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Robot swarms are groups of robots that each act autonomously based on only

local perception and coordination with neighboring robots. While current swarm

implementations can be large in size (e.g., 1,000 robots), they are typically constrained

to working in highly controlled indoor environments. Moreover, a common property of

swarms is the underlying assumption that the robots act in close proximity of each other

(e.g., 10 body lengths apart), and typically employ uninterrupted, situated, close-range

communication for coordination. Many real world applications, including environmental

monitoring and precision agriculture, however, require scalable groups of robots to

act jointly over large distances (e.g., 1,000 body lengths), rendering the use of dense

swarms impractical. Using a dense swarm for such applications would be invasive

to the environment and unrealistic in terms of mission deployment, maintenance and

post-mission recovery. To address this problem, we propose the sparse swarm concept,

and illustrate its use in the context of four application scenarios. For one scenario, which

requires a group of rovers to traverse, and monitor, a forest environment, we identify

the challenges involved at all levels in developing a sparse swarm—from the hardware

platform to communication-constrained coordination algorithms—and discuss potential

solutions. We outline open questions of theoretical and practical nature, which we hope

will bring the concept of sparse swarms to fruition.

Keywords: swarm robotics, multirobot systems, field robotics, forest robots, sparse coupling, communication

networks, information propagation, long-range radio

1. INTRODUCTION

Swarm robotics takes inspiration from observed behaviors of collective systems in nature
(Camazine et al., 2003) to develop large-scale teams of robots with limited individual capabilities;
the collective behavior emerging from the self-organized interactions between the many robots of
a swarm allow it to solve complex tasks (Beni, 2004; Sahin, 2004). To date, robot swarms have been
demonstrated to solve tasks such as aggregation (Gauci et al., 2014), coordinatedmovement (Virágh
et al., 2014), transportation of objects (Wang and Schwager, 2016), self-assembly (Rubenstein
et al., 2014; Mathews et al., 2017), collective construction of structures (Werfel et al., 2014), and
decentralized consensus formation (Schmickl and Crailsheim, 2008; Valentini et al., 2016).

Despite the variety of movement-centric and simple cognitive tasks that robot swarms have been
demonstrated to perform (Bayındır, 2016), they continue to function largely as demonstration
platforms in carefully controlled laboratory environments (Schranz et al., 2020), unable to
transition to realistic application scenarios due to the following challenges:
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Difficulties maintaining a high-density swarm: A common
feature of existing swarm robotic systems is the underlying
assumption that the robots of the swarm act in close proximity of
each other. Inter-robot distances of existing swarms are typically
around 1–10 body lengths, both in indoor (Rubenstein et al.,
2014; Pickem et al., 2017), and outdoor (Duarte et al., 2016;
Zoss et al., 2018) environments. Densely packed robot swarms are
inspired by social insect colonies, and rely on inter-robot physical
interactions to complete their task. However, in employing such
swarms in real-world outdoor applications encompassing large
areas, the end-user faces a number of challenges involving
the deployment and maintenance of such large numbers of
robots during the mission. The recovery of the swarm post-
mission is also problematic, particularly considering the high
environmental cost of unrecovered robots. Furthermore, densely
packed swarms are more likely to physically disrupt the other
mission-participants, such as emergency workers in search and
rescue operations.
Constraints on inter-robot communication: In most robot
swarms, inter-robot coordination is reliant on an uninterrupted
access to situated, close-range communication of coordination
messages between robots (Duarte et al., 2016; Mathews et al.,
2017, 2019; Garattoni and Birattari, 2018; Albani et al., 2019).
However, in real-world scenarios robot swarms may face a
number of challenges in exchanging coordination messages
across the swarm. Swarms would be required to share
communication channels with other participants in a mission,
with high-bandwidth wireless channels most likely being
reserved for human operators. Additionally, due to regulatory
imposed channel-specific limitations on the communication
duty-cycle (i.e., the proportion of time the transmitter is sending
messages) (Semtech, 2015; Bor and Roedig, 2017), the robots
of the swarm may also expect significant latency in receiving
coordination messages.
Restricted mobility and low endurance of robot platforms:

Most commercially available swarm robot platforms are designed
to be operated over short distances (i.e., limited endurance)
in carefully controlled indoor laboratory environments. This
is particularly the case for swarms of ground robots that are
typically constrained to operate on smooth, leveled surfaces such
as table-tops (Mondada et al., 2009; Chamanbaz et al., 2017; Jones
et al., 2018). Furthermore, low-cost outdoor platforms typically
offer low autonomy and endurance, and are not thoroughly
tested, compared to more costly alternatives.

