composed of linked blocks containing data

consisting of transactions. Each block is divided into two parts: a body and a

header. In the body, the transactions of the participants are stored. The header

contains metadata and links each block to the hash of a previous block to

create a chain of blocks. A copy of the blockchain is stored by each

participant in the peer-to-peer network; the peers exchange and update their

blockchain information based on a consensus protocol.

specific, non-financial applications, such as voting, identity
management, and supply chain management (Crosby et al.,
2016). In 2014, Ethereum further generalized these use cases and
released a framework for storing and executing programming
code via blockchain technology (blockchain-based smart
contracts) based on a Turing-complete programming language.

To interact with a blockchain and store new data, participants
create transactions and distribute them among their peers.
Examples of transactions are: “Send 5 ether (Ethereum’s
cryptocurrency) from digital address A to B” or “Execute
function X using Y as input.” A transaction is digitally signed
by the sender using a private key. Hence, all transactions
can be unambiguously assigned to a digital address (public
key) and attackers cannot create transactions under a false
digital identity. In most blockchain frameworks, all data is
public and can be read by every participant of the network.

Still, in blockchains without an access control layer (public
blockchains or permissionless blockchains), the real identities
of entities (persons, organizations, robots) involved in a
transaction can remain unknown since only the public keys
are visible.

For a transaction to become part of the blockchain, it has
to be bundled into a block and added to the end of the chain
of blocks. Before being part of a block, transactions are called
unconfirmed transactions and are disseminated across nodes of
the blockchain network. Bitcoin introduced a consensus protocol
which allows the participants in the network to agree on which
blocks to add and in what order to add them. The consensus
protocol used by Bitcoin is called Proof-of-Work (PoW) and
was the first protocol to effectively reach decentralized consensus
preventing at the same time double-spending (i.e., a situation
where the same cryptotoken is spent twice). PoW requires the
participants to solve a computational puzzle in order to add a
block to the blockchain; the puzzle consists of finding a hash
value below a target value using the bundled transactions and an
adjustable nonce value as input to the hash function. The nonce
is a number that can be arbitrarily varied in order to change
the input to the hash function and, therefore, the result of the
hash function. The process of solving this puzzle (i.e., modifying
the nonce value given a list of transactions and calculating the
resulting hash values) is called mining. The number of hashes
a device can compute per second is stated by its hash power.
Miners are motivated to perform the PoW since the first one
that finds a solution to the puzzle can append the corresponding
block to the blockchain and as a consequence is rewarded by
immutable cryptotokens stored on the blockchain. Due to delays
in the communications between the network participants, the
participants can have conflicting blockchain versions (forks). For
example, during the experiments conducted in the scope of this
research, the information written in the blockchain differs among

Frontiers in Robotics and AI | www.frontiersin.org 3 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

the robots that are not in communication range. However, via the
PoW-based consensus protocol, conflicting blockchain versions
can be resolved: whenever a robot has to choose between possible
blockchains, the blockchain that required the highest PoW (i.e.,
the longest blockchain) gets accepted as the true blockchain,
while shorter blockchains are discarded. Transactions that were
in the discarded blockchains but not in the longest blockchain
become unconfirmed transactions again and can be included in
later blocks (Figure 3).

2.2. Blockchain-Based Smart Contracts
A blockchain-based smart contract (or a smart contract for short)
is programming code that encapsulates variables and functions
and is stored on the blockchain. To create a smart contract or
call its functions, one needs to create a transaction and distribute
it in the blockchain network. The nodes in the blockchain
network keep track of the internal state (e.g., value of variables)
and execute the computations of smart contracts, e.g., via the
Ethereum Virtual Machine (EVM). While there are nowmultiple
blockchain-based smart contract platforms, Ethereum remains
the platform with the largest user base and the most mature
technical setup.

Smart contracts were originally devised by Szabo (1997) to
enforce contractual agreements between parties via computer
protocols. Szabo’s theoretical notion was made practically
possible for the first time by the Ethereum framework: via a
blockchain-based smart contract, a certain event can trigger
an unstoppable financial transaction (programmable payment).
However, blockchain-based smart contracts are not limited to
programmable payments and the term smart contract is now
used to describe any computer program that is executed on
a blockchain.

For example, an Ethereum smart contract could provide the
functions for selecting the winner of a talent show on TV. The
audience has the possibility to vote for their favorite candidate
(Alice or Bob) by sending a transaction (e.g., including 0.01 ether)
to the TV’s station smart contract. The smart contract on
the public Ethereum blockchain keeps track of the number of
votes for both candidates. Moreover, it specifies the following
programmable payment: if the number of votes for one candidate
reaches 100,000, the prize money of 1,000 ether is transferred
to that candidate’s Ethereum address. This example highlights
some advantages of smart contracts in contrast to classical voting
scenarios: (i) contract conditions and vote counts are transparent,
(ii) existing votes cannot be manipulated or discarded, and (iii)
the prize money will definitely be paid as soon as the condition
is reached.

In order to use Ethereum smart contracts in swarm robotics,
the target robotic platforms need to meet certain requirements
in terms of communication, processing, and storage. The size
of one Ethereum transaction is around 150 Bytes. In order to
communicate with each other, robots should be able to send
and receive some Kilobytes per seconds, otherwise, they may
not be able to synchronize their blockchains in an adequate
amount of time. During the simulations conducted in our
research, the blockchain grew on average to 6.8 MB, a size

which could be stored on many state-of-the-art robots in
swarm robotics1.

3. RELATED WORK

This section first discusses consensus achievement in robot
swarms (section 3.1), followed by work related to security issues
(section 3.2), and concludes by reviewing existing work on
blockchain technology used in swarm robotics (section 3.3).

3.1. Consensus Achievement
Consensus achievement problems in robot swarms can be
divided into discrete and continuous problems (Valentini et al.,
2017). Discrete problems can be formalized as best-of-n
problems, where the swarm has to agree upon a choice among
a finite set of n choices. Examples of discrete problems are
path selection (Montes de Oca et al., 2011), site selection (Reina
et al., 2014), and collective perception (Valentini et al., 2016a).
In continuous problems, in contrast, the swarm’s goal is to agree
upon a choice among an infinite set of continuous choices.
Examples of continuous problems are collectivemotion (Ferrante
et al., 2012), spatial aggregation (Soysal and Sahin, 2005), and
collective estimation (as studied in this work).

In this work, we study the influence of Byzantine robots on
efficiently reaching swarm consensus in a continuous collective
estimation problem. However, exact consensus in continuous
problems is typically unattainable on spatially distributed robot
systems (Elhage and Beal, 2010), since it would require each
robot to agree upon exactly the same value. Connectivity
limitations, large distances, local information, or different sensor
readings, can hinder that progress. Although the blockchain
can overcome this limitation, for the purpose of comparing
our blockchain approach to existing approaches, we here only
consider approximate consensus. This entails that each robot
calculates a weighted local average based on its own estimates
and those received from neighbors. A consensus has then been
reached as soon as the difference between the maximum and the
minimum value in the network is smaller than a given threshold.
For the comparison, we selected the commonly used consensus
algorithms LCP and W-MSR.

3.1.1. Linear Consensus Protocol
The linear consensus protocol (LCP) is the prevailing approach
for achieving approximate distributed consensus (Beal, 2016) and
has been used in a wide variety of use cases, such as formation
control, flocking, and sensor fusion (Olfati-Saber and Murray,
2004; Xiao et al., 2005). The main idea is to reach approximate
consensus on a set of beliefs held by the agents.

While this linear consensus protocol achieves high accuracies,
it does not account for the presence of Byzantine agents. As a
result, a single Byzantine robot keeping a constant value will
make all non-Byzantine robots converge to that value (Gupta
et al., 2006), potentially fully disrupting the functioning of the
robot swarm. This confirms the insights and intuitions presented

1Note that in this article, as said before, all experiments are run in simulation.

Porting our system on real robots will be the subject of future work.

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 3 | In the illustration, Robot 1 (Fork A) and Robot 2 (Fork B) have conflicting blockchain versions (forks). This situation can occur if there is a delay in

communication, for example, because the two robots were in different “clusters” that could not communicate with each other and now they can communicate with

each other again. Fork B is the longer blockchain (the one that contains more PoW) and is accepted as the true blockchain, while the shorter blockchain is discarded.

That is, after exchanging their blockchain information, the two robots agree on Fork B. Transactions in the shorter blockchain become unconfirmed transactions again

(stored in a separate memory pool) and can be included in a later block (e.g., Block 3). The memory pool contains transactions that can be included into blocks.

by Winfield and Nembrini (2006) and Higgins et al. (2009) that
fault tolerance in robot swarms cannot be taken for granted and
that Byzantine robots can compromise the correct functioning of
robot swarms.

3.1.2. W-MSR: Byzantine Approximate Consensus
To overcome the susceptibility to Byzantine interference, LeBlanc
et al. (2013) introduced the weighted-mean-subsequence-
reduced (W-MSR) algorithm as a Byzantine fault-tolerant
extension of LCP. W-MSR is a state-of-the art method for
achieving resilient consensus in distributed sensor networks and
robot swarms (Guerrero-Bonilla et al., 2017; Saldaña et al., 2017)

The functioning of W-MSR is based on outlier detection: given
a design parameter F, the algorithm discards the smallest and the
largest F values received from neighbors, including the agent’s
own belief. A limitation of the algorithm is that in order to select
a proper value for the parameter F it assumes that the agents
have knowledge of the network topology or that they are able to
sustain a desired connectivity through control algorithms, such
as flocking (Saulnier et al., 2017). However, this is not always
possible in robot swarms since robots might become sparsely
connected due to changes in the topology of the network (e.g.,
due to movements, failing units, or communication problems).
As we will show later, W-MSR fails if the number of Byzantine
robots is greater than F or when confronted with Sybil attacks.

3.2. Security Issues in Swarm Robotics
At the outset of swarm robotics research, robot swarms were
assumed to be fault-tolerant by design, due to the large number
and redundancy of the robot units (Dorigo et al., 2004; Millard
et al., 2014). While this assumption holds true in some cases,
it has been increasingly called into question when researchers
began to study explicit fault detection (Winfield and Nembrini,
2006).

A distinction has been made between endogenous and
exogenous fault detection. In endogenous fault detection, robots
detect faults in themselves; in exogenous fault detection robots
detect faults in other robots (Christensen et al., 2009). In early
robotics research, most work was devoted to endogeneous fault
detection (see for example, Roumeliotis et al., 1998; Christensen
et al., 2008). However, it can be difficult to detect certain
endogeneous faults, e.g., a robot might have a broken sensor but
only realize it if its sensor readings are compared to its neighbor
robots. Therefore, more recently swarm robotics research shifted
its focus to exogeneous fault detection. Christensen et al.
(2009) present a robot swarm whose robots are programmed
to flash their LEDs in synchrony. LED flashing indicates correct
functioning of a robot. Therefore, broken robots are easily
identified by their non-flashing LEDs and this identification
is made easy by the fact that flashing is synchronized across
the robot swarm. A disadvantage of this system is that it can
only detect robots that are either completely broken or that
report an endogeneous error by not flashing their LED anymore:
malicious robots cannot be detected nor is exogeneous partial
fault detection possible. Yet,Winfield and Nembrini (2006) argue
that complete failures (e.g., power failure) are significantly less
severe than partial failures (e.g., motor failure, communication
failure, and sensor failure). One reason for this is that partially
failed robots can still unfavorably interact with the remaining
robots. For example, because of a broken sensor, they could send
wrong sensor readings to other robots, misleading the rest of
the swarm. The authors point out that future research should
focus on the detection of partial failures; this is what we do in
this article.

