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Multimodal integration is an important process in perceptual decision-making. In humans,

this process has often been shown to be statistically optimal, or near optimal: sensory

information is combined in a fashion that minimizes the average error in perceptual

representation of stimuli. However, sometimes there are costs that come with the

optimization, manifesting as illusory percepts. We review audio-visual facilitations and

illusions that are products of multisensory integration, and the computational models

that account for these phenomena. In particular, the same optimal computational model

can lead to illusory percepts, and we suggest that more studies should be needed

to detect and mitigate these illusions, as artifacts in artificial cognitive systems. We

provide cautionary considerations when designing artificial cognitive systems with the

view of avoiding such artifacts. Finally, we suggest avenues of research toward solutions

to potential pitfalls in system design. We conclude that detailed understanding of

multisensory integration and the mechanisms behind audio-visual illusions can benefit

the design of artificial cognitive systems.

Keywords: multi-modal processing, multisensory integration, audio-visual illusions, Bayesian integration,

optimality, cognitive systems

1. INTRODUCTION

Perception is a coherent conscious representation of stimuli that is arrived at, via processing signals
sent from various modalities, by a perceiver: either human or non-human animals (Goldstein,
2008). Humans have evolved multiple sensory modalities, which include not only the classical five
(sight, hearing, tactile, taste, olfactory) but also more recently defined ones (for example, time, pain,
balance, and temperature, Fitzpatrick and McCloskey, 1994; Fulbright et al., 2001; Rao et al., 2001;
Green, 2004). While each modality is capable of resulting in a modality-specific percept, it is often
the case that stimulus information gathered by two or more modalities is combined in an attempt
to create the most robust representation possible of a given environment in perception (Macaluso
et al., 2000; Ramos-Estebanez et al., 2007).

Understanding and mapping just how the human brain combines different types of stimulus
information from drastically different modalities is challenging. Behavioral studies have suggested
optimal or near-optimal integration of multi-modal information (Alais and Burr, 2004; Shams and
Kim, 2010). In the case of Alais and Burr (2004) they examined the classic spatial ventriloquist
effect through the lens of near optimal binding. The effect in question describes the apparent
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“capture” of an auditory stimulus in perceptual space that is
then mapped to the perceptual location of a congruent visual
stimulus, the famous example being the ventriloquist’s voice
appearing to emanate from the synchronously animated mouth
of the dummy on their knee. Alais and Burr (2004) demonstrated
that this process of “binding” the perceived spatial location of an
auditory stimulus to the perceived location of a visual stimulus
is an example of near optimal audio-visual integration. They
achieved this by demonstrating that variations of the effect could
be reversed (i.e., a visual stimulus being “captured” and shifted
to the same perceptual space as an auditory stimulus) when
the auditory signal was less noisy relative to the visual stimulus
(when extreme blurring noise was added to the visual stimulus).
Additionally, when visual stimuli was blurred, but not extremely
so, neither stimulus source captured the other and a mean spatial
position was perceived. This in turns hints at a weighting process
in audio-visual integration modulated by the level of noise in
a given source signal. These findings are consistent with the
notion of inverse effectiveness: when a characteristic of a given
stimulus has low resolution there tends to be in an increase
in “strength” of multisensory integration (Stevenson and James,
2009; de Dieuleveult et al., 2017). See Holmes (2009) for potential
issues when measuring multisensory integration “strength” from
the perspective of inverse effectiveness.

However, the very existence of audio-visual illusions in these
processes highlights that there can be a cost associated
with this optimal approach (Shams et al., 2005b); the
perceptual illusions here are being considered as unwanted
artifacts (costs) that manifest due to optimal integration of
signals from multiple modalities. One such well-established
audio-visual illusion that combines information from both
modalities and arrives at an auditory percept altogether
unique is the McGurk-MacDonald effect (McGurk and
MacDonald, 1976). When participants watch footage of
someone moving their lips, while simultaneously listening
to an auditory stimulus (a single syllable repeated in time
with the moving lips) that is incongruent to the moving lips,
they have a tendency to “hear” a sound that matches neither
the mouthed syllable or the auditory stimulus. While not
gazing at the moving lips, participants accurately report the
auditory stimulus.

The McGurk effect demonstrates that the integration of
audio-visual information is an effective process in most natural
settings (even when modalities provide competing information),
but may occasionally result in an imperfect representation
of events. This auditory illusion suggests a “best guess” can
sometimes be arrived at when modalities provide contradictory
information, where different weightings are given to competing
modalities. Crevecoeur et al. (2016) highlighted that the nervous
system also considers temporal feedback delays when performing
optimal multi-sensory integration (for example, visual input
followed by muscle response is slower than proprioceptive input
followed by a muscle response with a difference of ~50ms). The
faster of the two sensory cues is given a dominant weighting
in integration. This shows that temporal characteristics affect
optimal integration of information from different modalities, and
should be a factor in any models of multi-modal integration.

If artifacts such as illusions can occur in an optimal multi-
modal system, these artifacts become a concern when designing
artificial cognitive systems. The optimal approach of integrating
information from multiple sources may lead to inaccurate
representation of an environment (an artifact), which in turn
could result in a potentially hazardous outcome. For example,
if a autonomous vehicle was trained in a specific environment
and then relocated to a novel environment, an artifact manifested
via optimal integration of stimuli could compromise the safe
navigation through the novel environment and any action
decisions taken therein (this scenario is a combination of the
“Safe Exploration” and “Robustness to Distributional Shift”
accident risks as outlined by Amodei et al., 2016).

The remainder of the paper reviews the processes in
audio-visual perception that offers explanations for audio-
visual illusions and effects, focusing mainly on how audition
affects visual perception, and what this tells us about the
audio-visual integration system. We continue by building a
case for audio-visual integration as a process of evidence
accumulation/discounting, where differing weights are given
to different modalities depending on the stimuli information
(spatial, temporal, featural etc.) being processed, which follows
a hierarchical process (from within-modality discrimination to
multi-modal integration). We highlight how some processes
are optimal and others suboptimal, and how each have their
own drawbacks. Following that, we review cognitive models of
multi-modal integration which provide computational accounts
for illusions. We then outline the potential implications of
the mechanisms behind multisensory illusions for artificial
intelligent systems, concluding with our views on future
research directions. Additionally, rather than assuming that all
attributions of prior entry (discussed below) are accurate, this
paper expands on the definition of prior entry to encompass both
response bias and undefined non-attentional processes. Doing
so circumvents the granular debates surrounding prior entry in
favor of better discussing the broader processes on the way to
audio-visual integration, of which prior entry is but one. We also
consider impletion (discussed below) as a process distinct from
prior entry, but one that complements and/or competes with
prior entry.

2. AUDIO-VISUAL INTEGRATION

2.1. Visual and Multi-Modal Prior Entry
Prior entry, a term coined by E.B. Titchener in 1908, describes
a process whereby a visual stimulus that draws an observer’s
attention is processed in the visual perceptual system before any
unattended stimuli in the perceptual field. This in turn results
in the attended stimulus being processed “faster” relative to
subsequently attended stimuli (Spence et al., 2001). This suggests
that when attention is drawn (usually via a cue) to a specific
region of space, a stimulus that is presented to that region
is processed at a greater speed than a stimulus presented to
unattended space.