In summary, despite the desirable characteristics of
robustness and flexibility observed in collective systems in
nature (Camazine et al., 2003), robot swarms inspired by such
systems remain ill suited for realistic application scenarios. In
mimicking the densities and coordination strategies of swarms
in nature, swarm robotics faces a number of technological
challenges relating to materials and their fabrication, power-
efficiency, and battery-technologies for developing small-scale
robots of a swarm that are compliant and autonomous
in manners similar to their biological counterparts (Yang
et al., 2018). Therefore, for robot swarms to be employed in
realistic application scenarios, swarm technologies need to
be reconceptualized.

In this paper, we propose the concept of sparse swarms, where
the group of robots interact while (i) not being in close proximity
to each other, and/or (ii) it is not possible for information
to rapidly propagate within the group. Sparse swarms could
be particularly relevant in application scenarios, where the
robots are operating in the order of 1, 000 body lengths apart
under sporadic low-bandwidth communication constraints. In
such scenarios, the robots would be likely be required to
coordinate their activities via informational interactions rather
than physical interactions.

2. RELATED CONCEPTS

This section notes similarities and differences between
sparse swarms and two related concepts, cloud robotics
and multirobot systems.

2.1. Cloud Robotics
In the domain of cloud robotics, robots separated by large
distances perform some tasks, for example, grasping objects,
while storing and sharing task-critical information over a
“cloud” (Beetz et al., 2011; Kehoe et al., 2015; Wan et al., 2016).
This is realized via machine-to-cloud (M2C) and/or machine-
to-machine (M2M) communications (Hu et al., 2012). In both
cloud robotics and sparse swarms, robots may rely on long-
range interactions, for example, to share and learn from each
others’ experiences. However, while cloud-linked robots work
on independent tasks in different environments, sparse swarm
robots work on a common task in a shared environment,
which requires them to coordinate their activities. Moreover,
cloud-linked robots rely on costly external infrastructure—
Internet connections providing high-bandwidth, low-latency
communication with cloud services—whichmay not be available
to sparse swarms deployed in real-world scenarios, for example,
outdoors. The robots in a typical sparse swarm scenario are
also likely to be less expensive than those in a typical cloud
robotics scenario.

2.2. Multirobot Systems
While any robot swarm can be considered a multirobot
system, the former term is usually preferred where a system
comprises a relatively homogeneous group of robots, typically
a dozen or more, which are unable to solve a given task
efficiently on their own, but coordinate their activities, by
exploiting only information that they can locally obtain, in
the absence of global infrastructure (Sahin, 2004). With sparse
swarms we consider groups of robots that are more sparsely
distributed than present robot swarms, and evenmost multirobot
systems (Chamanbaz et al., 2017). The high cost of currently
available outdoor multirobot platforms prevents their adoption
in robot swarms1. Moreover, many implementations of outdoor
multirobot systems lack a fully decentralized, fault-tolerant
control architecture, with the robots receiving instructions from

1Note that we are not postulating to reduce the number of robots in swarms—
merely their density.
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a central planning/coordination node (Tardioli et al., 2016;
Weinstein et al., 2018).

Some studies have focused on multirobot systems operating
in communication-constrained environments (Amigoni et al.,
2017; Tardioli et al., 2019). One approach is using some robots
to physically deliver information to within communication
range of other robots (Ducatelle et al., 2014; Cesare et al.,
2015). Another approach is using some robots to form multi-
hop communication chains, allowing for rapid propagation of
information beyond the communication range of individual
robots (Nouyan et al., 2009; Tardioli et al., 2010; Pei et al., 2013;
Luo et al., 2019). Yet another approach is for the robots to
reestablish contact, for example, periodically, at a priori known
locations (Hollinger and Singh, 2012; Kantaros and Zavlanos,
2017) or using search (Banfi et al., 2018; Vandermeulen et al.,
2018). Some of these approaches rely on a priori knowledge
regarding how well robots can communicate between any two
points in the environment (Amigoni et al., 2017; Banfi et al.,
2018; Vandermeulen et al., 2018), which makes their application
in real-world scenarios challenging.

