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In this paper, we present a novel pipeline to simultaneously estimate and manipulate the

deformation of an object using only force sensing and an FEM model. The pipeline is

composed of a sensor model, a deformation model and a pose controller. The sensor

model computes the contact forces that are used as input to the deformation model

which updates the volumetric mesh of a manipulated object. The controller then deforms

the object such that a given pose on the mesh reaches a desired pose. The proposed

approach is thoroughly evaluated in real experiments using a robot manipulator and a

force-torque sensor to show its accuracy in estimating and manipulating deformations

without the use of vision sensors.
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1. INTRODUCTION

As deformable objects are ubiquitous in many industries, automating their manipulation would
have a great social impact. For instance, robots could perform tasks that are either dangerous
or monotonous for workers. Examples of manipulation of deformable objects can be found in
the automobile and aerospace industries, where cables and wires must be connected in order to
assemble motors; in health care, where clothes are handled to dress disabled people; and in the
food industry where meat and produce have to be processed with care. This has sparked interesting
robotic solutions that attempt to address issues such as automating the manufacture of motors
by manipulating cables as proposed by Rambow et al. (2012), Roussel and Ta (2015), and Shah
and Shah (2016), using robots to perform clothing assistance as described by Yu et al. (2017)
and Erickson et al. (2017). and even food handling as proposed by Bac et al. (2017) and Lehnert
et al. (2017). The interest in the robotic community to address the sensing and manipulation of
deformable objects has been increasing in recent years as shown by the number of works covered in
different surveys as presented by Henrich andWörn (2000), Khalil and Payeur (2010), and Sanchez
et al. (2018a).

In this paper we propose an approach to both sense and manipulate the deformation of soft
object1. Specifically, we extend our previous work where a pipeline to estimate the deformation of
a soft object was proposed in Sanchez et al. (2018b). This deformation sensing pipeline requires
an input force and an initial mesh to output the updated mesh that describes the deformation
of the object. Here, in addition to enhancing the sensing capabilities of our previous work, we
develop a controller to manipulate a deformable object. The sensing improvements are mainly due
to changing the input sensor from a set of tactile sensors on the finger tips of a robotic hand to a
single force-torque sensing attached to the end of a robotic arm. Regarding the manipulation of a

1An implementation of the code is available at https://github.com/jsanch2s/uca_deformation_sensing.
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FIGURE 1 | Real deformation of a block-like object, shown on the left side,

compared to the estimation of the proposed approach, visualized in RViz,

shown on the right side.

soft object, replacing a robot hand by a robotic manipulator
simplifies the manipulation problem since a robotic hand is
limited to its finger motions (e.g., opening and closing the hand);
while a seven degree of freedom manipulator is able to move in
the 3D Cartesian space. In order to perform this manipulation we
simplify the problem by controlling the position of a single pose
on the mesh. An comparison between our estimation and a real
world deformation can be seen in Figure 1.

Following this introduction we review the state of the art
for robotic sensing and manipulation of deformable objects in
section 2. In section 3, we detailed our approach to estimate
the deformation of an object while being manipulated as well
as controlling its deformation. An experimental validation of
the proposed approach is presented in section 4 followed by
a discussion of the experimental results in section 5. Finally,
our concluding remarks and future work are summarized in
section 6.

2. RELATED WORK

Two decades ago, one of the first works focusing on controlling
the shape of a deformable object was presented by Wada
et al. (1998), where the problem was formulated as an Indirect
Simultaneous Positioning (ISP) problem. ISP consists in defining
two sets of points, namely, controlled and manipulation points.
Where the former are points on the surface of the object (usually
away from the edges such that are not graspable), while the latter
are defined by positions where a robotic manipulator is grasping
the object.