In the first survey on security issues in robot swarms, Higgins
et al. (2009) identify tampered swarm members or failing
sensors, attacked or noisy communication channels, and loss of
availability as the main threats to robot swarms. Tarapore et al.

Frontiers in Robotics and AI | www.frontiersin.org 5 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

(2015, 2017, 2019) address the detection of faulty robots in both
simulated and physical robot swarms. Their method is based on
outlier detection using the bioinspired crossregulation model. To
this end, robots exchange their behavior vectors. Outliers (faulty
robots) are detected by comparing the behavior vectors to other
behavior vectors in the swarm: if the majority of the swarm has
the same behavior vector, this behavior is classified as an inlier,
otherwise as an outlier. While this approach does not require a
priori knowledge about abnormal behavior, it assumes that every
robot shares its behavior vector truthfully.

Security issues related to external factors, such as attacks on
the swarm, only started to be studied recently. For example,
Zikratov et al. (2016) propose a reputation-based management
system where robots keep trust levels about each other based
on the correct execution of a predefined protocol. Sargeant and
Tomlinson (2016) study a wider range of attacker strategies, such
as eavesdropping, data manipulation, and denial of service in
robot swarms. Primiero et al. (2018) show that the propagation
of deceitful information through the swarm can be prevented if
robots probabilistically change their belief.

In contrast to the systems presented above, the blockchain
is capable of logging events in a tamper-proof way and of
implementing generic meta-controllers. Moreover, all of the
above-mentioned systems are susceptible to attacks: e.g., using
the LED flashing method of Christensen et al. (2009), an attacker
can flash its LEDs in synchrony but send wrong sensor values
to the remaining swarm members. The other systems that rely
on wireless messages are susceptible to Sybil attacks: without a
trusted third-party, it is always possible for a malicious agent
to create an unlimited number of new identities in peer-to-
peer networks (Douceur, 2002). Through this large number of
identities, an attacker can gain a disproportionate amount of
power (Gil et al., 2017), potentially causing much damage, e.g.,
in voting scenarios. The blockchain can prevent Sybil attacks
from disrupting swarm behavior by introducing scarcity to
decentralized systems: a robot wanting to exert influence must
pay for this by spending a scarce resource (cryptotokens). It is
thus, not the number of entities forged but rather an attacker’s
wealth that determines the success of the attack.

3.3. Related Work on Blockchain
Technology in Robot Swarms
In swarm robotics research, it is often assumed that robots do
not have access to shared knowledge. This is mainly due to three
reasons: (i) it could be unfeasible to set up the infrastructure
for such a shared knowledge system; e.g., if the robots are in a
remote area and scattered throughout a large physical space; (ii)
the shared knowledge system could represent an unacceptable
single point of failure; and (iii) it might be computationally
too complex to process all incoming and outgoing data in
a single system. However, robot swarms could greatly benefit
from shared knowledge, for example, for determining whether
a consensus has been reached within the swarm, for calculating
the mean value of the sensor readings of the single robots, or
for determining malfunctioning units. Hence, decisions could be
based on a shared view of the world. This would not only possibly

simplify several swarm robotics tasks but also enlarge their field
of applications facilitating decision processes.

Castelló Ferrer (2016) was the first to describe a variety
of use cases for using a blockchain in robot swarms, such as
secure communication, data logging, and consensus agreement.
Strobel et al. (2018) delivered the first proof-of-concept, using the
blockchain framework Ethereum and the robot swarm simulator
ARGoS in a binary collective decision scenario. The authors show
how a blockchain-based meta-controller improves the quality
of the collected sensor data by providing a blockchain security
layer on top of existing algorithms developed by Valentini et al.
(2016a). The meta-controller detects inconsistencies in a robot’s
behavior when it deviates from the agreed-upon behavior and
excludes it from the swarm. In contrast, prior collective decision-
making algorithms could not reach a consensus whenever one or
more robots in the swarm are Byzantine.

Fernandes and Alexandre (2019) and Lopes and Alexandre
(2019) study the use of blockchain technology for the registration
of robotic events (e.g., robot x finished job y) in industrial
scenarios, where the different robots might come from different
manufacturers. The authors additionally demonstrate the use
of blockchain-based smart contracts for anomaly detection.
However they do not assume local time-delayed communication
and maintenance of the blockchain among the robots but
rather use the blockchain as an external computing platform.
Other work addressed obstacles that might hinder the use of
blockchain-based controllers in real-world applications. McAbee
et al. (2019) discuss how blockchain technology can help to
solve problems in military intelligence applications. Nishida et al.
(2018) outline an approach to reduce the blockchain size for
information sharing in swarm robotics systems by storing the
hash of data—in their case image data—in the blockchain instead
of the information itself.

The work presented in this article is based on two previous
works (Strobel and Dorigo, 2018; Strobel et al., 2018). However,
it is significantly extended: (i) instead of solely determining if
there are more black or white tiles (i.e., a binary decision task),
in the present work, the swarm’s goal is to determine the relative
frequency of white tiles expressed as a value between 0.0 and 1.0—
a collective estimation scenario which yields more information
and might be more interesting for real-world deployments;
(ii) as soon as a consensus on a specific value is reached,
the experiment can be stopped in a fully decentralized way
via the consensus mechanism of the blockchain; (iii) in the
present article, we study different distributions of the features
of the scenarios; (iv) we show how the blockchain limits the
number of messages a robot can send, thus preventing Sybil
attacks; (v) we present the ARGoS-blockchain interface which
enables researchers to test and extend the presented scenarios on
different platforms.

4. ARGOS-BLOCKCHAIN INTERFACE

The ARGoS robot simulator (Pinciroli et al., 2012) is the state-
of-the-art research platform to conduct simulations in swarm
robotics. In our research, each robot acts as an Ethereum

Frontiers in Robotics and AI | www.frontiersin.org 6 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

blockchain node, maintaining a custom Ethereum network.
In order to connect ARGoS and Ethereum, we developed
the ARGoS-Blockchain interface that provides access to the
Ethereum nodes for the robots (Figure 4). The interface is
intended to facilitate research in blockchain-based robot swarms
by allowing to call Ethereum functions in ARGoS. Additionally,
Docker makes it easy to install and run the interface on different
platforms. The interface is available on GitHub2.

The implementation of the custom Ethereum network is
based on Capgemini AIE’s Ethereum Docker3. Docker containers
(Merkel, 2014) contain all the necessary dependencies to
run specific applications and are more lightweight than a
virtual machine. In our setup, for each robot, the Ethereum
implementation geth is executed in a separate Docker container.
The simulated robots maintain a custom Ethereum network,
i.e., a network that is shared among the simulated robots and
independent of Ethereum’s main network. Different containers
can communicate with each other via channels.

In order to execute an Ethereum function (e.g., create a new
smart contract) from ARGoS, a robot uses its C++ controller to
attach to the Docker container. The Docker containers provide
shell scripts4 with customizable templates (e.g., one of the
templates compiles the smart contract, uses the binary code
to send a blockchain transactions, and waits until the contract
is mined). Via Ethereum’s IPC (interprocess communications)
interface, the shell scripts execute the Ethereum functions.

We use an auxiliary “bootstrap” node for publishing the
smart contract to the blockchain at the beginning of each run
of the simulations (Figure 5). The bootstrap node then mines
the smart contract and sends the contract address and the ABI

(application binary interface; the ABI specifies which functions a
smart contract provides and how to call them) to the controllers
of the robots. As soon as this is done, the bootstrap node is
removed from the network. The bootstrap node is not necessarily
required and the smart contract could also be created by a robot.
However, we used an auxiliary node to make sure (i) that the
smart contract is available at the start of the actual experimental
run and (ii) that robots have the same initial conditions in
all experiments.

The experiments were conducted on a computer cluster. To
simulate the limited hardware of real robots, one core with
2.0 GHz and 1.8 GB of memory was assigned to each Docker
container5. The communication channels between the Docker
containers were only established when robots were within a
50 cm communication range in order to simulate the local
communication capabilities of real robots.

2https://github.com/Pold87/ARGoS-Blockchain-interface
3https://github.com/Capgemini-AIE/ethereum-docker, accessed on November 6,

2019
4The interface uses shell scripts, since, during development, it became evident that

they are executed much faster than other Ethereum APIs.
5This is a reasonable choice as a robot’s computer could easily have such

characteristics. It is also a convenient choice because on a computer with

2.0 GHz and 1.8 GB of RAM, Ethereum works “out-of-the-box,” without any

modifications; therefore, any interested user can obtain the most recent release

of Ethereum from the official depository and use it with our publicly available

ARGoS-Blockchain interface.

5. MATERIALS AND METHODS

5.1. Setup of the Simulations
We compare three consensus algorithms (LCP, W-MSR, and
blockchain) in terms of their general performance and resilience
to an increasing number of Byzantine robots. To this end,
N = 20 robots are used in the robot swarm simulator
ARGoS (Pinciroli et al., 2012). The swarm’s goal is to estimate
the relative frequency of white tiles in a 2× 2 m2 “checkerboard”
environment where the floor is covered with B black and W
white tiles of size 10 × 10 cm2, B + W = 400 (Figure 1).
The checkerboard environment, obstacle avoidance, and random
walk movement routines were developed in earlier work by
Valentini et al. (2016a). We replicate their parameters for the
random walk and obstacle avoidance routines. Depending on
the scenario, the positions of the black and white tiles are either
fixed by the experimenter or selected randomly at the beginning
of a simulation run. The starting positions of the robots are
randomly chosen from a uniform distribution at the beginning
of each simulation run. To enable the swarm to aggregate
information about the environment, each robot samples its local
ground sensor and exchanges information with other robots
in their communication range. The experiment is conducted
in discrete time steps with one time step corresponding to 1
s. At each time step, a robot i determines if it is above a
black or a white tile via its ground sensor. Each robot works
in exploration phases. We use the subscript notation i,m for
variables referring to a robot i in its mth exploration phase.
The duration of each exploration phase is d = 45 s. To
obtain a sensor reading, a robot i in its mth exploration phase
calculates the ratio ρ̂′

i,m between the number of white tiles Ŵi,m

and the total amount of tiles Ŵi,m + B̂i,m it sensed in this

exploration phase: ρ̂′
i,m =

Ŵi,m

Ŵi,m+B̂i,m
∈ [0, 1] . If the distance

between two robots is <50 cm, they are in communication
range and can exchange information, in accordance with real
swarm robotics systems that have only local communication
capabilities. This communication range leads to an average
degree of connectivity of 2.4 (i.e., one robot is, on average,
connected to 2.4 other robots) and yields multiple non-
connected clusters that exist almost all the time. For the
different approaches, 40 simulation runs (i.e., repetitions) were
performed for each value of the independent variable. These are
the common characteristics for all three consensus protocols.
The peculiarities of the different consensus protocols are given
in section 5.2.

