
ORIGINAL RESEARCH
published: 28 July 2020

doi: 10.3389/frobt.2020.00098

Frontiers in Robotics and AI | www.frontiersin.org 1 July 2020 | Volume 7 | Article 98

Edited by:

Alan Frank Thomas Winfield,

University of the West of England,

United Kingdom

Reviewed by:

David Howard,

CSIRO, Australia

Anders Lyhne Christensen,

University of Southern

Denmark, Denmark

*Correspondence:

Stefano Nolfi

stefano.nolfi@istc.cnr.it

Specialty section:

This article was submitted to

Evolutionary Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 16 April 2020

Accepted: 16 June 2020

Published: 28 July 2020

Citation:

Pagliuca P, Milano N and Nolfi S

(2020) Efficacy of Modern

Neuro-Evolutionary Strategies for

Continuous Control Optimization.

Front. Robot. AI 7:98.

doi: 10.3389/frobt.2020.00098

Efficacy of Modern
Neuro-Evolutionary Strategies for
Continuous Control Optimization
Paolo Pagliuca 1, Nicola Milano 1 and Stefano Nolfi 1,2*

1 Laboratory of Autonomous Robots and Artificial Life, Institute of Cognitive Science and Technologies, National Research

Council, Rome, Italy, 2 Faculty of Computer Science and Engineering, Innopolis University, Innopolis, Russia

We analyze the efficacy of modern neuro-evolutionary strategies for continuous control

optimization. Overall, the results collected on a wide variety of qualitatively different

benchmark problems indicate that these methods are generally effective and scale

well with respect to the number of parameters and the complexity of the problem.

Moreover, they are relatively robust with respect to the setting of hyper-parameters.

The comparison of the most promising methods indicates that the OpenAI-ES algorithm

outperforms or equals the other algorithms on all considered problems. Moreover, we

demonstrate how the reward functions optimized for reinforcement learning methods are

not necessarily effective for evolutionary strategies and vice versa. This finding can lead

to reconsideration of the relative efficacy of the two classes of algorithm since it implies

that the comparisons performed to date are biased toward one or the other class.

Keywords: evolutionary strategies, reinforcement learning, continuous control optimization, natural evolutionary

strategies, fitness function design

INTRODUCTION

Model-free machine learning methods made significant progress in the area of sequential decision
making which involves deciding from experience the sequence of actions that can be performed in
a certain environment to achieve a goal.

In the area of reinforcement learning (Sutton and Barto, 2018), progress has been achieved
primarily by combining classic algorithms with deep learning techniques for feature learning.
Notable examples are agents trained to play Atari games on the basis of raw pixels input (Mnih
et al., 2015) and simulated robots capable of performing locomotion and manipulation tasks
(Schulman et al., 2015a,b; Andrychowicz et al., 2019).

Recently, similar progress has been made in the area of evolutionary computation through
neuro-evolutionary methods (Stanley et al., 2019), also indicated as direct policy search methods
(Schmidhuber and Zhao, 1998). In particular, in a recent paper Salimans et al. (2017) demonstrated
how neural network controllers evolved through a specific natural evolutionary strategy achieve
performance competitive with the reinforcement learning methods mentioned above on the
MuJoCo locomotion problems (Todorov et al., 2012) and the Atari games from pixel inputs
(Mnih et al., 2015). In this work Salimans et al. (2017) also demonstrated for the first time that
evolutionary strategies can be successfully applied to search spaces involving several hundred
thousand parameters and can complete the evolutionary process in few minutes thanks to the their
highly parallelizable nature.

However, the relation between the OpenAI-ES algorithm introduced by Salimans et al. (2017)
and other related algorithms such as CMA-ES (Hansen and Ostermeier, 2001) and Natural

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00098
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00098&domain=pdf&date_stamp=2020-07-28
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stefano.nolfi@istc.cnr.it
https://doi.org/10.3389/frobt.2020.00098
https://www.frontiersin.org/articles/10.3389/frobt.2020.00098/full
http://loop.frontiersin.org/people/979805/overview
http://loop.frontiersin.org/people/666/overview

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

Evolutionary Strategies (Wierstra et al., 2014) is still to be
clarified. In particular, whether or not the former method is
more effective than the other related methods, and/or whether
the advantage of the method introduced by Salimans et al.
(2017) comes from the usage of the virtual batch normalization
technique (Salimans et al., 2016, 2017) that can be applied also to
the other methods.

Such et al. (2017) compared the OpenAI-ES method with
related algorithms. They used a classic evolutionary strategy
(see the section Methods) and obtained performance similar
to those reported by Salimans et al. (2017) on 13 selected
Atari games, but lower performance on the MuJoCo humanoid
locomotion problem. The classic method resulted less sample
efficient than the natural evolutionary strategy used by Salimans
et al. (2017) on this problem. Mania et al. (2018) demonstrated
how a simplified evolutionary strategy is sufficient to solve the
MuJoCo locomotion problems and outperform state-of-the-art
policy gradient methods. Henderson et al. (2018) stressed the
importance of considering the variability among replications
and the impact of hyper-parameters to evaluate the efficacy of
alternative methods.

Other works pointed out that the considered problems
admit compact solutions. In particular, Rajeswaran et al. (2017)
demonstrated how the MuJoCo locomotion problems can be
solved with shallow networks. Such et al. (2017) demonstrated
that some Atari games admit simple solutions, an issue
highlighted also in other works (e.g., Wilson et al., 2018).

In this paper we compare systematically the performance
of the evolutionary strategy proposed by Salimans et al.
(2017) with other related methods in order to verify the
relative efficacy of available algorithms on continuous
optimization problems. To avoid biases caused by the usage
of a specific class of problems, we extend the test with
additional and qualitatively different problems (see below).
Finally, we analyze the role of the reward function and
critical hyper-parameters.

As we will see, the evolutionary strategy proposed by Salimans
et al. (2017) outperforms or equals related approaches in all
problems and is relatively robust with respect to the setting
of hyper-parameters. The advantage of this method is not
only due to the usage or virtual batch normalization that
have been applied to all methods in our analysis. It can
rather be ascribed to the efficacy of the Adam stochastic
optimizer (Kingma and Ba, 2014) which avoids an uncontrolled
growth of the size of the connection weights. Finally, we
show how the contribution of virtual batch and weight decay
normalization is minor in simple problems, but crucial in more
complex ones.

The analysis of the role of the reward function indicates
that functions optimized for reinforcement learning are not
necessarily effective for evolutionary strategies and vice versa.
Indeed, the performance of evolutionary strategies can improve
dramatically with the usage of suitable reward functions. This
finding should lead to a reconsideration of the relative efficacy
of the two classes of algorithm since it implies that the
comparisons performed to date are biased toward one or the
other class.

METHODS

In this section we briefly review the algorithms used in
our experiments.