Following the work of Wada, other researchers have tackled
the ISP problem using vision to obtain the position of the
controlled points. Navarro-Alarcón et al. in a series of works,
proposed a way to control the configuration of a deformable
object using visual servoing. Here, the configuration of the object
is described using deformation feature vectors, based on a set of
points tracked using markers. The proposed deformation vectors
were defined by a set of points in an object to control a point, a
distance or angle between two points, and a curvature described
by three points. These approaches rely on a deformation

Jacobian, which here refers to a matrix mapping the motion
of the grippers to the deformation of the object. In Navarro-
Alarcon et al. (2013), the deformation Jacobian is estimated using
the Broyden method, which computes the Jacobian once at the
beginning and then approximates it at each iteration using the
previous Jacobian and the changes of the feature vectors and
the end-effector’s pose; and, in Navarro-Alarcon et al. (2014),
they proposed a new estimation that used views from multiple
cameras. However, both of these approaches were limited as they
control the deformation features on a plane, namely in the image
space. This was later addressed in Navarro-Alarcon et al. (2016),
by using stereo-vision to track the points in 3D and subsequently
define the deformation feature vectors also in 3D.

A similar approach proposed by Alambeigi et al. (2018)
extended its application to heterogeneous objects while being
robust to disturbances, e.g., the objects were filled with water
beads (heterogenous) and then cut (disturbance) while the
controller was running. To achieve this, instead of relying only on
a deformation Jacobian, they combined it with an image Jacobian
to consider both the deformation behavior of the object as well as
the feedback points obtained by the vision system. Recently, Hu
et al. (2018), using an RGB-D camera, were able to obtain a
much faster convergence in the deformation control than the
approaches proposed in Navarro-Alarcon et al. (2014, 2016)
by using Gaussian Process Regression (GPR) to estimate the
deformation Jacobian, since GPR is able to model non-linearities.

Instead of relying on vision, Berenson (2013) used simulated
objects described by a set of points, where the positions were
assumed to be known at any time. Unlike the approaches
described above, Berenson estimated the deformation Jacobian
by introducing the concept of diminishing rigidity which assumes
that the controlled points closer to manipulated points (e.g., a
point where the object is being held) behave rigidly and the
farther the controlled points are frommanipulated points the less
rigid they become.

A novel approach for controlling the shape of an object
without requiring an ISP formulation, was recently proposed
in Navarro-Alarcon and Liu (2018), where the object’s contour
was described by Fourier coefficients. Thus, instead of controlling
the deformation of an object based on a set of points, they
deformed the object such that the contour of the object was
similar to the desired one.

Other works have focused on sensing the deformation of an
object rather than controlling its shape using vision, either by
relying on a mesh model as proposed in Petit et al. (2015),
Fugl et al. (2012), Schulman et al. (2013), and Frank et al.
(2010) or being model-free (see Cretu et al., 2012; Güler et al.,
2015). Due to space limitations we do not review the works
focused on deformation sensing, but we refer the interested
reader to a recent survey were these works are thoroughly
reviewed (Sanchez et al., 2018a).

3. APPROACH

As described in the previous section, most work concerning
deformation control has either relied on vision sensing or
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assumed that the object’s shape (e.g., a set of points describing
the object) is known at any time. However, vision systems
are sensitive to variations in illumination, have difficulties
segmenting objects with similar colors to their backgrounds and,
perhaps most importantly, they are limited by occlusions arising
while manipulating objects. In order to provide a complementary
sensing modality, we propose a method using force sensing,
coupled with a deformation model, to estimate the shape of an
object while being deformed.

We propose a manipulation controller, shown in Figure 3,
which uses an improved version of the deformation sensing
pipeline proposed in Sanchez et al. (2018b) and a novel force
sensor model, described in Mohy el Dine et al. (2018), that
estimates the pure contact forces generated while deforming an
object grasped by a robot manipulator. This approach shows a
potential application when vision is compromised, e.g., when a
room is too dark or cluttered.

3.1. Force Sensor Model
Since the input to the deformation sensing pipeline is the contact
force that deforms the object, we obtain this force using a
force-torque sensor. However, as force-torque sensors not only
measure contact forces but also non-contact forces generated by
gravity, inertia, Coriolis and centrifugal forces (as depicted in
Figure 2); it is necessary to first estimate the non-contact forces
to then subtract them from themeasured forces in order to obtain
the pure contact forces. Thus, the output of a force-torque sensor
can be expressed as:

Fmeas = Fnc + Fc (1)

FIGURE 2 | Example of non-contact forces measured by the force-torque

sensor when the robot arm is moved without any contacts.