5.2. Implementation of the Different
Consensus Models
5.2.1. Linear Consensus Protocol
Using the linear consensus protocol (LCP), each robot
keeps track of a frequency estimate ρ̂i,m that represents
its belief about the relative frequency of white tiles. At
the end of the first exploration phase (m = 0), the
frequency estimate is set to the sensor reading of the
first phase: ρ̂i,0 = ρ̂′

i,0. The frequency estimate is then
updated at the end of each 45 s exploration phase m by

Frontiers in Robotics and AI | www.frontiersin.org 7 May 2020 | Volume 7 | Article 54

https://github.com/Pold87/ARGoS-Blockchain-interface
https://github.com/Capgemini-AIE/ethereum-docker
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 4 | For each robot, the ARGoS-Blockchain interface establishes a connection to the Ethereum blockchain via a Docker container and shell scripts that

provide templates for executing Ethereum (geth) functions.

FIGURE 5 | This scheme shows the initialization phase that is executed at the start of each experimental run.

incorporating the frequency estimates ρ̂j,m−1 of the neighborsNi

(Figure 6):

ρ̂i,m = wiiρ̂
′
i,m +

∑

j∈Ni

wijρ̂j,m−1 , (1)

where wii = wij = 1
|Ni|+1 is a weight factor, assigning

each message an equal weight, as done in related work (e.g.,
Saulnier et al., 2017). In the phase m + 1, a robot i distributes
its frequency estimate ρ̂i,m to other robots in communication
range, i.e., robots communicate their frequency estimates and not
their current sensor readings (the sensor readings fluctuate from
phase to phase and consensus achievement would be difficult
if these values were used). As in the work by Valentini et al.
(2016a), each robot has an identifier and only one message
can be received from any specific robot in each phase. In
order to store received messages, robots have a buffer size
of M = N − 1 = 19. If more messages are received,
only the last M messages are stored. The buffer size M =

19 makes sure that every robot is able to receive a message
from every other robot in each exploration phase but small
enough so that it represents a mechanism to prevent flooding of
the network.

5.2.2. W-MSR
The W-MSR algorithm is a variant of LCP and introduces a means
for detecting and discarding outliers. It also uses Equation (1) to
obtain a consensus but first performs outlier detection. To do so,
the outliers are removed from the set of neighbors. The algorithm
requires a design parameter F that should be selected based on
the assumed number of Byzantine robots and connectivity of the

network. We set F = 2. Then, all received values ρ̂j,m−1 larger
than ρ̂′

i,m are sorted in ascending order. If there are fewer than
F values larger than ρ̂i,m, all of them are added to the set of
outliersO. Otherwise, the F largest values are considered outliers.
The same procedure is applied to all values smaller than ρ̂′

i,m. To
update the frequency estimate, the W-MSR algorithm then uses
N ′ = N \O instead ofN in Equation (1).

5.2.3. Blockchain Approach
The blockchain approach is based on a smart contract that
aggregates the sensor readings of the robots into the frequency
estimate ρ̂t , while discarding outliers and rewarding robots for
contributing to the scenario (Figure 7). To be consistent with the
classical approaches, we will use the notation ρ̂i,m to indicate the
estimated frequency of white tiles as written in the blockchain of
robot i in itsmth exploration phase, but will otherwise write ρ̂t to
indicate the frequency estimate in escrow round t (see below for
a description of the escrow).

Using the blockchain approach, the robots’ sensor information
is stored and aggregated using a smart contract at given time
intervals (Figure 6). Each robot keeps a local copy of the
blockchain; if robots are physically close to each other, they
exchange their blockchain information. The setup uses the
ARGoS-Blockchain interface described in section 4. In order
to simulate the local communication capabilities of real robots,
the simulated robots have the ability to connect to each other’s
Ethereum processes via the Docker container if their distance
is smaller than 50 cm; they can then exchange blocks and
unconfirmed transactions of the blockchain. To synchronize
ARGoS and Ethereum, the experiments were conducted in
real time.

Frontiers in Robotics and AI | www.frontiersin.org 8 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 6 | The robots explore the environment using a random walk routine and sample their ground sensors. Using the classical approaches LCP and W-MSR (top),

they update their frequency estimate every 45 s (i.e., every 45 time-steps) via Equation (1). Using the blockchain approach (bottom), every 45 s, the robots create a

blockchain transaction that includes their sensor reading. In contrast to the classical approaches, with the blockchain approach, the robots can check whether a

consensus has been reached by querying the state (true or false) of the smart contract event consensusReached. If true, they enter the exit state and stop

creating blockchain transactions. Then, they still perform the random walk and connect to other robots in their proximity to exchange blockchain information.

FIGURE 7 | The smart contract keeps track of the frequency estimate ρ̂t and

provides the function escrow to send a sensor reading ρ̂ ′
i,m. The event

consensusReached is set to true when the frequency estimate does not

change more than τ from one escrow round to the next one.

Each robot mines, i.e., it performs the Proof-of-Work, from
the start to the end of a simulation run. Every time a robot
successfully solves a block, it is rewarded by 5 ether (Ethereum’s
cryptocurrency6). In the beginning of each experimental run,
all robots have a balance of 0 ether. Since creating blockchain

6Since we do not use the main Ethereum network but a custom network

maintained by the robots, these ethers have value only within the robot swarm.

transactions requires ether, robots have to mine blocks to gain
ether and be able to send transactions to the smart contract.
The robots start with 0 ether so that we do not need to identify
beforehand which robots will be part of the experiment. This
builds a basis for “open robot swarms” (e.g., for citizen science
projects) where robots are free to join and leave at any time
during an experiment.

We specified an initial difficulty of the mining puzzle in
the genesis block, so that the swarm mines approximately one
block per second, resulting in 2.25 blocks per robot after 45 s.
Therefore, the average balance after 45 s is 2.25 × 5 ether =

11.25 ether. This means that after 45 s most of the time none
of the robots have enough ether to submit a transaction. Note
that it is possible for the robots to mine empty blocks, i.e., blocks
without any transactions, and still get the reward of 5 ether for
solving the block.

At the end of each exploration phase m (i.e., after 45 s),
each robot sends its sensor reading ρ̂′

i,m to the smart contract
via the function escrow(int sensorReading) (Figure 7)
and the value gets stored in the list openEscrows. That
is, to store a sensor reading in the blockchain (Figure 8), a
robot (i) creates a blockchain transaction which includes its
sensor reading in the data part of the transaction, (ii) adds a
deposit amount of q ether, (iii) signs this transaction, and (iv)
disseminates this transaction among its neighboring robots. The
function escrow accepts a value between 0.0 and 1.0, which

Frontiers in Robotics and AI | www.frontiersin.org 9 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 8 | In this example, robot 3 creates the transaction tx 0x1 in order to send its sensor reading to the smart contract. The transaction is then disseminated to

its neighboring robots 1, 5, and 9. Since the transaction is not included in a block yet, it is an unconfirmed transaction. Robot 1 is able to mine a new block that

includes this transaction and two other transactions tx 0x2 and tx 0x3. Robot 1 then disseminates this mined block among its neighboring robots 3 and 8.

stands for the sensor reading ρ̂′
i,m of the robot i. Since smart

contracts in Ethereum accept integer values only, in the actual
implementation, all sensor readings are multiplied by 107 to
simulate rational numbers between 0.0 and 1.0 (e.g., instead of
sending 0.30, a robot would send 0.30×107). The deposit amount
q is intended to limit the number of sensor readings a robot can
send. That is, a robot “vouches” for its sensor reading. When
the robots send transactions, they do not check whether they
possess enough ether or not: in case they do not have enough
ether, the transaction is simply discarded by the smart contract.
We set q = 40 ether, a suitable value as determined in a
pilot experiment.7

The goal of the escrow is to collect sensor readings and
to reward robots that sent meaningful sensor data. As soon
as the length of openEscrows is equal to V = 20, a new
disbursement round t is performed, i.e., outliers are identified
and inliers are rewarded. To this end, the difference between
ρ̂t (frequency estimate in the smart contract in disbursement
round t) and ρ̂′

i,m (sensor readings from the individual escrow
transactions) is determined. If the absolute difference |ρ̂′

i,m − ρ̂t|

is smaller than a threshold ǫ, the sensor reading is accepted,
otherwise it is discarded. Accepted values of ρ̂′

i,m are called
inliers, discarded ones are called outliers. The value of the mean
ρ̂t is obtained by calculating the mean of all inliers over all
escrow rounds t. In every new escrow round, it is updated via
a one-pass algorithm to reduce the computational requirements.
The execution of the smart contract includes activities such as
verifying the validity of the transaction and, when it has received
V = 20 valid transactions, to compute the mean. The smart
contract is executed every time a block is mined (as long as it
includes transactions) but the computation of ρ̂t usually happens
with a lower frequency.

In the first round (t = 0)—i.e., in the time interval from the
beginning of the experiment to the moment in which the smart

7In a real-world scenario, determining a suitable price might be difficult. However,

there is a simple but effective remedy: instead of sending a transaction every 45 s,

robots could send a transaction as soon as they have enough ether to create a

transaction. We did not implement this “remedy” because we wanted the three

compared approaches to differ in as few aspects as possible.

contract has received 20 valid transactions—when no frequency
estimate ρ̂t is available yet, all values of ρ̂′

i,m are accepted. The
value of ǫ is a tuning parameter that influences how much the
current mean in the blockchain can change from one round to
the other. Decreasing ǫ will increase the sensitivity (the number
of Byzantine votes that are correctly identified as outliers), while
increasing ǫ will increase the specificity (the number of non-
Byzantine votes that are correctly included in the calculation of
the current mean). We set ǫ = 0.2, a suitable value as determined
in a pilot experiment. The value V is another tuning parameter:
lower values lead to earlier results for ρ̂t (since the value is only
updated at the end of an escrow round) but also to an increased
risk that the ratio between the number of Byzantine robots and
normal robots is high in an escrow round. If the value of V is set
too high, the detection of Byzantine robots may start too late and
they might have already caused a significant damage and non-
Byzantine robots may have to wait long until they get back their
deposit amount. We set the list length to V = 20 = N since
then, on average, every robot will be represented by one vote in
each round.

In order to incentivize robots to take part in the escrow,
inliers get a reward rt in ether. The reward rt is greater or equal
to the escrow value and calculated by distributing the collected
ether of the escrow round among the inliers: rt = Vq/int =

20 × 40 ether/int , where int is the number of inliers at round
t. Hence, robots can gain ether by mining, thereby improving the
network’s security, or by sending sensible sensor values, helping
to determine the correct frequency of white tiles. This creates an
implicit reward mechanism within the swarm that discourages
Byzantine robots to operate as such, since sending wrong sensor
measures costs cryptotokens.