Prior entry as a phenomenon is important in multi-modal
integration due to the fact that the temporal perception of
one modality can be significantly altered by stimuli in another
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FIGURE 1 | The paradigm of the line-motion illusion similar to that used by

Hikosaka et al. (1993a) and Shimojo et al. (1997). Participants were presented

with a fixation cross followed by a cue (auditory in this example) to one side of

fixation followed by another fixation display. Finally the target stimulus was

presented. In this example the left side of the target stimulus was cued via an

auditory tone. The resulting perception would be that of the line being drawn

from the same side as the cue as opposed to being presented in its entirety at

the same time.

modality (as well as within a modality) (Shimojo et al., 1997).
The mechanisms underlying prior entry have been the subject
of controversy (Cairney, 1975; Downing and Treisman, 1997;
Schneider and Bavelier, 2003), but strong evidence has been
provided for its existence via orthogonally designed crossmodal
experiments (Spence et al., 2001; Zampini et al., 2005). In the case
of the orthogonally designed experiments, related information
between the attended modality and the subsequent temporal
order judgement task was removed, thus ensuring no modality-
specific bias.

A classic visual illusion that supports the tenets of prior entry,
and demonstrates just how much temporal perception can be
affected by it, is the line motion illusion, first demonstrated by
Hikosaka et al. (1993a) using visual cues. A cue to one side of
fixation prior to the presentation of a whole line to the display
can result in the illusion of the line being “drawn” from the cued
side (Figure 1). Hikosaka et al. (1993b) investigated this effect
further and demonstrated illusory temporal order in a similar
fashion: namely, cueing one side of fixation in a temporal order
judgement task prior to the simultaneous onset of both visual
targets. Both these effects were replicated using auditory cues by
Shimojo et al. (1997).

Shimojo et al. (1997) demonstrated that the integration of
auditory and visual stimuli can cause temporal order perception
in one modality to be significantly altered by information
in another via audio-visual prior entry. However, Downing
and Treisman (1997) suggested that the original line motion
illusion was an example of what they termed “impletion”: in
an ambiguous display multiple stimuli are combined to reflect
a single smooth event in perception. For example, when an
illusion of apparent motion is created using statically flashed
stimuli in different locations (e.g., left space followed by right
space), the stimuli can appear to smoothly change from the first

stimulus shape (circle) to the second stimulus shape (square)
(Kolers and von Grünau, 1976; Downing and Treisman, 1997).
It is suggested that a discriminatory process gathers all available
stimuli information, combines them, and creates a coherent
percept; or the most likely real world outcome where it fills
in the gaps on the way to perception. Downing and Treisman
(1997) demonstrated that the line motion illusion could in fact
be a perception of the visual cue itself streaking across the field
of display akin to frames in an animation. Admittedly, when
one takes into account the findings of Shimojo et al. (1997)
using auditory cues, it may be tempting to dismiss the account
of impletion, but illusory visual motion can be induced via
auditory stimuli (Hidaka et al., 2009), which demonstrates that
auditory stimuli can also induce a perception of motion in visual
modality independent of prior-entry. Despite these alternative
explanations for phenomena such as the line motion illusion,
neuroscience has provided strong evidence for the existence of
prior entry: speeded processing when attention was directed to
the visual modality rather than the tactile (Vibell et al., 2007),
speeded processing associated with attending to an auditory
stimulus (Folyi et al., 2012), and speeded processing during a
visual task when an auditory tone was presented prior to the onset
of the visual stimuli (Seibold and Rolke, 2014).

Evidence thus suggests that prior entry, and indeed audio-
visual prior entry, is a robust phenomenon. Whether all effects
attributed to prior entry are done so correctly is another matter,
but ultimately may be somewhat irrelevant (see Fuller and
Carrasco, 2009 where evidence for both prior entry and impletion
in the line motion illusion is presented, and suggests prior entry
is not requisite). For instance, even if response bias or some non-
attentional processes are mistakenly attributed to prior entry,
these effects are still predictable, and replicable, and in fact these
processes may enhance or exaggerate genuine prior entry effects.

The prior entry and impletion effects discussed above show
that shifts in attention, or the combination of separate stimuli
into the perception of a single stimulus event, can result in
illusory temporal visual perception. It seems likely that evidence
gathered from both the audio and visual modalities are combined
optimally with some sources of information being given greater
weighting in this process. When and how to assign weightings
in an artificial system is an important consideration in design in
order to avoid artifacts such as those described above.While prior
entry and/or impletion can result in an inaccurate representation
of temporal events, there exist audio-visual effects that are
facilitatory in nature and thus desirable, which we discuss next.

2.2. Temporal Ventriloquism
Illusory visual temporal order, as shown above, can be induced
by auditory stimuli. However, auditory stimuli, when integrated
with visual stimuli, can also facilitate visual temporal perception:
Scheier et al. (1999) discovered an audio-visual effect where
spatially non-informative auditory stimuli affected the temporal
perception of a visual temporal order judgement task. This
effect became known as temporal ventriloquism, analogous to
spatial ventriloquism where visual stimuli shifts the perception of
auditory localization (Willey et al., 1937; Thomas, 1941; Radeau
and Bertelson, 1987). Temporal ventriloquism was further
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FIGURE 2 | Trial events in the temporal ventriloquism paradigm that resulted in enhanced temporal order judgement performance (Morein-Zamir et al., 2003). The

stimulus onset asynchrony (SOA) between illumination of LEDs varied. The first auditory tone was presented before the first LED illumination. The second auditory tone

was presented after the second LED illumination. The SOA between tones also varied.

investigated by Morein-Zamir et al. (2003): when accompanied
by auditory tones, performance in a visual temporal order
judgement task was enhanced (Figure 2). This enhancement
was abolished when the tones coincided with the visual stimuli
in time. When the two tones were presented between the
visual stimuli in time (Figure 3), a detriment in performance
was observed. In both conditions the tones appeared to
“pull” the perception of the visual stimuli in time toward
the auditory stimuli temporal onsets: further apart in the
enhanced performance and closer together when a detriment in
performance was observed (see however Hairston et al., 2006 for
an argument against the notion of introducing a temporal gap
between the stimuli in visual perception). The main driver of this
effect was believed to be the temporal relationship between the
auditory and visual stimuli, where the higher temporal resolution
of the auditory stimuli carried more weight in integration. This
is a potent example of how assigning weightings in multi-modal
integration can have both positive and negative outcomes in
terms of system performance.

Morein-Zamir et al. (2003) hypothesized that the quantity

of auditory stimuli must match the quantity of visual stimuli
in order for the temporal ventriloquism effects to occur.

For example, when a single tone was presented between the
presentation of the visual stimuli in time, there was no reported

change in performance. Morein-Zamir et al. (2003) refer to the
unity assumption: the more physically similar stimuli are to each
other across modalities, the greater the likelihood they will be
perceived as having originated from the same source (Welch,
1999), we discuss this in more detail later.

However, other research questions the assumption that
a matching number of stimuli in both the auditory and
visual modality are required to induce temporal ventriloquism.

FIGURE 3 | Trial events in the temporal ventriloquism paradigm that resulted in

a detriment in temporal order judgement performance (Morein-Zamir et al.,

2003). The stimulus onset asynchrony (SOA) between illumination of LEDs

varied. The first auditory tone was presented after the first LED illumination.