Evolution Strategies (ES), introduced by Rechenberg and
Eigen (1973) and Schwefel (1977), were designed to cope
with high-dimensional continuous-value domains and have
remained an active field of research since then. They operate
on a population of individuals (in our case, a population
of vectors encoding the parameters of corresponding neural
network policies). Variations are introduced in the policy

parameters during the generation of new individuals. At every
iteration (“generation”), the performance of the individuals

with respect to an objective function (“fitness” or cumulative
reward) is evaluated, the best individuals are kept, and the
remaining individuals are discarded. Survivors then procreate by
creating copies of themselves with mutations (i.e., variations of
parameters). The process is repeated for several generations. We
refer to these methods as classic evolutionary strategies.

This algorithm framework has been extended over the
years to include the representation of correlated mutations
through the use of a full covariance matrix. This led to
the development of the CMA-ES (Hansen and Ostermeier,
2001) algorithm that captures interrelated dependencies
by exploiting covariance while “mutating” individuals. The
algorithm estimates the covariance matrix incrementally across
generations, thus extracting information about the correlation
between consecutive updates. The matrix is then used to generate
a parametrized search distribution.

Natural Evolutionary Strategies (Wierstra et al., 2014) are a
variant of the CMA-ES that also rely on a parametrized search
distribution based on a covariance matrix, and use the fitness
of the population to estimates the local variation of the fitness
function, i.e., the search gradient on the parameters toward
higher expected fitness. Then they perform a gradient ascent
step along the natural gradient by using a second-order method
that renormalizes the update with respect to uncertainty. Natural
evolutionary strategies came in two varieties: Exponential
Natural Evolutionary Strategy (xNES, Wierstra et al., 2014)
and Separable Natural Evolutionary Strategy (sNES, Wierstra
et al., 2014). The latter is a simplified version that estimates
the covariance of the diagonal instead of the full matrix and,
consequently, scales-up to larger search spaces.

TheOpenAI-ESmethod proposed by Salimans et al. (2017) is
a form of natural evolutionary strategy that estimates the gradient
of the expected fitness. Unlike the xNES and sNES, it performs
mutations by using a simple isotropic Gaussian distribution
with fixed variance. It uses the fitness of the population to
estimate the gradient and updates the center of the distribution of
the population through the Adam stochastic gradient optimizer
(Kingma and Ba, 2014).

The OpenAI-ES method (Salimans et al., 2017) also relies
on virtual batch normalization and weight decay. Virtual batch
normalization is used to normalize distribution of the state of
the sensors. It is a variation of the batch normalization method
commonly used in supervised learning adapted to problems in
which the stimuli experienced by the network are not fixed

Frontiers in Robotics and AI | www.frontiersin.org 2 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

(see also Salimans et al., 2016). This is the case of embodied
agents in which the stimuli that are experienced depend on the
actions executed by the agents previously. The problem is solved
by calculating the average and the variance of the activation
of the sensors incrementally on the basis of the distribution of
the activation of the sensors of agents of successive generations.
This technique is particularly useful in problems in which the
range of activation of the sensors vary widely during the course
of the evolutionary process. Weight decay is a regularization
technique, also commonly used in supervised learning, that
penalizes the absolute value of weights to favor the development
of simpler solutions that are less prone to overfitting. More
specifically the OpenAI-ES method relies on an L1 weight
decay and reduces the absolute value of the weights of 5‰
every generation.

We refer to these extended methods as modern evolutionary
strategies. More specifically, we use this term to indicate
algorithms computing the interrelated dependencies among
variations of individuals or using a form of finite difference
method to estimate the local gradient of the fitness function.

To analyze the efficacy of different reward functions for
evolutionary strategies and reinforcement learning algorithms
we used the Proximal Policy Optimization algorithm (PPO,
Schulman et al., 2017). PPO is a state-of-the art policy
gradient method (Peters and Schaal, 2008), a class of algorithms
particularly suitable for the optimization of neural network
policies applied to continuous control problems. PPO operates
on a single individual policy and introduces variations by using
stochastic actions. As the related TRPO algorithm (Schulman
et al., 2015a), PPO achieves learning stability by ensuring that
the deviation from the previous policy is sufficiently small during
parameter’s update.

The source code that can be used to replicate the
experiments described in section Comparative Performance of
Evolutionary Strategies is available from https://github.com/
PaoloP84/EfficacyModernES. The source code that can be used
to replicate the experiment described in section Sensitivity
to the Reward Function and Sensitivity to Hyper-Parameters
is available from https://github.com/snolfi/evorobotpy/. The
implementation of the algorithms has been based on the
free software made available from the authors (i.e., http://
pybrain.org/ for xNES and sNES, http://cma.gforge.inria.fr/ for
CMA-ES, https://github.com/openai/evolution-strategies-starter
for OpenAI-ES, https://github.com/openai/baselines for PPO).
In the case of baseline implementation of PPO we did not need
to introduce any change. The source code of the OpenAI-ES
algorithm is designed to run in an amazon cluster environment.
We adapted it to run on a standard linux machine. In
the case of source code of CMA-ES, xNES, and sNES, we
created a standalone version of the original code integrated
with a neural network simulator and with the OpenAI Gym
environment (https://gym.openai.com/).

PROBLEMS

In this section we review the problems used in our experiments.

The first five considered problems are the MuJoCo
locomotion problems (Todorov et al., 2012) available in the
Open-AI Gym environment (Brockman et al., 2016), which
are commonly used as a benchmark for continuous control
optimization. In particular, we used the Swimmer (Purcell, 1977;
Coulom, 2002), the Hopper (Murthy and Raibert, 1984; Erez
et al., 2012), theHalfcheetah (Wawrzynski, 2007), theWalker2D

(Raibert and Hodgins, 1991; Erez et al., 2012) and theHumanoid

(Erez et al., 2012) problems. These tasks consist of controlling
articulated robots in simulation for the ability to locomote as fast
as possible by swimming in a viscous fluid (Swimmer), hopping
(Hopper) and walking (Halfcheetah,Walker2D, and Humanoid).

The Swimmer, Hopper, Halfcheetah, Walker2D and
Humanoid are provided with 2, 3, 6, 6, and 17 actuated
joints, respectively. The observation state varies from 3 to 376
states. The observation includes the position and orientation
of the robot, the angular position and velocity of the joints,
and (in the case of the Humanoid) the actuators and external
forces acting on the joints. The action state includes N values
encoding the torques applied to the N corresponding joints.
The initial posture of the robot varies randomly within limits.
The evaluation episodes are terminated after 1,000 steps or,
prematurely, when the torso of the robots falls below a given
threshold in the case of the Hopper, Walker2D and Humanoid.
The agents are rewarded proportionally to their speed toward
a target destination. However, they also receive additional
rewards and punishments to facilitate the development of the
required behaviors. More precisely, the agents are rewarded with
a constant value for every step spent without falling (in the case
of the Hopper, Walker2D, and Humanoid), and are punished
with a quantity proportional to the square of the torques used
to control the joints. In the case of the Humanoid, the robot
is also punished with a quantity proportional to the square of
the external forces acting on the joints. For other details see the
references above.