3. CONCEPTUALIZING A SPARSE SWARM

In the following, we describe two alternative characterizations of
the sparse swarm concept. In both cases, we consider a swarm of
n robots, S = {1, 2, . . . , n}.

3.1. Constraints on Inter-robot Proximity
In a sparse swarm, it would be costly for the robots to get into
close proximity of each other (e.g., 10 body lengths away). To
formalize this idea, we examine the swarm from a given time step,
k0 ≥ 0, during themission, for example, its start, k0 = 0.We refer
to the swarm as sparse at time step k0 if the following condition is
satisfied by a typical robot, i ∈ S:

costi(“move to nearest neighbor”, k0) >>

costi(“perform typical operation”, k0), (1)

where >> is defined as “at least one order of magnitude
greater than,” and costi is a function that defines the cost
for robot i to perform a given task at a given time. The
cost could reflect the time taken, or energy expended, to
complete the task. It would depend on the robot’s capabilities
and the environment the swarm resides in. What constitutes a
“typical” operation would depend on the application scenario.
For example, task “perform typical operation” could involve
collecting a physical sample, or moving to the next waypoint.
Task “move to nearest neighbor” could involve moving directly
to the robot’s nearest neighbor, or moving along a path of
minimal cost.

Equation (1) suggests that for the typical robot in a sparse
swarm, it may be prohibitively expensive to get into close
proximity of another robot. The definition is sufficiently flexible
to allow for occasional close encounters among somemembers of
the swarm.

3.2. Constraints on Inter-robot Coupling
In a sparse swarm, it would not be possible for information to
propagate rapidly to all of its members. To formalize this idea, we
examine the swarm from a given time step, k0 ≥ 0, during the
mission. Let xi[k] denote the state of robot i ∈ S at time step k.
A robot’s state could reflect its external configuration (e.g., pose)
as well as its internal configuration (e.g., behavioral state, battery
level). Let zi[k] denote the measurements that robot i ∈ S obtains

at time step k. Let z̃
(j)
i [k] denote the correspondingmeasurements

that robot i would obtain had robot j not been present in the
environment at time step k, and had all modifications that robot j
made to the environment on or after time step k0 been discarded.
By default, we assume that a robot’s state transition function is
affected by noise. Let P(xi[k]) denote the state distribution of
robot i at time step k ≥ k0. For k > k0, let A[k] be the n × n
matrix with

Ai,j[k] =










1, P(xi[k] | xi[k− 1], xj[k− 1], zi[k− 1], zj[k− 1])

6= P(xi[k] | xi[k− 1], z̃
(j)
i [k− 1]);

0, otherwise.

(2)

Term P(xi[k] | xi[k− 1], xj[k− 1], zi[k− 1], zj[k− 1]) represents
the conditional probability distribution of the state of robot i at
time step k when the states and measurements of robots i and
j are known at time step k − 1. It may depend on additional
information, such as the environment, which is not explicitly

represented here. Term P(xi[k] | xi[k− 1], z̃
(j)
i [k− 1]) represents

the corresponding distribution under the assumption that robot
j and all of its modifications made to the environment since time
step k0 are currently discarded. If such “removal” of robot jwould
influence the conditional state distribution of robot i at time step
k, the corresponding element of the matrix, Ai,j[k], is 1, otherwise
0. Matrix A hence describes the possible interactions between all
pairs.2 The couplings are directional. In other words, Ai,j[k] = 1
does not imply Aj,i[k] = 1. We assume that Aii = 1 for all i, as
robot i, once removed, would no longer have a well-defined state.

For τ ∈ {1, 2, . . . }, let

D(τ ) =
k0+τ
∏

k=k0+1

A[k]. (3)

In other words, matrix D(τ ) is a product of matrices, which
models the dependencies between pairs of robots within time
period τ , starting from k0. Intuitively we consider all robots to be
fully independent at time k0, that is, we discard the whole history
of interactions up to time k0. Note that if a robot i influenced
robot j, and robot j influenced robot l thereafter, then robot i
influenced robot l as well.