5.3. Software Availability
The implementation of the presented classical approaches8 and
blockchain approach9 are hosted on GitHub.

8https://github.com/Pold87/robot-swarms-need-blockchain-classical
9https://github.com/Pold87/robot-swarms-need-blockchain

Frontiers in Robotics and AI | www.frontiersin.org 10 May 2020 | Volume 7 | Article 54

https://github.com/Pold87/robot-swarms-need-blockchain-classical
https://github.com/Pold87/robot-swarms-need-blockchain
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

5.4. Statistics
Let R = 1, 2, . . . ,N be the set of all robots, G be the
subset of non-Byzantine robots (mnemonic: G for “good”)
and B be the subset of Byzantine robots (mnemonic: B for
Byzantine or “bad”), with G ∪ B = R and |B| = k.
An asterisk ∗ indicates a randomly selected robot from the
set R and the infinity symbol ∞ indicates that the value
is determined at the end of an experimental run. Therefore,
ρ̂∗,∞ is the estimated frequency of white tiles of one randomly
selected robot at the end of an experimental run and ρ̂G,∞ =∑

i∈G ρ̂i,m/|G| is the arithmetic mean of the frequency estimate
of all non-Byzantine robots at the end of an experiment. The
frequency estimate ρ̂B0 ,∞ indicates the mean of the frequency
estimate of a run where the number of Byzantine robots
was zero (B0). We use the median ˜̂ρB0 ,∞ as a baseline
value to compare the performance of the approaches, when
the number of Byzantine robots is increased. The baseline
values are determined separately for the LCP, W-MSR, and
blockchain approaches.

The following statistics are used to compare the performances
of the three approaches:

• Absolute error AE∗. This statistic is the absolute value of the
difference between the actual relative frequency of white tiles ρ

and the frequency estimate ρ̂∗,∞ of a randomly selected robot
at the end of an experimental run: AE∗ = |ρ − ρ̂∗,∞|. AE∗

measures the predictive capacity of the different approaches.
For the calculation of AE∗, we randomly select one robot since
we assume that a consensus has been reached. Compared to
averaging the values of all or several robots, this approach is
closer to real-world scenarios where only a single functioning
robot might be retrieved after the end of an experiment;
additionally, it might be too time-consuming or costly to
sample all the robots.

• Harm. This statistic measures the amount of harm that
Byzantine robots cause to non-Byzantine robots. The idea is
that we compute the difference between (i) AEG , that is, the
average absolute error of the non-Byzantine robots in presence
of Byzantine robots, and (ii) ÃEB0 , that is, the median of the
average absolute error over all runs with zero Byzantine robots:
harm = AEG − ÃEB0 . Note that to calculate the harm we take
on an “omniscient perspective” and assume that we are able
to distinguish between Byzantine and non-Byzantine robots.
That is, for analysis purposes, here we consider the case when
it is possible to retrieve all the robots and identify those that
are non-Byzantine after the experiment.

• Consensus time TN . This statistic is the time in seconds until
all robots have reached a consensus on a certain estimated
frequency of white tiles (see section 6.2.2).

For the blockchain approach, additionally, the following statistic
is measured:

• Blockchain size BCMB. This statistic indicates the blockchain
size in MB of one randomly chosen robot, determined at the
end of each experimental run.

For all plots showing the absolute error AE∗ and the Harm
in the presence of Byzantine robots, we additionally perform

locally estimated scatterplot smoothing (LOESS10) indicated by
blue curves in the graphs. The gray bands around the blue LOESS

curve indicate the 95% confidence interval for predictions from
the regression. The LOESS curve is intended to make it easier
to spot the general trend when the number of Byzantine robots
is increased.

6. SIMULATIONS

In this section, we compare the three approaches (LCP, W-
MSR, blockchain) in five experiments under different conditions
(Table 1). The experiments are structured along the three
research questions introduced in section 1 and correspond to the
complexity and intelligence of Byzantine robots.

• Baseline: Experiment 1 is intended to establish a baseline
and does not contain any Byzantine robots. It tests the
three different approaches in an environment with randomly
distributed tiles. The goal of the experiment is to provide
a proof-of-concept and show that the approaches work as
intended in standard conditions.

• Byzantine Robots: Experiments 2–4 introduce Byzantine
robots. While there are many possible Byzantine failures,
in this work we study a case where each Byzantine robot
disseminates a frequency estimate of ρ̂i,m = 0.0 for the
classical approaches and accordingly ρ̂′

i,m = 0.0 for the
blockchain approach in all exploration phasesm, independent
of its actual sensor readings. This choice is motivated by two
reasons: (1) a value of 0.0 is the worst-case scenario and
maximizes the difference between ρ and ρ̂i,m and (2) it is a
failure mode studied in other research (e.g., Gupta et al., 2006).
We vary the number of Byzantine robots between 0 and 7.11

• Sybil attack: Experiment 5 then introduces clearly malicious
Byzantine robots that perform Sybil attacks. The malicious
robots still disseminate frequency estimates of ρ̂i,m = 0.0 and
ρ̂′
i,m = 0.0. However, they try to send as many messages as

possible by creating new identities at every time step. The goal
of this experiment is to show that just one malicious robot
suffices to let existing approaches fail.

6.1. Comparison in Absence of Byzantine
Robots
In the first experiment, we compare the values of AE∗ for the
different approaches without the presence of Byzantine robots.
To this end, the percentage of white tiles is increased from 0
to 100% in steps of 10%. A simulation run is stopped after
1,000 seconds. The goal of this experiment is to (1) determine if

10LOESS smoothing (Jacoby, 2000) is a non-parametric regression method to fit

non-linear data. To do so, the LOESS algorithm performs local linear regressions via

a weighted sliding-window approach. In other words, for each point in the dataset

(the current focal point), it takes a subset of the whole dataset (in our case the

75% nearest neighbors) to calculate the least-squares fit. The higher the distance to

the focal point, the lower the weight in the least-squares fit. We used the default

settings as provided by the R programming language, described at https://www.

rdocumentation.org/packages/stats/versions/3.6.2/topics/loess (accessed February

6, 2020).
11We set the maximum number of Byzantine robots to 7 since related literature

usually considers a maximum of 33% Byzantine agents.

Frontiers in Robotics and AI | www.frontiersin.org 11 May 2020 | Volume 7 | Article 54

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/loess
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/loess
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

TABLE 1 | Overview of the experiments.

No. Experiment % White tiles # Byzantines Tile mixing Sybil attack Exit criterion

1 Random distribution (no Byzantines) 0, 10, . . . , 100 0 Yes No 1, 000 s

2 Random distribution 75 0, 1, . . . , 7 Yes No 1, 000 s

3 Consensus 75 0, 1, . . . , 7 Yes No Threshold below τ

4 Binary distribution 75 0, 1, . . . , 7 No No 1, 000 s

5 Sybil attack 75 0, 1, . . . , 7 Yes Yes 1, 000 s

FIGURE 9 | Experiment 1: Random distribution (no Byzantines). LCP (top), W-MSR (middle), and the blockchain approach (bottom) perform well if the tiles are

randomly distributed and if there are no Byzantine robots. This result serves as a baseline for the following simulations. No correlation between the actual frequency of

white tiles and the absolute error (AE∗) is visible. The graphs on the left-hand side show the mean with the error bars indicating the standard deviation. The dashed line

in the plots on the right-hand side show the ideal outcome, i.e., when the true % of white tiles equals the estimated % of white tiles.

the blockchain-based approach can replace existing approaches,
(2) establish a baseline for successive experiments, and (3) see
if all approaches are able to deal with a straightforward
experimental setup.

Results, Discussion, and Interpretation
The three approaches perform well with a mean absolute error
lower than 0.08 (Figure 9) and are, therefore, able to successfully
perform the desired task. However, the blockchain approach

Frontiers in Robotics and AI | www.frontiersin.org 12 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

presents a slightly higher variability and mean absolute error
for some values of the actual % of white tiles. This is because
the blockchain approach has more random factors—due to the
Proof-of-Work and the specific security measure implemented
in the smart contract—than the classical approaches. The overall
good performance serves as a baseline for the following scenarios.

6.2. Comparison in Presence of Byzantine
Robots
In the next three simulations, we study the influence of Byzantine
robots (robots that disseminate ρ̂i,m = 0.0 for the classical
approaches and ρ̂′

i,m = 0.0 for the blockchain approach) on
the performance of the different approaches. The number of
Byzantine robots is increased from 0 to 7. The frequency of white
tiles in the environment is fixed to 75%. We chose 75% because
it is in the middle between 50% and 100%, i.e., it contains a bias
for one color to rule out that a random approach might work.

6.2.1. Byzantine Robots in a Random Environment
In this experiment, the influence of Byzantine robots on the value
of AE∗ is studied in an environment with randomly distributed
tiles. A simulation run is stopped after 1,000 s. The goal of this
experiment is to investigate how the Byzantine robots affect the
different approaches. With an increasing number of Byzantine
robots, we expect LCP to break down fairly quickly due to its
lack of security measures. In contrast W-MSR and the blockchain
approach should be more resilient as long as the number of
Byzantine robots remains low.

Results, discussion, and interpretation
The LCP approach is not designed to be resilient to the presence
of Byzantine robots; accordingly, a strong increase in its AE∗

can be observed when the number of Byzantine robots increases
(Figure 10). In contrast, by design, W-MSR is resilient to the
presence of Byzantine robots, as long as their number is low.
However, both approaches have a high standard deviation,
partially due to the high number of extreme outliers where the
AE∗ is 75%. This is due to the fact that AE∗ is computed by
randomly selecting a robot from the swarm. When the number
of Byzantine robots increases the probability of selecting a
Byzantine robot increases. While different choices of W-MSR’s
design parameter F would lead to different values for AE∗, the
percentage of extreme outliers would stay the same (since the
Byzantine robots do not follow the protocol); additionally, in a
real-world scenario one would not be able to know whether the
selected robot is Byzantine or not.

The blockchain approach is resilient also to a higher number
of Byzantine robots. In contrast to the classical approaches, even
if a Byzantine robot is selected, the AE∗ stays low. This is due to
the consensus protocol of the blockchain, i.e., all robots agree on
the longest chain and even the Byzantine robots share the same
estimate written in the blockchain.

Particularly interesting is the harm value of the LCP. It starts
with a median of more than 10% for one Byzantine robot. In
other words, the estimated frequency of all non-Byzantine robots
is already 10% worse compared to the baseline, if just 5% of the
robots (1 out of 20) are Byzantine. The harm can also be negative,
in cases when the Byzantine robots help to get closer to the

actual ρ. This is the case for the blockchain approach. Without
Byzantine robots, the blockchain approach overestimates the
frequency of white tiles due to the implemented securitymeasure:
since the smart contract only accepts values within ρ̂t − ǫ <

ρ̂′
i,m < ρ̂t + ǫ, several ρ̂′

i,m values from non-Byzantine robots
will be discarded. Therefore, the addition of a small number of
Byzantine robots reduces the absolute error and the harm. This
is a characteristic of the specific smart contract and different
values of ǫ or a different outlier detection method (e.g., taking the
standard deviation into account) would lead to different results.