where Fmeas is the measured force, i.e., the output of a force-
torque sensor, Fc represents the contact forces and the non-
contact forces Fnc are defined as:

Fnc = Fgravity + Finertia + Fcoriolis + Fcentrifugal (2)

In order to estimate these non-contact forces from a force-
torque sensor, we use a recently proposed observer that was
shown to outperform analytical based methods by using a
Recurrent Neural Network. The Recurrent Neural Network
observer (RNNOB) proposed in Mohy el Dine et al. (2018), takes
as input the orientation and twist of the robot end-effector frame
w.r.t. the robot base frame [oee,υee,ωee]T which are obtained by
the first and second order forward kinematics; as well as the linear
acceleration αIMU published by an IMU sensor. The output of
the RNNOB is the estimated non-contact force w.r.t. the sensor
frame F̂snc. Then, the pure contact forces, expressed in the sensor
frame, can be estimated as:

Fsc = Fsmeas − F̂snc (3)

The network’s architecture consisted of two hidden layers, with 15
and 10 LSTM units, and it was trained over 50 epochs using 80%
of the data set (∼10,000 data points). The sequence length of the
input layer was of 100 time steps (0.2 s). In the output layer, we
applied Stochastic Gradient Descent with a learning rate of 0.01
to minimize the mean square error of the regression problem. A
hyperbolic tangent sigmoid function was used as the activation
function between the layers.

3.2. Deformation Sensing Pipeline
To estimate the deformation of the object we improve the
sensing pipeline proposed in our previous work (Sanchez et al.,
2018b). Namely, we replaced the tactile sensors by a single
force-torque sensor and, instead of pushing the objects with the
fingertips of a robot hand, the object is grasped by a robot hand.
The advantages of grasping an object over pushing it with the
fingertips, are twofold:

1. The object can be manipulated in multiple directions (i.e., it
can be moved up/down and side to side and be pulled and
pushed).

2. The contact locations can be assumed to remain fixed.

The first advantage allows us to better control the object, where as
the second advantage improves the estimation since the location
of the contact forces is known and constant (e.g., no slippage of
contact). As shown in Figure 3, the deformation sensing pipeline
takes as input the initial state of a mesh qinit and a force F to
estimate the mesh deformation. Formally, a mesh q ∈ R

3n is
represented as set of n nodes connected by tethrahedral elements.
The mesh’s deformation is estimated by applying the external
forces and propagating the internal forces throughout the mesh.
By solving the following differential equation we can obtain the
updated positions of the nodes:

Fext = Mq̈+Dq̇+ Fint(q) (4)

where Fext ∈ R
3n is a vector of the three-dimensional forces

applied to each node n. The position, velocity and acceleration
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FIGURE 3 | Block diagram of the proposed deformation controller. The current and desired poses, xoc and xod, respectively, are described w.r.t. the object frame. As

the robot expects the end-effector twist expressed in the robot base frame {R}, the twist expressed on the object frame, namely
[

υo
R,ω

o
R

]

, must be multiplied by an

adjoint matrix Adg relating these two frames in order to obtain the desired twist (
[

υee
R ,ωee

R

]

).

of each node is represented by q, q̇, and q̈, respectively, with
q ∈ R

3n. The mass matrix is M ∈ R
3n×3n and D represents the

damping matrix.
Since the deformation sensing pipeline requires the input

force to be described w.r.t. the object frame, we transform the
force using the adjoint matrix AdTg , as obtained by the force
sensor model described in section 3.1, as follows:

Fo = AdTg · Fsc (5)

3.3. Manipulating Deformation
Since controlling the complete shape of an object (e.g., all the
nodes of a mesh) is a heavily underactuated problem, except
for trivial cases, we reduce the control problem by focusing on
controlling a single pose on the mesh. To this end, we first must
extract a suitable pose from the mesh and consequently control
that pose such that it reaches a target pose. To extract a pose
we exploit the fact that the nodes of the mesh are connected by
tetrahedra so three suitable nodes would form a triangle as shown
in Figure 4. By selecting three neighboring nodes (p1, p2, p3)
from the mesh, we can extract a pose as follows:

c =
1

3

3
∑

i=1

pi (6)

n = (p2 − p1)× (p3 − p1) (7)

s = cos
(π

2

)