2Note that if the states of two robots are correlated this would not necessarily
imply that an interaction took place. It could be that both robots independently
discovered a same environmental feature.
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Let

τmin = argmin
τ

(

D(τ ) is not sparse
)

, (4)

where a matrix is considered sparse if half or more of its elements
are zero. In other words, τmin reflects the time it takes for
information to propagate within the swarm. In particular, it
denotes the earliest time after which robot i could have influenced
robot j for the majority of pairs, (i, j) ∈ S×S. In the following, we
assume that τmin is finite. If τmin = ∞, we would not refer to S as
a swarm.

We refer to the swarm as sparse at time step k0 if

τmin = �(n), (5)

that is, if τmin is “at least as large as a constant times [n] for
all large n” (Knuth, 1976). In other words, the time it takes for
information to propagate grows at least linearly with the number
of robots in the swarm.

A broad range of interactions can be captured using
Equation (3). If the state of a robot described its position,
an interaction could involve one robot pushing another robot,
whether deliberately, or not. An interaction could involve one
robot approaching a second robot, unless the presence of the
second robot did not inform the choice of motion of the
first. An interaction could involve a robot changing its state
due to receiving a message by another robot. An interaction
could involve a robot changing its state due to encountering
a modification to the environment that was made by another
robot. This latter form of interaction is commonly referred to as
stigmergic communication.

The above two criteria are meant to complement each other.
Where a swarm system is investigated in a concrete situation, the
constraints on inter-robot proximity criterion can be used, taking
into account the costs for a typical operation and that to reach
the nearest neighbor. Where a swarm system is investigated over
an infinite set of situations, involving groups of arbitrary size,
the constraints on inter-robot coupling criterion can be used. This

allows to evaluate the�(n) expression, which cannot be evaluated
for swarms of constant size.

Figure 1 illustrates the sparse swarm concept in four concrete
situations, reflecting a range of application scenarios. In the first
scenario, a group of 10 ground rovers operate in a squared forest
region of side length 5 km. A typical operation for a ground rover
may be to extract and store a sample of soil, which may take
30 s of time. The (median) distance to its nearest neighbor is
261m. Assuming a terrain that allows the robot to move with an
average speed of 0.2m/s, the (median) time tomove to the nearest
neighbor would be 1,305 s. In the second scenario, a group of
16 unmanned surface vessels monitor the perimeter of an island
of size 35 km North-to-South and 30 km East-to-West. A typical
operation for a surface vehicle may be to maintain its position
along the perimeter, which would require significantly less energy
than that required for the vehicle to sail a (median) distance
of 6.8 km to its nearest neighbor. Such station-keeping mission
scenario for a swarm of surface vehicles may also be extrapolated
to 3-D for underwater, aerial and space environments, requiring
larger sized swarms that are still sparse. Given the constraints on
inter-robot proximity, above groups could be considered sparse
swarms. Moreover, they are characterized by predominantly
linear inter-robot communication networks. As the swarms
would have to encompass larger environments, they would have
to be proportionally larger in size, and the time it takes for
information to propagate within the swarm would increase
linearly with the number of robots. This would thus satisfy
our constraint for inter-robot coupling for sparse swarms. An
interesting scenario are in-body applications where using a dense
swarm of robots may be too invasive. Instead, a sparse swarm of
microrobots could be used, for example, to explore the vascular
network for blockages. In such applications, the microrobots may
coordinate their response using stigmergic interactions.

4. FOREST APPLICATION SCENARIO

In this section, we discuss the aforementioned forest application
scenario, including the associated challenges in realizing the

FIGURE 1 | Application scenarios involving sparse swarms. A swarm of ten rovers (red markers) is tasked to monitor a 25 km2 forest ground. The rovers travel from