The sixth considered problem is the Long double-pole

balancing problem (Pagliuca et al., 2018; https://github.com/
snolfi/longdpole) which consists in controlling a cart with two
poles, attached with passive hinge joints on the top side of the
cart, for the ability to keep the poles balanced. The cart has a
mass of 1 Kg. The long pole and the short pole have a mass of
0.5 and 0.25Kg and a length of 1.0 and 0.5m, respectively. The
cart is provided with three sensors encoding the current position
of the cart on the track (x), and the current angle of the two
poles (θ1 and θ2). The activation state of the motor neuron is
normalized in the range [−10.0, 10.0] N and is used to set the
force applied to the cart. The initial state of the cart is selected
randomly at the beginning of every evaluation episode within
the following intervals: [−1.944 < x < 1.944, −1.215 <

ẋ < 1.215, −0.0472 < θ1 < 0.0472, −0.135088 < θ̇1 <

0.135088, −0.10472 < θ2 < 0.10472, −0.135088 < θ̇2

< 0.135088]. Episodes terminate after 1,000 steps or when the
angular position of one of the two poles exceeded the range
[–π

5 ,
π

5] rad or when the position of the cart exceed the range
[−2.4, 2.4] m. It is a much harder version than the classic non-
markovian double pole balancing problem (Wieland, 1991) in
which: (i) the length and the mass of the second pole is set to

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2020 | Volume 7 | Article 98

https://github.com/PaoloP84/EfficacyModernES
https://github.com/PaoloP84/EfficacyModernES
https://github.com/snolfi/evorobotpy/
http://pybrain.org/
http://pybrain.org/
http://cma.gforge.inria.fr/
https://github.com/openai/evolution-strategies-starter
https://github.com/openai/baselines
https://gym.openai.com/
https://github.com/snolfi/longdpole
https://github.com/snolfi/longdpole
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

1
2 of that of the first pole (instead of

1
10), and (ii) the agent should

balance the poles from highly variable initial states. The reward
consists of a constant value gained until the agent manages to
avoid the termination conditions. The state of the sensors, the
activation of the neural network, the force applied to the cart, and
the position and velocity of the cart and of the poles are updated
every 0.02 s. Unlike the MuJoCo locomotion tasks, this problem
necessarily requires memory. For more details, see Pagliuca et al.
(2018) and Pagliuca and Nolfi (2019).

The seventh problem is the Swarm foraging problem
(Pagliuca and Nolfi, 2019) in which a group of 10 simulated
MarXbots (Bonani et al., 2010) should explore their environment
so to maximize the number of food elements collected and
transported to a nest. The robots are located in a flat square
arena of 5 × 5m, surrounded by walls, which contains a nest,
i.e., a circular area with diameter of 0.8m painted in gray. The
robots, which have a circular shape and a diameter of 0.34m,
are provided with two motors controlling the desired speed of
the two corresponding wheels, a ring of LEDs located around
the robot body that can be turned on or off and can assume
different colors, an omnidirectional camera, 36 infrared sensors
located around the robot body that can detect the presence of
nearby obstacles, and 8 ground infrared sensors that can be
used to detect the color of the ground. Four hundred elements
of invisible food are located inside 400 corresponding 0.5 ×

0.5m non-overlapping portions of the environment. The robots
have an energy level that is replenished inside the nest and
decreases linearly over time outside the nest. More specifically,
the energy level is reset to 1.0 inside the nest and decreased
of 0.01 every 100ms spent outside the nest. To collect food,
the energy of the robot should be > 0.0. Food elements are
automatically collected and released when the robot enters in a
portion of the environment containing a food element and in
the nest, respectively. Effective solutions of this problem include
robots capable of generating and exploiting specific spatial
configurations, communicating with the other robots by turning
on and off colored LEDs and by reacting to perceived colors, and
assuming complementary different roles. The observation state
includes 19 values encoding the state of the infrared sensors, of
the ground sensors, of the camera, and of the battery of the robot.
The action state includes four values encoding the desired speeds
of the left and right robot’s wheels, and the state of the blue and
red LEDs located on the frontal and rear side of the robot. For
other details, see Pagliuca and Nolfi (2019).

Finally, we used the Pybullet (Coumans and Bai, 2016)
locomotion problems that constitute a free alternative to the
MuJoCo environments re-tuned to produce more realistic
behaviors. More specifically, we use the HopperBullet,
HalfcheetahBullet, Walker2DBullet, AntBullet, and
HumanoidBullet problems. Like in the MuJoCo versions,
the robot has 3, 6, 6, 8, 17 actuated joints, respectively. The
observation state varies from 15 to 44 states. The observations
include the position and orientation of the robot, the angular
position and velocity of the joints, and the state of contact
sensors located on feet. The action state includes N values
encoding the torques applied to the N corresponding joints.
The initial posture of the robot varies randomly within limits.

The evaluation episodes are terminated after 1,000 steps or,
prematurely, when the position of the torso of the robots
falls below a given threshold in the case of the HopperBullet,
Walker2DBullet, AntBullet, and HumanoidBullet. The reward
functions included in Pybullet and the varied reward functions
optimized for evolutionary methods are described in section
Sensitivity to the Reward Function.

COMPARATIVE PERFORMANCE OF
EVOLUTIONARY STRATEGIES

In this section we analyze the efficacy of the CMA-ES, xNES,
sNES, and OpenAI-ES methods on the MuJoCo locomotion,
Long double-pole balancing, and Swarm foraging problems.

For the MuJoCo problems, we used the same parameters
reported in Salimans et al. (2017). The neural network policy is
a feed-forward network with two internal layers including 256
neurons in the case of the Humanoid and with a single internal
layer including 50 neurons in the case of the other problems. The
internal neurons use the hyperbolic tangent (tanh) function. The
output neurons are linear. The state of the sensors is normalized
through the virtual batch method described by Salimans et al.
(2016, 2017). In the case of the Swimmer and the Hopper, the
actions are discretized into 10 bins. Actions are perturbed with
the addition of Gaussian noise with standard deviation 0.01. The
evolutionary process lasted 2.5 · 108 steps in the case of the
Humanoid and 5 · 107 steps in the case of the other problems.
Agents are evaluated for one episode lasting up to 1,000 steps.