, v = n ·
sin

(

π
2

)

‖n‖2
(8)

x = [c, (s, v)]T (9)

where pi is the position of the node at the i−th index of the mesh
q and n represents the normal of the plane formed by the points.
The position and orientation of the pose are given by the centroid
c and the quaternion, respectively, where s is the scalar part of the
quaternion and v is the vector part. To manipulate the mesh to

FIGURE 4 | Simulated mesh of a bar-like object. The mesh nodes are shown

in black and the nodes used to extract a pose are in green.

a desired pose, let xc denote the current pose, as extracted by the
method described above, and xd the desired pose for the mesh to
reach. Then, we can define an error signal as follows:

e = xd − xc (10)

Subsequently, we can transform the error e into a twist command
by multiplying it by a diagonal gain matrix 3. As the twist is
expressed in Cartesian space, we compute the joint velocities to
command a robotic arm by joint velocity control as:

θ̇ = J+(Adg · 3 · e) (11)

where J+ is the Moore–Penrose inverse Jacobian used for
redundant manipulators.

4. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed approach by
deforming four objects with different shapes and material
properties. The two shapes of the objects2 are described in
Table 1 and the materials properties are shown in Table 2. The

2The objects were bought from the following vendor: http://www.

moussesurmesure.com/.
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TABLE 1 | Geometric information of the test objects.

Dimensions (cm) Mesh

Length Width Height Nodes Elements

Block 6 40 40 360 1,079

Bar 6 6 50 207 536

TABLE 2 | Material properties of the test objects.

Elasticity parameters

Material

name

Mass density

(kg/m3)

Young modulus

(Pa)

Poisson

ratio

Hard HR 45 45 18,500 0.15

Soft Bultex 26 26 9,000 0.15

elastic behavior of isotropic materials can be represented by two
parameters, such as the Young’s modulus and the Poisson’s ratio.
One common way to obtain these parameters is to perform a
compression test which consists on pushing down on an object
while simultaneously recording the displacement3 of the object
and the applied force.

We attempted to estimate the material properties of a cube
object with three different materials: hard (HR 45), medium
(Bultex 30), and soft (Bultex 26) (note that only the hard and soft
materials were used in the experiments described in section 5).
For the test, the object was placed inside of a press that can be
programmed to move on a vertical axis until a desired height
and is equipped with a force sensor. The press was set to first
move down to approximately compress the object 36 mm, then
to move upwards until the compression was around 4 mm and
finally the press was moved down until 44 mm of compression
were reached. The results of this test can be seen in Figure 5,
where the compression is plotted against the measured force.

It can be seen from these figures, that the behavior of
all three materials is not only non-linear but also presents
hysteresis. Hence, modeling these materials as linear will result in
inaccuracies. Nevertheless, we can use the test findings to obtain
a range estimation of the Young’s modulus for each material and
then tune them individually until the simulation behavior better
matches reality.

Two sets of experiments were conducted: one to measure the
accuracy of the deformation sensing and the second one to assess
the manipulation capabilities.

The experimental setup used for both sets of experiments
is shown in Figure 6, where the test rig ensures the contact
points are consistent among the experiments. The seven degree of
freedom robot manipulator KUKA LWR+4 arm (Bischoff et al.,
2010) with the dexterous ShadowDexterous Hand4 attached at its
end were used to manipulate the objects. The inputs to the sensor

3Here, displacement refers to the compression of the object, i.e., the object is fixed

at one side while the opposite side is moved toward the fixed side.
4https://www.shadowrobot.com/products/dexterous-hand/.

FIGURE 5 | Displacement-force curve showing the hysteresis of the test

materials.

model were obtained by an ATI Gamma5 force-torque sensor and
an inertial measurement unit (IMU)6 sensor, both attached to the
robot arm as shown in Figure 6. The test objects were fixed on a
test rig, where the bar objects were fixed such that their long axis
were parallel to the XY plane of the robot frame and the block
objects were attached by their bottom side, as seen in Figures 6, 8.