South West to North East through the forest (depicted by tree symbols and green background), and the rovers that encountered the lake (depicted in blue) need to

find a detour around it, leading to a concentration of rovers westwards of the lake (A). A swarm of 16 surface vehicles is tasked to monitor the costal waters at the

perimeter of an island of size 30× 35 km2 (outlined in brown), which involves station-keeping around the island (B). In both (A,B), the communication links (indicated

by dotted lines) are intermittent for the moving robots, due to signal attenuation by features of the environment. Free line-of-sight across the lake (in A) enhances the

communication range. A swarm of 445 satellites self-organize into a 3-D spatial pattern providing continuous coverage for high-resolution imaging (C). A swarm of

around 100 microrobots search for blockages in a vascular network, using stigmergic interactions for coordination (D).
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concept of a sparse swarm. Consider a sparse swarm of 10
terrestrial robots (i.e., rovers) tasked withmonitoring a large tract
of 25 km2 forest ground (Figure 1A). The robots are deployed at
one end of the forest equidistant to each other, and are tasked
with sweeping through the forest in a quasi line-formation;
quasi as the robots are traversing on uneven terrain and are
consequently unable to maintain a constant velocity across the
swarm. The proposed scenario allows us to assess the following
challenges: (i) the mechanical design of platform hardware in
terms of its capability to efficiently traverse difficult terrain;
(ii) algorithms for terrain perception and robot locomotion over
difficult terrain; (iii) the selection of a long-range inter-robot
communication technology for a forest environment; and (iv) the
design of the decentralized coordination strategies for the sparse
swarm. We detail these challenges and introduce our ongoing
work to address them.

4.1. Robot Platform Design
Although different forest environments may present different
sets of requirements, the latter have typically the following
ones in common: (i) the ability of the rover to progress fast
through simple terrain; (ii) the ability to either overcome or
avoid obstacles in its path, and (iii) long endurance. The need to
traverse long distances requires energy efficient mobility, which
is easiest achieved by rolling. For practicality, our interest is
in rovers that are small enough to fit in a backpack. The size
of obstacles the rover will be able to overcome is accordingly
limited. Furthermore, the overall cost of each rover should be low
enough that sizeable swarms are practical. In the context of these
constraints the robot platform needs to address the challenges of
mobility and communication.

4.1.1. Mechanical Design for Mobility
A rover that is well-adapted to the forest environment will
provide a good trade-off between the ability to climb over
obstructions to avoid detours at the reduced endurance that
results from the extra weight of this climbing ability. We use
an iterative design strategy where data on energy consumption

and mobility is gathered by teleoperated prototype platforms
(Figures 2A–E). In addition to the on-board data collection,
telemetry provides real-time feedback during such test runs to
improve our understanding of what obstacles can be tackled by
a particular rover design, what are suitable approaches to do so,
and what is the energy expended for a particular path.

4.1.2. Hardware for Communication
Communication is the only form of direct interaction that is
considered here. It needs to be scalable to many units and
work over long range even with antennas located close to
the ground. In many application scenarios the intra-swarm
communication cannot be prioritized over other services. For
radio communication these requirements point to limits in the
frequency spectrum and transmission power that in combination
with the range requirement lead to low channel capacity.
Such a low capacity channel could be established over satellite
communication or over text messages transmitted in a mobile
phone network. However, a solution that does not rely on
infrastructure is preferred, both from a cost and from an
availability perspective. In the field of sensor networks and
internet of things ultra-high-frequency radio technologies have
recently come to the fore that aim for long range communication
with low power requirements, scalability to several thousands
nodes, and low hardware cost. One of these technologies, called
long-range radio (LoRa), is particularly attractive in the present
context of rovers. Our preliminary exploration of the suitability
of LoRa for rovers operating at forest ground indicate that several
hundred meters communication range is realistic at about 60
bytes per second. This is the case, even in the highly attenuating
forest environment and with the ground plane effect inherent in
a low antenna position (tip of antenna 17 cm above ground).

4.2. Locomotion on Difficult Terrain
Navigating off-trail in a forest environment is a challenging task
and an open problem in the area of field robotics (Yang et al.,
2018). The robots are required to assess their traversability on
a priori unknown terrains in their proximity, relying solely on

FIGURE 2 | Hardware platforms for the forest environment. Aside from four-/six-wheel drive, and tracks, other locomotion concepts are also investigated for their

suitability on forest ground (A). The torque available to platforms with brushless motors (e.g., B–E) is helpful for tackling the ubiquitous small obstacles typical for this

environment. Additional data for computer vision development is collected with a manual rig (F). Depth and color images are recorded with a global shutter camera

(D435i, www.intel.com) to a laptop in a backpack. Meta data is collected from the camera’s inertial measurement unit, rotary encoders on the wheels, and a GPS. A

mobile phone mounted on the telescopic push rod gives remote access to the laptop.
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onboard sensors under varying lighting and weather conditions,
where GPS signal localization may not always be available.
The problem is made further difficult by the varying nature of
traversability; the traversability of a robot on a terrain depends
not only on the innate characteristics of the terrain, but also on
the dynamics of interaction between the robot and the terrain,
which itself is susceptible to change (e.g., from a thick layer of
mud stuck on the left side of a six-wheeled robot, or a damaged
leg sustained by a quadruped robot).