The second auditory tone was presented before the second LED illumination.

The SOA between tones also varied.

Getzmann (2007) studied an apparent motion paradigm, where
participants perceive two sequentially presented visual stimuli
behaving as one stimulus moving from one position to another.
They found that when a single click was presented between
the two visual stimuli, it increased the perception of apparent
motion, essentially “pulling” the visual stimuli closer together
in time in perception. This casts doubt on the idea that the
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quantity of stimuli must be equal across modalities in order for,
in this instance, an auditory stimulus to affect the perception of
visual events.

Indeed, Boyce et al. (2020) demonstrated that a detriment
in response bias corresponding to actual visual presentation
order can be achieved with the presentation of a single tone in
neutral space (different space to the visual stimuli) in a visual
ternary response task (temporal order judgement combined
with simultaneity judgements where the participant reports if
stimuli were presented simultaneously). Importantly, this can be
achieved consistently when presenting the single tone prior to the
onset of the first visual stimulus (similar to the trial in Figure 2

but without the second auditory stimulus). Often participants
were as likely to make a simultaneity judgement report as they
were to make a temporal order judgement report corresponding
to actual sequential visual stimuli presentation order. This
poses a problem for the temporal ventriloquism narrative: a
single tone before the sequential presentation of visual stimuli
in a ternary task would be expected to “pull” the perception
of the first visual stimulus toward it in time, resulting in
increased reports corresponding to the sequential order of visual
stimuli. Alternatively, it might “pull” the perception of both
visual stimuli in time with no observable effect on report bias
should the matching quantity rule be abandoned. The repeated
demonstrations of a decrease in report bias corresponding to
the sequential order of visual stimuli suggest that the processes
underlying temporal ventriloquism may be more flexible than
previously suggested, and may have impletion-esque elements.
Specifically, characteristics of stimuli such as their spatial and
temporal relationship, and the featural similarity of stimuli
within a single modality, may be weighted to arrive at the most
likely real world outcome in perception regardless of whether
the number of auditory stimuli equal the number of visual
stimuli or not. Indeed, the number of auditory stimuli relative to
visual in this example appears to modulate the type of temporal
ventriloquist effect that might be expected to be observed.

Clearly not all conditions support the idea that the temporal
relationship of an auditory stimulus to a visual stimulus drives
temporal ventriloquism and similar effects. However, while there
are no easy explanations for the audio-visual integration in
temporal ventriloquism, efforts have been made to show that
auditory stimuli do indeed “pull” visual stimuli in temporal
perception. Freeman and Driver (2008) created an innovative
paradigm that tested the idea that temporal ventriloquism is
driven by auditory capture (in a similar fashion to that of
Getzmann, 2007), that is to say there is a “pulling” of visual
stimuli toward auditory stimuli in temporal perception. They
began by determining the relative timings of visual stimuli that
resulted in illusory apparent visual motion (Figure 4). Once
visual stimulus onset asynchronies (SOAs) were established for
the effect, Freeman and Driver (2008) adjusted the timings to
remove bias in the illusion (Figure 4B). Following that, they
introduced auditory stimuli (Figure 4C) with the same SOAs
used to induce the effect in the visual-only condition (Figure 4A).
In the presence of the auditory stimuli, both visual stimuli were
“pulled” toward each other in time perception, and participants
perceived a bias in the illusion.

This demonstrated that auditory stimuli had the ability to
“pull” the respective visual stimuli in perceptual time toward the
respective auditory onsets. In doing so, the visual stimuli now
appeared in perception to have the same SOA as the auditory
stimuli. This introduced a perceptual bias consistent with that
observed for the visual stimuli SOA (in the absence of auditory
stimuli) necessary to induce the same bias in illusory apparent
visual motion. This meant predictable manipulation of the effect,
and more specifically, demonstrated auditory capture of visual
events in time.

Freeman and Driver (2008) suggest that the timings of
the flanker stimuli (the stimuli used to induce temporal
ventriloquism effects) in relation to the visual are the main
drivers of temporal ventriloquism. Roseboom et al. (2013a)
demonstrated that, in fact, the featural similarity of the flanker
stimuli used to induce the effects described by Freeman and
Driver (2008) have arguably as important a role to play at these
time scales. Specifically, Roseboom et al. (2013a) replicated the
findings of Freeman and Driver (2008) using auditory flankers.
When flankers were featurally distinct (e.g., a sine wave and a
white-noise burst) or flanker types were mixed via audio-tactile
flankers, a mitigated effect was observed. It was significantly
weaker compared to featurally identical audio-only or tactile-
only flankers. This suggests that temporal capture in-and-of-itself
is not sufficient when describing the underlying mechanisms
that account for this effect, or temporal ventriloquism in
general at the reported time scales. Roseboom et al. (2013a)
also demonstrated that the reported illusory apparent visual
motion could be induced when the flanker stimuli was presented
synchronously with the target visual stimuli. This suggests that
temporal ansynchrony is not a requisite to induce this illusion
in a directionally ambiguous display. Keetels et al. (2007) further
highlighted the importance of featural characteristics when
inducing the temporal ventriloquism effect. However, at shorter
time scales, featural similarity appears not to play as large a role
where timing is reasserted as the main driver (Kafaligonul and
Stoner, 2010, 2012; Klimova et al., 2017).

The above research is consistent with the unity assumption,
where an observer makes an assumption about two sensory
signals, such as auditory and visual (or indeed, signals from
the same modality), originating from a single source or event
(Vatakis and Spence, 2007, 2008; Chen and Spence, 2017).
Vatakis and Spence (2007) demonstrated that when auditory
and visual stimuli were mismatched (for example, speech
presentation where the voice did not match the gender of the
speaker) participants found it easier to judge which stimulus
was presented first; auditory or visual. The task difficulty
increased when the stimuli were matched suggesting an increased
likelihood of perceiving the auditory and visual stimuli occurring
at the same time. This finding provides support for the unity
assumption in audio-visual temporal integration of speech via the
process of temporal ventriloquism. See Vatakis and Spence (2008)
for limitations of the unity assumption’s influence over audio-
visual temporal integration of complex non-speech stimuli. See
also Chen and Spence (2017) for a thorough review of the unity
assumption and the myriad debates surrounding it, and how it
relates to Bayesian causal inference.
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A B C

FIGURE 4 | Illusory apparent visual motion paradigm (Freeman and Driver, 2008). (A) The visual SOAs (vSOA) between stimuli. “L” denotes the left stimulus, and “R”

the right stimulus. When the vSOA was 333 ms, apparent motion in the direction of the second stimulus was perceived. When there was a vSOA of 666 ms, no

apparent motion was perceived. (B) When vSOAs were 500 ms, there was no bias in apparent motion. (C) When vSOAs were 500 ms but auditory stimuli were

presented with an SOA (aSOA) of 333 ms, participants perceived apparent motion in the same direction as would be expected with a vSOA of 333 ms. When the

aSOA was 666 ms, illusory apparent visual motion was abolished.