6.2.2. Consensus Agreement in the Presence of

Byzantine Robots
In this experiment, the influence of Byzantine robots on the
swarm’s ability to reach a consensus is studied. The goal of this
experiment is to investigate if a swarm can reach a consensus in a
fully decentralized way.

For the classical approaches (LCP and W-MSR), we say that
a consensus in the swarm has been reached once the absolute
difference between the highest ρ̂i,m and the lowest ρ̂j,m in the
swarm is smaller than a threshold value τ . However, as soon as
there is one “stubborn” Byzantine robot that keeps a constant
frequency estimate, consensus of all robots can only be on that
value when using the classical approaches. In our case, if the
robots would come to a consensus, the only possible value would
be 0.0, therefore, the expected absolute error would be 75% for
the classical approaches, resulting in a useless frequency estimate
of the swarm. For this reason, we show the consensus time for the
classical approaches only in the absence of Byzantine robots.

For the blockchain approach, consensus is reached, if the
frequency estimate between two escrow rounds does not change
more than τ , i.e., |ρ̂t − ρ̂t−1| < τ . The blockchain event
consensusReached is then set to true. At the end of each
exploration phase, each robot queries the status of this event.
If the status of the event is true for all robots, the simulation
run is stopped. For this experiment, we use the consensus
threshold τ = 0.02.

Results, discussion, and interpretation
The top row in Figure 11 shows the comparison of the three
approaches in the absence of Byzantine robots. All approaches
perform well and are able to reach a consensus in a reasonably
short amount of time. The consensus time of the W-MSR

and blockchain approaches is higher than the baseline LCP

approach. Hence, there is a trade-off between consensus time
in the absence of Byzantine robots and the level of security an
approach provides.

The bottom row in Figure 11 shows the absolute error and
consensus time of the blockchain approach. The consensus time
rises slightly when the number of Byzantine robots increases.
Similarly, the absolute error also increases, but the mean of the
AE∗ remains at about 20% even with seven Byzantine robots.

The blockchain-controlled swarm could reach a decentralized
consensus, even in the presence of Byzantine robots. Therefore,
it is autonomous and resilient, while the classical approaches
are not. In addition—even without Byzantine robots—it is
difficult for the classical approaches to determine whether each
robot actually agrees on a certain value. Note that the classical

Frontiers in Robotics and AI | www.frontiersin.org 13 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 10 | Experiment 2: Random distribution. When the number of Byzantine robots increases, LCP’s performance (top) quickly deteriorates and the frequency of

extreme outliers becomes high (the percentages at the top of each graph correspond to the frequency with which Byzantine robots were selected when calculating

AE∗). Therefore, with the classical approaches, one is always exposed to the risk of getting a completely wrong result, even if there is just one Byzantine robot in the

swarm. W-MSR (middle) is able to manage a few Byzantine robots but its AE∗ quickly increases when there are more than three of them. The blockchain approach

(bottom) is largely unaffected by the increasing number of Byzantine robots, and does not contain extreme outliers. The graphs on the left-hand side show the mean

with the error bars indicating the standard deviation. The blue line is obtained by locally estimated scatterplot smoothing (LOESS), the gray band around the blue line

shows the 95% confidence interval for predictions from the LOESS regression.

approaches could be extended, so that robots in the swarm
send a consensus signal to their neighbors when they have
reached convergence; however, this signal would be prone to
Byzantine robots sending a negative consensus signal. In practice,
an external observer might be needed but this observer would
represent a single point of failure and in some cases it might
even be impossible to set it up. In contrast, in the case of the
blockchain approach, the consensus determination is done on-
chain (i.e., via a blockchain-based smart contract) without any
external observer.

6.2.3. Byzantine Robots in a Binary Environment
In this experiment, the influence of Byzantine robots on the
value of AE∗ is studied in an environment with a fixed

distribution of tiles (Figure 12). Using the fixed distribution,
the tiles in the left part of the environment are black (25%),
while those in the right part are white (75%). A simulation
run is stopped after 1,000 s. The goal of this experiment
is to investigate whether the modified distribution of tiles
makes the detection of outliers more difficult since also
non-Byzantine robots will get extreme sensor readings of
ρ̂′
i,m = 0.0 and ρ̂′

i,m = 1.0.

Results, Discussion, and Interpretation
While LCP’s AE∗ quickly increases with an increasing number
of Byzantine robots, the W-MSR approach is able to manage a
few Byzantine robots, starting with a relatively high AE∗ of 10%
(Figure 13).

Frontiers in Robotics and AI | www.frontiersin.org 14 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 11 | Experiment 3: Consensus. (Top) In the absence of Byzantine robots all approaches are able to reach a consensus in a reasonably short amount of time.

However, there is a trade-off between consensus time in the absence of Byzantine robots and the level of security an approach provides. (Bottom) When testing the

swarm’s ability to reach a consensus, the classical approaches can only reach a consensus on the values of the Byzantine robots. In contrast, the blockchain

approach continues to work. It shows a slight increase in the consensus time when the number of Byzantine robots is increased; this happens due to the increased

variance that is introduced by the increasing number of Byzantine robots. The graphs on the left-hand side show the mean with the error bars indicating the standard

deviation. The blue line is obtained by locally estimated scatterplot smoothing (LOESS), the gray band around the blue line shows the 95% confidence interval for

predictions from the LOESS regression.

When no Byzantine robots are part of the swarm, LCP

performs better than W-MSR and the blockchain approach.
This is because of the security measures implemented in W-
MSR and in the blockchain approach, which have difficulties in
distinguishing between the values generated by the Byzantine and
by the non-Byzantine robots. However, in contrast to W-MSR,
the blockchain’s performance remains approximately constant,
even for a rather high number of Byzantine robots. The harm
distribution is similar to Experiment 2.

These results show that there is no “one size fits all” of
consensus protocols; instead, there is a trade-off between adding
security measures to approaches and their ability to perform

well under all circumstances. However, in real-world scenarios,
we will almost certainly have to deal with Byzantine robots,
therefore, using the blockchain approach is still warranted.

6.3. Comparison in Presence of Sybil
Attacks
In the last experiment, we study the case in which Byzantine
robots perform a Sybil attack. The goal of this experiment is to
investigate how decentralized swarms can deal with robots that
forge multiple identities. The tiles are randomly distributed and a
simulation run is stopped after 1,000 s.

Frontiers in Robotics and AI | www.frontiersin.org 15 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 12 | When using the fixed distribution of the tiles, the left part of the

environment is covered with black tiles while the rest is covered with white

tiles. This fixed distribution is expected to make it more difficult for the smart

contract to detect Byzantine robots since normal robots might send the same

sensor values as Byzantine robots.

To perform a Sybil attack, the Byzantine robots are
programmed as follows. In the classical approaches, every
Byzantine robot creates a new identity at every time step and uses
it to disseminate its sensor readings. In the blockchain approach,
robots do not create new identities since these identities would
not have any ether; therefore, the Sybil attack would be prevented
automatically. We could have programmed Byzantine robots to
first create new public addresses (i.e., identities) and distribute
their ether among these addresses but since the public addresses
are not used in the identification of outliers, this was not deemed
necessary. Additionally, this would most likely weaken the Sybil
attack, since first distributing the tokens would slow down the
process. Instead, in the blockchain approach, a Byzantine robot
sends as many transactions as possible. However, the limiting
factor is that sending transactions costs cryptotokens, that is,
robots have to send 40 ether every time they send an escrow
transaction that contains their sensor reading (section 5.2.3).

Results, Discussion, and Interpretation
As expected, the classical approaches have high values for AE∗

and harm as soon as one robot in the swarm is able to perform
a Sybil attack (Figure 14). In stark contrast, in the blockchain
approach, the Sybil attack is not successful since the 40 ether
robots have to deposit to send a transaction prevents the robots
from creating a high number of transactions. In other words, the
robots cannot “spam” or “flood” the network with transactions
since they would quickly run out of ether. The robots also
cannot steal the identity of other robots (spoofing attack) due
to digital signatures. Therefore, the blockchain approach stays
resilient, even in the presence of a relatively high number
of Byzantine robots. Based on these results, one of the main
advantages of this approach is visible: the blockchain is able to
introduce scarcity into a decentralized swarm, making the system
more secure.

7. GENERAL DISCUSSION

In this work, we set out to study whether robot swarms need
blockchain technology. To this end, we considered the open
research problem of consensus reaching in robot swarms for the

general case of Byzantine robots and the more specific case of
Sybil attacks. To answer the three research questions listed in the
introduction of this article, we used a collective estimation task
and compared the blockchain approach to existing consensus
protocols. Our simulation results support a positive answer to
our research questions: in the absence of Byzantine robots,
consensus could be reached as effectively with blockchain-based
smart contracts as with existing consensus protocols in robot
swarms (RQ 1); the use of smart contracts indeed mitigates
the influence of Byzantine robots in robot swarms (RQ 2); and
Sybil attacks were prevented when using the blockchain approach
(RQ 3). Below, we discuss the implications and limitations of
our research.

7.1. Implications
The results of our experiments can be generalized in two
ways: across use cases and across platforms. We showed that
it is possible to implement meta-controllers with blockchain-
based smart contracts. In our experiments, a meta-controller
(i) aggregated the sensor readings from the individual robots,
(ii) performed simple, yet effective outlier detection to manage
Byzantine robots, and (iii) determined if a consensus was reached
in the swarm, even in the presence of Byzantine robots.

The provided use case was intended to be a simple and
easy to understand example of how a smart contract can be
used in swarm robotics. Therefore, we used one of the simplest
outlier detection methods. As our goal is to provide a proof-
of-concept for blockchain-coordinated robot swarms, we did
not strive for the best performance by fine-tuning algorithm
parameters. For example, the approach could be extended and
improved with more sophisticated outlier detection methods.
Since smart contracts are Turing-complete, any outlier detection
method is in principle implementable; in practice, however, one
should choose a lightweight algorithm with a low run-time.
Another aspect to consider is the operability of the approach
in a dynamic environment. In the current implementation, the
smart contract obtains a rough estimate in the first escrow round
and then narrows down the collective estimate; a sudden change
in the environment (e.g., the color of all the tiles is suddenly
inverted) could lead to a dead-end situation, where all sensor
readings in future escrow rounds are discarded by the outlier
detection mechanism. However, in an improved version of the
smart contract, one could, for example, always accept a minimum
number of sensor readings per escrow round—even if they are
outliers—to prepare the algorithm for dynamic environments. It
is important to note that there is no need for adapting the robots’
controllers when changing the outlier detection method in the
smart contract.