The ANSYS7 software was used to generate the volumetric
meshes of the four test objects and the Co-rotational Linear
method from the Vega FEM library (Sin et al., 2013) was used to
implement the deformationmodel. As for the force sensormodel,
we used the same network architecture described inMohy el Dine
et al. (2018) but trained the network with motions of the robot
arm that were adequate for our experiments.

4.1. Deformation Sensing
To evaluate the sensing accuracy of our proposed pipeline we
commanded a set of poses in the XZ plane of the robot frame,
as shown in Figure 7. The bar objects had to reach the six
different poses seen in Figure 7, where as the block objects
were commanded to move to three poses along the Z axis (see
Figure 8), since they were fixed on their bottom side. The error
signal was computed as the distance per axis between the pose
where the end-effector grasped the object (reference) and a pose
on the mesh (measured). The measured pose was obtained by
using the pose extraction method outlined in section 3.3, where
the indices were chosen such that the pose coincided with the
reference pose before the object was deformed.

For each object, seven trials were performed consisting in
three and six target positions for the block and the bar objects,
respectively. The results are summarized in Figure 9, where, the
mean of the absolute error between the reference and measured
positions was computed for each trial.

5http://www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma.
6We used the Adafruit (L3GD20H + LSM303) sensors: https://www.adafruit.com/

product/1714.
7https://www.ansys.com/.
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FIGURE 6 | Experimental setup for a bar-like object.

FIGURE 7 | Example of the path to follow the six test poses by the bar objects during the sensing evaluation. The R′ denotes a reference frame having the same

orientation as the robot base frame (see Figure 6) but a different translation in order to make it visible.
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FIGURE 8 | Test poses used for the block-like objects for the sensing

evaluation.

4.2. Manipulating Deformation
The performance of manipulating deformation was evaluated on
the bar soft and block hard objects. For the bar object we set poses
along the X and Z axis and the XZ plane as shown in Figure 7. As
mentioned above, due to the block object being fixed at its bottom
side, we only commanded poses along the Z axis as it can be
seen in Figure 8. Similarly to the sensing evaluation, we defined
the reference pose as the pose where the end-effector grasped
the object and the measured pose was extracted using the pose
extraction method as described above. Furthermore, we used a
graphical user interface to set a target pose for the measured pose
to reach.

Note that these control tasks could be solved by simply
commanding a desired pose for the end-effector without
regarding the mesh deformation. However, the purpose of this
evaluation is to show that the shape of the object is estimated
accurately enough to apply a controller.

5. RESULTS AND EXPERIMENTAL
INSIGHTS

5.1. Sensing Evaluation
Before using the deformation sensing model in the control
pipeline in Figure 3, it was evaluated quantitatively based on the
experiments described in section 4.1 to draw ourselves and the

reader an idea about the accuracy and precision of themodel. The
box plots for X and Z estimation of bar hard object are relatively
small (< 2 cm) for 50% of the measurements, Figure 9A shows
an accuracy of 1.6 cm in X and 2 cm in Z, however the precision
is < 0.8 cm in X and < 0.3 cm in Z. Concerning the box plots of
bar soft, for 50% of the measurements, they are < 2 cm as well
in Figure 9B; the estimated position accuracy is 0.8 and 2 cm,
respectively, in X and Z while the precision is < 0.4 cm in X and
< 0.6 cm in Z. Concerning the blocks, the box plots are very small
(< 2 mm) in Figures 9C,D. This reflects a 1 mm precision of the
different measurements conducted for the both blocks. however,
the accuracy is 3.8 cm along Z for the block hard and 2.25 cm
for the block soft. The variances in the blocks position estimation
measurements are smaller than the ones of the bars as the blocks
are stiffer, hence they are more resistant to the small force reading
errors. Regarding the different position accuracy measurements
for the objects used, it is dependent on how good are the physical
parameters in Table 2 applied to the mesh.