The findings by Roseboom et al. (2013a) and Keetels et al.
(2007) show that there is often a much more complex process
of integration than simply auditory stimuli (or other stimuli of
high temporal resolution) capturing visual stimuli in perception.
There would appear to be a process of evidence accumulation and
evidence discounting: when two auditory events are featurally
similar, and their temporal relationship with visual stimuli is
close, the auditory and visual stimuli are integrated. However,
when two auditory stimuli meet the temporal criteria for
integration with visual stimuli, but these auditory stimuli are
featurally distinct and therefore deemed to be from unique
sources, they are not wholly integrated with the visual stimuli. In
the second example, some of the accumulated temporal evidence
is discounted due to evidence of unique sources being present.

Taken together, this evidence builds a more complicated
picture of temporal ventriloquism in general, and the modulated
illusory apparent visual motion direction effect (Freeman and
Driver, 2008) in particular. Indeed, the unity assumption
potentially plays a role here when one considers the effect featural
similarity has on the apparent grouping of flankers.

2.3. Additional Audio-Visual Effects
Most of the research discussed thus far has focused on the
effects of audio-visual integration on space and time perception
in the visual modality. As highlighted by the McGurk effect,
audio-visual integration can also have other surprising outcomes

in perception. Shams et al. (2002) demonstrated that when a
single flash of a uniform disk was accompanied by two or more
tones, participants tended to perceive multiple flashes of the disk
(Figure 5). When multiple physical flashes were presented and
accompanied by a single tone, participants tended to perceive
a single presentation of the disk (Andersen et al., 2004). These
effects were labeled as fission in the case of illusory flashes, and
fusion in the case of illusory single presentation of the disk.
Fission and fusion differ from the likes of temporal ventriloquism
and prior entry in that they increase or decrease the quantity of
perceived stimuli. After training, or when there was a monetary
incentive, qualitative differences were detectable between illusory
and physical flashes (Rosenthal et al., 2009; vanErp et al., 2013).
However, the illusion persisted despite the ability to differentiate.
Similarities may be drawn between the effect reported by Shams
et al. (2002) and Shipley (1964) where, when the flutter rate of an
auditory signal was increased, participants perceived an increased
flicker frequency of a visual signal. However, there was a relatively
small quantitative change in flicker frequency, whereas fission
is a pronounced change in the visual percept (a single stimulus
perceived as multiple stimuli).

Neuroimaging evidence provided further insights into
fission/fusion effects. Specifically, in the presence of auditory
stimuli the BOLD response in the retinotopic visual cortex
increased whether fission was perceived or not (Watkins et al.,
2006). The inverse was true when the fusion illusion was
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FIGURE 5 | Trial events in the multiple flash illusion paradigm (Shams et al., 2002). A tone was presented before visual stimulus onset, and a tone was presented after

visual stimulus onset. The SOA between tones was 57 ms. This paradigm resulted in the perception of multiple flashes when in fact the visual stimulus was presented

only once for 17 ms.

perceived. This suggests that the auditory and visual perceptual
systems are intrinsically linked, and reflects the additive nature
of the fission illusion and the suppressive nature of the fusion
illusion that “removes” information from visual perception
(auditory stimuli has also been shown to have suppressive effects
on visual perception Hidaka and Ide, 2015).

Shams et al. (2002) proposed the discontinuity hypothesis
as an underlying explanation for the fission effect:
discontinuous stimuli must be present in one modality in order
to “dominate” another modality during integration. However, as
alluded to above, Andersen et al. (2004) demonstrated that this
was not the case via the fusion illusion. Fission and fusion once
again align with the ideas of impletion and the unity assumption.
Consistent with the influence featural similarity of flankers
had on illusory apparent visual motion, the fission effect was
completely abolished when the tones used were distinct from
each other: one a sine wave, the other a white noise burst; or
both featurally distinct sine wave tones (a 300 Hz sine wave and
a 3,500 Hz) (Roseboom et al., 2013b; Boyce, 2016).

Another effect that seems to be governed by the featural
similarity of auditory stimuli is the stream bounce illusion. In
this illusion, two uniform circles move toward each other from
opposite space, and when a tone presented at the point of overlap
of the circles differed featurally to other presented tones, the
circles are perceived to “bounce” off each other. When multiple
tones were featurally identical, the circles often appeared to cross
paths and continue on their original trajectory (Sekuler et al.,
1997; Watanabe and Shimojo, 2001). Taken with the above and
similar research (Keetels et al., 2007; Cook and Van Valkenburg,

2009), this suggests that auditory streaming (where a sequence
of auditory stimuli are assigned the same or differing origins)
processes play an integral role in audio-visual illusions and
integration in general.

Auditory motion can also have a profound effect on visual
perception where a static flashing visual target is perceived to
move in the same direction as auditory stimuli (Figure 6, see also
Hidaka et al., 2011; Fracasso et al., 2013). Perceived location of
apparentmotion visual stimuli can also bemodulated by auditory
stimuli (Teramoto et al., 2012). The visual motion direction
selective brain region MT/V5 is activated in the presence of
moving auditory stimuli, suggesting processing for auditory
motion occurs there (Poirier et al., 2005), which in turn hints
at an intrinsic link between auditory and visual perceptual
systems. These effects taken together again point to evidence
accumulation in audio-visual integration as an optimal process,
where different weight is given to auditory and visual inputs.

Consideration should be lent to how and when multiple
stimuli in single modality should be grouped together as
originating from a single source, or not, before pairing
with another modality. As demonstrated above from
neuropsychological evidences, and also from recent systems
neuroscience evidences (Ghazanfar and Schroeder, 2006; Meijer
et al., 2019), the human audio-visual integration system appears
to operate in rather complex processing steps, in addition to
the traditional thinking of hierarchical processing from single
modality. Hence, there is a need for modeling these cognitive
processes. When designing artificial cognitive systems, efforts
should be made to isolate sources of auditory and visual stimuli,
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FIGURE 6 | Trial events in the sound induced illusory visual motion paradigm (Hidaka et al., 2011). The flashing visual stimulus (white bar above) was presented with

varying eccentricities from fixation (red dot) depending on the trial condition. The auditory stimulus in the illusory condition was first presented to one ear and panned

to the opposing ear. This paradigm resulted in the illusion of motion often in the same direction as that of the auditory stimulus motion.

and identify characteristics that would suggest they are related
events. As shown above, relying on similar temporal signatures
alone is not a robust approach when integrating signals across
modalities. The illusions discussed above are summarized in
Table 1.

3. COMPUTATIONAL COGNITIVE MODELS

We have discussed how auditory stimuli can have a pronounced
effect on the perception of visual events, and vice versa, be it
temporal or qualitative in nature. For auditory stimuli affecting
the perception of visual signals, some effects were additive,
facilitatory, and others suppressive. Regardless of the outcome,
the influence of auditory stimuli on visual perception provides
evidence of complexity of audio-visual integration processes on
the way to visual perception.

These complex mechanisms of how and when auditory
stimuli alter visual perception have been clarified through
computational modeling. Chandrasekaran (2017) presents a
review of computational models of multisensory integration,
categorizing the computational models into accumulator models,
probabilistic models, or neural network models. These types
of models are also typically used in single-modal perceptual

decision-making (e.g., Ratcliff, 1978; Wang, 2002; Wong and
Wang, 2006). In this review, we will only focus on the
accumulator and probabilistic models; the neural network
(connectionist) models provide finer-grained, more biologically
plausible description of neural processes, but on the behavioral
level aremostly similar to themodels reviewed here (Bogacz et al.,
2006; Ma et al., 2006; Wong and Wang, 2006; Ma and Pouget,
2008; Roxin and Ledberg, 2008; Liu et al., 2009; Pouget et al.,
2013; Ursino et al., 2014, 2019; Zhang et al., 2016; Meijer et al.,
2019).