Although we selected a specific scenario and task (consensus
reaching in collective estimation), this result is promising for
the field of swarm robotics in general: using smart contracts as
meta-controllers might facilitate the implementation of various
other existing and novel swarm robotics applications. To list
concrete examples, besides the presented collective decision-
making scenario, we believe a blockchain-based approach might
be useful in:

Frontiers in Robotics and AI | www.frontiersin.org 16 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 13 | Experiment 4: Binary distribution. Similar to the random distribution, LCP (top) shows a steep increase in AE∗, W-MSR (middle) can handle a few

Byzantine robots, and the blockchain approach (bottom) is also resilient to a higher number of Byzantine robots. The graphs on the left-hand side show the mean

with the error bars indicating the standard deviation. The blue line is obtained by locally estimated scatterplot smoothing (LOESS), the gray band around the blue line

shows the 95% confidence interval for predictions from the LOESS regression.

• task-allocation scenarios: e.g., in an area exploration scenario,
a smart contract could identify unexplored areas and
send control commands to different robots to explore
these areas;

• reputation management: the tamper-proof nature of the
blockchain allows for maintaining reputation values for the
different robots;

• lightweight machine learning algorithms: e.g., a smart contract
could serve as a database for sensor data and train a
classification algorithm;

• collective mapping: parts of a map could be stored and
aggregated in a smart contract;

• robot-to-robot economies: e.g., auction-based approaches,
where the auction is executed via a smart contract;

• robot-to-human economies: e.g, people could pay robots for
executing a task (monetization of jobs, leading to robot as
a service) or, vice versa, people could offer rewards for the
completion of a task.

In addition to considering other use cases, it is also possible to
consider swarms composed of entities that are not robots. In
this sense, this work can be seen as a stepping-stone for swarms
composed of people, Internet-of-Things devices, and/or vehicles.

A blockchain is tamper-proof due to its decentralized
consensus protocol that is able to maintain scarce resources in
decentralized systems. In our research, we showed that these
scarce “cryptotokens,” i.e., immutable units of exchange stored
in the blockchain, can be used to prevent Sybil attacks in open

Frontiers in Robotics and AI | www.frontiersin.org 17 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

FIGURE 14 | Experiment 5: Sybil attack. In the comparison of the approaches, it is clearly visible that LCP (top) and W-MSR (middle) fail in the presence of even one

Byzantine robot performing a Sybil attack. In contrast, the blockchain approach (bottom) is able to prevent these attacks by limiting the number of transactions that

can be included in the blockchain. The graphs on the left-hand side show the mean with the error bars indicating the standard deviation. The blue line is obtained by

locally estimated scatterplot smoothing (LOESS), the gray band around the blue line shows the 95% confidence interval for predictions from the LOESS regression.

robot swarms. A swarm is open when entities are free to join
(e.g., because it turns out that the mission is too complex to be
solved by a smaller swarm) and leave the swarm at any moment
in time (e.g., because of a hardware failure). Sending a message
via a blockchain is only possible when the sender spends some
amount of cryptotokens. Hence, the number of messages a robot
can send is limited and Sybil attacks can be prevented. This is
of the utmost importance for many swarm robotics applications
where a Sybil attack would undermine the swarm performance.
For example, in voting scenarios without Sybil attack protection,
an attacker would be able to achieve the majority; and in sensor
fusion scenarios, an attacker would be able to gravely bias
the swarm estimate. These attacks do not require sophisticated
programming skills and are hard to prevent in decentralized

systems (Borisov, 2006). Themost usedmeans of preventing such
attacks are centralized cryptographic authentication or password
authentication. In our case, this would have meant that at the
beginning of a simulation run, each robot would have received
a list of public keys that are seen as trusted entities and would
only have accepted a message from another robot if the message
was signed by one of the trusted robots. However, this would
entail the common disadvantages of centralized systems, such
as the presence of a single point of failure at the moment when
the list of public keys is created and distributed and reduced
flexibility, since every robotmust be identified before deployment
and adding robots at run time would not be possible. Therefore,
basing the approach on centralized cryptographic authentication
would restrict the applicability to closed robot swarms.

Frontiers in Robotics and AI | www.frontiersin.org 18 May 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

Finally, a blockchain serves as a tamper-proof audit log and
keeps track of all relevant information from all robots over
time. In real-world applications it may happen that only a single
robot can be retrieved (e.g., only one robot might be physically
reachable, or retrieving robots might be very expensive)12.
However, the information written in its blockchain may be
sufficient to reconstruct the complete course of the experiment.
This information can be post-processed, e.g., outliers could
even be detected after the end of the experiment. In addition,
any other irregularities can be spotted and analyzed, e.g., for
digital forensics.

7.2. Limitations
Our results clearly showed that the blockchain-based consensus
protocol outperforms existing consensus protocols when
Byzantine robots are present and that it is even needed when
wishing to reach consensus in a decentralized manner under
Sybil attack. While we can conclude that robot swarms are better
off with blockchain technology, certain constraints need to be
considered at the design stage before choosing to work with
blockchain-controlled robot swarms.

A first possible issue is the fact that blockchains can introduce
delays. Transactions first have to be mined to be considered
by the smart contracts. Therefore, if fast reactions to messages
are required, blockchains are not advisable. Instead, blockchains
should be used for security-relevant data and should be combined
with traditional local processing to yield hybrid approaches.
Therefore, it is important to determine which information is
security-relevant and should be processed via smart contracts
(“on-chain”) and which information can be processed locally by
single robots (“off-chain”).

Another possible issue is connected with blockchain
technology’s storage requirements. This was however not the
case in our experiments, where the size of an escrow blockchain
transaction was 148 Bytes and the total size of the blockchain
(including auxiliary files) reached on average 6.8 MB after
1,000 s. During these 1,000 s, on average, 350 transactions were
stored in the blockchain. To further test scalability, we conducted
experiments with a run-time of 24 h with 20 robots. After the
24 h, the total size of the blockchain reached on average 33 MB.
The blockchain size grows linearly after an initialization phase
of approximately 6 h during which approximately one block
is created per second; in the beginning, the network needs to
adapt to the hash power in the network; after 6 h, one block
is created approximately every 15 s. This time interval is the
default in Ethereum, and could be changed if necessary. If we
hypothesize robots with 16 GB of storage capacity—this is within
the capacity of state-of-the-art swarm robotic platforms, such as
the Pi-puck robot (Millard et al., 2017)—the storage would last
for approximately 485 days.

Another aspect of scalability is the influence of the robot
swarm size on the blockchain size. Adding more robots to the
swarmmight increase the blockchain size because a larger swarm

12If one has, however, the possibility to choose between different robots, one may

select the robot with the longest blockchain to make sure that the chain is selected

where the highest number of participants contributed to the Proof-of-Work.

might create more transactions. In the following calculation,
we assume that 1,000 robots create 50 times more transactions
than 20 robots and that each robot creates a transaction every
45 s. With these 1,000 robots, the upper limit for the estimated
blockchain size would be 1.5 GB after 24 h. Please note that
this calculation is just a rough approximation and that the
study of scalability has other aspects that should be taken into
account in future research, such as: (i) with a larger swarm size,
it might suffice to create a transaction after longer intervals,
reducing in this way the overall dimension of the blockchain; (ii)
transactions could be aggregated or preprocessed before sending
them to the blockchain; and (iii) since the PoW algorithm
adapts to the hash power in the network, the number of mined
blocks is largely independent of the number of robots, therefore,
the space requirements for a greater number of robots will
grow sublinearly.

In this article, we used a PoW-based consensus protocol. In
contrast to popular opinion, PoW does not require sophisticated
hardware and does not become necessarily harder over time. The
difficulty of the mining puzzle depends on the total hash power in
the network. Less powerful hardware leads to lower hash power.
From a theoretical point of view, it would be possible tomine on a
Kilobot (Rubenstein et al., 2014), which has an 8MHz processor.
In addition, it has been demonstrated that a variety of single
board processors with ARM processors (e.g., the Raspberry Pi) are
able to mine and run Ethereum nodes13. If, however, an intruder
can outperform the hash power of the remaining robots (51%
attack), it can change the order of the transactions and decide
whether or not transactions should be included in the blockchain.
Therefore, the higher the hash power of the network, the more
difficult it is to perform a 51% attack. In this article, we used
2.0 GHz and 1.8 GB of RAM so that Ethereum works “out-of-
the-box,” as explained in section 4. In order to let Ethereum run
on robots with more limited hardware such as those that we
have recently acquired in our lab, we have created a modified
version of Ethereum’s source code14. With these modifications,
Ethereum, including PoW, runs on the Pi-puck robots in our lab.
By changing the initial difficulty specified in the genesis block,
it is possible to establish a direct mapping for the time it takes
to perform the PoW calculations from our simulations to the
physical hardware.

A powerful intruder cannot forge signatures or change the
logic implemented in a smart contract. Therefore, it depends
on the context whether a PoW-based consensus protocol is
adequate. If no powerful intruder is expected to enter the swarm
(e.g., in an underwater exploration), PoW can be suitable: as
long as the majority of robots acts according to the protocol,

13http://ethembedded.com/, accessed on September 17, 2019.
14The necessary modifications can be found at http://iridia.ulb.ac.be/supp/

IridiaSupp2019-009/Ethereum-on-Pi-puck/. Ethereum’s default mining

algorithm—an extension of the basic PoW algorithm, as for example used in

Bitcoin—includes a memory-hard problem to make it resistant to specialized

mining hardware using ASICs. This is done via the generation of a data structure

called DAG which requires more than 1.0 GB of RAM (for a description of

the DAG, see https://github.com/ethereum/wiki/wiki/ethash-dag, accessed on

February 16, 2020). With the described modifications, the RAM requirements can

be reduced to a few MB.

Frontiers in Robotics and AI | www.frontiersin.org 19 May 2020 | Volume 7 | Article 54

http://ethembedded.com/
http://iridia.ulb.ac.be/supp/IridiaSupp2019-009/Ethereum-on-Pi-puck/
http://iridia.ulb.ac.be/supp/IridiaSupp2019-009/Ethereum-on-Pi-puck/
https://github.com/ethereum/wiki/wiki/ethash-dag
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

the data in the blockchain can be trusted. In robot swarm
deployments, one might be concerned that the computational
overhead required by PoWmight lead to battery drain. However,
preliminary results (not discussed in this article) show that
the power consumption due to the blockchain mining activity
is low and compatible with experimentation with a swarm of
Pi-puck robots.

If the swarm is operating in an environment where reliable
global communication is possible, PoW does not need to be
run on the hardware of the robots. In this case, a custom
blockchain network maintained by the robots is not necessary.
Instead, a smart contract could be used in the main Ethereum
network. Since the main Ethereum network is maintained by a
decentralized network of computers, it does not pose a single
point of failure. However, such a scenario would change some
other aspects (e.g., the entry conditions for new robots) and
would possibly have a stronger focus on economics (e.g., attacks
would become expensive in terms of the “main Ethereum
network” cryptocurrency, that has a certain market price), so we
will leave it for future work. The scope of this article is strictly
limited to swarm robotics to avoid any confusion with centralized
multi-robot systems.