Many studies have investigated terrain traversability for robot
navigation algorithms in off-road environments, pioneered by
the DARPA PerceptOR (Krotkov et al., 2007) and later the
DARPA Learning Applied to Ground Vehicles (LAGR) programs
(Huang et al., 2009a,b). The approaches developed for terrain
traversability analysis use exteroceptive sensory information
such as geometry-based and appearance-based features, as
well as proprioceptive sensory information (Papadakis, 2013),
and typically employ near-to-far type of learning algorithms
(Bagnell et al., 2010) to predict traversable terrain for the robot.
However, the robots employed in such off-road situations are
relatively large (e.g., the DARPA LAGR vehicle was over 1 m
in length and weighed around 100 kg), and equipped with
expensive sensors such as radar, 2D lidar and multiple stereo
cameras for off-road navigation (Jackel et al., 2006; Zhou et al.,
2012; Milella et al., 2015; Santamaria-Navarro et al., 2015).
In comparison, our small-scale low-cost robots running off-
trail in the forest are faced with bigger challenges: Almost
everything is an obstacle, and due to their small size the
robots are much more likely to topple over. The development
of computationally inexpensive computer vision and machine
learning algorithms for the robots to efficiently locomote over a
priori unknown terrains is part of our ongoing effort to realize
our sparse swarm.

In addressing the traversability challenge we are in the
process of developing a forest environment RGBD data-set,
using a two-wheel mobile sensor platform (Figure 2F). The
platform comprising an Intel D435i depth camera including
an IMU, left and right wheel encoders, and GPS, is to be
pushed manually along various off-trail “paths.” Our developed
data-set is to be employed to train a depth estimation
model, to predict depth with RGB image data from a
monocular camera.

4.2.1. Terrain Traversability for a Single Robot
Using the depth-estimation model, the robots of the sparse
swarm are required to learn closed-loop policies to efficiently
traverse across different terrains. Forest terrain the robot may
have to overcome include wet leaves on the forest floor, ditches
with varying inclinations, muddy tracks and fallen tree branches.
Challenges involved in learning locomotion behaviors for such
terrain include investigating suitable representations for a closed-
loop policy, characterizing metrics to estimate success of a policy
in overcoming terrain, and accounting for progress between trials
in evaluating multiple policies episodically on the robot. Trial-
and-error based algorithms for rapid behavior adaptation (e.g.,
see Cully et al., 2015) appear to be a promising approach to begin
addressing these challenges.

4.2.2. Collaborative Learning Across the Swarm
The available LoRa communication channel may be employed
by the swarm for collaborative learning of traversable terrain
in the forest environment. In such a transfer learning scenario,
the robots of the swarm share information on their experiences
traversing different terrains. Information shared may comprise
metrics providing situational information on robot-terrain
interaction, for instance energy consumption statistics, and
the stability of the robot in traversing the terrain. Policies
employed by robots to traverse terrain may also be shared,
for recipient robots to bootstrap their exploration of new
locomotion behaviors to adapt to changes in their proximal
terrain. Additionally, in forest environments, some a priori
unknown terrains may be unsafe for the robot to traverse
over. The discovery of such terrains by the swarm may be
accomplished by learning with “deliberative” catastrophic failure.
Herein, the swarm may vote for one or a few robots to attempt
to traverse over potentially hazardous terrain and share the
resulting traversability information generated with the rest of
the swarm.