In the case of the Long double-pole and Swarm foraging
problem we used fully recurrent neural networks with 10 internal
neurons. The internal and output neurons use the tanh function.
The evolutionary process is continued for 1 · 1010 steps and for
1.5 · 106 steps in the case of the Long double-pole and Swarm
foraging problem, respectively. Agents are evaluated for 50 and 6
episodes in the case of the Long double-pole and Swarm foraging
problems, respectively.

The number of connection weights and biases, which are
encoded in genotypes and evolved, varies from a minimum of
1,206, in the case of Halfcheetah and Walker2D, to a maximum
of 166,673, in the case of the Humanoid. The population size
was set to 500 in the case of the Humanoid and to 40 in the
case of the other problems. For an analysis of the role of this
and other hyper-parameters see section Sensitivity to the Reward
Function. A detailed description of all parameters is included in
the Appendix.

The analysis of the rewards obtained by the best evolved agents
(Table 1) indicates that the OpenAI-ES algorithm outperforms
the CMA-ES, sNES, and xNES algorithms in the Halfcheetah,
Walker2D, Humanoid, Long double-pole and Swarm foraging
problems (Mann–Whitney U-test with Bonferroni correction,
p-value < 0.05) and achieves equally good performance on
the Swimmer and Hopper problems (Mann–Whitney U-test
with Bonferroni correction, p-value > 0.05). In the case of
the Humanoid problem, the high number of parameters makes
the computation of the covariance matrix required for the
CMA-ES and xNES unfeasible. Consequently, in the case of

Frontiers in Robotics and AI | www.frontiersin.org 4 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

TABLE 1 | Reward of the best evolved agents obtained with the different algorithms.

CMA-ES xNES sNES OpenAI-ES

Swimmer 334.41 ± 72.50 364.73 ± 19.96 357.72 ± 45.41 347.84 ± 46.97

Hopper 3085.78 ± 661.80 3194.59 ± 667.53 3171.33 ± 578.23 3284.11 ± 764.20

Halfcheetah 3006.40 ± 1165.19 2602.42 ± 918.74 2890.44 ± 929.49 6556.97 ± 942.38

Walker2D 3215.97 ± 601.19 3255.69 ± 650.88 2986.65 ± 819.66 5086.67 ± 790.68

Humanoid n/a n/a 3993.92 ± 992.97 5661.30 ± 1398.72

Long double-pole 0.48 ± 0.084 0.622 ± 0.037 0.389 ± 0.087 0.752 ± 0.026

Swarm foraging 185.72 ± 22.80 204.51 ± 18.28 212.64 ± 27.95 282.97 ± 22.7

Data indicate the average cumulative reward collected during an episode by the agents of each replication during a post-evaluaton test. The MuJoCo experiments have been replicated

20 times (10 in the case of the Humanoid). The long double-pole and the swarm foraging experiments have been replicated 50 and 30 times, respectively. The values in bold indicate

the conditions that achieved the best performance.

the Humanoid, we report the experiments carried with the
sNES and OpenAI-ES methods only. Numbers in bold indicate
the conditions leading to the best results. The variations of
performance during the evolutionary process are displayed on
Figure 1.

As shown in Table 2, the absolute size of the connection
weights grows significantly during the course of the evolutionary
process in the case of the CMA-ES, xNES, and sNES methods,
while it remains much smaller in the case of the OpenAI-
ES method. This result is obtained independently of the usage
of weight decay, as demonstrated by comparing the size of
the solutions obtained with weight decay (Swimmer, Hopper,
Halfcheetah, and Walker2D) and without weight decay (Long
double-pole and Swarm foraging).

Keeping the weight size small is important to preserve
gradient information and reduce overfitting. Consequently, this
property of the OpenAI-ES method can explain, at least in part,
why it outperforms or equals alternative methods.

SENSITIVITY TO THE REWARD FUNCTION

In this section we report the results obtained with the OpenAI-
ES method on the Pybullet locomotors problem and the results
of the analysis conducted by varying the characteristic of the
reward functions.

The reward functions implemented in Pybullet (Coumans
and Bai, 2016) have been designed for reinforcement learning
and are calculated by summing six components: (1) a progress
component corresponding to the speed toward the destination,
(2) a bonus for staying upright, (3) an electricity cost that
corresponds to the average of the dot product of the action vector
and of the joint speed vector, (4) a stall cost corresponding to the
average of the squared action vector, (5) a cost proportional to
the number of joints that reached the corresponding joint limits,
and (6) a cost of −1.0 for falling to stay upright. The bonus is set
to 2.0 in the case of the humanoid and to 1.0 in the case of the
other problems. The electricity cost, stall cost, and joint at limit
cost are weighted by −8.5, −0.425, and −0.1 in the case of the
humanoid, and for −2.0, −0.1, and −0.1 in the case of the other
problems. In principle the first component could be sufficient

to learn a walking behavior. However, as we will see, additional
components can be necessary.

As in the case of the MuJoCo locomotion problems, we used
a feed-forward network with two internal layers including 256
neurons in the case of the HumanoidBullet and with a single
internal layer including 50 neurons in the case of the other
problems. The internal and output neurons use a tanh and a
linear activation function, respectively. The state of the sensors
is normalized through the virtual batch method described by
Salimans et al. (2017). The evolutionary or learning process is
continued for 5 · 107 steps.

In the case of the experiments performed with the OpenAI-
ES, the agents are evaluated for three episodes in the case
of the HumanoidBullet problem and for one episode in the
case of the other problems. As in the case of the MuJoCo
locomotors experiments reported in the previous sections, the
policy is deterministic but action states are perturbed slightly
with the addition of Gaussian noise with 0.0 mean and 0.01
standard deviation.

In the case of the experiments performed with the PPO
we used the default parameters included in the baseline
implementation. The connection weights are updated every 2,048
steps. The number of episodes depends on the number of
restarts necessary to cover 2,048 steps. The policy is stochastic
and the diagonal distribution of Gaussian noise applied to
actions is adapted together with the connection weights of the
policy network.

The obtained results indicate that the OpenAI-ES
evolutionary strategy outperforms the PPO reinforcement
learning algorithm in the case of the HopperBullet,
HalfCheetahBullet, AntBullet, and Walker2DBullet. Instead,
PPO outperforms OpenAI-ES in the case of the HumanoidBullet
(Figure 2). The inspection of the evolved behavior, however,
indicates that the agents evolved with the OpenAI-ES algorithm
are rather poor with respect to the ability to walk toward the
target. This is illustrated by data reported in Figure 3 that shows
the performance, i.e., the average distance in m traveled toward
the target destination. The robots trained with the PPO display a
much better ability to walk toward the destination.

The high reward achieved by the agents evolved with the
OpenAI-ES method is due to their ability to maximize the

Frontiers in Robotics and AI | www.frontiersin.org 5 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

FIGURE 1 | Reward obtained on the MuJoCo locomotion problems, on the long double-pole problem, and on the collective foraging problem during the course of the

training process. Results obtained with the CMA-ES, sNES, xNES, and OpenAI-ES methods. Data indicate the average cumulative reward collected during an

episode by the agents of each replication during a post-evaluation test. Mean and 90% bootstrapped confidence intervals of the mean (shadow area).