7.3. Future Work
In this article, we studied attacks at the collective estimation
level by sending deceitful data. However, there is a difference
between attacks at the collective estimation level and attacks
at the blockchain level. Some attacks that can pose problems
to decentralized systems, such as replay attacks, are naturally
prevented by blockchain technology. Yet, there are potential
blockchain-level attacks in robot swarms: for example, clustering
of malicious robots to perform a majority attack. In order to
prevent majority attacks, a flocking algorithm may guarantee
a certain degree of connectivity and help to avoid local
robot clusters that have different blockchain forks. As an
additional procedure to manage blockchain forks, the number
of confirmations (i.e., the number of blocks after the block
number that contains a certain transaction) can serve as a
metric indicating how probable it is that a transaction stays in
a specific block.

The robustness of the blockchain approach to much sparser
connectivity is an open research topic that we plan to address
in future research. As described in section 2.1, transactions
stay valid and can be included in the blockchain after days
of disconnectivity or after a blockchain fork gets discarded
(they then become unconfirmed transactions again that can be
included in later blocks). However, the longer the robot clusters
stay disconnected, the higher the risk that they base a decision
on a blockchain fork that is not the longest blockchain. There
are several strategies to address this issue. One option is to
increase the average time between mined blocks (block time)
via a different difficulty setting. This will introduce delays but
reduce the risk that decisions are based on non-final information.
Further possibilities are aggregation algorithms to guarantee a
certain connectivity; or “messenger robots” that can move faster
(e.g., UAVs) and bring together different blockchain information.
The robot that we are currently planning to use (the Pi-puck)

has a Wi-Fi speed of up to 72 Mbps. Therefore, if a robot in
the studied scenario would join the swarm after 20 min, it could
download the blockchain within a few seconds from other robots.
In future research, we will measure the relationship between
the time two components of the swarm were disconnected and
the time it takes to re-synchronize the blockchain across the
disconnected robots afterwards.

In future work, we plan to transfer the system to
heterogeneous robot swarms where some of the robots
might have very different computational capabilities. In such
a heterogeneous robot swarm, the overhead of blockchain
technology could be delegated to the more powerful robots. For
example, a swarm of smaller Kilobots could report back to larger
Pi-puck robots at certain intervals. The Pi-puck robots could
store the blockchain and perform the PoW, while the Kilobots
just create transactions.

Another option to bring blockchain technology to robots
of any size is to use a different blockchain framework. In the
last couple of years, blockchain technology has experienced
dramatic development. While at the start of this research
work Ethereum was the only fully-developed blockchain-based
smart contract platform, there are now more than a dozen
smart contract platforms. These frameworks differ, among other
aspects, in terms of their computational requirements, consensus
protocol, scalability, robustness, speed, and use cases. The nature
of, for example, public-key cryptography, transactions, and
smart contracts, is largely independent of the used consensus
protocol. Therefore, our work can serve as a basis for studying
other blockchain frameworks, such as, Hyperledger Sawtooth15,
Cardano16, and Tezos17 in the context of robot swarms. By
means of these blockchain frameworks, we intend to compare
alternatives to the Proof-of-Work-based consensus protocol on
both the physical robots and via the ARGoS-Blockchain interface
in future work. We plan to study Proof-of-Stake (already
implemented in some existing blockchain protocols), Proof-
of-Sensing (only robots that can produce a certain sensory
output can send or validate transactions), or even Proof-of-
physical-Work (only robots that can prove that they have
performed physical work, such as collecting an item can send or
validate transactions).

8. CONCLUSIONS

In this article, our goal was to compare consensus protocols
used in swarm robotics with regard to their resilience to
Byzantine robots. We showed that existing consensus protocols
can easily fail in the presence of Byzantine robots. With the
developed ARGoS-blockchain interface, we provide a framework
for secure robot swarm coordination via blockchain-based smart
contracts as “meta-controllers.” Blockchain technology makes
sure that every robot runs the same code, that the code
is executed exactly as specified, that the robots come to a
consensus regarding the outcome of the execution, and that

15https://sawtooth.hyperledger.org/ (accessed September 12, 2019).
16https://www.cardano.org/en/home/ (accessed on September 12, 2019).
17https://tezos.com/ (accessed September 12, 2019).

Frontiers in Robotics and AI | www.frontiersin.org 20 May 2020 | Volume 7 | Article 54

https://sawtooth.hyperledger.org/
https://www.cardano.org/en/home/
https://tezos.com/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

there is not a single point of failure. Blockchains prevent Sybil
attacks via their scarce cryptocurrency that limits the number
of transactions a robot can send. Additionally, the blockchain
is able to securely store critical events. This decentralized log
can then be used to evaluate the quality of experiments and to
spot irregularities.

Blockchain-controlled robot swarms must meet certain
computational and memory requirements. Compared to
Internet-based blockchain networks, in robot swarms, the
computational capacities are limited, the delays can be much
longer, and failing entities are more probable due to rough
environmental conditions or flat batteries. While we discussed
these characteristics, we do not question the fact that there are
still many open challenges for blockchain-based swarm robotics.
Nevertheless, we are convinced that the synthesis of these two
technologies offers unprecedented possibilities and that the
various challenges can gradually be addressed. In this article
we have shown that blockchain-based smart contracts are a
promising and versatile tool to address security issues in swarm
robotics. If we ever want robot swarms to be deployed in the real
world, we need to start preparing them to the possible presence
of Byzantine robots: the work we have presented is a first step in
this direction.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in
the IRIDIA—Supplementary Information (ISSN: 2684-2041) at
http://iridia.ulb.ac.be/supp/IridiaSupp2019-009/.

AUTHOR CONTRIBUTIONS

All authors contributed to the conceptualization of
this research and the setup of the experiments. VS
implemented the software and conducted and analyzed
the experiments. In addition, he wrote the first
draft of this manuscript. EC and MD gave critical
feedback, revised the article, and contributed to the
final manuscript.

FUNDING

VS and MD acknowledge support from the Belgian F.R.S.-
FNRS and from the FLAG-ERA project RoboCom++. VS
additionally acknowledges support from the Office of Naval
Research Global under the Visiting Scientists Program No. 18-8-
003. EC acknowledges support from theMarie Skłodowska-Curie
actions (EU project BROS—DLV-751615).

REFERENCES

Beal, J. (2016). Trading accuracy for speed in approximate consensus. Knowl. Eng.

Rev. 31, 325–342. doi: 10.1017/S0269888916000175

Borisov, N. (2006). “Computational puzzles as Sybil defenses,” in Proceedings of the

Sixth IEEE International Conference on Peer-to-Peer Computing (P2P ’06) (Los

Alamitos, CA: IEEE Press), 171–176.

Brown, A., Franken, P., Bonner, S., Dolezal, N., and Moross, J. (2016). Safecast:

successful citizen-science for radiation measurement and communication after

Fukushima. J. Radiol. Protect. 36, S82–S101. doi: 10.1088/0952-4746/36/2/S82

Buterin, V. (2014). A Next-Generation Smart Contract and Decentralized

Application Platform. Ethereum Project White Paper. Technical Report.

Available online at: https://github.com/ethereum/wiki/wiki/White-Paper

(Accessed July 18, 2019).

Castelló Ferrer, E. (2016). The blockchain: a new framework for robotic swarm

systems. arXiv:1608.00695v3. doi: 10.1007/978-3-030-02683-7_77

Christensen, A. L., O’Grady, R., Birattari, M., and Dorigo, M. (2008). Fault

detection in autonomous robots based on fault injection and learning. Auton.

Robots 24, 49–67. doi: 10.1007/s10514-007-9060-9

Christensen, A. L., O’Grady, R., and Dorigo, M. (2009). From fireflies to

fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13, 754–766.

doi: 10.1109/TEVC.2009.2017516

Crosby, M., Pattanayak, P., Verma, S., and Kalyanaraman, V.

(2016). Blockchain technology: beyond bitcoin. Appl. Innov. 2:71.

doi: 10.1109/iCCECOME.2018.8658518

Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., et al.

(2004). Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17,

223–245. doi: 10.1023/B:AURO.0000033973.24945.f3

Douceur, J. R. (2002). “The Sybil attack,” in 1st International Workshop on Peer-to-

Peer systems, Vol. 2429 of Lecture Notes in Computer Science, eds P. Druschel,

F. Kaashoek, and A. Rowstron (Berlin; Heidelberg: Springer), 251–260.

Elhage, N., and Beal, J. (2010). “Laplacian-based consensus on spatial computers,”

in Proceedings of the 9th International Conference on Autonomous Agents and

MultiAgent Systems (AAMAS 2010) (Richland, SC: International Foundation

for Autonomous Agents and Multiagent Systems), 907–914.

Fernandes, M., and Alexandre, L. A. (2019). Robotchain: using Tezos technology

for robot event management. Ledger 4(Suppl. 1). doi: 10.5195/ledger.2019.175

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., and Dorigo,

M. (2012). Self-organized flocking with a mobile robot swarm: a novel

motion control method. Adapt. Behav. 20, 460–477. doi: 10.1177/1059712312

462248

Gil, S., Kumar, S., Mazumder, M., Katabi, D., and Rus, D. (2017). Guaranteeing

spoof-resilient multi-robot networks. Auton. Robots 41, 1383–1400.

doi: 10.1007/s10514-017-9621-5

Guerrero-Bonilla, L., Prorok, A., and Kumar, V. (2017). Formations

for resilient robot teams. IEEE Robot. Autom. Lett. 2, 841–848.

doi: 10.1109/LRA.2017.2654550

Gupta, V., Langbort, C., and Murray, R. M. (2006). “On the robustness of

distributed algorithms,” in Proceedings of the 45th IEEE Conference on Decision

and Control (Piscataway, NJ: IEEE Press), 3473–3478.

Higgins, F., Tomlinson, A., and Martin, K. M. (2009). “Survey on security

challenges for swarm robotics,” in Proceedings of the Fifth International

Conference on Autonomic and Autonomous Systems (Piscataway, NJ: IEEE

Press), 307–312.

Jacoby, W. G. (2000). Loess: a nonparametric, graphical tool for

depicting relationships between variables. Elect. Stud. 19, 577–613.

doi: 10.1016/S0261-3794(99)00028-1

Lamport, L., Shostak, R., and Pease, M. (1982). The Byzantine generals problem.

ACM Trans. Programm. Lang. Syst. 4, 382–401.

LeBlanc, H. J., Zhang, H., Koutsoukos, X., and Sundaram, S. (2013). Resilient

asymptotic consensus in robust networks. IEEE J. Select. Areas Commun. 31,

766–781. doi: 10.1109/JSAC.2013.130413

Lopes, V., and Alexandre, L. A. (2019). “Detecting robotic anomalies

using robotchain,” in IEEE International Conference on Autonomous

Robot Systems and Competitions (ICARSC 2019) (Piscataway, NJ: IEEE

Press), 1–6.

McAbee, A., Tummala, M., and McEachen, J. (2019). “Military intelligence

applications for blockchain technology,” in Proceedings of the 52nd Hawaii

International Conference on System Sciences (Honolulu, HI: ScholarSpace),

6031–6040.