4.3. Coordination in
Communication-Constrained
Environments
In the forest application scenario, the robots assume a linear
formation that moves across a defined region. In a simple
linear formation, the robots would occupy equidistant points
on a line segment; each robot, bar the ones at the two ends,
would have two neighbors. An alternative linear formation
would place the robots alternatingly onto two parallel lines
such that they form equilateral triangles; each robot within
the formation would have four equidistant neighbors. To ease
deployment, the robots could determine their order within
the formation at run-time, for example, using their unique
identifiers. While linear formations lend themselves for tasks
such as coordinated search and coverage (Durham et al., 2012;
Kolling et al., 2018), our scenario is particularly challenging,
because the robots will be unable to interact with their neighbors
for most of the time. Moreover, they do not know in advance
the terrain to be encountered. This makes it difficult to predict
individual progress. Some robots may have to take a detour of
several hundreds of meters after discovering that a floodplain
ahead of them is not traversable. To cope efficiently with these
challenges, the robots need to move even when having had no
recent contact with any neighbor. Yet, they should prevent the
overall formation from becoming disconnected indefinitely. The
robots could generate waypoints, and use the potential field
method to approach them while avoiding obstacles. New way
points could be suggested in an attempt to move the formation
forward, and to repair it. The robots would use beliefs regarding
their neighborhood, that is, which robots are present and their
locations. Algorithms that allow robots to reestablish contact
with lost, and potentially immobilized, members of the group
could be considered (Banfi et al., 2018; Vandermeulen et al.,
2018).
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5. DISCUSSION

In this perspective article, we have highlighted the challenges that
prevent most swarm robotic systems from transitioning to real-
world applications. At present, robot swarms typically operate
in highly controlled indoor laboratory environments. They are
frequently interacting with each other, which is facilitated by
their spatial proximity (e.g., 10 body lengths). Consequentially,
such swarms are impractical for many real-world applications,
in particular those, requiring the robots to act jointly over large
distances (e.g., 1,000 body lengths). To address this problem,
we have proposed the sparse swarm concept, which focuses
on robot swarms that self-organize despite severe constraints
regarding inter-robot proximity and coupling.Moreover, we have
illustrated its use in a forest application scenario.

The sparse swarm concept opens up a number of theoretical
questions. While sparse swarms are robot swarms, they are
subject to additional constraints on inter-robot proximity and
inter-robot coupling. A question to investigate is how the
performance for a given swarm changes as these constraints are
progressively enforced. A related question is how the minimal
number of robots to exhibit self-organization changes as the
constraints increase. For example, will swarms degenerate once
the time for information to propagate is no longer polynomially
bounded with the number of robots? Another question relates
to the types of interactions. Where members of sparse swarms
interact solely via non-situated communication, can they still
spatially organize, for example, by sharing information on how
to interact with the environment? And given the lack of spatial
proximity, would the members of sparse swarms be required to
encounter a similar set of environmental features (which could
be empty) to exhibit self-organization? A further question relates
to whether sparse swarms could be realized at all scales, with their
members ranging in size from hundreds of meters (e.g., fleets of
container ships) to micrometers (e.g., robot swarms within the
human body).

For a sparse robot swarm to solve real-world problems in a
land, sea, air or space environment, the individual robots are
likely to require a high degree of autonomy and the ability to
travel and to communicate over long distances. Depending on
the environment and the task at hand the practical challenges
to achieving the required capabilities differ. In environments
that allow for energy harvesting (e.g., consider solar-powered

aerial drones or autonomous sailboats), endurance is not limited
by power, but by the device life-time. As a consequence of the
much increased deployment time across the sparse swarm, rare
events can no longer be ignored. For such a system, what general
strategies that broaden the ability of a system to recover from
unforeseen situations (e.g., Cully et al., 2015) can be developed?
Moreover, in many sparse swarm scenarios the channel capacity
for communicating within the swarm is severely restricted (e.g.,
robots operating under water). How can the mismatch between
the amount of data available from local sensors and the amount
of data that can be received from others robots be reconciled for
effective learning?

In conclusion, directly mimicking the densities and associated
coordination strategies of natural swarms may be impractical
for applications that require groups of robots to cover outdoor
areas that are very large relative to their own size. We postulate
that for these applications, swarm technologies need to be
reconceptualized for robots to coordinate over large distances.
Such coordination without any physical inter-robot interaction
would require higher autonomy from individual robots of the
swarm. Robots of the swarm would also require to traverse
large distances to complete their mission, thus requiring low-
cost, high-endurance hardware platforms. With this perspective
article, we invite the robotics community to address the various
challenges to bring sparse swarms to fruition.
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