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

TABLE 2 | Average absolute size of connection weights of the best evolved individuals.

CMA-ES xNES sNES OpenAI-ES

Swimmer 5.09 ± 3.885 13.906 ± 10.682 13.187 ± 10.11 0.17 ± 0.148

Hopper 6.443 ± 4.96 17.356 ± 13.209 16.234 ± 12.459 0.169 ± 0.149

Halfcheetah 4.333 ± 3.408 13.549 ± 10.59 11.068 ± 8.703 0.185 ± 0.367

Walker2D 5.632 ± 4.417 17.899 ± 14.081 14.513 ± 11.473 0.184 ± 0.237

Humanoid n/a n/a 6.531 ± 5.154 0.11 ± 1.524

Long double-pole 3.283 ± 2.727 51.698 ± 40.267 20.188 ± 16.788 0.645 ± 0.619

Swarm foraging 3.987 ± 3.081 35.249 ± 28.307 105.099 ± 521.42 0.557 ± 0.454

Data averaged over multiple replications. Weight decay is used only in the experiment performed with the OpenAI-ES method with the robot locomotors problems.

FIGURE 2 | Reward obtained on the Pybullet problems during the training process with the reward functions optimized for reinforcement learning. Data obtained with

the OpenAI-ES (es) and the PPO algorithms. Mean and 90% bootstrapped confidence intervals of the mean (shadow area) across 10 replications per experiment.

FIGURE 3 | Performance obtained on the Pybullet problems with reward functions optimized for reinforcement learning method. Data obtained with OpenAI-ES (es)

and PPO algorithms. Performance refers to the distance traveled toward the target destination during an episode in meters. Mean and 90% bootstrapped confidence

intervals of the mean (shadow area) across 10 experiments per run.

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

steps in which they stay upright and to minimize the other
costs. In the case of the HumanoidBullet, this is realized by
moving on the place to postpone the falling as much as
possible. In the case of the other problems, this is realized
by assuming a posture from which the agent can remain still
without moving, in most of the replications. In other words,
in the case of the OpenAI-ES method, the usage of the bonus
for staying upright and the other costs does not facilitate
the development of an ability to walk effectively but rather
drives the evolutionary process toward solutions that optimize
the additional reward components without optimizing the first

component that rates the agents for their ability to walk toward
the destination.

We thus attempted to design reward functions suitable for
evolutionary strategies. In our first attempt we used a simple
rewards function that only rates the agents for their speed
toward the destination, i.e., the first component of the reward
functions optimized for reinforcement learning. This reward
function works well for the HopperBullet, Walker2DBullet, and
HalfcheetahBullet problems in which the agents cannot bend
laterally (see Figures 4, 5) but leads to poor performance in
the other problems and poor performance in some replications

FIGURE 4 | Reward obtained on the Pybullet problems with reward functions optimized for evolutionary strategies. Data obtained with the OpenAI-ES (es) and PPO

algorithms. Mean and 90% bootstrapped confidence intervals of the mean (shadow area) across 10 replications per experiment.

FIGURE 5 | Performance obtained on the Pybullet problems with the reward functions optimized for evolutionary strategies. Data obtained with the OpenAI-ES (es)

and PPO algorithms. Performance refers to the distance traveled toward the target destination during an episode in meters. Mean and 90% bootstrapped confidence

intervals of the mean (shadow area) across 10 experiments per run.

Frontiers in Robotics and AI | www.frontiersin.org 8 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

of the HalfcheetahBullet. The problem in the case of the
HalfcheetahBullet originates from the fact that in some
replications the agents do not use properly all actuated joints.
This problem can be solved by including a second component
in the reward function of the HalfcheetahBullet, which punishes
the agent with −0.1 for every joint that is at its limit (i.e.,
the component five of the reward function optimized for
reinforcement learning). With the addition of this second
component, the agents evolve a rather effective behavior in all
replications (see Figures 4, 5).

The reward function with two components illustrated above
produces effective behaviors in the case of the AntBullet only in
some of the replications. In the other replications, instead, the
agents slide forward and then fall down or remain still. This
problem can be solved by rewarding the robots with a small
bonus of 0.01 and by punishing the robots with a small stall cost
of −0.01, i.e., by adding two additional components included
in the reward functions optimized for reinforcement learning
weighted for much smaller constants. This reward function with
four components permits to achieve rather good performance in
all replications (see Figures 4, 5).

The reward functions illustrated above are not effective in the
case of the HumanoidBullet. The problem, in this case, is that
the robots develop physically unrealistic jumping behaviors that
enable the robot to start moving fast toward the destination and
then to fall off. These unrealistic behaviors are generated by keep
pushing the joints over their limits for several steps and by then
inverting the direction of movement of the motors so to sum the
torque generated by the motors and the torque generated by the
simulator to contrast the movement of the joints over the limits.
This problem can be solved by adding a fifth component that
punishes the robot for pushing the joints over their limits. The
development of robust behaviors that reduce the risk of falling
down can be further facilitated by increasing the bonus to 0.75.
Finally, the development of an ability to turn left or right in
the direction of the target can be facilitated by including a sixth
component that consists in the offset of the orientation of the
robot with respect to the target in radians weighted for−0.1. This
reward function with six components permits to achieve rather
good performance in most of the replications (see Figures 4, 5).

We then tested the PPO with the reward function optimized
for the OpenAI-ES method described above. The performance
obtained by the PPO with the new reward functions are
rather poor and much worse than the performance achieved
with the original reward functions (Figures 4, 5) with the
exception of the HumanoidBullet problem. In the case of the
HalfcheetahBullet and AntBullet problems the low performance
is caused by the fact that the learning process becomes
unstable. Indeed the reward (Figure 4) and the distance traveled
(Figure 5) decreases during the learning process after an
initial phase of improvement. The low performance on the
HopperBullet and WalkerBullet problems, instead, reflects the
inability to start improving. The usage of a large bonus,
in the range of that used in the original reward functions,
constitutes an important pre-requisite to start progressing and
to avoid a degeneration of the learning process for the PPO.
The additional cost components introduced in the reward

function optimized for reinforcement learning also help reducing
these problems.

The fact that the robots trained with the OpenAI-ES achieve
low and high performance with the original and modified reward
functions and vice versa, the robots trained with the PPO
achieve high and low performance with the original andmodified
reward functions (with the exception of the HumanoidBullet
problem) indicates that reward functions suitable for a
reinforcement learning algorithm are not necessarily suitable for
an evolutionary strategies and vice versa. Further investigations
are necessary to verify whether this is true for all algorithms.
However, our data demonstrates that this happens at least in
the case of the two state-of-the-art algorithms considered. This
implies that a proper comparison of algorithms of different
classes should involve the usage of reward functions optimized
for each class. Moreover, it implies that comparisons carried out
by using reward functions optimized for one method only could
be biased.