Merkel, D. (2014). Docker: lightweight linux containers for consistent

development and deployment. Linux J. 2014. Available online at: https://www.

linuxjournal.com/content/docker-lightweight-linux-containers-consistent-

development-and-deployment

Frontiers in Robotics and AI | www.frontiersin.org 21 May 2020 | Volume 7 | Article 54

http://iridia.ulb.ac.be/supp/IridiaSupp2019-009/
https://doi.org/10.1017/S0269888916000175
https://doi.org/10.1088/0952-4746/36/2/S82
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-030-02683-7_77
https://doi.org/10.1007/s10514-007-9060-9
https://doi.org/10.1109/TEVC.2009.2017516
https://doi.org/10.1109/iCCECOME.2018.8658518
https://doi.org/10.1023/B:AURO.0000033973.24945.f3
https://doi.org/10.5195/ledger.2019.175
https://doi.org/10.1177/1059712312462248
https://doi.org/10.1007/s10514-017-9621-5
https://doi.org/10.1109/LRA.2017.2654550
https://doi.org/10.1016/S0261-3794(99)00028-1
https://doi.org/10.1109/JSAC.2013.130413
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Strobel et al. Blockchain Technology Secures Robot Swarms

Millard, A. G., Joyce, R., Hilder, J. A., Fleşeriu, C., Newbrook, L., Li, W., et al.

(2017). “The pi-puck extension board: a Raspberry Pi interface for the e-puck

robot platform,” in 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (Los Alamitos, CA: IEEE Press), 741–748.

Millard, A. G., Timmis, J., andWinfield, A. F. T. (2014). “Towards exogenous fault

detection in swarm robotic systems,” in Towards Autonomous Robotic Systems

- Proceedings of TAROS 2013 - 14th Annual Conference, Vol. 8069 of Lecture

Notes in Computer Science (Cham: Springer), 429–430.

Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., and

Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency:

a mechanism for self-organized collective decision-making. Swarm Intell. 5,

305–327. doi: 10.1007/s11721-011-0062-z

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Technical

Report. Available online at: https://bitcoin.org/bitcoin.pdf (Accessed August 11,

2018).

Nishida, Y., Kaneko, K., Sharma, S., and Sakurai, K. (2018). “Suppressing chain

size of blockchain-based information sharing for swarm robotic systems,”

in Proceedings of the Sixth International Symposium on Computing and

Networking Workshops (CANDARW 2018) (Los Alamitos, CA: IEEE Press),

524–528.

Olfati-Saber, R., and Murray, R. M. (2004). Consensus problems in networks of

agents with switching topology and time-delays. IEEE Trans. Autom. Control

49, 1520–1533.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al.

(2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot

systems. Swarm Intell. 6, 271–295. doi: 10.1007/s11721-012-0072-5

Primiero, G., Tuci, E., Tagliabue, J., and Ferrante, E. (2018). “Swarm attack: a self-

organized model to recover from malicious communication manipulation in

a swarm of simple simulated agents,” in Swarm Intelligence – Proceedings of

ANTS 2018 – Eleventh International Conference, eds M. Dorigo, M. Birattari,

C. Blum, A. L. Christensen, A. Reina, and V. Trianni (Cham: Springer),

213–224.

Reina, A., Dorigo, M., and Trianni, V. (2014). “Collective decision making

in distributed systems inspired by honeybees behaviour,” in Proceedings of

the 13th International Conference on Autonomous Agents and MultiAgent

Systems (AAMAS 2014), eds A. Lomuscio, P. Scerri, A. Bazzan, and M.

Huhns (Richland, SC: International Foundation for Autonomous Agents and

Multiagent Systems), 1421–1422.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V. (2015).

A design pattern for decentralised decision making. PLoS ONE 10:e0140950.

doi: 10.1371/journal.pone.0140950

Roumeliotis, S. I., Sukhatme, G. S., and Bekey, G. A. (1998). “Sensor fault detection

and identification in a mobile robot,” in Proceedings of the 1998 IEEE/RSJ

International Conference on Intelligent Robots and Systems. Innovations in

Theory, Practice and Applications (Cat. No. 98CH36190), Vol. 3 (New York, NY:

IEEE Press), 1383–1388.

Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., and Nagpal, R. (2014). Kilobot: a

low cost robot with scalable operations designed for collective behaviors. Robot.

Auton. Syst. 62, 966–975. doi: 10.1016/j.robot.2013.08.006

Saldaña, D., Prorok, A., Sundaram, S., Campos, M. F. M., and Kumar, V.

(2017). “Resilient consensus for time-varying networks of dynamic agents,” in

Proceedings of the American Control Conference (ACC) (Piscataway, NJ: IEEE

Press), 252–258.

Sargeant, I., and Tomlinson, A. (2016). “Maliciously manipulating a robotic

swarm,” in Proceedings of ESCS’16 – The 14th International Conference

on Embedded Systems, Cyber-Physical Systems, & Applications (Bogart, GA:

CSREA Press), 122–128.

Saulnier, K., Saldaña, D., Prorok, A., Pappas, G. J., and Kumar, V. (2017). Resilient

flocking for mobile robot teams. IEEE Robot. Autom. Lett. 2, 1039–1046.

doi: 10.1109/LRA.2017.2655142

Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski,

M., et al. (2009). Get in touch: cooperative decision making based on

robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18, 133–155.

doi: 10.1007/s10458-008-9058-5

Soysal, O., and Sahin, E. (2005). “Probabilistic aggregation strategies in swarm

robotic systems,” in Proceedings of the 2005 IEEE Swarm Intelligence Symposium

(SIS 2005) (Piscataway, NJ: IEEE Press), 325–332.

Strobel, V., Castelló Ferrer, E., and Dorigo, M. (2018). “Managing Byzantine

robots via blockchain technology in a swarm robotics collective decision

making scenario,” in Proceedings of the 17th International Conference on

Autonomous Agents andMultiAgent Systems (AAMAS 2018), edsM. Dastani, G.

Sukthankar, E. André, and S. Koenig (Richland, SC: International Foundation

for Autonomous Agents and Multiagent Systems), 541–549.

Strobel, V., and Dorigo, M. (2018). “Blockchain technology for robot swarms:

a shared knowledge and reputation management system for collective

estimation,” in Swarm Intelligence – Proceedings of ANTS 2018 – Eleventh

International Conference, Vol. 11172 of Lecture Notes in Computer Science, eds

M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, and V. Trianni

(Cham: Springer), 425–426.

Szabo, N. (1997). Formalizing and securing relationships on public networks. First

Monday 2. doi: 10.5210/fm.v2i9.548

Tarapore, D., Christensen, A. L., and Timmis, J. (2017). Generic, scalable

and decentralized fault detection for robot swarms. PLoS ONE 12:e182058.

doi: 10.1371/journal.pone.0182058

Tarapore, D., Lima, P. U., Carneiro, J., and Christensen, A. L. (2015). To err

is robotic, to tolerate immunological: fault detection in multirobot systems.

Bioinspir. Biomim. 10:016014. doi: 10.1088/1748-3190/10/1/016014

Tarapore, D., Timmis, J., and Christensen, A. (2019). Fault detection in a swarm

of physical robots based on behavioral outlier detection. IEEE Trans. Robot.

35:1–7. doi: 10.1109/TRO.2019.2929015

Valentini, G., Brambilla, D., Hamann, H., and Dorigo, M. (2016a). “Collective

perception of environmental features in a robot swarm,” in Swarm Intelligence

– Proceedings of ANTS 2016 – Tenth International Conference, Vol. 9882 of

Lecture Notes in Computer Science (Cham: Springer), 65–76.

Valentini, G., Ferrante, E., and Dorigo, M. (2017). The best-of-n problem in robot

swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI

4:9. doi: 10.3389/frobt.2017.00009

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016b).

Collective decision with 100 Kilobots: speed versus accuracy in binary

discrimination problems. Auton. Agents Multi-Agent Syst. 30, 553–580.

doi: 10.1007/s10458-015-9323-3

Winfield, A. F. T., and Nembrini, J. (2006). Safety in numbers: fault

tolerance in robot swarms. Int. J. Modell. Identif. Control 1, 30–37.

doi: 10.1504/IJMIC.2006.008645

Xiao, L., Boyd, S., and Lall, S. (2005). “A scheme for robust distributed sensor

fusion based on average consensus,” in The Fourth International Symposium on

Information Processing in Sensor Networks (IPSN 2005) (Piscataway, NJ: IEEE

Press), 63–70.

Zikratov, I., Maslennikov, O., Lebedev, I., Ometov, A., and Andreev, S. (2016).

“Dynamic trust management framework for robotic multi-agent systems,” in

Proceedings of the 12th International Conference on Next Generation Teletraffic

and Wired/Wireless Advanced Networking (NEW2AN 2016), and the 5th

Conference on Internet of Things and Smart Spaces (ruSMART 2016), eds O.

Galinina, S. Balandin, and Y. Koucheryavy (Cham: Springer), 339–348.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The handling editor declared a past co-authorship with one of the authors MD.

Copyright © 2020 Strobel, Castelló Ferrer and Dorigo. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 22 May 2020 | Volume 7 | Article 54

https://doi.org/10.1007/s11721-011-0062-z
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1016/j.robot.2013.08.006
https://doi.org/10.1109/LRA.2017.2655142
https://doi.org/10.1007/s10458-008-9058-5
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1371/journal.pone.0182058
https://doi.org/10.1088/1748-3190/10/1/016014
https://doi.org/10.1109/TRO.2019.2929015
https://doi.org/10.3389/frobt.2017.00009
https://doi.org/10.1007/s10458-015-9323-3
https://doi.org/10.1504/IJMIC.2006.008645
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Blockchain Technology Secures Robot Swarms: A Comparison of Consensus Protocols and Their Resilience to Byzantine Robots
	1. Introduction
	2. Fundamentals of Blockchain Technology for Swarm Robotics
	2.1. General Foundation
	2.2. Blockchain-Based Smart Contracts

	3. Related Work
	3.1. Consensus Achievement
	3.1.1. Linear Consensus Protocol
	3.1.2. W-MSR: Byzantine Approximate Consensus

	3.2. Security Issues in Swarm Robotics
	3.3. Related Work on Blockchain Technology in Robot Swarms

	4. ARGoS-Blockchain Interface
	5. Materials and Methods
	5.1. Setup of the Simulations
	5.2. Implementation of the Different Consensus Models
	5.2.1. Linear Consensus Protocol
	5.2.2. W-MSR
	5.2.3. Blockchain Approach

	5.3. Software Availability
	5.4. Statistics

	6. Simulations
	6.1. Comparison in Absence of Byzantine Robots
	Results, Discussion, and Interpretation

	6.2. Comparison in Presence of Byzantine Robots
	6.2.1. Byzantine Robots in a Random Environment
	Results, discussion, and interpretation

	6.2.2. Consensus Agreement in the Presence of Byzantine Robots
	Results, discussion, and interpretation

	6.2.3. Byzantine Robots in a Binary Environment
	Results, Discussion, and Interpretation

	6.3. Comparison in Presence of Sybil Attacks
	Results, Discussion, and Interpretation

	7. General Discussion
	7.1. Implications
	7.2. Limitations
	7.3. Future Work

	8. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