5.2. Soft Bar Experiments
The current pose estimation using the mesh is evaluated in the
velocity control loop shown in the block diagram in Figure 3.
Figure 10 shows the control position commands (green), along
the X and Z axes, against the response positions extracted from
the mesh (red) and the reference positions extracted using the
robot kinematics (blue). The figures show that the controller is
able to bring the mesh to the desired positions, along the X and
Z axes, within a 2 cm error (the desired positions are reached at
19, 40, and 60 s) as shown in Figure 11. Moreover, in Figure 10,
a clear delay can be seen between the command and the response
of the mesh. This delay is mainly because of three reasons:

1. Command: Since the commanded signal is set by a GUI, the
target poses for the controller result in a sharp slope.

2. Elasticity parameters: The deformation model is highly
sensitive to the elasticity parameters, namely, the Young
modulus and Poisson ration. Thus, an adequate identification
is necessary.

3. Sensor noise: In order to obtain a smoother signal from
the force sensors, a filter was applied but this introduced
additional delay.

These reasons cause the controller to have a response similar to
damped step response and takes around 20 s to converge to the
commanded goal. Hence, the error increases the most when a
command is received, then it converges to a value close zero (see
Figure 11).

Concerning the small vibrations in the positions obtained
from the mesh, they are mainly because of the small noise in the
force readings. We note here that bar used in the tests is very soft
(Table 2) that it can be deformed easily by small forces (< 2N),
that’s why the noises from residual non-contact forces and sensor
noise have this much effect on the deformationmodel. For harder
objects we expect the mesh to be less sensible to this noise.

5.3. Hard Block Experiments
The same controller shown in Figure 3 was used to move the
block hard object to a different poses along the Z axes. Figure 12
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FIGURE 9 | Errors for the deformation sensing evaluation for the four test objects. The errors for the bar objects refer to the average errors on the X and Z axes. For

the block objects p1 refers to the front position, p2 to the back position and p3 is the original position after manipulating the object as shown in Figure 8. (A) Bar soft.

(B) Bar hard. (C) Block soft. (D) Block hard.

FIGURE 10 | Command and responses of the mesh and the robot end

effector (EE) along the X and Z axes for the bar soft object.

shows the commanded position against the position extracted
from the mesh, where the response of the controller shows a
similar delay to the one in the bar experiment. However, the
mesh estimation of the position overshoots as the target goal
is far as almost twice as the one from the bar experiments.
This is caused by the controller commanding the arm to move
faster which in turn generates more residual inertial forces
resulting in the mesh overshooting. It is important to note, that
in these experiments we focus on measuring how accurate the

FIGURE 11 | Control errors along the X and Z axes for the bar soft object.

FIGURE 12 | Command and responses of the mesh and the robot end

effector (EE) along the Z axis for the block hard object.

controller can bring the mesh to a desired position without
using vision sensors, rather than evaluating the controller’s
performance. Figure 13 shows the errors converge to less than
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FIGURE 13 | Control error along the Z for the block hard object.

2 cm when the targets along the Z are reached (i.e., at 17,
35, and 45 s).

6. CONCLUSION AND FUTURE WORK

We have presented a pipeline that is able to simultaneously
estimate andmanipulate deformable objects without the need of a
vision system, which is widely required by other approaches. The
proposed deformation sensing pipeline takes as input a contact
force and an initial mesh with the physical characteristics of
the object. An FEM simulation estimates the deformation of
the mesh based on the input force and in order to control the
mesh, a pose, extracted from a given set of nodes of the mesh,
is driven by a robot manipulator to reach a desired pose. The
approach was experimentally validated using a robotic arm with
a dexterous hand as an end-effector and an attached force-torque
sensors. The experimental validation showed promising results
and precision to a certain limit.

The accuracy of the approach is limited due to several factors
such as the control loop being closed on the pose extracted from

the mesh which is subject to drift due to noise of the force-
torque sensor readings. Additionally, the physical parameters
of each object are not obtained in a straight forward manner,
thus affecting the estimation between the deformation of the
real object and the estimation by the model. In future work,
we will focus on incorporating vision to correct the errors in
the estimation of the deformation, as well as investigating the
performance of different controllers for deformation control
found in the literature (e.g., Navarro-Alarcon et al., 2016; Hu
et al., 2018). Furthermore, this approach can be extended to
multi-robot systems, such that each robot controls a pose on the
mesh and thus increasing the shape control capabilities.
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