We hypothesize that this qualitative difference between the
OpenAI-ES and the PPO algorithm is caused by the usage
of deterministic vs. stochastic policies. Evolutionary methods
introduce stochastic variations in the policy parameters, across
generations, and consequently do not need to use stochastic
policies. The state of the actuators is perturbed only slightly
through the addition of Gaussian noise with a distribution
of 0.01. Reinforcement learning methods, instead, introduce
variations through the usage of stochastic policies. The usage
of stochastic policies can explain why the agents trained with
the PPO do not converge on sub-optimal strategies consisting
in standing still in a specific posture without walking despite
they receive a significant bonus just for avoiding falling off.
Moreover, the usage of stochastic policies can explain why agents
trained with PPO have more difficulties to start progressing
their ability to walk without being rewarded also for the
ability to avoid falling off. Progress in the ability to avoid
falling constitute a necessary pre-requisite for developing an
ability to walk for agents with stochastic policies. Agents
provided with deterministic policies, instead, can develop
an ability to walk directly, without first improving their
ability to avoid falling off and tend to converge on standing
still behavior when rewarded with large bonus for avoid
falling off.

The reasons explaining why the OpenAI-ES method
outperforms PPO in the HopperBullet, HalfcheetahBullet,
AntBullet, andWalkerBullet while the PPOmethod outperforms
the OpenAI-ESmethod on the HumanoidBullet problem deserve
further analysis.

SENSITIVITY TO HYPER-PARAMETERS

Finally, in this section we analyze the impact of hyper-parameters
on the OpenAI-ES method, i.e., the evolutionary method that
achieved the best performance.

Table 3 reports the results of two series of ablation
experiments carried without the weight-decay normalization
(Ng, 2004) and without the virtual batch normalization (Salimans

Frontiers in Robotics and AI | www.frontiersin.org 9 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

TABLE 3 | Average cumulative reward of the best agents of each replication post-evaluated for three episodes.

HopperBullet HalfcheetahBullet AntBullet WalkerBullet HumanoidBullet

Standard 2293.4 ± 315.5 2570.7 ± 460.4 1421.7 ± 493.2 1232.2 ± 376.6 1866.9 ± 307.8

No-weight-decay 2338.0 ± 276.3 2396.0 ± 575.1 46.3 ± 21.5 1234.9 ± 577.8 182.2 ± 19.2

No-input-norm. 1968.8 ± 252.5 2224.5 ± 316.4 1433.7 ± 328.7 644.1 ± 311.8 223.1 ± 17.4

Poposize = 40 2293.4 ± 315.5 2570.7 ± 460.4 1421.7 ± 493.2 1232.2 ± 376.6 176.2 ± 285.7

Popsize = 100 1953.7 ± 706.1 2474.5 ± 464.1 1401.6 ± 636.3 996.4 ± 535.5 135.5 ± 6.1

Popsize = 200 2044.9 ± 405.8 2674.0 ± 265.2 1572.6 ± 452.4 975.5 ± 439.4 180.7 ± 26.4

Popsize = 500 1773.4 ± 371.3 2122.8 ± 1001.5 918.0 ± 360.5 636.5 ± 424.0 1866.9 ± 307.8

Each experiment has been replicated 10 times. Data indicate the average performance and the standard deviation for each experimental condition. The experiments have been continued

for 1 · 108 evaluation steps in the case of the HumanoidBullet and for 5 · 107 evaluation steps in the case of the other problems. Data in gray indicate the control conditions that produced

a significantly lower performance with respect to the standard condition.

et al., 2016, 2017), and four series of experiments carried
by varying the size of the population in the range [40,
500] (the total number of evaluation steps is kept constant).
The experiments have been carried out on the PyBullet
locomotion problems.

As can be seen, the weight decay and virtual batch
normalization play an important role in more complex problems,
i.e., in the problems in which performance grows more slowly
across generations. Indeed, the lack of weight decay leads to
significantly lower cumulative reward in the case of the AntBullet
and HumanoidBullet problems (Mann–Whitney U-test with
Bonferroni correction, p-value < 0.05). Moreover, the lack
of input normalization leads to significantly lower cumulative
reward in the case of the WalkerBullet and HumanoidBullet
problems (Mann–Whitney U-test with Bonferroni correction,
p-value < 0.05). Performance does not significantly differ in the
other cases (Mann–Whitney U-test with Bonferroni correction,
p-value < 0.05).

The analysis of the impact of the population size indicates that
the OpenAI-ESmethod is rather robust with respect to variations
of this parameter. Indeed, in the case of the HoppeBullet
and HalfcheetahBullet problems, the agents achieved similar
performance with all population sizes (Mann–Whitney U-
test with Bonferroni correction, p-value > 0.05). It the
case of the AntBullet and WalkerBullet problems, the agents
achieved similar performance with population size in the range
[40, 200] (Mann–Whitney U-test with Bonferroni correction,
p-value > 0.05) and lower performance in experiments in
which the population size was set to 500 (Mann–Whitney
U-test with Bonferroni correction, p-value < 0.05). The fact
that small populations evolved for many generations produce
similar performance than large populations evolved for fewer
generations indicate the presence of a tradeoff between the
accuracy of gradient estimation, that increases with the size of the
population, and the number of generations necessary to evolve
effective behaviors, that decreases with the size of the population.
However, the low performance achieved in the HumanoidBullet
problem with population smaller than 500 (Mann–Whitney
U–test with Bonferroni correction, p-value < 0.05) indicates
that the minimum size of the population that permits to
achieve good performance might depends on the complexity of
the problem.

CONCLUSIONS

We analyzed the efficacy of modern neuro-evolutionary
strategies for continuous control optimization on the MuJoCo
locomotion problems, that constitute a widely used benchmark
in the area of evolutionary computation and reinforcement
learning, and on additional qualitatively different problems.
The term modern evolutionary strategies indicates algorithms
that compute the interrelated dependencies among variations of
better individuals, or that use a form of finite difference method
to estimate the local gradient of the fitness function.

The results obtained on the MuJoCo, Long double-pole
and Swarm foraging problems indicate that these methods are
generally effective. The comparison of the results obtained with
different algorithms indicate that the OpenAI-ES algorithm
outperforms or equals the CMA-ES, sNES, and xNES methods
on all considered problems.