3.1. Accumulator Models
The race model is a simple model that accounts for choice
distribution and reaction time phenomena, e.g., faster reaction
times of multisensory than unisensory stimuli (Raaja, 1962;
Gondan and Minakata, 2016; Miller, 2016). More formally, the
multisensory processing time DAV is the winner of two channel’s
processing times DA and DV for audio and visual signals:

DAV = min(DA,DV ) (1)

Another type of accumulator model, the coactivation model
(Schwarz, 1994; Diederich, 1995), is based on the classic
accumulator-type drift diffusion model (DDM) of decision-
making (Stone, 1960; Link, 1975; Ratcliff, 1978; Ratcliff and
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TABLE 1 | Illusions summary.

Illusion Description

The line-motion illusion: When one side of space is cued prior to the presentation of the entire physical line it results in the perception

of the line being drawn from that cued side of space

Illusory temporal order I: When a tone is presented to one side of congruent space prior to the simultaneous presentation of both

targets in a simultaneity judgement task, illusory sequential order is perceived

Illusory temporal order II: When a tone is presented in neutral space prior to the simultaneous presentation of both targets in a ternary

judgement task, and a tone is presented in neutral space after the onset of both targets, illusory sequential

order is perceived

Temporal ventriloquism - performance enhancement: When a tone is presented before the first visual stimulus in a temporal order judgement sequence and a tone

is presented after the second visual stimulus, performance is improved

Temporal ventriloquism - performance detriment I: When a tone is presented after the first visual stimulus in a temporal order judgement sequence and a tone is

presented before the second visual stimulus, performance is worsened

Temporal ventriloquism - performance detriment II: When a single tone is presented before the first visual stimulus in a temporal order judgement sequence,

response bias matching the presentation order of visual stimuli is reduced

Temporal ventriloquism - illusory apparent visual

motion:

When auditory stimuli are presented in neutral space but with specific SOAs in relation to visual stimuli the

perception of apparent motion can be modulated

Multiple flash illusion: When two or more tones are presented either side of a single presentation of a circle in time, multiple flashes

of the circle are perceived

Single flash illusion: When a single tone is presented with multiple flashes of a circle a single presentation of the circle is perceived

Sound-induced illusory apparent visual motion: When auditory stimuli are presented panning from one ear to the other in time with a static flashing visual

target, visual apparent motion is perceived

Rouder, 1998). The DDM is a continuous analog of a random
walk model (Bogacz et al., 2006), using a drift particle with
state X at any moment in time to represent a decision variable
(relating in favor of one over another choice). This is obtained
through integrating noisy sensory evidence over time in the
form of a stochastic differential equation, a biased Brownian
motion equation:

dX = Adt + cdW, (2)

where A is the stimulus signal (i.e., the drift rate), c is the
noise level, and W represents the stochastic Wiener process.
Integration of the sensory evidence begins from an initial point
(usually origin point 0), and is bounded by the lower and
upper decision thresholds,−z and z, respectively. Each threshold
corresponds to a decision in favor of one of the two choices.
Integration of the sensory information continues until the drift
particle encounters either the upper or the lower threshold, at
which stage a decision is made in favor of the corresponding
option. The drift particle is then reset to the origin point to
allow the next decision to be processed. The DDM response time
(RT) is calculated as the time taken for the drift particle to move
from its origin point to the either of the decision thresholds and
can include a brief, fixed non-decision latency. For the simplest
DDM, the RT has a closed form analytical solution (Ratcliff, 1978;
Bogacz et al., 2006):

RT =
z

A
tanh(

Az

c2
) (3)

Similarly, the corresponding analytical solution for the DDM’s
error rate (ER) is:

ER =
1

1+ exp( 2Az
c2

)
(4)

A simple unweighted coactivation model would combine
evidence from two modalities and integrate it over time using
the DDM (Schwarz, 1994; Diederich, 1995). For example, with
unimodal sensory evidence X1 and X2 (e.g., auditory and visual
information), the combined evidence is just a simple summation
over time using (2):

Xc = X1 + X2 (5)

3.2. Bayesian Models
In contrast to these models, the Bayesian modeling framework
offers an elegant approach to modeling multisensory integration
(Angelaki et al., 2009), although they share some similar
characteristics with drift-diffusion models (Bitzer et al., 2014;
Fard et al., 2017). This approach can provide optimal or near
optimal integration of multimodal sensory cues by weighting
the incoming evidences from each modality. For example, if the
modalities follow a Gaussian distribution, the optimal integration
estimate Xc is (Bülthoff and Yuille, 1996):

Xc =
k21

k21 + k22
X̂1 +

k22
k21 + k22

X̂2 (6)

where k1 = 1
σ
2
1

and k2 = 1
σ
2
2

and X̂1, X̂2, σ1 and σ2

are the means and standard deviations for modality 1 and 2,
respectively. Interestingly, the model can show that the combined
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variance (noise) will always be less than their individual estimates
when the latter are statistically independent (Alais and Burr,
2004). This justifies why combining the signals help reduce the
overall noise. In fact, Beck et al. (2012) makes a strong case
for suboptimal inference, that the larger variability is due to
deterministic, but suboptimal computation, and that the latter,
not internal or external noise, is the major cause of variability
in behavior.

A more complex model, TWIN (time window of integration),
involves a combination of the race model and the coactivation
model (Colonius and Diederich, 2004). Specifically, whichever
modality is first registered (as in winning a “race”), the size of
the window is dynamically adapted to the level of reliability of
the sensory modality. This would ensure, for instance, that if
the less reliable modality wins the race, the window would be
increased to give the more reliable modality a relatively higher
contribution in multisensory integration. This model accounts
for the illusory temporal order induced via a tone after visual
stimuli onset, where the more reliable temporal information
(auditory stimulus) dictates the perceptual outcome—illusory
temporal order (Boyce et al., 2020).

The fission and fusion in audio-visual integration were
suggested to result from statistically optimal computational
strategy (Shams and Kim, 2010), similar to Bayesian inference
where audio-visual integration implies decisions about
weightings assigned to signals and decisions whether to
integrate these signals. Battaglia et al. (2003) applied this
Bayesian approach to reconcile two seemingly separate audio-
visual integration theories. The first theory, called visual capture,
is a “winner-take-all” model where the most reliable signal
(least variance) dominates, while the second theory used a
maximum-likelihood estimation to identify the weight average
of the sensory input. The visual signal was shown to be dominant
because of the subject perceptual bias, but the weighting given to
auditory signals increased as visual reliability decreased. Battaglia
et al. (2003) showed that Equation (6) can naturally account
for both theories by having the weights to vary based on the
signals’ variances.

To study how children and adults differ in audio-visual
integration, Adams (2016) also used the same Bayesian approach
in addition to two other models of audio-visual integration: a
focal switching model, and a modality-switching model. The
focal switching model stochastically sampled either auditory or
visual cues based on subjects’ reports of the observed stimulus.
For the modality-switching model, the stochastically sampled
cues were probabilistically biased toward the likelihood of the
stimulus being observed. Adams (2016) found that the sub-
optimal switching models modeled sensory integration in the
youngest study groups best. However, the older participants
followed the partial integration of an optimal Bayesian model.

3.2.1. Illusions as a By-product of Optimal Bayesian

Integration
A variety of perceptual illusions have been shown to result
from optimal Bayesian integration of information coming from
multiple sensory modalities. In the context of sound-induced
flash illusion (Figure 5), given independent auditory and visual

sensory signals A,V , the ideal Bayesian observer estimates
posterior probabilities of the number of source signals as a
normalized product of single-modality likelihoods P(A|ZA) and
P(V|ZV ) and joint priors P(ZA,ZV )

P(ZA,ZV |A,V) =
P(A|ZA)P(V|ZV )P(ZA,ZV )

P(A,V)
. (7)

Regardless of the degree of consistency between auditory and
visual stimuli, the optimal observer (7) have been shown to be
consistent with the performance of human observers (Shams
et al., 2005b). Specifically, when the discrepancy between the
auditory and visual source signals is large, human observers
rarely integrate the corresponding percepts. However, when the
source signals overlap to a large degree, the two modalities are
partially combined; in these cases the more reliable auditory
modality shifts the visual percepts, thereby leading to sound-
induced flash illusion.

Existence of different causes for signals of different modalities
is the key assumption of the optimal observer model developed
in Shams et al. (2005b), which allowed it to capture both full
and partial integration of multisensory stimuli, with the latter
resulting in illusions. Körding et al. (2007) suggested that in
addition to integration of sensory percepts, optimal Bayesian
estimation is also used to infer the causal relationship between
the signals; this was consistent with spatial ventriloquist illusion
found in human participants. Alternative Bayesian accounts
developed by Alais and Burr (2004) [using Equation (6)] and
Sato et al. (2007) also suggest that the spatial ventriloquist
illusion stems from the near optimal integration of spatial and
auditory signals.

Evidence for optimal Bayesian integration as the primary
mechanism behind perceptual illusions comes from the
paradigms involving not only audio-visual, but also other types
of information. Wozny et al. (2008) applied the model of Shams
et al. (2005b) to trimodal, audio-visuo-tactile perception, through
simple extension of Equation (7). This Bayesian integration
model accounted for cross-modal interactions observed in
human participants, including touch-induced auditory fission,
and flash- and sound-induced tactile fission (Wozny et al., 2008).
Further evidence for Bayesian integration of visual, tactile, and
proprioceptive information is provided by the rubber hand
illusion (Botvinick and Cohen, 1998), in which a feeling of
ownership of a dummy hand emerges soon after simultaneous
tactile stimulation of both the concealed own hand of the
participant and the visible dummy hand (see Lush, 2020 for a
critique of control methods used in the “rubber hand” illusion).
The optimal causal inference model (Körding et al., 2007)
adapted for this scenario accounted for this illusion (Samad
et al., 2015). Moreover, the model predicted that if the distance
between the real hand and the rubber hand is small, the illusion
would not require any tactile stimulation, which was also
confirmed experimentally (Samad et al., 2015).

Finally, Bayesian integration has recently been shown to
account even for those illusions which were previously striking
researchers as “anti-Bayesian”, for the reason that the empirically
observed effects had the direction opposite to the effects
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predicted by optimal integration. Such “anti-Bayesian” effects are
the size-weight illusion (Peters et al., 2016) (of the two objects
with same mass but different size, the larger object is perceived to
be lighter), and the material-weight illusion (Peters et al., 2018)
(of the two objects with the same mass and size, the denser-
looking object is perceived to be lighter). In both cases, the
models explaining these two illusions involved optimal Bayesian
estimation of latent variables (e.g., density), which affected the
final estimation of weight.

Altogether, the reviewed evidence from diverse perceptual
tasks illustrates the ubiquity of optimal Bayesian integration and
its role in emergence of perceptual illusions.

3.2.2. Temporal Dimension in Bayesian Integration
Basic Bayesian modeling framework often does not come
with a temporal component, unlike dynamical models such as
accumulator. However, a recent study shows that when optimal
Bayesian model is combined with the DDM, it can provide
optimal and dynamic weightings to the individual sensory
modalities. In the case of visual and vestibular integration,
using an experimental setup similar to that of Fetsch et al.
(2009) and Drugowitsch et al. (2014) found a Bayes-optimal
DDM to integrate vestibular and visual stimuli in a heading
discrimination task. It allowed the incorporation of time-variant
features of the vestibular motion, i.e., motion acceleration,
and visual motion velocity. The Bayesian framework allowed
the calculation of a combined sensitivity profile d(t) from the
individual stimulus sensitivities.

d(t) =

√
k2vis(c)

k2
comb

(c)
v2(t)+

k2vest(c)

k2
comb

(c)
a2(t) (8)

where kvis(c), kvest(c), and kcomb(c) are the visual, vestibular
and combined stimulus sensitivities, and v(t) and a(t) are
the temporal sensitivities of the visual and vestibular stimuli,
respectively. Drugowitsch et al. (2014) found that Bayes-optimal
DDM led to suboptimal integration of stimuli when subject
response times were ignored. However, when response times
were considered, the decision-making process took longer but
resulted in more accurate responses. That said, a significant
limitation of the study by Drugowitsch et al. (2014) and related
work is that it does not incorporate delays in information
processing. More generally, current Bayesian models do not
consider how temporal delays impact sensory reliability. Delays
are particularly relevant for feedback control in the motor system
and processes like audio-visual speech because different sensory
systems are affected by different temporal delays (McGrath and
Summerfield, 1985; Jain et al., 2015; Crevecoeur et al., 2016).

So far, the modeling approaches do not generally take into
account the effects of attention, motivation, emotion, and other
“top-down” or cognitive control factors that could potentially
affect multimodal integration. However, there are experimental
studies of top-down influences, mainly attention (Talsma et al.,
2010). More recently, Maiworm et al. (2012) showed that
aversive stimuli could reduce the ventriloquism effect. Bruns
et al. (2014) designed a task paradigm in which rewards were

differentially allocated to different spatial locations (hemifields),
creating a conflict between reward maximization and perceptual
reliance. The auditory stimuli were accompanied by task-
irrelevant, spatially misaligned visual stimuli. They showed that
the hemifield with higher reward had a smaller ventriloquism
effect. Hence, reward expectation could modulate multimodal
integration and illusion, possibly through some cognitive control
mechanisms. Future computational studies, e.g., using reward
rate analysis (Bogacz et al., 2006; Niyogi and Wong-Lin, 2013),
should address how reward and punishment are associated with
such effects.

4. AUDIO-VISUAL SYSTEMS IN THE
ARTIFICIAL

Multimodal integration and sensor fusion in artificial systems
have been an active research field for decades (Luo and Kay, 1989,
2002), since using multiple sources of information can improve
artificial systems in many application areas, including smart
environments, automation systems and robotics, intelligent
transportation systems. Integration of sensory modalities to
generate a percept can occur at different stages, from low
(feature) to high (semantic) level. The integration of several
sources of unimodal information at middle and high level
representations (Wu et al., 1999; Gómez-Eguíluz et al., 2016)
has clear advantages: interpretability, simplicity of system design,
and avoiding the problem of increasing dimensionality of the
resulting integrated feature. Although model dependent, lower
dimensionality of the feature space typically leads to better
estimates of parametric models and computationally faster non-
parametric models for a fixed amount of training data, which
in turn can reduce the number of judgement failures. However,
percept integration at the representation level lacks robustness
and does not account for the way humans integrate multisensory
information (Calvert et al., 2001; Shams et al., 2005a; Watkins
et al., 2006; Stein et al., 2014) to create these percepts (Cohen,
2001). Temporal ventriloquism and the McGurk effect are
just two examples of the result of the lower-level integration
of sensory modalities in humans to create percepts, yet the
differences with artificial systems go even further. While human
perceptual decision-making is based on a dynamic process
of evidence accumulation of noisy sensory information over
time (see above), artificial systems typically follow a snapshot
approach, i.e., percepts are created on the basis of instantaneous
information, and only from data over time-windows when
the perception mainly unfolds over time. Therefore, we can
distinguish between decisions made over accumulated evidence,
i.e., decision-making, and decisions made following the snapshot
approach, i.e., classification, even though sometimes these two
approaches are combined.

Audio-visual information integration is one of the multi-
sensory mechanisms that has increasingly attracted research
interests in the design of artificial intelligent systems. This is
mainly due to the fact that humans heavily rely on these sensing
modalities, and advances in this area have been facilitated by
the high level of maturity of the individual areas involved, for
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instance signal processing, speech recognition, machine learning,
and computer vision. See Parisi et al. (2017) and Parisi et al.
(2018) for examples of how human multisensory integration
in spatial ventriloquism has been used to model human-like
spatial localization responses in artificial systems in which—
given a scenario where sensor uncertainty exists in audio-visual
information streams—they propose artificial neural architectures
for multisensory integration. An interesting characteristic of
audio-visual processing compared to other multimodal systems
is the fact that the information unfolds over time for audio
signals, but also for visual systems when video is considered
instead of still images. However, most of the research in artificial
visual systems follow the snapshot approach mentioned above
to build percepts, while video processing mainly focuses on
integrating and updating of these instantaneous percepts over
time, which can be seen as evidence accumulation. Like for other
multimodal integration modalities, audio-visual integration in
artificial systems can be performed at different levels, although is
generally used for classification purposes, while decision-making,
when performed, is based on the accumulation of classification
results. Optimal temporal integration of visual evidence together
with audio information can be prone to the sort of illusory
effects on percepts illustrated above in humans. However, because
artificial systems are designed with very specific objectives, an
emergent deviation of the measurable targets of the systemwould
be considered as a failure or bug of the system. Therefore,
although artificial systems can display features that could be
the emergent results of the multimodal integration, they will be
regarded as failures to be avoided, and most likely not reported in
the literature. A close example related to reinforcement learning
is the reward hacking effect (Amodei et al., 2016), where a
learning agent finds an unexpected (maybe undesired) optimal
policy for a given learning problem.

As stated earlier, multimodal integration is typically
performed at high level, as low-level integration generates
higher dimensional data, thereby increasing the difficulty of
processing and analysis. Moreover, the low-level integration
of raw data can have the additional problem of combining
data of very different nature. The dimensionality problem is
magnified by the massive amount of data visual perception
produces, therefore most approaches to audio-visual processing
in intelligent systems also address the problem of integration
at a middle and higher levels across diverse applications: object
and person tracking (Nakadai et al., 2002; Beal et al., 2003),
speaker localization and identification (Gatica-Perez et al., 2007),
multimodal biometrics (Chibelushi et al., 2002), lip reading
and speech recognition (Sumby and Pollack, 1954; Luettin and
Thacker, 1997; Chen, 2001; Guitarte-Pérez et al., 2005) and video
annotation (Wang et al., 2000; Li et al., 2004), and others. The
computational models described above can be identified with
these techniques for artificial systems, as they generate percepts
and perform decision-making on the basis of middle-level fusion
of evidence. However, some work in artificial systems deals with
the challenging problem of combining data at the signal level
(Fisher et al., 2000; Fisher and Darrell, 2004). While artificial
visual systems were dominated by feature definition, extraction,
and learning (Li and Allinson, 2008), the success of deep learning

and convolutional neural networks in particular has shifted the
focus of computer vision research. Likewise, speech processing
is adopting this new learning paradigm, yet audio-visual speech
processing with deep learning is still based mainly on high-level
integration (Deng et al., 2013; Noda et al., 2015). Although
the human audio-visual processing is not fully understood,
our knowledge of the brain strongly inspires (and biases) the
design of artificial systems. Besides the well-known (yet not
widely reported) reward hacking in reinforcement learning and
optimization (Amodei et al., 2016), to the best of our knowledge
no illusory percepts have been reported in specific-purpose
artificial systems, as they are typically situations to be avoided.

5. DISCUSSION

The multi-modal integration processes and related illusions
outlined above are closely related in terms of how audition affects
visual perception. Untangling whether prior entry (whatever
form it may take), impletion, temporal ventriloquism, or featural
similarity of auditory stimuli are the drivers of audio-visual
effects can be a challenge, and may be missing the bigger picture
when trying to understand how perception is arrived at in a noisy
world. The most likely explanation of the discussed effects is
one of an overarching unified process of evidence accumulation
and evidence discounting. This perspective would state that
evidence is gathered via multiple modalities and is filtered
through multiple sub-processes: prior entry, auditory streaming,
impletion, and temporal ventriloquism. Two or more of these
sub-processes will often interact, with various weightings given to
each process. For example, prior entry using a single auditory cue
can induce an illusion of temporal order, but with the addition
of a cue in the unattended side of space after the presentation
of both target visual stimuli, extra information in favor of
temporal order can be accumulated, which would increase the
strength of the illusion (Boyce et al., 2020). Similarly, illusory
temporal order can be induced via spatially neutral tones (an
orthogonal design), as demonstrated by Boyce et al. (2020), which
appears to combine prior entry and temporal ventriloquism,
and impletion-like processes generally. The illusory temporal
order induced via spatially neutral tones is significantly weaker
when compared to the spatially congruent audio and visual
stimuli equivalent, highlighting the relative weight given to
spatial congruency. Additionally, when featurally distinct tones
are used for both of these effects, the prior entry illusory order
is preserved while the illusory order induced by spatially neutral
tones is completely abolished (Boyce et al., 2020). This highlights
how spatial information carries greater weight than the featural
information of the tones used when the auditory and visual
stimuli are spatially congruent. Conversely, it also highlights how
featural characteristics carry greater weight in the absence of
audio-visual spatial congruency.

As outlined above, temporal ventriloquism effects can also
interact with auditory streaming where the features of auditory
stimuli undergo a process of grouping, and the outcome can
dictate whether the stimuli is paired or not with visual stimuli.
The mere fact that the temporal signature of stimuli is not
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in-and-of-itself enough to induce an effect (at the times discussed
here) suggests that sub-processes interact across modalities.
Specifically, when auditory stimuli are not grouped in the
streaming process, there is less evidence that they belong to
the same source, and in turn it is less likely both auditory
stimuli belong to the same source as the visual events. These
types of interactions taken with different outcomes in visual
perception, depending on the number of auditory stimuli used,
point toward an overarching process that fits an expanded
version of impletion, or a unifying account of impletion (Boyce
et al., 2020) (aligning with Bayesian inference), where the most
likely real world outcome is reflected in perception. The observer
weighs evidence from both modalities in multi-modal perception
and also weighs evidence within a single modality. This suggests
an inherent weighted hierarchy, where spatial, featural, and
temporal information are all taken into account.

The discussed integration processes are often statistically
optimal in nature (Alais and Burr, 2004; Shams and Kim, 2010).
This has implications for designing artificial cognitive systems.
An optimal approach may be an intuitive one: minimizing the
average error in perceptual representation of stimuli. However,
as discussed, this approach can come with costs in terms of
illusions, or artifacts, despite a reduction in the average error. Of
course, some systems will not rely wholly on mimicking human
integration of modalities, and indeed will supersede human
abilities: for example, a system may be designed to perform
multiple tasks simultaneously, something a human cannot do.
However, future research should aim to identify when an optimal
approach is not suitable in multi-modal integration.

Using illusion research in human perception as a guide,
researchers could identify and model when artifacts occur in
multi-modal integration, and apply these findings to system
design. This might take the shape of modulating the optimality
of integration depending on conditions via increasing or
decreasing weightings as deemed appropriate. This approach
could contribute to a database of “prior knowledge” where
specific conditions that can result in artifacts are cataloged and
can inform the degree of integration between sources in order
to avoid undesired outcomes. For instance, Roach et al. (2006)
examines audio-visual integration from just such a perspective
using a Bayesian model of integration, where prior knowledge of
events are taken into account and a balance between benefits and
costs (optimal integration and potential erroneous perception)
of integration is reached. They examined interactions between
auditory and visual rate perception (where a judgement is
made in a single modality and the other modality is “ignored”)
and found that there is a gradual transition between partial
cue integration and complete cue segregation as inter-modal
discrepancy increases. The Bayesian model they implemented
took into account prior knowledge of the correspondence
between audio and visual rate signals, when arriving at an
appropriate degree of integration.

Similarly, a comparison between unimodal information and
the final multi-modal integration might offer a strategy for
identifying artifacts. This strategy might be akin to the study of
Sekiyama (1994), which demonstrated that Japanese participants,
in contrast to their American counterparts, have a different

audio-visual strategy in the McGurk paradigm: less weight was
given to discrepant visual information, which in turn affected
the integration with auditory stimuli, ultimately resulting in a
smaller McGurk effect. The inverse was shown in the participants
with cochlear implants who demonstrated a largerMcGurk effect:
more weight was given to visual stimuli in general (Rouger
et al., 2008). Magnotti and Beauchamp (2017) suggested that a
causal inference (determining if audio and visual stimuli have the
same source) “type” calculation is a step in multisensory speech
perception, where some, but not all, incongruent audio-visual
speech stimuli are integrated based on the likelihood of a shared,
or separate, sources. Should that be the case, and this step is
part of a near optimal strategy, a suboptimal process—such as
a comparison of unimodal information and final multi-modal
integration, or adjusting relative stimulus feature weightings
when estimating likelihoods of source—could ensure that a
McGurk-like effect is avoided. Additionally, it is worth noting
the research by Driver (1996) who demonstrated that when
there are competing auditory speech stimuli ostensibly from
the same source and a matching visual speech stimuli from
a different spatial location this has the effect of “pulling” the
matching auditory stimuli in perceptual space toward the visual
stimuli improving separation of the auditory streams reflected in
report accuracy.

Dynamic adjustment of prior expectations is a vital
consideration when designing local “prior knowledge” databases
for artificial cognitive systems. This is illuminated by the fact
that dynamically updated prior expectations can increase
the likelihood of audio-visual integration: When congruent
audio-visual stimuli is interspersed with incongruent McGurk
audio-visual stimuli, the illusory McGurk effect emerges (Gau
and Noppeney, 2016). Essentially, when there is a high instance
of audio-visual integration due to congruent stimuli, incongruent
stimuli have a greater chance of being deemed as originating
from the same source and therefore being integrated. These
behavioral results were supported by fMRI recordings that
showed the left inferior frontal sulcus arbitrates between
multisensory integration and segregation by combining top-
down prior congruent/incongruent expectations with bottom-up
congruent/incongruent cues (Gau and Noppeney, 2016). This
suggests that in artificial cognitive systems, even though the
prior knowledge databases should cater for updates, it should
not be done live and “on-the-fly.” If the probability of audio and
visual stimuli originating from the same source was calculated
near-optimally in the manner described by Gau and Noppeney
(2016) dynamically, it could result in artifacts in an artificial
cognitive system, where, for example, unrelated audio-visual
events could be classified as being characteristics of the same
event. If a dynamic approach is required, an optimal strategy
should be avoided for these reasons.

In addition to the approaches suggested above, it is important
that temporal characteristics, such as processing differences
across artificial modalities are also taken into account. For
instance, even though light is many hundreds of thousands
of times faster than sound, the human perceptual system
processes sound stimuli faster than visual stimuli (Recanzone,
2009). Indeed, it has been suggested that characteristics such
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as processing speeds of auditory and visual stimuli changing
as a person ages (for example, visual processing slowing) may
be responsible for increasing audio-visual integration in older
participants where auditory tones had a greater influence on
the perceived number of flashes in the sound-induced flash
illusion compared to younger participants (DeLoss et al., 2013;
McGovern et al., 2014). Similar considerations should be made
for artificial systems. Regardless of how sensitive or fast at
processing a given artificial sensor is, light will always reach
a sensor before sound if the respective stimuli originate from
the same distance/location. Setting aside the physical attribute
of the speed of light vs. the speed of sound, there is an
additional level of complexity even in an artificial system
where it presumably would require a lot more computational
power, and thus time, to process and separate the stimulus
of interest in a given visual scene (with other factors such
as feature resolution playing a role). Indeed, as mentioned
previously, temporal feedback delay in the nervous system
is a factor in optimal multi-sensory integration (Crevecoeur
et al., 2016). Additionally, a unimodal auditory strategy for
separating sources of auditory stimuli in a noisy environment
via extracting and segregating temporally coherent features into
separate streams has been developed by Krishnan et al. (2014).
These considerations taken with the multi-modal audio-visual
strategies deployed in speech (where temporal relationships of
mouth movement and auditory onset play a role, specifically the
voice onsets between 100 and 300ms before the mouth visibly
moves Chandrasekaran et al., 2009) highlight the importance
of temporal characteristics, correlations, and strategies when
designing artificial cognitive systems. Finally, to handle noisy
sensory information, artificial cognitive systems should perhaps
consider incorporating temporal integration of sensory evidence

(Rañó et al., 2017; Yang et al., 2017; Mi et al., 2019) instead of
employing snapshot decision processing.

In summary, we highlight a wide range of audio-visual illusory
percepts from the psychological and neuroscience literature, and
discussed how computational cognitive models can account for
some of these illusions—through seemingly optimal multimodal
integration. We provide cautions regarding the naïve adoption of
these human multimodal integration computations for artificial
cognitive systems, which may lead to unwanted artifacts. Further
investigations of the mechanisms of multimodal integration
in humans and machines can lead to efficient approaches
for mitigating and avoiding unwanted artifacts in artificial
cognitive systems.
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