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In recent years, there has been a rise in interest in the development of self-growing

robotics inspired by the moving-by-growing paradigm of plants. In particular, climbing

plants capitalize on their slender structures to successfully negotiate unstructured

environments while employing a combination of two classes of growth-driven

movements: tropic responses, growing toward or away from an external stimulus,

and inherent nastic movements, such as periodic circumnutations, which promote

exploration. In order to emulate these complex growth dynamics in a 3D environment, a

general and rigorous mathematical framework is required. Here, we develop a general 3D

model for rod-like organs adopting the Frenet-Serret frame, providing a useful framework

from the standpoint of robotics control. Differential growth drives the dynamics of the

organ, governed by both internal and external cues while neglecting elastic responses.

We describe the numerical method required to implement this model and perform

numerical simulations of a number of key scenarios, showcasing the applicability of our

model. In the case of responses to external stimuli, we consider a distant stimulus (such

as sunlight and gravity), a point stimulus (a point light source), and a line stimulus that

emulates twining of a climbing plant around a support. We also simulate circumnutations,

the response to an internal oscillatory cue, associated with search processes. Lastly,

we also demonstrate the superposition of the response to an external stimulus and

circumnutations. In addition, we consider a simple example illustrating the possible use

of an optimal control approach in order to recover tropic dynamics in a way that may be

relevant for robotics use. In all, the model presented here is general and robust, paving

the way for a deeper understanding of plant response dynamics and also for novel control

systems for newly developed self-growing robots.

Keywords: plant tropism, circumnutation, self-growing robots, plant-inspired robotics, control system, optimal

control, growth

1. INTRODUCTION

Though the field of robotics has long been inspired from the capabilities of biological organisms,
it is only recently that the plant world has become a source of inspiration, particularly due to
the ability of plants to continuously change their morphology and functionality by growing,
thus adapting to a changing environment (Del Dottore et al., 2016; Laschi and Mazzolai,
2016; Mazzolai et al., 2016). A new class of plant-inspired robots has emerged, based on the
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moving-by-growing capabilities of plants. Some recent examples
include: (i) a tendril robot developed at NASA’s Johnson Space
Center, which is a slender manipulator composed of multiple
bending segments (Mehling et al., 2006), (ii) a vine-bot that
elongates its body at the tip by skin eversion, growing in
a pre-determined form (Hawkes et al., 2017), (iii) plantoid
robots inspired by plant roots, based on additive manufacturing
technologies (Sadeghi et al., 2014, 2017; Del Dottore et al.,
2016), and (iv) FIBERBOTS, based on the addition of fiber
and resin (Kayser et al., 2019). Though these are impressive
accomplishments, these robots are currently limited in their
control systems and autonomy. The challenge lies in the fact
that the morphology of such self-growing robots changes over
time and is therefore not known in advance. Furthermore, in
the future, such robots are expected to perform autonomously
in unstructured scenarios, including achieving locomotion in
uncertain terrains involving obstacles and voids, as well as the
manipulation of unknown objects. Therefore, the development
of a control system is not trivial and cannot be based on existing
control systems of classic predefined robotic structures.

Plants, on the other hand, excel at these types of tasks.
Though plants exhibit a variety of types of movements as part of
their interaction with their environment (Darwin, 1880; Jost and
Gibson, 1907; Ruhland, 1959; Hart, 1990; Forterre, 2013), here
we focus on the relevant growth-driven movements of rod-like
organs, such as shoots and roots. Such growth-drivenmovements
are generally classified as either nastic or tropic (Rivière et al.,
2017). Nastic movements are due to internal drivers, such as the
inherent periodic movement of plants called circumnutations,
sometimes associated with search processes. Tropisms are the
growth-driven responses of a plant in the direction of a stimulus,
such as a plant shoot growing toward a source of light or away
from the direction of gravity (Darwin, 1880; Gilroy and Masson,
2007; Rivière et al., 2017). Tropic responses are based on three
main processes: (i) sensing of a directional external stimulus
by specialized biosensors, (ii) transduction of signals within the
plant, leading to the redistribution of the growth hormone auxin,
resulting in (iii) an anisotropic growth pattern that reorients the
organ toward or away from a given stimulus.

In order to emulate these complex growth dynamics in a
3D environment in a way that is meaningful from the robotics
standpoint, a general mathematical framework is required.
Recently developed models of growth-driven plant dynamics
are limited to specific aspects of tropisms or circumnutations.
Bastien et al. have developed models for tropism in 2D, such
as the AC (Bastien et al., 2013, 2015) and ACE (Bastien et al.,
2014)models, addressing the influence of growth, and identifying
the requirement of a restoring force called proprioception,
whereby a plant can dampen the curving dynamics according
to how curved it is (Bastien et al., 2013; Hamant and Moulia,
2016). Bressan et al. (2017) developed a model based on a
similar formalism, but not accounting for growth explicitly
as the driver of dynamics and achieving stable dynamics
by controlling the growth-zone and sensitivity rather than
proprioception. Another model focuses on circumnutations
in 3D (Bastien and Meroz, 2016) but disregarding tropic
responses. These models disregard elastic responses, implicitly

assuming that no forces or torques act on the organs. Recently,
efforts have been made to consider elastic responses in specific
scenarios, namely incorporating gravitational forces in the case of
gravitropism (Chelakkot and Mahadevan, 2017) and in the case
of circumnutations (Agostinelli et al., 2020).

Here, we present a general and rigorous mathematical
framework of a rod-like growing organ whose dynamics are
driven by both internal and external cues. Though this model is
inspired by plant responses, it is not based on biological details
and is therefore relevant to any rod-like organisms that respond
to signals via growth, such as neurons and fungi. The model does
not include elastic responses, but the mathematical framework
we adopt here allows a natural integration of elasticity, which
we plan to do in future work. The paper is organized as follows:
section 2 describes the dynamical equations of our model based
on a 3D description of an organ in the Frenet-Serret formalism,
implementing differential growth as the driver of movement, and
relating external and internal signals. In section 3, we present
the numerical method required to implement this model, and
in section 4, we perform numerical simulations of a number of
key case examples, including responses to external stimuli, such
as a distant stimulus, a point stimulus, and a line stimulus, as
well as circumnutations (the response to an internal oscillatory
cue). We also present an example where we superimpose two
different types of cues, namely the response to an external
stimulus and circumnutations. Lastly, in section 5, we consider a
simple example illustrating the possible use of an optimal control
approach in order to recover tropic dynamics in a way whichmay
be amenable to robotics use.

2. GOVERNING EQUATIONS

In this section, we develop the dynamical equations that form
the basis of our model. We first introduce a 3D description
of an organ in the Frenet-Serret formalism and then detail the
implementation of growth and differential growth as the driver
of movement. Finally, we relate external and internal signals to
differential growth, which drives the desired movement. We then
show that ourmodel is a generalization that consolidates different
aspects of existing models, allowing the characteristic time and
length scales of our model to be identified and discussed.

2.1. 3D Description of an Organ
We model an elongated rod-like organ as a curved cylinder
with radius R, described by its centerline that follows a curve
in 3D. We denote the location of the centerline from the origin
of a Cartesian frame of reference as Er(s, t), where t is time,
and s is its arc-length, which runs along the organ, taking the
value s = 0 at the base and s = L at the apical tip, equal
to the total length (see Figure 1A). In order to describe the
dynamics of the centerline with respect to local stimuli, we begin
by defining a local frame of reference using the Frenet-Serret
framework (Goriely, 2017). Using the Frenet-Serret formulas for
a 3D curve parameterization, as shown in Figure 1A, we can

Frontiers in Robotics and AI | www.frontiersin.org 2 August 2020 | Volume 7 | Article 89

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Porat et al. 3D Model for Growth Dynamics

FIGURE 1 | Geometrical definitions for a 3D cylindrical organ. (A) A cylindrical organ of constant radius R is described by its centerline, parameterized by the

arc-length s. Er(s, t) denotes the Cartesian position of a point along the centerline at point s and time t. The local Frenet-Serret frame at some point along the centerline

is defined by the tangent vector T̂ (s, t) = ∂Er(s, t)/∂s, its derivative the normal vector N̂(s, t) (Equation 2), and the bi-normal vector B̂(s, t) (Equation 3). Here, the organ

has a constant curvature κ and is restricted to a plane, illustrating 1/κ (s, t) as the radius of curvature. (B) Cross-section of the organ and the natural frame: (N̂, B̂) span

the cross-section, (m̂1, m̂2) are constant vectors defining the natural frame, as described in section 3, and φ(s, t) defines the angle between N̂ and the reference vector

m̂1. (C) An organ not restricted to a plane. Here φ(s, t) changes along s, and torsion is defined as τ = ∂φ/∂s. Note that in (A), τ = 0.

define the tangent vector at arc-length s as:

T̂(s, t) =
∂

∂s
Er(s, t), (1)

where T̂ is a unit vector, from the definition of the arc-
length (Goriely, 2017). The second derivative of Er can be
written as:

∂2

∂s2
Er(s, t) =

∂

∂s
T̂(s, t) = κ(s, t)N̂(s, t) , (2)

where κ is the local curvature of the curve, and N̂ is the respective
normal vector. We note that when κ = 0, N̂ is not defined, in
which case we adopt a related local frame described in section 3.
Since | ∂

∂sEr| = |T̂| = 1, taking the derivative of T̂ · T̂ = 1 yields

2T̂ · ∂T̂
∂s = 0, meaning that T̂ ⊥ ∂T̂

∂s , i.e., we have T̂ ⊥ N̂. The
curvature equals the inverse of the radius of curvature, and the
normal vector N̂ points to the center of the circle with that radius.
The third unit vector in the Frenet-Serret framework is the bi-
normal vector B̂(s, t), which creates an orthogonal basis in 3D, as
illustrated in Figure 1A:

B̂ = T̂ × N̂. (3)

For the sake of legibility, we interchangeably omit writing the

explicit dependence of variables on (s, t), i.e., when we write T̂,
we mean T̂(s, t).

The Frenet-Serret framework describes the change in this local
frame of reference as a function of the arc-length s (Goriely,

2017):

∂

∂s
T̂ = κN̂

∂

∂s
N̂ = −κT̂ + τ B̂ (4)

∂

∂s
B̂ = −τ N̂,

so that the local coordinate system changes accordingly along the
curve. Here, κ(s, t) is the curvature and τ (s, t) is the torsion of
the centerline, describing rotations in the (N̂, B̂) plane leading
to a non-planar centerline, as illustrated in Figures 1B,C. We
now define φ, the angle between N̂ and arbitrarily chosen fixed
direction m̂1 (Bishop, 1975; Langer and Singer, 1996; Bastien and
Meroz, 2016). The change in the direction of N̂ along the curve
yields the torsion τ (s, t) (see Figure 1C):

τ (s, t) =
∂

∂s
φ(s, t). (5)

2.2. Modeling Growth and Differential
Growth
We now introduce growth, using similar definitions to those
introduced in Silk (1989), Bastien et al. (2014), and Goriely
(2017). We define S0 as the arc-length of the initial centerline of
the organ, and the current arc length s(S0, t) as the evolution of
the point S0 in time, with initial conditions s(S0, t = 0) = S0.
One can think of the arc-length s(S0, t) as describing the flow of
the initial point S0 due to the growth of all previous parts of the
organ (see Figure 2). Therefore, assuming that the organ does not
shrink, s(S0, t) monotonically increases over time. This growth-
induced flow within the organ motivates us to use definitions
from fluid dynamics, in which the parameter S0 can be thought
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FIGURE 2 | Growth description. Illustration of a growing organ with a

sub-apical growth zone, marked in green. The centerline (dashed line) can be

parameterized by a material coordinate, S0, or by the arc-length, s(S0, t). (A)

The organ at time t; (B) the organ at time t+ dt. Outside of the growth zone,

the position of the material coordinate does not change in time

s(S1, t+ dt) = s(S1, t). Within the growth zone s(S3, t+ dt) > s(S3, t), i.e., the

location of the material coordinated flows due to growth, and S2 and S3 flow

within the organ. S2 flows out of the growth zone and will stay fixed.

of as the Lagrangian, referential, or material coordinate and s as
the Eulerian or spatial coordinate (Goriely, 2017). Using regular
conventions of continuummechanics, we define the local velocity
of point s as the accumulation of the growth that occurs in
previous parts of the organ:

ds

dt
= v(s, t) =

∫ s

0
Ė(u, t)du, (6)

where Ė(s, t) is the local growth rate, representing a combination
of the effect of the addition of new cells and their elongation. We
define the length of the active growth-zone of a growing organ
Lgz as the length over which the growth rate Ė(s, t) is non-zero.
Without loss of generality, here we will consider the common
case where growth is confined to a finite sub-apical growth-
zone: L − Lgz ≤ s ≤ L, as shown in Figure 2. However, the
growth zone may be defined along any other relevant section
of the organ, for example when considering internodal growth.
We note that as opposed to Lagrangian quantities (functions of
S0), the time derivative of Eulerian fields [functions of s(S0, t)]
incurs an additional convection term. We use the convention of
material derivatives for the total time derivative, namely:D/Dt ≡
∂/∂t + v∂/∂s.

As mentioned in the Introduction, plant tropisms are the
growth-driven reorientation of plant organs due to a directional
stimulus, such as light, gravity, or water gradient. In particular,
the reorientation of the plant organ is due to differential growth,
i.e., one side of the cylindrical organ grows at a higher rate than

FIGURE 3 | Differential growth. Differences in growth rates across a cylinder

lead to a change in curvature. At time t, we have a straight organ with κ (t) = 0

and with a growth zone in the center of length l(t) = l0, marked in green. The

differential growth vector E1 in the growth zone is constant and points upwards

in the ê direction. Following Equation (7), the growth rate on the lower side is

higher than that in the upper side ǫ̇(−ê) < ǫ̇(ê), and after a time interval dt, the

two sides grow different amounts, leading to bending of the growth zone with

a new curvature κ (t+ dt) > 0. The new length of the growth zone along the

centerline is now l(t+ dt) = l0 (1+ Ėdt). Note that changes in curvature in the

middle of the organ lead to changes in orientation of the rest of the organ.

the other side, resulting in a curved organ. Following Bastien
and Meroz (2016), we consider an infinitesimal cross-section of
a cylindrical organ and define the differential growth rate in a
direction ê as the difference in growth rate ǫ̇ on either side,
normalized by their sum:

1(ê) =
ǫ̇(−ê)− ǫ̇(ê)

ǫ̇(−ê)+ ǫ̇(ê)
. (7)

Following this definition, for1(ê) > 0, the organ grows faster in
direction −ê and the organ bends in direction ê (see Figure 3).
We now define the differential growth vector, which is in the
direction of the active reorientation:

E1 = 1(N̂)N̂ +1(B̂)B̂. (8)

In order to describe the active reorientation of an entire organ,
we relate the shape of the organ and its growth dynamics,
expressed by the dynamics of its local curvature, D(κN̂)/Dt,
to the differential growth term E1 (Bastien and Meroz, 2016),
resulting in:

D

Dt
κ =

Ė

R
E1 · N̂

κ
D

Dt
φ =

Ė

R
E1 · B̂,

(9)

where the equations have been linearized by assuming that the
radius of curvature 1/κ is always larger than the radius of the
organ (κR≪1). For a detailed calculation, seeAppendix A. These
equations are similar to those developed in (Bastien and Meroz,
2016), where the differential growth vector represented the
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internal cues related to circumnutations. Given an expression for
the differential growth vector E1(s, t) and an initial configuration,
the dynamics can be integrated completely. The form of E1(s, t)
is dictated by either internal cues (circumnutations) or external
stimuli, as discussed in the following section.

2.3. Relating External and Internal Signals
to Differential Growth
In the last section, we represented the anisotropic growth pattern
by the local differential growth vector E1(s, t). An external signal
is translated to a specific growth pattern thanks to signal-specific
biosensors and biochemical signal transduction mechanisms.
Here, we reduce these complex processes to a sensitivity or gain
function that maps the external signal to a growth response and
directly governs the differential growth vector.

Environmental signals can be mathematically described as
fields. For example, vector fields describe light and gravity, while
a scalar field describes the concentration of water or nutrients,
and the direction of increasing concentrations is again described
by a vector field of the gradients. Lastly, tensor fields may
describe stress and strain; however, we will not discuss these
here since our model does not include elasticity. Here we focus
on vector fields, where we can write the directional stimulus
in the form EI(Er) ≡ I(Er)n̂(Er), where I(Er) is the magnitude of
the stimulus at a point Er in space, and n̂(Er) is its direction.
For example, in the case of an infinitely distant stimulus, such
as light or gravity, the stimulus magnitude and direction are
constant in space, i.e., EI(Er) = I0n̂. In the case of a chemical
concentration gradient, a possible form would be EI(Er) = E∇c(Er),
though the sensed magnitude may depend on other factors,
such as the concentration itself and remains to be verified. The
physics of the signal and the geometry of the emitting source
dictate the direction of the stimulus n̂(Er). Within a specific
infinitesimal element of an organ, the differential growth vector
is restricted to the cross-section, i.e., the local (N̂, B̂) plane.
Therefore, the relevant directional information of the stimulus
lies within its projection perpendicular to the organ surface, as
illustrated in Figure 4. We define the component of the stimulus
perpendicular to this surface, EI⊥(s, t), as the effective stimulus
sensed by the organ. From geometrical arguments, assuming
that the stimulus field changes slowly around the cross-section
of the organ, the effective stimulus sensed by a cylindrical surface
is given by:

EI⊥ = T̂ × (EI × T̂) ≡ I⊥n̂⊥, (10)

where we have defined n̂⊥(s, t) as the direction of the
perpendicular component of the signal and I⊥(s, t) as its
magnitude given by I⊥ = I(Er) sin (θ(s, t)), where θ(s, t) is the

angle between the surface T̂(s, t) and the direction of the stimulus
n̂(s, t), as shown in Figure 4.

Two central biophysical laws describe sensory responses to
input signals, which we term here the sensitivity function λ(I).
One is a logarithmic relationship λ(I) = a+ b log (I/I0), referred
to as the Weber-Fechner law (Norwich and Wong, 1997), and
the other is a power law relationship λ(I) = aIb, known as
Stevens’ law (Stevens, 1957). As an example it has been found that

FIGURE 4 | Effective signal and response vector. An example of a signal that

can be described by a constant vector field (such as sunlight and gravity) of

the form EI = I0n̂, where I0 is the magnitude of the stimulus and n̂ is its direction.

For an element of an organ, the relevant directional information of the stimulus

lies within its projection perpendicular to the organ surface, which we define as
EI⊥ = I⊥n̂⊥ (see Equation 10), where the magnitude is given by I⊥ = I0 sin (θ (s, t))

and θ (s, t) is the angle between the surface T̂ and n̂. Biophysical laws generally

describe sensory responses to input signals as functions of the signal intensity

λ(I) (see main text). We define the response vector Eλ(s, t) = −λ(I⊥(s, t))n̂⊥(s, t)

where the magnitude of the perceived response is given by the sensitivity

function λ(I⊥(s, t)), and n̂⊥(s, t) is the direction of the effective stimulus.

phototropism follows Stevens’ Law (Bastien et al., 2015), while in
the case of gravitropism, only inclination is sensed, and sensitivity
is constant, λ(g) = const (Chauvet et al., 2016). However, very
little is known for other plant tropisms. We now define the local
response vector:

Eλ(s, t) = −λ(I⊥(s, t))n̂⊥(s, t), (11)

where the sensitivity function takes the effective stimulus sensed
by the organ λ(I⊥(s, t)), and n̂⊥(s, t) is the direction of the
effective stimulus. As stated before, the differential growth vector
is restricted to the cross-section plane of the organ element, and
it is therefore directly related to the perpendicular component of
the stimulus field and its response vector, i.e., E1(s, t) = Eλ(s, t).

However, it has been found that a so-called restoring
force is required for stable posture control, termed
proprioception (Bastien et al., 2013; Hamant and Moulia,
2016). This is related to an internal process associated with the
active tendency of a growing organ to resist being bent (not a
mechanical response), and is represented by −γ κ(s, t)N̂(s, t),
where γ is the proprioceptive sensitivity (Bastien et al., 2013).
We also note that differential growth may be due to internal
processes, such as in the case of circumnutations. Here, an
internal oscillator turns the differential growth vector in the
(N̂, B̂) plane (Bastien and Meroz, 2016) and can be described
as Eχ(s, t) = λ0

(

cos (ψ(t))m̂1(s, t)+ sin (ψ(t))m̂2(s, t)
)

, where
λ0 is the intensity of the bending, and ψ(t) is a general
function describing the direction of growth at time t relative
to fixed vectors (m̂1, m̂2) (Figure 1B). Here, we chose a
circular growth pattern; however, more elaborate forms can be
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implemented (Bastien and Meroz, 2016). Assuming that the
different mechanisms are additive, and adding the propriocetion
term and circumnutations, the differential growth vector
therefore follows:

E1(s, t) = Eλ(s, t)+ Eχ(s, t)− γ κN̂(s, t). (12)

Together with Equation (9), Equation (12) completes our
model for active growth-driven movements of rod-like organs
in 3D taking into account external signals, internal cues
(circumnutations), and posture control. For multiple stimuli,
again assuming additivity, one can replace Eλ with the sum of
specific response vectors

∑

m
Eλm (Bastien et al., 2015). A number

of specific cases, including various types of external and internal
cues, are explained in further detail in section 4. A schematic
summarizing the governing equations is presented in Figure 5.

Lastly, the distribution of sensory systems along the organ
also requires attention. Sensory systems in plant organs are
generally either distributed along the organ, providing local
sensing (Sakamoto and Briggs, 2002; Wan et al., 2008;
Hohm et al., 2013), or restricted to the tip, termed apical
sensing (Darwin, 1880; Knieb et al., 2004; Holland et al.,
2009; Hohm et al., 2013). For example, in the case of shoot
phototropism, photoreceptors are localized at the tip alone, such
as in wheat, or distributed along the whole growth zone, as in
the case of Arabidopsis. In the case of gravitropism, specialized
cells called statocytes sense the direction of gravity, and these are
generally found throughout the growth zone for aerial organs
and restricted to the tip for roots (Morita and Tasaka, 2004; Su
et al., 2017). In the case of apical sensing, the local response vector
Eλ(s, t) will be replaced with that of the apex Eλ(L, t) rotated to the
local frame, meaning that the whole organ responds to what is
sensed at the tip alone.

2.4. Comparison to Previous Models
Different models of growth-driven plant dynamics have been
recently developed, encompassing different aspects of tropisms
and circumnutations. Bastien et al. (2013, 2014, 2015) have
developed a model for tropism in 2D, addressing the influence
of growth and identifying the requirement of proprioception. A
third model (Bressan et al., 2017) is based on a similar formalism,
achieving stable dynamics by controlling the growth-zone and
sensitivity rather than proprioception. Another model focuses on
circumnutations in 3D (Bastien and Meroz, 2016), disregarding
tropic responses. In what follows, we show how our model
relates to these previous models while also generalizing them and
unifying them.

In order to compare with 2D models, we focus on the case
where the dynamics of our model are restricted to a 2D plane,
which occurs when the direction of the stimulus n̂ is in the plane
defined by T̂ and N̂. In this case, following Equation (12), only
the component in the N̂ direction of E1 is not zero. Substituting
this into the dynamical equations in Equation (9), since E1·B̂ = 0,
we get that Dφ/Dt = 0, i.e., φ is constant. Assuming an initially
straight organ, φ = 0 throughout, yielding τ = ∂φ/∂s = 0.
The geometrical meaning is that when the stimulus and the initial
state of the organ are in the same 2D plane, the dynamics of the

organ will remain within that plane and therefore restricted to
2D. In this case, we can compare the dynamics directly to Bastien
et al. (2015) by projecting the model to 2D, and assuming a

constant signal. We define θ the local angle of T̂ along the organ
with respect to the direction of the constant signal n̂, as illustrated

in Figure 4, i.e., θ(s, t) = arccos (T̂(s, t) · n̂). Taking the derivative

over the arc-length s and recalling that ∂T̂/∂s = κN̂ (Equation 4)
yields: ∂

∂sθ(s, t) = ±κ(s, t), where the sign depends on the

direction of N̂. Substituting these expressions into Equations (9)
and (12), together with n̂·N̂ = − sin (θ) and a constant sensitivity
function λ(I) = λ, we get:

D

Dt
κ(s, t) =

Ė

R

(

−λ sin θ(s, t)− γ κ(s, t)
)

, (13)

identical to the ACE model developed in Bastien et al. (2014).
We now consider Bressan et al. (2017). Their main equation

of motion appears in Equation (2.8), and translating this into our
terminology takes the form:

∂

∂t
T̂ =

(∫ s

0
λe−η(t−σ )(T̂ × n̂)dσ

)

× T̂, (14)

where λ > 0 is a constant measuring the strength of the response,
similar to our tropic sensitivity, while e−η(t−σ ) is what they call a
stiffness factor. The simplest way to compare with thismodel is by

looking at its 2D projection. Taking T̂ = (sin θ(s, t), cos θ(s, t)),

where θ(s, t) is the angle between T̂ and n̂, and substituting this
in Equation (14) leads to ∂

∂t θ(s, t) = −
∫ s
0 λe

−η(t−σ ) sin θ(σ , t)dσ .
Taking a derivative in s finally yields:

∂

∂t
κ(s, t) = −λe−η(t−s) sin θ(s, t). (15)

We note that this model considers accretive growth, where
material is added at the tip, and elongation is disregarded. This
means that growth is only taken into account implicitly as the
driver of the tropic movement, and a material derivative is not
required, which is a good approximation of the dynamics in
certain cases (Bastien et al., 2013, 2014). In this case, the ACE
model in Equation (13) converts to the AC model:

∂

∂t
κ(s, t) = −λ sin θ(s, t)− γ κ(s, t). (16)

Comparing Equations (15) and (16), we see that the equations
are similar: the response, appearing on the l.h.s., is identical,
and on the r.h.s., the tropic stimulus is represented by sin θ(s, t)
in both, as well as a sensitivity factor. In Bressan’s model the
stiffness prefactor e−η(t−s) represents a smooth growth zone with
a characteristic size of 1/η: in the youngest parts (s=t at the tip)
the stiffness factor is 1, while in older parts of the organ (as s
goes to zero), the stiffness factor goes to 0. We also notice that
Bressan et al. do not use a proprioceptive term, generally required
for stable dynamics; however, they were able to circumvent this
problem by using small growth zones.
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FIGURE 5 | Schematic of the governing equations. We present the main stages involved in the model. (A) Organ shape parametrization, section 2.1: the Frenet Serret

local frame in Equations (1)–(3), and Frenet-Serret equations that also define κ and τ , introduced in Equation (4). (B) Response vector to external signal, section 2.3:

assuming a vector field signal, we find the projected signal (Equation 10) and calculate the response vector (Equation 11), which affects the growth response. (C)

Differential growth vector (Equation 12); includes terms representing external cues (the response vector), internal cues (circumnutations), and proprioception for

posture control. (D) Implementing growth dynamics, section 2.2. The centerline is updated using Equations (6) and (9), using the constructed differential growth vector.

2.5. Characteristic Length and Time Scales
In section 2.4, we show that in the case where the dynamics
of our model are restricted to a 2D plane, our model recovers
the ACE model developed by Bastien et al. (2014). Thanks to
this relation, we can adopt their dimensional analysis (Bastien
et al., 2013), which identifies characteristic length and time scales.
Consider the case of a constant stimulus placed perpendicular to
a shoot. The length scale is identified by considering the steady
state, where the shoot has grown in the direction of the stimulus,

achieving a steady-state form, with Dκ(s,t)
Dt = 0 everywhere,

including the growth zone. Substituting this into Equation (13)
yields the maximal curvature value κmax, and its inverse, the
radius of curvature, corresponds to a characteristic length scale
termed the convergence length Lc = 1/κmax = γ /λ, where γ
and λ are the proprioceptive and tropic sensitivities, respectively.
There are two time scales. One is associated with the time it takes
for the organ to reach its steady state, termed the convergence time
and defined as Tc = R/Ėγ . The other is associated with the time
it takes the organ to align in the direction of the stimulus for the
first time, termed the arrival time, defined as Tv = R/ĖLgzλ. The
ratio between the convergence length Lc and the length of the
growth zone Lgz, as well as the ratio between the convergence
time Tc and arrival time Tv, introduces a dimensionless number
B, termed the balance number (Bastien et al., 2013; Hamant
and Moulia, 2016), which describes the balance between the
sensitivity to external stimuli and proprioception and is linearly
related to the maximal curvature:

B ≡
Lgz

Lc
=

Tc

Tv
=
λLgz

γ
= κmaxLgz. (17)

Low values of B mean that Lc > Lgz, i.e., the growth zone
is not big enough to contain the full arc-length associated
with bending toward the stimulus with a given curvature, or
alternatively that Tv > Tc, i.e., the organ dynamics converge
before it is able to arrive to the desired orientation in the direction
of the stimulus. High values of B mean that Lc < Lgz, i.e.,
the growth zone can contain the full bending, or alternatively
that Tv < Tc, i.e., the organ arrives at the desired orientation
before the dynamics converge, therefore also exhibiting damped
oscillations. In other words, we see that the balance number B
represents a relation between the final shape of the organ in
steady state and the dynamics.

3. NUMERICAL METHOD

3.1. Natural Frame for the Numerical
Scheme
As stated in section 2, our model for active growth-driven
dynamics, described by Equations (9) and (12) and schematically
illustrated in Figure 5, is formulated in the Frenet-Serret frame.
The Frenet-Serret frame is a natural choice to describe curves
since the second derivative gives the local curvature, ∂

2

∂s2
Er = κN̂,

a natural geometrical quantity. However, within this framework,
N̂ is not defined when κ = 0. In order to avoid related numerical
issues, in the numerical scheme, we adopt a related local
frame termed the “natural frame” or the “normal development”
(Bishop, 1975; Langer and Singer, 1996): assuming Er(s, t) is a
point along the centerline of the organ, the natural frame is

described by the orthonormal vectors (T̂(s, t), m̂1(s, t), m̂2(s, t)),

where T̂(s, t) = ∂
∂sEr(s, t) is the tangent vector in Equation (1).
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The other two orthogonal vectors (m̂1, m̂2) span the cross-section
plane spanned by (N̂, B̂) in the Frenet Serret frame. The rotations
of this local frame with respect to the arc length of the curve are
described using the following equations, similar to the Frenet-
Serret equations in (Equation 4):

∂

∂s
T̂ = κ1m̂1 + κ2m̂2 (18)

∂

∂s
m̂1 = −κ1T̂ (19)

∂

∂s
m̂2 = −κ2T̂ (20)

Here, κ1(s, t) and κ2(s, t) are the curvature components of the
local cross-section plane, and the total curvature κ(s, t) and
torsion τ (s, t) are given by the relations:

κ =

√

κ21 + κ
2
2 , (21)

φ = arctan

(

κ2

κ1

)

, (22)

τ =
∂

∂s
φ, (23)

where φ is the angle between N̂ (in the Frenet-Serret frame)
and m̂1, illustrated in Figure 1B, and is used to define τ in
Equation (5). This frame is closely related to the Frenet-Serret
frame; however, the cross-section directions (m̂1, m̂2) are always
well-defined, even when κ = 0. Within this frame, Equation (9)
can be rewritten as (see Appendix A for a detailed calculation):

D

Dt
κ1 =

Ė

R
E1 · m̂1 (24)

D

Dt
κ2 =

Ė

R
E1 · m̂2 (25)

In order to solve the dynamics, we integrate Equations (24)
and (25).

3.2. Discretization and Integration
The organ is divided into segments of length ds, and we rewrite
functions of the centerline in a discrete form, following the
general form:

X(s, t) → X
(

n · ds,m · dt
)

≡ X(n,m). (26)

We describe the location of the organ using the local
coordinate system:

Er(N,m) =

N
∑

n=0

T̂(n,m)ds. (27)

The dynamics of the organ is described through the evolution
of the local coordinate system. We rewrite Equations (18)–(20)
in matrix form, which describe the change in the local frame of
reference as a function of s:

∂

∂s
D(n,m) = U(n,m)D(n,m), (28)

where D(n,m) is the rotation matrix:

D(n,m) =
(

m̂1(n,m), m̂2(n,m), T̂(n,m)
)

, (29)

and U(n,m) is the skew symmetric Darboux matrix:

U(n,m) =





0 0 −κ1(n,m)
0 0 −κ2(n,m)

κ1(n,m) κ2(n,m) 0



 . (30)

In order to integrate Equation (28) while keeping the
orthonormality of the local frame, we take inspiration from
Gazzola et al. (2018), relating the consecutive discrete matrices
D (n+ 1,m) and D (n,m) via a rotation matrix R(n,m):

D (n+ 1,m) = R(n,m)D(n,m). (31)

Since U(n,m) in Equation (28) is skew-symmetric, we use
Rodrigues’ rotation formula and the exponential map to express
matrix R(n,m):

R(n,m) = exp
(

U(n,m)ds
)

(32)

This can be interpreted as a rotation around the axis Eu =
κ2
κ
m̂1 − κ1

κ
m̂2 by an angle κ(n,m)ds (or as the identity matrix

for κ(n,m) = 0). It is therefore enough to find the evolution of
U or the evolution of κ1 and κ2 to describe the organ in time.
To integrate κ1 and κ2, we discretize Equations (24) and (25),
adopting the following numerical time and arc-length derivatives
(where dt is the discretized time step):

Ẋ(n,m) =
X(n,m+ 1)− X(n,m)

dt
(33)

X′(n,m) =
X(n,m)− X(n− 1,m)

ds
, (34)

leading to:

κ̇1(n,m)+ v(n,m)
κ1(n,m)− κ1(n− 1,m)

ds
=

Ė

R
E1(n,m)·

m̂1(n,m) (35)

κ̇2(n,m)+ v(n,m)
κ2(n,m)− κ2(n− 1,m)

ds
=

Ė

R
E1(n,m)·

m̂2(n,m). (36)

The growth speed appearing in the material derivative, v(n,m),
is calculated following Equation (6). Assuming a growth-zone of
length Lgz and uniform growth rate Ė leads to:

v(n,m) = (Lgz − (N(m)− n)ds)Ė (37)

in the case Lgz ≥ (N(m) − n)ds, and v(n,m) = 0 otherwise.
Extracting κ̇1 and κ̇2 from Equations (35) and (36), we substitute
these into Equation (33). Together with the following straight
initial conditions and clamped boundary conditions of the organ,
we integrate over time:

κ1(n,m = 0) = 0, κ2(n,m = 0) = 0
κ1(n = 0,m) = 0, κ2(n = 0,m) = 0,

(38)
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finally resulting in κ1(n,m + 1) and κ2(n,m + 1). In order
to find the proper relation between spatial and temporal
discretization, we consider the equation for the velocity at the tip
in Equation (37), in which case N(m) = n, and recalling that
ds
dt

= v yields the relation:

ds = LgzĖdt. (39)

3.3. Implementing Growth
As discussed in section 2.2, growth is implemented via a material
derivative with a local growth rate described in Equation (6),
representing the elongation of cells in the growth zone, creating a
one-dimensional growth flow within the organ. When cells reach
a certain threshold size, they stop elongating, thus leaving the
size of the growth zone Lgz constant. Since the total length of the
organ increases over time, in the numerical scheme, we add a new
segment ds at the tip at each time step:

N(m) = N(0)+m, (40)

where N(m) is the total number of segments in the organ at time
step m, and therefore the total length is L(m) = N(m) · ds.
This is not to be confused with accretive growth, where material
is added at the tip alone. Special care is required in assigning
the correct curvature values to the newly added segments. At
time m − 1, we initialize the next N(m)-th segment so that
κ1(N,m − 1) = 0, κ2(N,m − 1) = 0, E1(N,m − 1) = 0,
and v(N,m − 1) = LgzĖ (the velocity at the tip as defined
in Equation 6). Substituting these values in Equations (35) and
(36) yields κ1 (N,m) = κ1 (N − 1,m− 1) and κ2 (N,m) =
κ2 (N − 1,m− 1), i.e., the curvature of the new segment is
identical to that of its predecessor.

3.4. Simulation Parameters
In the simulations presented in the next section, the initial
conditions include a straight vertical organ κ(s, t = 0) = 0
[i.e., κ1(s, t = 0) = 0 and κ2(s, t = 0) = 0], with an initial
length L0 = 1.0 and a growth zone Lgz = 1.0. Boundary
conditions are defined with a clamped base κ(s = 0, t) = 0
[κ1(s = 0, t) = κ2(s = 0, t) = 0]. The organ radius is R = 0.1, the
proprioceptive coefficient is γ = 0.01, and the tropic sensitivity
(when applicable) was taken to be either λ0 = 0.1 or λ1 =
0.05. The ratio of the proprioceptive and tropic sensitivity values
substituted in Equation (17) correspond to balance numbers B =
10 and B = 5 accordingly, both of which are in the range of what
has been observed in plants (Bastien et al., 2013). The maximal
curvature is κmax = λ0/γ = 10, yielding κmaxR = 1. This
means that κR ≤ 1 throughout the simulations, in agreement
with the low curvature assumption. The simulation time step is
dt = 0.1, and the length of the discrete elements is ds = 0.01.
A constant growth rate was taken all along the growth zone
following Equation (39): Ė = ds/dtLgz = 0.1. In the next
section, we discuss simulations of specific cases. The code is freely
available at https://github.com/poratamir/3D-growth-dynamics.

4. CASE EXAMPLES AND SIMULATIONS

Here, we discuss various representative cases of internal and
external cues. Since the differential growth term is the driver
of the dynamics, it is the only term that needs to be defined
accordingly. We present the specific form of the differential
growth vector for each case, as well as a snapshot of a numerical
simulation. Videos of the full simulation dynamics can be found
in the Supplementary Material, also showing the evolution of κ
and φ over time. We note that in the following descriptions, the
local response vectors do not necessarily reside in the local cross-
section plane. However, this does not change the dynamics, in
which the differential growth vector is being projected to the local
cross-section plane (see Equations 9, 24, and 25).

4.1. Infinitely Distant Constant Stimulus
The simplest type of stimulus is a constant stimulus placed
at infinity. In this case, the stimulus is a parallel vector field
originating from direction n̂ and is constant in space and time,
i.e., Eλ = λ0n̂:

E1(s, t) = λ0n̂− γ κ(s, t)N̂(s, t). (41)

The sensitivity λ0 may depend on the intensity of the stimulus, for
example, in the case of phototropism, following either the Weber
Fechner or Stevens’ Law, as discussed in section 2.3. This is not
the case for gravitropism, since plants sense inclination rather
than acceleration (Chauvet et al., 2016). A snapshot of the final
form of the simulation is shown in Figure 6A, and an example of
the full dynamics can be found in Video 1. Since the projection
of this equation in 2D yields the ACE model (Bastien et al., 2013,
2014), we validate our model numerically, showing that our 3D
simulations converge to the known analytical solution in 2D with
an exponential growth profile (see Appendix B for details).

4.2. Point Stimulus
We consider the case of a stimulus whose source is a point located
at Erp (Bastien et al., 2019), such as a nearby localized light or
water source. In this case, the stimulus leads to a radial vector

field centered at the point, i.e., Eλ = λ0
Erp−Er(s,t)

|Erp−Er(s,t)|
:

E1(s, t) = λ0
Erp − Er(s, t)

|Erp − Er(s, t)|
− γ κ(s, t)N̂(s, t). (42)

Here again, λ0 is constant in space; however, this can be
generalized to depend on space, for example, in the case of
a diffusive chemical where c(|Erp − Er(s, t)|). A snapshot of the
dynamics is shown in Figure 6B, while the full dynamics can be
found in Video 2.

4.3. General Stimulus Geometry: Twining
Around a Line Stimulus
We can generalize the point stimulus to any geometrical form.
Here, we show an example of a stimulus in the form of an
attracting straight line. Let us assume that the line is parallel to
an arbitrary direction n̂ whose base position in the x-y plane is
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FIGURE 6 | Examples of numerical simulations for various scenarios. Here, we showcase snapshots of simulations for various cases. The subapical active growth

zone is in green, while no growth occurs below that in gray. The arrows on the apex are the apical tangent direction T̂ (red), normal direction N̂ (blue), and bi-normal

direction B̂ (green). The blue line marks the history of the direction of N̂ along the organ. The details of the simulations are given in section 3. We note that elasticity is

not implemented here, and therefore the organ grows through itself. (A) Infinitely distant constant stimulus (red arrow). The organ reaches a steady state, growing in

the direction of the stimulus. N̂ switches directions due to damped oscillations in the solution (Video 1). (B) Point stimulus (red dot). Illustrates the different dynamics

between a distant vs. nearby stimulus (Video 2). (C) General geometry: twining around a line stimulus (red line). Any geometry for the source stimulus can be

implemented. Here, we chose a line geometry, which, together with a signal in the direction of the line (to prevent self-intersections), yields dynamics similar to the

twining of a climbing plant (Video 3). (D) Circumnutations. We implement the growth response to an internal cue rather than external cues, yielding inherent periodic

movements of plants called circumnutations, generally associated with search processes. The periodic trajectory of N̂ visualizes the rotational movement of the

growing tip (Video 4). (E) Superposition of internal and external stimuli. We combine circumnutations with an infinitely distant external stimulus (Video 5).

Erline = (x0, y0, 0). The shortest vector between a point on the
organ Er(s, t) and the line is:

Eρ(s, t) =
(

Er(s, t)− Erline
)

− n̂
((

Er(s, t)− Erline
)

· n̂
)

. (43)

The response vector will then be Eλ = −λ0ρ̂(s, t). As an example
of multiple stimuli, we also add a directional stimulus parallel to
the line (i.e., gravity or light), Eλ = λ0ẑ − λ1ρ̂(s, t), leading to the
following differential growth vector:

E1(s, t) = λ0ẑ − λ1ρ̂(s, t)− γ κ(s, t)N̂(s, t), (44)

where ρ̂ = Eρ/| Eρ|. The resulting dynamics are reminiscent of the
twining motion typical of climbing plants, as shown in Figure 6C
and Video 3. We note that this twining movement is not based
on touch, meaning that the organ does not hold the support.
Furthermore, no elasticity is involved at this stage, as further
discussed in the Discussion section.

4.4. Internal Processes: Circumnutations
Circumnutations are circular periodic movements of the
tips of plant organs, generally associated with search
processes, for example, climbing plants searching for
a support or roots searching for nutrients. Unlike
tropisms, these are inherent movements due to internal
drivers, not external stimuli, and can be described as
Eχ(s, t) = λ0

(

cos (ψ(t))m̂1(s, t)+ sin (ψ(t))m̂2(s, t)
)

, where
λ0 is the intensity of the bending, ψ(t) is a general function
describing the direction of growth at time t, and we described
the direction of growth using the natural frame. Here, we
chose a circular form; however, more elaborate forms can be

used (Bastien and Meroz, 2016). Following Bastien and Meroz
(2016), we substitute Eχ(s, t) into the differential growth vector:

E1(s, t) = λ0
(

cos (ψ(t))m̂1(s, t)+ sin (ψ(t))m̂2(s, t)
)

− γ κ(s, t)N̂(s, t). (45)

In our simulations, we took ψ(t) = ωt with ω = 0.2/dt. A
snapshot is found in Figure 6, and the full dynamics can be found
in Video 4. The trajectory of N̂ clearly illustrates the circular
movement of the tip over time.

4.5. Superposition of Internal and External
Stimuli
As already suggested in the example of a line stimulus, where
a directional stimulus is added, we can consider multiple types
of stimuli by assuming that they are additive. We present here
another example based on plant behavior, where we consider an
organ responding to a distant external signal while also exhibiting
internally driven circumnutations. In this case, we simply add to
Equation (45) the term for the distant stimulus in direction n̂,
λ0n̂, yielding:

E1(s, t) = λ0n̂+ λ1
(

cos (ψ(t))m̂1(s, t)+ sin (ψ(t))m̂2(s, t)
)

− γ κ(s, t)N̂(s, t) (46)

A snapshot of the resulting dynamics is shown in Figure 6E, and
the full dynamics are shown in Video 5.
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5. EXAMPLE OF AN OPTIMAL CONTROL
APPROACH

In this last section, we take a step back and consider a simple
example illustrating the possible use of control theory to recover
tropic dynamics—in a way that may be amenable for robotics use.
In what follows, we no longer use the Frenet Serret formalism
developed in this paper, relaxing the assumption of a constant
arc-length parameterization. Instead, we consider the general
case where the curve of the organ is parameterized using the
Lagrangian coordinate S0, as described in section 2.2, without
further reparameterizing the curve as it evolves over time.
This general case may be pertinent to some robotics systems.
We consider an organ with apical sensing, a fixed length L
(neglecting an explicit account for growth, as discussed before),
and dynamics restricted to 2D, similar to the case of apical
sensing discussed in Bastien et al. (2013). The aim is to find a

controlled evolution equation of the tangent T̂(L, t) at the tip,

where T̂ = ∂Er/∂S0. Let Eu(t) = (u1(t), u2(t)) be a control to
orient the tangent at the tip T̂(L, t). The sensing occurring at
the tip influences the dynamics at any other point on the organ,

and therefore T̂(s, t) will satisfy the following Cauchy problem for
any s:

{

d
dt
T̂(s, t) =

∫ s
0 Eu(t)ds

′ = sEu(t),

T̂(s, 0) = T̂0(s).
(47)

We further limit the family of possible control strategies to those
for which:

U = {Eu ∈ R
2 | n̂ · Eu ≥ 0}, (48)

where n̂ is the direction of the stimulus, since n̂ · Eu ≤ 0 leads
to undesired curling dynamics. From these strategies, we wish to
choose those that are optimal in some sense.We therefore require
that the optimal strategy minimizes some cost function that may
manifest some physical element of the robot. Here, we choose the
following:

W(T̂, Eu) =

∫ Tf

0

(

T̂(L, t) · Eu(t)
)2

dt. (49)

In this case, the cost function has a geometric meaning: when
the dot product goes to zero, together with Equation (47), we

have
˙̂
T(L, t) ⊥ T̂(L, t), i.e., ||T̂(L, t)|| is constant, thus recovering

the assumption at the basis of the Frenet-Serret formalism of
identical parametrization of the arc length over time. This gives a
family of optimal controls:

Eu∗(t) = uN(t)N̂(L, t), (50)

where N̂(L, t) is the normal direction of the apex, and
uN(t)sign(N̂(L, t)·n̂) ≥ 0 to satisfy Equation (48). These solutions
ensure that the tip approaches the stimulus in a strictly decreasing

manner. Indeed, if the initial tangent T̂0(L) is not parallel to n̂,
then

1

2

d

dt
||T̂(L, t) − n̂||2 = (T̂(L, t)− n̂) ·

d

dt
T̂(L, t) = −uN(t)N̂(L, t)

·n̂ < 0 (51)

for all t, such that T̂(L, t) is not parallel to n̂. Then, T̂(L, t) remains
constantly parallel to n̂. In particular, such a computation implies

that the tangent T̂(L, t) does not oscillate around the stimulus
direction n̂. We focus our attention to a member of the control
family described in Equation (50):

Eu∗(t) = βT̂⊥
∗ (L, t)

(

n̂ · T̂⊥
∗ (L, t)

)

, (52)

for all t ∈ [0,Tf ] and β ≥ 0, where T̂⊥
∗ = (−T2∗,T1∗) =

±N̂ is just the vector perpendicular to T̂∗ = (T1∗,T2∗). In
Appendix C, we show the details of the calculation based on
Pontryagin’s maximum principle (Aronna et al., 2017), showing
that this indeed meets the requirements of the optimal control
problem described in Equations (47)–(49). Substituting the
specific solution described in Equation (52) into the dynamics of
Equation (47) while also writing the tangent vector in terms of

the angle θ(s, t) between T̂(s, t) and the stimulus direction n̂, i.e.,

T̂(s, t) = (sin θ(s, t), cos θ(s, t)), yields the following dynamical
equation:

∂

∂t

∂

∂s
θ(s, t) = − sin θ(L, t), (53)

which is identical to the dynamics described in Bastien et al.
(2013) in the case of apical sensing, where proprioception is not
required for stability.

6. DISCUSSION AND CONCLUSION

In this work, we presented a general and rigorous mathematical
framework of a rod-like growing organ whose dynamics are
driven by a differential growth vector. We constructed the
differential growth vector by taking into account both internal
and external cues, as well as posture control, as schematically
illustrated in Figure 5. The model adopts the 3D Frenet-Serret
formalism, which is a natural choice to describe curves and is
useful for robotics control purposes. In recent years, there has
been an advancement in the mathematical description of plant
growth-driven movements, as described in the Introduction.
A careful comparison of our model to previous models finds
that our model is general, consolidating different aspects in
3D for the first time: growth-driven responses to both external
and internal cues, allowing stimuli with different physical and
geometrical characteristics while maintaining posture control
through proprioception.

We ran numerical simulations of a number of key cases.
In the case of the response to external stimuli, we considered
a distant stimulus (such as sunlight and gravity), a point
stimulus (such as a point light source), and a rod stimulus
that emulates twining of a climbing plant around a support.
We also simulated circumnutations, the response to an
internal oscillatory cue associated with search processes. Lastly,
we also demonstrated the superposition of the response to
an external stimulus and circumnutations. These examples
showcase the broad spectrum of cases that this framework
can describe and represent interactions with the environment,
which are at the basis of the autonomous performance of
next-generation self-growing robots in unstructured scenarios,
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including movement in uncertain terrains involving obstacles
and voids. The model presented here therefore establishes the
basis for a control system for robots with a changing and
unpredictable morphology.

While building a physical robotic representation that can
behave as the model predicts is well out of the realm of current
technology, the current model can be simplified so as to be
relevant for current technologies, yielding limited behavior. As
an example, current additive manufacturing technologies are
generally limited to the addition of material at the tip, with
no elongation. This accretive growth can be represented in our
model by taking the growth zone to an infinitesimal size. In order
to account for a robotic structure made of a number of rigid
components with hinges, nodes, etc., the infinitesimal segments
ds can be taken to be finite. Another example concerns the
sensory system of the robot, whose characteristics can be readily
represented in the model. In other words, the model is general
enough to capture the essence of a variety of different robotic
capabilities, which is particularly important in an era of quickly
developing technologies.

Following this line of thought, we note that the framework
presented here disregards parameters pertinent to robotic
structures, such as energy, friction, weight, etc. In this paper, we
present a simple example illustrating the possible use of optimal
control theory in order to recover tropic dynamics in a way
that may be relevant for robotics use. Optimal control theory
optimizes processes where some cost function is minimized, and
it is therefore useful in engineering problems. The example per
se does not necessarily present a practical cost function; however,
it suggests that future work may include optimizing the current
model for tropic movements so as to minimize a cost function
associated with a robotic parameter.

This general framework allows a deeper understanding of
plant dynamics in response to their environment. Indeed, while
current investigations on tropisms are generally restricted to 2D,
our model enables the quantitative study of tropisms in 3D,
i.e., where single or multiple stimuli are placed outside of the
organ plane. Furthermore, careful attention has been paid to
relating environmental stimuli to differential growth, discussing
stimuli with different physical characteristics categorized by their
mathematical description, such as vector fields (light and gravity),
and scalar fields (concentration of water or nutrients). Indeed, the
latter finally allows a rigorous characterization of plant biosensors
in tropisms that are less understood, such as hydrotropism and
chemotropism, as well as a currently lacking quantitative analysis
of their dynamics.

Understanding plant movements is essential for a rigorous
understanding of plant behavior—a field that has only recently
become the focus of research. Basic behavioral processes in
animals are generally studied through their motor responses
to controlled stimuli, and a solid understanding of plant
movements (in response to both internal and external cues)
paves the way to designing controlled behavioral experiments.
For example, simulations incorporating both circumnutations
and tropisms will allow quantitative investigation of the role
of circumnutations in the successful search for nutrients
or light.

Though the framework we develop here successfully describes
various scenarios of growth-driven movements of plants, it of
course differs from its botanical inspiration. One main difference
is that here we do not consider branching. Furthermore, as
noted throughout the text, this framework does not currently
includemechanics or elasticity, disregarding any elastic responses
of the organ to physical forces. However, this can be naturally
implemented in the Frenet-Serret frame of reference (Chelakkot
and Mahadevan, 2017; Goriely, 2017; Agostinelli et al., 2020),
which we plan to pursue, together with branching, in future work.
On the other hand, we note that our model is general enough so
that it can be customized to represent a specific biological system,
e.g., by changing the growth profile of a growth zone or the
geometry of the sensory system. Furthermore, note that though
this framework is inspired by plant responses, it is not based
on biological details and is therefore amenable to any rod-like
organisms that respond to signals via growth, such as neurons
and fungi.
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Appendix C | Pontryagin’s Maximum Principle, part of the calculation in the

optimal control approach in section 5.

The videos show simulations for the different cases presented in section 4, and

Figure 6 shows snapshots of the simulations. The arrows represent the

Frenet-Serret Frame (T̂ in red, N̂ in blue, and B̂ in green). The graphs show the

values of the curvature κ (s, t) and the angle φ(s, t) as a function of time:

Video 1 | Infinitely distant constant stimulus.

Video 2 | Point stimulus.

Video 3 | General stimulus geometry: twining around a line stimulus.

Video 4 | Internal processes: circumnutations.

Video 5 | Superposition of internal and external stimuli.
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