Overall, the data collected, the ablation studies and the
experiments conducted by varying the population size indicate
that the efficacy of the OpenAI-ES method is due to the
incorporation of optimization and normalization techniques
commonly used in neural network research. More specifically,
the efficacy of the method can be ascribed to the utilization of
the Adam stochastic optimizer, which operates effectively also
in the presence sparse gradients and noisy problems and avoids
an uncontrolled growth of the size of the connection weights.
Moreover, the efficacy of the method can be ascribed to the usage
of normalization techniques that preserve the adaptability of the
network and reduce overfitting.

Finally, we demonstrate that the reward functions optimized
for the PPO are not effective for the OpenAI-ES algorithm
and, vice versa, the reward functions optimized for the latter
algorithm are not effective for the former algorithm. This implies
that the reward function optimized for a reinforcement learning
algorithm are not necessarily suitable for an evolutionary
strategy algorithm and vice versa. Consequently, this implies
that a proper comparison of algorithms of different classes
should involve the usage of reward functions optimized for
each algorithm. Indeed, comparisons carried out by using
reward functions optimized for one method only could be
biased. The usage of deterministic policies (commonly used in
evolutionary methods) vs. stochastic policies (commonly used in

Frontiers in Robotics and AI | www.frontiersin.org 10 July 2020 | Volume 7 | Article 98

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

reinforcement learning methods) seems to be an important cause
of the differences observed between the OpenAI-ES and the PPO
algorithms with respect to the sensitivity to the reward function.
Whether the usage of different reward functions is necessary
for all evolutionary and reinforcement learning algorithms
or only for some algorithms deserve further investigations.
Similarly, the identification of the characteristics that make
a reward function suitable for a specific algorithm deserves
further investigations.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author. The source code for replicating this
experiments is available from the following github repositories:
https://github.com/snolfi/evorobotpy and https://github.com/
PaoloP84/EfficacyModernES.

AUTHOR CONTRIBUTIONS

SN contributed to the conception, design, and experimentation
of this research work. PP and NM contributed equally
in performing the experiments. All authors contributed
to manuscript revision, read, and approved the
submitted version.

FUNDING

The research has been founded by the National Research Council,
Institute of Cognitive Sciences and Technologies (CNR-ISTC).

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print
at arXiv:1912.0523.

REFERENCES

Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew,

B., Pachocki, J., et al. (2019). Learning dexterous in-hand

manipulation. arXiv:1808.00177v0015. doi: 10.1177/027836491988

7447

Bonani, M., Longchamp, V., Magnenat, S., Retornaz, P., Burnier, D., Roulet,

G., et al. (2010). “The marXbot, a miniature mobile robot opening new

perspectives for the collective-robotic research,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Taipei), 4187–4193.

doi: 10.1109/IROS.2010.5649153

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.

(2016). OpenAI Gym. arXiv:1606.01540.

Coulom, R. (2002). Reinforcement learning using neural networks, with applications

to motor control (Ph.D. thesis). Institut National Polytechnique de Grenoble,

Grenoble, France.

Coumans, E., and Bai, Y. (2016). Pybullet, A Python Module for Physics Simulation

for Games, Robotics and Machine Learning. Available online at: http://pybullet.

org (accessed December 2019).

Erez, T., Tassa, Y., and Todorov, E. (2012). “Infinite-horizon model predictive

control for periodic tasks with contacts,” in Proceedings of Robotics: Science and

Systems, eds H. F. Durrant-Whyte, N. Roy, and P. Abbeel (Sydney, NSW: RSS),

1–8. doi: 10.15607/RSS.2011.VII.010

Hansen, N., and Ostermeier, A. (2001). Completely derandomized

self-adaptation in evolution strategies. Evol. Comput. 9, 159–195.

doi: 10.1162/106365601750190398

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., andMeger, D. (2018).

“Deep reinforcement learning that matters,” in Thirty-Second AAAI Conference

on Artificial Intelligence (New Orleans, LA).

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

Preprint arXiv:1412.6980.

Mania, H., Guy, A., and Recht, B. (2018). Simple random search

provides a competitive approach to reinforcement learning. arXiv

Preprint arXiv:1803.07055.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Murthy, S. S., and Raibert, M. H. (1984). 3D balance in legged locomotion:

modeling and simulation for the one-legged case. ACM SIGGRAPH Comp.

Graph. 18:27. doi: 10.1145/988525.988552

Ng, A. Y. (2004). “Feature selection, L1 vs. L2 regularization, and rotational

invariance,” in ICML ’04 Proceedings of the Twenty-First International

Conference on Machine Learning (New York, NY: ACM Press).

doi: 10.1145/1015330.1015435

Pagliuca, P., Milano, N., and Nolfi, S. (2018). Maximizing the adaptive power of

neuroevolution. PLoS ONE 13:e0198788. doi: 10.1371/journal.pone.0198788

Pagliuca, P., and Nolfi, S. (2019). Robust optimization through

neuroevolution. PLoS ONE 14:e0213193. doi: 10.1371/journal.pone.02

13193

Peters, J., and Schaal, S. (2008). Reinforcement learning of motor skills with

policy gradients. Neural Networks 21, 682–697. doi: 10.1016/j.neunet.2008.

02.003

Purcell, E. M. (1977). Life at low reynolds number. Am. J. Phys. 45, 3–11.

doi: 10.1119/1.10903

Raibert, M. H., and Hodgins, J. K. (1991). “Animation of dynamic legged

locomotion,” in ACM SIGGRAPH Computer Graphics (Las Vegas, NV).

doi: 10.1145/127719.122755

Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade, S. M. (2017).

“Towards generalization and simplicity in continuous control,” in

Advances in Neural Information Processing Systems (Long Beach, CA),

6550–6561.

Rechenberg, I., and Eigen, M. (1973). Evolutionsstrategie: Optimierung Technischer

Systeme nach Prinzipien der Biologischen Evolution. Stuttgart: Frommann-

Holzboog.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen,

X. (2016). “Improved techniques for training gans,” in Advances in Neural

Information Processing Systems (Barcelona), 2226–2234.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017).

Evolution strategies as a scalable alternative to reinforcement

learning. arXiv:1703.03864v0382

Schmidhuber, J., and Zhao, J. (1998). “Direct policy search and uncertain policy

evaluation,” in AAAI Spring Symposium on Search Under Uncertain and

Incomplete Information (Stanford, CA: Stanford University).

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015a). “Trust

region policy optimization,” in ICML (Lille), 1889–1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2015b).

High-dimensional continuous control using generalized advantage

estimation. arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal policy optimization algorithms. arXiv Preprint arXiv:17

07.06347.

Schwefel, H. P. (1977). Numerische Optimierung von Computer-Modellen Mittels

der Evolution-Strategie. Birkhäuser. doi: 10.1007/978-3-0348-5927-1

Stanley, K. O., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing

neural networks through neuroevolution. Nat. Mach. Intell. 1, 24–35.

doi: 10.1038/s42256-018-0006-z

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and

Clune, J. (2017). Deep neuroevolution: genetic algorithms are a competitive

Frontiers in Robotics and AI | www.frontiersin.org 11 July 2020 | Volume 7 | Article 98

https://github.com/snolfi/evorobotpy
https://github.com/PaoloP84/EfficacyModernES
https://github.com/PaoloP84/EfficacyModernES
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1109/IROS.2010.5649153
http://pybullet.org
http://pybullet.org
https://doi.org/10.15607/RSS.2011.VII.010
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/988525.988552
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1371/journal.pone.0198788
https://doi.org/10.1371/journal.pone.0213193
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1119/1.10903
https://doi.org/10.1145/127719.122755
https://doi.org/10.1007/978-3-0348-5927-1
https://doi.org/10.1038/s42256-018-0006-z
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

alternative for training deep neural networks for reinforcement learning. arXiv

Preprint arXiv:1712.06567.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge: MIT Press.

Todorov, E., Erez, T., and Tassa, Y. (2012). “Mujoco: a physics engine for

model-based control,” in Proceeding of the IEEE/RSJ Intelligent Robots and

Systems Conference (IROS) (Algarve), 5026–5033. doi: 10.1109/IROS.2012.63

86109

Wawrzynski, P. (2007). “Learning to control a 6-degree-of-

freedom walking robot,” in IEEE EUROCON (Warsaw), 698–705.

doi: 10.1109/EURCON.2007.4400335

Wieland, A. (1991). “Evolving controls for unstable systems,” in Proceedings of

the International Joint Conference on Neural Networks (Seattle, WA: IEEE

Press), 667–673.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber,

J. (2014). Natural evolution strategies. J. Mach. Learn. Res. 15, 949–980.

doi: 10.1109/CEC.2008.4631255

Wilson, D. G., Cussat-Blanc, S., Luga, H., and Miller, J. F.

(2018). “Evolving simple programs for playing Atari games,”

in Proceedings of the Genetic and Evolutionary Computation

Conference (Kyoto: ACM Press). doi: 10.1145/3205455.

3205578

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Pagliuca, Milano and Nolfi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2020 | Volume 7 | Article 98

https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/EURCON.2007.4400335
https://doi.org/10.1109/CEC.2008.4631255
https://doi.org/10.1145/3205455.3205578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Pagliuca et al. Efficacy of Modern Evolutionary Strategies

APPENDIX

The parameters used in the experiments are summarized in

Table A1. The network policy is constituted by a feed-forward

neural network in all cases with the exception of the Long double-
pole and the Swarm foraging problems that requires memory.
The number of internal layers is set to 1 in all cases with the
exception of the Humanoid and BulletHumanoid problems that
can benefit from the usage of multiple layers. The activation
function for the internal neurons is the hyperbolic tangent
function (tanh) in all cases. The activation function of the output
neurons is the linear function in the case of the locomotor
problems and the tanh function in the case of the Long double-
pole and Swarm foraging problems. The linear function generally
works better, since it produces more varied response between
the individuals of the population, but it does not normalize the
output in a limited range. For this reason the tanh function has
been used in the Long double-pole and Swarm foraging problems
which require a bounded range. Following Salimans et al. (2017),
we use a binary encoding in which 10 output neurons are used
to select one of 10 different activation values for each output in
the case of the Swimmer and the Hopper. This did not turned to
be necessary in the case of the BulletHopper, probably due to the
optimization of the reward functions.
The virtual batch normalization was used in all the locomotors
environments. This since the range of the velocity of the
joints encoded in some of the sensors vary widely during the
evolutionary process. The virtual batch normalization was not
used in the other problems that are less affected by this issue.
Noise was added to the motors in the case of the locomotors
problems, but not in the case of the other problems. The

Table A1 | Parameters used in all experiments.

Architecture Internal Activation Output activation Normalization Action noise Evaluation Popsize Total steps

layer function function episodes

Swimmer Feed-forward 1 tanh 10 bins Yes 0.01 1 40 5 · 107

Hopper Feed-forward 1 tanh 10 bins Yes 0.01 1 40 5 · 107

Halfcheetah Feed-forward 1 tanh Linear Yes 0.01 1 40 5 · 107

Walker2D Feed-forward 1 tanh Linear Yes 0.01 1 40 5 · 107

Humanoid Feed-forward 2 tanh Linear Yes 0.01 1 500 2.5 · 108

Long double-pole Recurrent 1 tanh tanh No 0.0 50 40 1 · 1010

Swarm foraging Recurrent 1 tanh tanh No 0.0 6 40 1.5 · 106

BulletHopper Feed-forward 1 tanh Linear Yes 0.01 1 40 5 · 107

BulletHalfcheetah Feed-forward 1 tanh Linear Yes 0.01 1 40 5 · 107

BulletAnt Feed-forward 1 tanh Linear Yes 0.01 1 40 5 · 107

BulletWalker2d Feed-forward 1 tanh Linear Yes 0.01 1 40 5 · 107

BulletHumanoid Feed-forward 2 tanh Linear Yes 0.01 3 500 10 · 108

initial conditions of the agents in the Long double pole and
Swarm foraging problems is already highly varied. Consequently,
evolution tends to produce solutions that are robust to variations
independently of the addition of noise. The number of evaluation
episodes is set to 1 in all locomotors problems and to 6 and 50 in
the case of the Swarm Foraging and Long Double Pole problems
which expose agents to higher variations of the environmental
conditions. The number of episodes has been set to 3 in the
case of the HumanoidBullet problem since small variations in the
initial posture tend to have a significant impact on the stability of
these robots.
The size of the population is set to 40 in all cases with
the exception of the Humanoid and HumanoidBullet. This
parameter has been varied systematically in the case of
the BulletLocomotors (see Table 3). Using larger populations
generally produces similar results in these problems but it seems
to be a necessity in the case of the Humanoid problem. The
duration of the evaluation process has been set on the basis
of the complexity of the problem and on the time cost of the
simulation. For example, the experiments in the case of the
Long double pole problems could be continued for a rather
high number of total evaluations (1 · 1010) because performance
keep increasing significantly in the long term and because this is
feasible in terms of simulation time. In general we continued the
evolutionary process for significantly longer periods of time with
respect to previous published works to ensure that the difference
in performance does not reflect only the evolution speed but also
the quality of the solutions obtained in the long term.
For the experiment performed with the PPO algorithm we used
the default parameters included in baseline (https://github.com/
openai/baselines).

Frontiers in Robotics and AI | www.frontiersin.org 13 July 2020 | Volume 7 | Article 98

https://github.com/openai/baselines
https://github.com/openai/baselines
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
	Introduction
	Methods
	Problems
	Comparative Performance of Evolutionary Strategies
	Sensitivity to the Reward Function
	Sensitivity to Hyper-Parameters
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix

