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Evolutionary robot systems are usually affected by the properties of the environment

indirectly through selection. In this paper, we present and investigate a system where

the environment also has a direct effect—through regulation. We propose a novel

robot encoding method where a genotype encodes multiple possible phenotypes,

and the incarnation of a robot depends on the environmental conditions taking place

in a determined moment of its life. This means that the morphology, controller,

and behavior of a robot can change according to the environment. Importantly, this

process of development can happen at any moment of a robot’s lifetime, according

to its experienced environmental stimuli. We provide an empirical proof-of-concept,

and the analysis of the experimental results shows that environmental regulation

improves adaptation (task performance) while leading to different evolved morphologies,

controllers, and behavior.

Keywords: evolutionary robotics, morphological evolution, phenotypic plasticity, environmental regulation,

locomotion, environmental effects

1. INTRODUCTION

What makes natural life remarkably complex goes beyond having genes encoding a trait or
behavior, as it also concerns mechanisms in the DNA that regulate the expression of these genes
as a function of environmental conditions. That is, genes should be activated “at the right place at
the right time.” An amazing number of 95% of DNA does not code for any protein: Part of it is
responsible for regulation1 (Sapolsky, 2017). In fact, the more genomically complex an organism
is, the larger the percentage of the DNA that is devoted to environmental regulation (Sapolsky,
2017). This regulation happens through a process once called epigenetics (Bossdorf et al., 2008),
a term that recently has been utilized only in cases when this regulation results in heritable
regulatory changes (Sapolsky, 2017). One of the results of this regulation is lifetime phenotypic
plasticity, and it concerns the capacity of an individual to develop aspects of its phenotype, such as
morphology, physiology, synaptic connections, in response to given environmental stimuli during
its lifetime (Fusco and Minelli, 2010).

Although phenotypic changes like learning (Fusco and Minelli, 2010) and training (Kelly et al.,
2011) are also examples of phenotypic plasticity, here we consider only phenotypic changes that

1Another part of the DNA is often denoted as “junk,” that is, it has either no function or (most likely) it has a function that we

do not know of yet.
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happen through regulation. Phenotypic plasticityis pervasive in
nature and may accelerate, decelerate, or have an insignificant
effect on evolutionary change (Price et al., 2003). Some examples
of lifetime phenotypic plasticity acting on the body are Passerine
birds that change their musculature to cope with winter (Liknes
and Swanson, 2011), and several vertebrate species that suffer
color changes in different seasons (Mills et al., 2018). As for
behavioral changes caused by environmental regulation acting
on the brain, think of the physiology of a mother changing
to produce milk when she smells her baby—this is a change
that happens through the activation of genes. More specifically,
this example is thoroughly described by Sapolsky (2017) as “A
female smells her newborn, meaning that odorant molecules
that floated off the baby bind to receptors in her nose. The
receptors activate and (many steps later in the hypothalamus) a
transcription factor activates, leading to the production of more
oxytocin. Once secreted, the oxytocin causesmilk letdown. Genes
are not the deterministic holy grail if they can be regulated by
the smell of a baby’s posterior. Genes are regulated by all the
incarnations of environment. Promoters and transcription factor
introduce if/then clauses: If you smell your baby, then activate the
oxytocin gene.”

Within engineering, the research areas related to artificial
evolution are that of Evolutionary Computing (Eiben and Smith,
2003, 2015) and Evolutionary Robotics (Nolfi and Floreano,
2000; Doncieux et al., 2015; Nolfi et al., 2016). These fields
have addressed the evolution of robot controllers (brains) with
considerable success but evolving the morphologies (bodies) has
received much less attention (Prabhu et al., 2018). Importantly,
the influence of the environment has been even more scarcely
investigated. Although it is not uncommon to use developmental
encodings: GRNs (Bongard, 2002) simulate development with
local interactions; CPPNs propose an abstraction to development
without local interaction (Stanley, 2007); an approach inspired
on Hox Genes (Samuelsen et al., 2013). However, there is
no substantial work in the literature that successfully allows
a genotypic structure to be regulated by changes in external
environmental conditions. The key idea of this paper is
to develop a novel robot DNA structure, that is, a new
encoding method that endows robots with lifetime phenotypic
plasticity, and with it, demonstrate the benefits of environmental
regulation. We achieve this through a genotype-phenotype
mapping that responds and is modified according to the
environmental conditions at given moments of a robot’s life. This
idea represents a significant departure from existing systems,
where the genotype-phenotype mapping is “injective,” that is,
each genotype encodes only one possible phenotype. This
holds true for both direct and indirect (e.g., generative or
developmental) mappings (Rothlauf, 2006). In contrast, here we
study genotype-phenotype mappings where a genotype encodes
multiple possible phenotypes and the actual “incarnation” (the
robot body and brain) depends directly on the environment
external to the robot.

The expected benefits of phenotypic plasticity include higher
efficiency and efficacy of robot evolution, together with increased
responsiveness to environmental changes. We expect increased
efficiency (speed) because an informed genotype-phenotype

mapping makes reproduction less blind. Hence, the total number
of trials (new robots born over the course of evolution) to
evolve good robots should be lower than in systems using
the conventional representations. Efficacy is the other side
of the same coin given a fixed search budget (maximum
number of trials for evolution), and an informed genotype-
phenotype mapping will expectedly achieve better solutions.
Last, but not least, a robot population that is equipped with
an environment dependent genotype-phenotype mapping can
cope with environmental changes better than a system where
adaptation is induced through selection only. Importantly,
by environmental changes, we refer not only to seasonal or
permanent changes but also to the possibility of the same robot
being able to deal with different environmental conditions as
it moves about, e.g., from water to land, from flat land to a
hill, etc.

While learning methods (Moshaiov and Abramovich, 2014;
Miras et al., 2020a) could be applied to dealing with
environmental changes, our phenotypic plasticity approach
presents three main advantages. First, we allow changes not only
to the brain but also to the body. While Evolutionary Robotics
systems often focus on the evolution of the brain (Weigmann,
2012; Prabhu et al., 2018), we not only also permit the
evolution of the body, but even its development. This is
a fundamental refinement, given the known importance the
body has for intelligence (Pfeifer and Bongard, 2006). Second,
phenotypic plasticity allows an immediate change in response
to environmental changes, as opposed to adaptation after
multiple iterations. Finally, development does not have to
deal with catastrophic forgetting. We believe that in the long
term, ideally evolutionary robot systems should combine the
benefits of evolution, development, and learning, as we observe
in nature.

The specific objectives of this paper are:

1. To design a novel robot encoding with the capacity of
phenotypic plasticity through environmental regulation during
the robot lifetime. We call this robot encoding Plasticoding.

2. Use this robot encoding to demonstrate the benefits of
environmental regulation to adaption when delaing with
multiple environmental conditions, comparing this to a
baseline robot encoding.

Additionally, we investigate this improvement in adaptation
(performance on the task) by answering the following
research questions:

1. What is the effect of phenotypic plasticity on the
morphological properties?

2. What is the effect of phenotypic plasticity on the
controller properties?

3. What is the effect of phenotypic plasticity on the
emergent behavior?

2. RELATED WORK

Existing work related to the evolution of virtual creatures
dates back to the 1990s, when morphological (additionally to
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controller) evolution was addressed by Sims (1994). Sim’s work
was later put on a more solid footing by Pfeifer and Iida (2005).

In Bongard (2011) it has been shown that ontogenetic, i.e.,
lifetime development, can not only accelerate the discovery
of successful behavior, but also produce robots that are more
robust to variations of environmental conditions. Auerbach and
Bongard (2014) utilized an information-theoretic measure of
complexity to assess virtual creatures that evolved in a vast range
of environments. The authors demonstrated that increasing the
complexity of the environmental conditions might result in an
increase in the morphological complexity of the creatures.

A developmental mechanism, presented as epigenetics,
was proposed in Brawer et al. (2017), however, it was not
dependent on environmental influences. The effect of different
developmental mechanisms was studied in Kriegman et al.
(2018b) by changing the stiffness of soft robots according
to environmental changes. However, no improvement to
evolvability was achieved by this. A similar investigation was
presented in Kriegman et al. (2018a), this time obtaining
improvements in evolvability. Nevertheless, although both
these studies concern lifetime development mechanisms,
the regulatory environmental changes were caused by the
displacement of the robot itself, and therefore no actual
“changing” environmental conditions were considered while
robots always evolved in a flat plane. In Daudelin et al. (2018)
reconfigurable robots evolved to cope with actual changes
in the environmental conditions as they moved about, but
no quantification of this effect on the morphological level
was provided.

Finally, Risi and Stanley (2012) proposed a method for
neural plasticity through which synapses can be modulated
according to environmental conditions. This method differs
from ours regarding the neural plasticity, in the sense that the
plasticity happens directly in the phenotype, and not through
the regulation of genetic material. Despite this difference in their
mechanisms, in practice bothmethods result in immediate neural
plasticity. Nevertheless, our work on environmental regulation
has a long term view of being extended into epigenetics,
i.e., patterns of gene expression resulting in plasticity could
be temporarily inheritable, as opposed to acting directly (and
only) on the phenotype of an individual. The inheritance
of lifetime learning, which does not happen in nature, is
common in neuroevolution and is referred to as Lamarckian
evolution (Jelisavcic et al., 2017b). Still, it usually concerns
inheritance of new neural connectivity patterns that are
formed through life, whereas phenotypic changes caused by
epigenetic modifications are not due to changes in genotype
sequences, but only their expression. This way, while Lamarckian
evolution causes cumulative “persistent” changes, epigenetic
changes can be reversed after multiple generations (Slatkin,
2009). Additionally, through regulation we allow the conjoint
plasticity of neural structure and body structure, as opposed to
neural only. Notably, because plasticity has emerged in different
complementing flavors in nature, it might be important to also
combine them in artificial life. For example, in the future it could
be interesting to combine regulation with neuro plasticity that
takes place directly in the brain.

3. METHODS

In our methodology, we use modular robots to represent the
morphology (see section 3.1) and neural networks to represent
the controllers (section 3.2). Together, these two represent the
phenotypes, as they express the traits that ultimately, through
the interaction with the environment, determine fitness. The
evolutionary process acts on a higher level, the level of the
genotypes, whose representation is explained in section 3.3.

In this paper, we extend a robot encoding we proposed
in previous work (Miras et al., 2020b). Here, we refer to
the previous encoding as Baseline, and to the new encoding
as Plasticoding. The differential added by the Plasticoding
concerns environmental regulation, allowing an individual to
develop a different phenotype, i.e., morphology and/or controller,
according to the conditions of the environment it is in (Figure 1,
top). While for the Baseline the environment acts on the stage of
the evaluation of the robots, for the Plasticoding it also acts on
the stage of mapping the genotype to the phenotype (Figure 1,
bottom). The methodology used for the regulatory mechanism is
explained in section 3.4.

Genotypes are converted into phenotypes through a mapping
process, which is explained in section 3.5. In the first generation,
the genotype of the initial population is initialized according to
the procedure described in section 3.6. During the evolutionary
process, the operators of crossover and mutation are applied,
which are explained, respectively, in sections 3.7 and 3.8. The
overall evolutionary process is explained in section 3.9.

3.1. Robot Morphology
Each morphology phenotype (a “body”) is composed of
modules (Auerbach et al., 2014) as shown in Figure 2, and
the shape of the morphology is determined by evolution. Each
module has a cuboid shape and has slots where othermodules can
attach. The morphologies can only develop in two dimensions,
that is, the modules do not allow attachment to the top or bottom
slots, but only to the lateral ones. There are five different types of
modules, as reported inTable 1: core components, bricks, vertical
joints, horizontal joints, and touch sensors. Any module can be
attached to any module through its slots, except for the touch
sensors, which cannot be attached to joints. Each module type
is represented by a distinct symbol (see Table 1), and this is also
the same language used in the genotype representation, described
in section 3.3.

Previous work (Jelisavcic et al., 2017a) demonstrated
that this modular robot system functions in real hardware.
For this, each module can be 3D printed, while the
assembling of the modules and electronic parts (servos,
sensors, board, etc.) is made manually. Production tutorials
can be found in the link http://robogen.org/docs/video-
tutorials.

3.2. Robot Controller
A controller phenotype (a “brain”) is a hybrid artificial neural
network (Figure 3), which we call Recurrent Central Pattern
Generator Perceptron (Miras and Eiben, 2019a). With hybrid
we mean that we combine concepts from (a) CPGs, by having
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FIGURE 1 | On the left, the robot modules: Core-component, which carries a controller electronic board and inertial measurement unit (IMU) sensors (C); Structural

brick (B); Active hinges with servo motor joints in the vertical (A1) and horizontal (A2) axes; and Touch sensor (T). The polygons above the module’s pictures are used

to illustrate robot parts in the results section, and the letters are used to represent the modules in the robot representation. Modules C and B have attachment slots on

their four lateral faces, and A1 and A2 have slots on their two opposite lateral faces; T has a single slot which can be attached to any slot of C or B. In the middle, an

example of a robot (top-down view) before the simulation starts, while on the right, the same robot is shown during simulation.

oscillator neurons; (b) Perceptrons, by having inputs connected
to a single layer of neurons; (c) Recurrent neural networks,

by allowing these neurons to have recurrent connections. In
practice, the oscillator neurons generate a constant pattern

of movement, and the sensor inputs can be used either
to reduce or to reinforce movements, while the influence
of these inputs can be remembered from each previous
oscillation cycle.

Every aspect of the network is defined by evolution, and the

network is formed by two types of nodes: input nodes associated

with the sensor modules; and oscillator neuron nodes associated

with the joint modules. For every joint in the morphology, there
exists a corresponding oscillator neuron in the network, whose

activation function is defined by Equation (1), which represents
a sine wave defined by amplitude, period, and phase offset
parameters. This activation function adjusts the output to fit the

range of our servo motors, as proposed in Hupkes et al. (2018).

O = 0.5−
a

2
+

sin

(

2∗π
p ∗ (t − p ∗ o))

)

+ 1

2
∗ a (1)

where, t is the time step, a is the amplitude, p is the period,
and o is the phase offset. The parameters a, p, and o can vary
from 0 to 10. The different oscillator neurons cannot be directly
interconnected, and every oscillator neuron may or may not
possess a direct recurrent connection.

Additionally, for every sensor in the morphology, there exists
a corresponding input in the network, and each input might
connect to one or more oscillator neurons.
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TABLE 1 | Alphabet of the grammars.

MODULES

C Core-component (axiom w)

B Brick

A1(wv, av,pv, ov ) Vertical joint

A2(wh, ah,ph, oh) Horizontal joint

T(wt ) Touch sensor

wv,wh,wt are sampled from a uniform distribution ranging from −1 to 1

av,pv, ov, ah,ph, oh are sampled from a uniform distribution ranging from 1 to 10

MORPHOLOGY-MOUNTING COMMANDS

add_right Add new module to the right of module-reference

add_front Add new module to the front module-reference

add_left Add new module to the left of module-reference

MORPHOLOGY-MOVING COMMANDS

move_back Move module-reference to the module at the back of module-reference

move_right Move module-reference to the module at the right of module-reference

move_front Move module-reference to the module at the front of module-reference

move_left Move module-reference to the module at the left of module-reference

CONTROLLER-MOVING COMMANDS

move_ref_I(ti ,di ) Update input-reference with the input connected to edge di of

the neuron connected to edge ti of input-reference

move_ref_N(tn,dn) Update neuron-reference with the neuron connected to edge dn of

the input connected to edge tn of neuron-reference

ti = ⌈

√

v21 )⌉ and tn = ⌈

√

v22 )⌉, and they are used to move the reference to a temporary node

di = ⌈

√

v23 )⌉ and dn = ⌈

√

v24 )⌉, and they are used to move the reference to a definite node

v1, v2, v3, v4 are sampled from a normal distribution with µ = 0 and σ = 1

If any of ti , di , tn,dn is greater than the number of edges of its corresponding node,

its value is updated with this number of edges.

CONTROLLER-CHANGING COMMANDS

add_edge(we1) Add an edge between input-reference and neuron-reference

loop(wl ) Add a recurrent edge to neuron-reference

we1,wl are sampled from a uniform distribution ranging from −1 to 1

mutate_edge(we2 ) Mutate the weight of the edge between input-reference and

neuron-reference

mutate_amp(ma ) Mutate amplitude of neuron-reference

mutate_per(mp ) Mutate period of neuron-reference

mutate_off(mo ) Mutate phase offset of neuron-reference

we2,ma,mp,mo are sampled from a normal distribution with µ = 0 and σ = 1

Terminology is explained in section 3.5.3.

3.3. Genotype Representation
Our robot genotype is a generative model and is represented with
an L-System inspired in Hornby and Pollack (2001), conjointly
encoding both morphology and controller. L-Systems are parallel
rewriting systems (Jacob, 1994) composed by a grammar defined
as a tuple G = (V ,w, P), where

• V , the alphabet, is a set of symbols containing replaceable and
non-replaceable symbols.

• w, the axiom, is a symbol from which the generative
process starts.

• R is a set of regulatory tuples (c, p) for the replaceable
symbols, where c is a regulation clause and p is a
production-rule.

Each genotype has distinct grammar, making use of the same
alphabet (Table 1), and the alphabet is formed by symbols
that represent types of morphological modules as well as
commands for assembling modules and others for defining
the structure of the controller. The symbols in the category
Modules are replaceable, while the symbols of all other categories
are non-replaceable.

3.4. Regulatory Clauses
We refer to information sensed from the environment by the
robot as “environmental variables.” In the current experiments
we utilize only one environmental variable, which describes
the inclination of the ground in the environment and is
represented by a term called inclined. The inclined environmental
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FIGURE 2 | Example of controller: has a single oscillator neuron (with a recurrent connection), and a single input (sensor).

FIGURE 3 | (Top) Effects of environmental regulation on phenotype. (Bottom)

Effect of the environment on the evolutionary process of the population.

variable can be sensed by the IMU sensors of the robots,
which provides data about the orientation of the robot in
space. If the robot’s center of mass has zero inclination,
the term inclined assumes the value False, otherwise it
assumes the value True. We utilized a single environmental
variable because we have only two environments, which can
be fundamentally differentiated by this single environmental
variable. Notwithstanding, our methodology proposes that if
needed, extra environmental variables can be derived from any
robot sensors available, or even from data sources the robot
might have at its reach, e.g., communication with other systems
or robots.

Sapolsky (2017) coins a metaphor for the environmental
regulation, calling regulation factors “if then clauses.” Here, we
abstract this metaphor, and implement it in a literal sense. This
way, for us a regulation clause is a Boolean expression, which
is denoted by c in the tuple (c, p), while p is a production-rule.
In Plasticoding, each clause contains up to u terms (in our case
u = 2), and one same term may be repeated in the clause.
Each term represents a comparison between an environmental
variable and a value that can be True or False. The u terms
are combined using and and or operators. Additionally, in
Plasticoding every replaceable symbol from V appears in exactly
l tuples (in our experiments we limited the study l = 2).
This means that for each replaceable symbol, there are l =

2 pairs of the clause and production-rule, and the selection
of the production-rules to be used for a replaceable symbol
during development depends on the activation resulting from the
regulatory clauses.

In contrast, Baseline is a special case: because there is no
regulation, the clause c is always True and consequentially
every replaceable symbol in V can only appear in one of the
tuples, and therefore, has only one production-rule associated
to it.

A few didactic examples of regulatory clauses are listed below:
Ex.1: if inclined = True then . . .
Ex.2: if inclined = True or inclined = False then . . .
Ex.3: if inclined = False and hot = True then . . . 2

Because we had only two environmental conditions
in our experiments, we did not need more than two
tuples, nor did we need more than two terms per clause.
Nevertheless, when having many more environmental
conditions to deal with, more genetic material will be
necessary. This can be done by increasing the values of
two parameters of Plasticoding: number of tuples per
non-replaceable symbol l; maximum number of terms per
clause u.

3.5. Genotype-Phenotype Mapping
For the Baseline method, the mapping from genotype to
phenotype (the development), plays out in two stages
that we call, respectively, early and late development.
For the Plasticoding, the mapping plays out in three
stages, with the regulation stage preceding the early
development stage.

3.5.1. Environmental Regulation
The environmental regulation stage is responsible for selecting
the production-rules that should be active during the early
development stage, according to the environmental variables
sensed by the robot. In the case of the Baseline, all production-
rules are always active, because there is no regulation. Therefore,
effectively, this stage does not occur at all in Baseline. In the
case of the Plasticoding, for a production-rule to be active, its

2This example shows how future extensions with multiple environmental variables

may look like.
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FIGURE 4 | This example shows the process of regulation of a genotype,

selecting its rules to be activated due to the environmental variable. The term

used to define the environmental variable is called included and was sensed to

be True when the regulation process took place. The production-rules in the

second frame are the ones that became true given the environmental variable,

and thus were selected to be in the final set P, which will be utilized in the early

development.

regulation clause must be True. Because multiple regulatory
clauses for one replaceable symbol can be True, it is possible
that multiple production-rules are activated. In this case, the
multiple production-rules are concatenated sequentially as a
single production-rule. Conversely, once multiple regulatory
clauses can be False, it is possible that no production-rule gets
activated. In this case the replaceable symbol is not replaced.
Figure 4 depicts an example of a process of regulation of
a genotype.

3.5.2. Mapping Stage 1: Early-Development
The axiom w of the grammar is rewritten into a more complex
string of symbols according to the activated production-rules of
the grammar. During the rewriting, for a number of iterations
k = 3, each replaceable symbol is simultaneously replaced
by the symbols of its active production-rules. The following
didactic example depicts the process of rewriting of our L-System
representing one possible genotype, i.e., grammar. For the case
of the Plasticoding method, it is assumed in this example that
the regulation which activates production-rules has already been
carried out.

w = X
V = {X , Y , Z , a }
P = {
X : {X , Y } ,
Y : {Z , a } ,
Z : {X , Z}
}

Given the above grammar, the rewriting is as follows:

I t e r a t i o n 0 : X
I t e r a t i o n 1 : X Y
I t e r a t i o n 2 : X Y Z a
I t e r a t i o n 3 : X Y Z a X Z a

The final string will contain non-replaceable symbols (Modules)
and replaceable symbols (everything else). All these symbols can
be interpreted with the process described hereafter.

3.5.3. Mapping Stage 2: Late-Development
The early-developed phenotype from stage 1 is an intermediate
phenotype made as a string of symbols, which must be
mapped (late-developed) into a final phenotype. To aid the
process of construction of the late-developed phenotype, multiple
positional references (turtles) are kept: (a) a reference to the
current module in the morphology, that we call a module-
reference; (b) a reference to the current oscillator neuron of the
neural network of the controller, that we call a neuron-reference;
(c) a reference to the current sensor input of the neural network
of the controller, that we call an input-reference; a reference to
which the slot of the current module a new module should be
attached to, that we call a slot-reference.

From the beginning until the end of the string, each symbol
is interpreted and developed. Nonetheless, for multiple reasons
explained below, it is possible that a symbol ends up not
being expressed in the phenotype. Furthermore, a maximum
amount of m modules is allowed in a morphology, so that
during late-development, after reaching this maximum, any
upcoming modules are not expressed in the phenotype. The late-
development of the phenotype for morphology and controller
is depicted in the flowchart of Figure 5 (top), and detailed
hereafter, where we reference parts of this flowchart through
Roman numerals:

• I: Because the first symbol of the string is always C, it is the
first module to be added to the morphology, and the module-
reference is updated with it. At this moment, the references of
left, front, right, and back of the turtle are, respectively, left, up,
right, and down (for a robot seen from top-down).

• II: The interpretation of any Morphology-mounting
command updates the slot-reference with the slot indicated
by the command. If the slot-reference is not empty, it is
overwritten, meaning that the command used for setting this
previous slot into the reference is not expressed.

• III: If the symbol is a module, it is coupled with the command
in the slot-reference (if there is one).

• IV : The addition of newmodules requires both aMorphology-
mounting command and a module. If the slot-reference
is empty when interpreting a module, the module is not
expressed in the phenotype, except for the C module, which
is the very first module and needs no mounting command.
When the module-reference is a joint, an attempt to attach
it to the front slot is made, regardless of the mounting
command.When themodule-reference is the core-component,
if its left, front, and right slots are occupied, an attempt to
attach it to the back slot is made, regardless of the mounting
command. If the mounting attempt is made to a slot that is
occupied, the module is not expressed, while the command
remains in the slot-reference. If the newly mounted module
intersects an existing one during the development, both the
new module and its associated network node (if there is one)
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are not expressed. After mounting a new module, themodule-
reference remains in the parent module, and the slot-reference
is emptied.

• V : The Morphology-moving commands update the module-
reference according to the slot defined by the command.
If the module-reference is a joint, any Morphology-moving
command moves to the front slot.

• VI: The Controller-moving commands update the neuron-
reference or input-reference according to the steps defined by
the command and is divided into two steps. The steps are
illustrated by Figure 6.

• VII: The Controller-changing commands apply changes to
the neuron-reference and/or input-reference, or to the edge
connecting them. Controller-changing commands act upon
the input/neuron nodes at the top (latest) of the stack. If there
are no input/neuron nodes yet (according to the requirements
of the command), the command is not expressed. If a newly
mounted module is a joint, a new neuron is created possessing
a connection weight that is drawn from a random uniform
distribution between −1 and 1, and this neuron becomes the
neuron-reference.When a new neuron is created, this generates
an edge between this neuron and the input-reference. If there is
no input yet, the neuron is stacked (oldest neuron remains as
neuron-reference). If there is a stack of inputs, the new neuron
is connected to all of them; for the edges, the input on the top
of the list uses the weight possessed by the neuron, while all
the other inputs in the stack use their own weights; finally, the
stack is partially emptied keeping only the latest neuron, which
becomes the neuron-reference. If a newly mounted module is a
sensor, a new input is created possessing a connection weight
that is drawn from a random uniform distribution between
−1 and 1, and this input becomes the input-reference. When
a new input is created, this generates an edge between this
input and the neuron-reference. If there is no neuron yet, the
input is stacked (the oldest input remains as input-reference).
If there is a stack of neurons, the new input is connected to all
of them; for the edges, the neuron on the top of the list uses
the weight possessed by the input, while all the other neurons
in the stack use their own weights; finally, the stack is partially
emptied keeping only the latest input, which becomes the
input-reference. For every new edge created from an input to
a neuron, the edge is attributed a serial ID within the neuron.
Analogously, for every new edge created from a neuron to an
input, the edge is attributed a serial ID within the input.

An example of late-development is illustrated in
Figure 5 (bottom).

3.6. Initialization
To initialize a genotype in the Baseline, for each production-rule,
exactly one symbol is drawn uniformly random from each of the
following categories in this order: Controller-moving commands,
Controller-Changing commands, Morphology-mounting
commands, Modules, Morphology-moving commands. This
process is repeated s times, being s sampled from a uniform
random distribution ranging from 1 to e. This means that each
rule can end up with 1 or maximally e sequential groups of five

symbols. The symbol C is reserved to be added exclusively (and
surely) at the beginning of the production rule C (Figure 7C).

In the case of the Plasticoding, the initialization of the
production-rules is exactly the same as in Baseline, with the
additional initialization of the regulatory clauses. Each regulation
clause is initialized by selecting z random terms, each term
selected from all the available environmental variables available.
z can assume discrete values from 1 to u, each with equal
probability, and the same term can be sampled multiple times.
Each term is compared to a value chosen randomly between True
or False with equal probability, and if z is above 1, the terms are
connected by operator(s) chosen randomly between and or or
with equal probability.

3.7. Crossover
For the Baseline, the crossovers are performed by selecting
individual production-rules, each represented by one replaceable
symbol. The selection is performed uniformly at random from
the parents (Figure 7A).

In Plasticoding, the process is similar to Baseline, in the
sense that groups of production-rules are selected individually,
together with their regulatory clauses, where the grouping of
production-rules is defined so that each groupmust be associated
to the same replaceable symbol.

3.8. Mutation
There is an equal chance of a mutation happening to any
production-rule of a grammar. For the production-rule chosen to
bemutated, there is an equal chance of adding/deleting/swapping
one random symbol from a random production-rule/position or
apply a change to its regulation clause (Figure 7B). All symbols
have the same chance of being removed or swapped. As for the
addition of symbols, all categories have an equal chance of being
chosen to provide a symbol, and every symbol of the category
also has an equal chance of being chosen. An exception is made
toC to ensure that a robot has one and only one core-component.
This way, the symbol C cannot be added to any other production
rules, neither removed nor moved from the production rule
of C. The operations adding/deleting/swapping have an equal
chance to happen. In the case of changing a regulation clause
(for Plasticoding), there is an equal chance of adding/removing
a term from the clause (by still ensuring that the number of terms
is between [1, u], or flipping a variable of a term from True to
False (or the inverse), or to flip an operator from and to or (or
the inverse).

3.9. Evolution
We are using overlapping generations with a population size
µ = 100. In each generation, λ = 100 offspring are
produced by selecting 100 pairs of parents through binary
tournaments (with replacement) and creating one child per
pair by crossover and mutation. From the resulting set of
µ parents plus λ offspring, 100 individuals are selected for
the next generation, also using binary tournaments. The
evolutionary process is stopped after 200 generations, thus
a total of 20,000 fitness evaluations per run are performed.
The evaluation of each robot is done after the robot lives
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FIGURE 5 | (Top) Flow-chart of the late-development process. From the left to right of the string, each symbol of the early-developed phenotype (string) goes through

this process, being interpreted and developed (or not expressed). (Bottom) Illustration of decoding an early-developed phenotype into a late-developed phenotype

with morphology and controller. From the left to right of the string, symbols are interpreted and developed, making incremental changes to the phenotype. An arrow

going from the genotype to the phenotype should be interpreted as the process leading to the creation of the phenotype component pointed at by the arrow after the

interpretation of the genotype component at the starting end of the arrow.

through each of the seasons, given that development takes
place each time a season is started during a robot’s life. Details
about the seasonal environmental condition are provided in

section 4.1, and an illustration of the whole evolutionary process
is depicted by Figure 8. For each encoding, the experiment
was repeated 20 times independently. A summary of the

Frontiers in Robotics and AI | www.frontiersin.org 9 October 2020 | Volume 7 | Article 107

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miras et al. Environmental Regulation Using Plasticoding

FIGURE 6 | Illustration of command move_ref_I(ti ,di ), having ti = 1 and di = 1. The procedure of the command move_ref_N(tn,dn) is analogous to this.

FIGURE 7 | (A,B) Are examples of reproduction operators, and (C) is an example of initialization using only 1 group of symbols for all cases of rules.

parameters for the evolutionary algorithm is provided in the
list below:

• Population size 100
• Offspring size 100
• Number of generations 200
• Mutation probability 80%
• Crossover probability 80%
• Experiment repetitions 20
• Rewriting iterations k 3
• Maximum number of groups of symbols e 4
• Maximum number of terms per clause u 2
• Number of tuples per non-replaceable symbol l 2

• Connections of the network range from -1 to 1
• Oscillator parameters range from 1 to 10
• Maximum amount of modules m 15

4. EXPERIMENTAL SETUP

We carried out two sets of experiments using the same
experimental setup, except for the encoding method. The first set
of experiments used the Baseline encoding, while the second set
used the Plasticoding encoding. Our experiments were realized
using a simulator called Gazebo, interfaced through a robot
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FIGURE 8 | Overall scheme of the evolutionary process.

framework called Revolve (Hupkes et al., 2018). The code needed
to reproduce our experiments and analysis in available on
GitHub3, and the data is available (upon request) in the server
ssh.data.vu.nl inside the karinemiras-frontiers2020 directory.

4.1. Environmental Conditions
We experimented with two different environmental conditions,
which are (a) Flat environmental condition: it is a plane flat
floor; (b) Tilted environmental condition: it is a plane floor
tilted in 5◦. These conditions are depicted in Figure 9 (top).
In the experiments, these conditions were combined to create
a seasonal environmental condition where each condition is
considered a season. In practice, robots live each part of their
lifetime in one different environmental condition. They spend
their first 50 s of lifetime in the Flat environmental condition
(first season), and after that they spend 50 more seconds in the
Tilted environmental condition (second season), as depicted by
Figure 9 (bottom). Note that during morphogenesis robots are in
the Flat environmental condition, and later on during their life,
have the chance to experience the Tilted environmental condition
regardless their performance in the previous condition.

4.2. Fitness Function
For each environmental condition independently, Flat and
Tilted, the fitness function measures performance on the task of
directed locomotion. The function is defined by Equation (2).

f1 =











sx if sx > 0
sx
10 if sx < 0

−0.1 if sx = 0

(2)

3https://github.com/ci-group/revolve/tree/ae99a0985765997e5e5b557bc677f4cc1bc84c99/

experiments/plasticoding_frontiers2020

where sx is the speed of the robot as defined by Equation (4).
This function measures the speed of the robots only in the x
axis, so to discourage robots to exploit locomotion in the y
axis, avoiding the proposed challenge of climbing the Tilted
environmental condition. Additionally, there are two penalties to
try to escape local optima observed in preliminary tests with the
Tilted environmental condition. The first penalty is the division
by 10 used when the speed is negative, which aims to prevent
that a “safe strategy” be much more beneficial than completely
falling down the hill. This “safe strategy” is characterized by
trying to avoid falling too far from the starting point (due the
effect of gravity), but without really climbing. The second penalty
is the constant −0.1 used when speed is zero, which aims at
disincentivizing robots that do not develop joints (and thus
cannot move) so to avoid the risk of falling. Although these
penalties are needed only in the Tilted environmental condition,
they are used for the Flat condition as well, aiming to keep the
experimental setup comparable. In any case, the penalties make
sense for both environmental conditions because they increase
the selection pressure for the task, i.e., directed locomotion.

Because robots are evaluated in multiple environmental
conditions, we treat this problem as multi-objective, where the
fitness of each environmental condition represents one of the
objectives. Notably, this setup in which robots need to perform
well in different environmental conditions can be seen as robots
having to perform well different tasks. To obtain the final
fitness, which represents the fitness in the seasonal environmental
condition, we consolidate the two fitness values into a single
measure. The consolidation of these objectives into the final
fitness is defined by Equation (3).

fc =

n
∑

i=1

di (3)

Frontiers in Robotics and AI | www.frontiersin.org 11 October 2020 | Volume 7 | Article 107

https://github.com/ci-group/revolve/tree/ae99a0985765997e5e5b557bc677f4cc1bc84c99/experiments/plasticoding_frontiers2020
https://github.com/ci-group/revolve/tree/ae99a0985765997e5e5b557bc677f4cc1bc84c99/experiments/plasticoding_frontiers2020
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miras et al. Environmental Regulation Using Plasticoding

FIGURE 9 | (Top) Environmental conditions: Flat and Tilted. (Bottom) Cycle of seasonal environmental condition.

where di is the number of solutions in the population that
solution i dominates, given that a solution only dominates
another solution if it is better in at least one objective and not
worse in any objective.

4.3. Robot Descriptors
For quantitatively assessing morphological, control, and
behavioral properties of the robots, we utilized a set
of descriptors.

4.3.1. Behavioral Descriptors
1. Speed: Describes the speed (cm/s) of the robot along the x axis
as defined by Equation (4).

sx =
ex − bx

t
(4)

where bx is x coordinate of the robot’s center of mass at the
beginning of the simulation, ex is x coordinate of the robot’s
center of mass at the end of the simulation, and t is the duration
of the simulation.

2. Balance: We use the rotation of the head in the x–y plane
to define the balance of the robot. In general, the rotation of
an object can be described in the dimensions roll, pitch, and
yaw. We consider the pitch and roll of the robot head, expressed
in degrees between 0 and 180 (because we do not care if the
rotation is clockwise or anti-clockwise). Perfect Balance belongs
to both pitch and roll being equal to zero, so that the higher the
Balance, the less rotated the head is. Formally, Balance is defined
by Equation (5).

B = 1−
r + p

t ∗ 180 ∗ 2
(5)

where r =
∑t

i=1 | ri |, representing the roll rotation
accumulated over time, p =

∑t
i=1 | pi |, representing the

pitch rotation accumulated over time, and t is the duration of
the simulation.

4.3.2. Morphological Descriptors
1. Size: Total number S of modules in the morphology.
2. Sensors Accounts for touch sensors in the morphology

(Figure 10). It is defined with Equation (6):

C =

{

c
cmax

, if cmax > 0

0 otherwise
(6)

where c is the number of sensors and cmax is the number of
slots in the morphology that are not connected to other types
of module.

4.3.3. Controller Descriptors
1. Sensors Reach: Describes how the inputs from the sensors are

connected to the oscillators of the controller. The higher this
number, the more motors each sensor is sending data to on
average (Figure 10). It is defined with Equation (7):

Ds = Md(Rs)

Rs =

{

rs | rs =
cs

n(L)
∀ s ∈ S

}

(7)

whereRs is a set of ratios, while cs is the number of connections
of the input s, S is the set of all inputs in the controller, and n(L)
is the number of oscillators in the controller.

2. Recurrence: Describes the proportion of oscillators in the
controller that have a recurrent connection, i.e., memory
(Figure 10). It is defined with Equation (8):

Dr =
r(L)

n(L)
(8)

where n(L) is the number of oscillators of the controller,
and r(L) is the number of oscillators that have a
recurrent connection.
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FIGURE 10 | Illustrations for the descriptors calculations.

A complete search space analysis of the utilized robot framework
and its descriptors is available in Miras et al. (2018a,b),
demonstrating the capacity of these descriptors to capture
relevant robot properties, and proving that this search space
allows high levels of diversity.

5. RESULTS AND DISCUSSION

When robots have to cope with multiple environmental
conditions while disposing of one same morphology and
controller, and thus behavior, naturally, a trade-off may occur.
Because of the need to adapt to different environmental
conditions, in at least one of the environmental conditions
they might adapt worse than if they had evolved in that
same static environmental condition. We demonstrated this
in a previous work (Miras et al., 2020b). In this case, for a
seasonal environmental condition, where both Flat and Tilted
had to be faced by the population, the Tilted season exerted
a higher selection pressure. This way, robots acquired the
same traits as robots that had evolved in a static Tilted

environmental condition. One probable reason for this is that,
as demonstrated in another study (Miras and Eiben, 2019b),
robots evolved in an inclined environment can still perform
the task in the a flat environment, but fail badly when it
is the other way around, showing that the pressure of an
inclined environment leads to more generalist strategies for
locomotion. Because the new encoding that we propose in the
current paper, i.e., Plasticoding, allows the same individual to
develop distinct morphologies and/or controllers (and thus also
behavior) according the environmental conditions, we expect
the system to be less impacted by this trade-off. Therefore, here
we compare two populations separately evolved in a seasonal
environmental condition, (a) for one population the encoding
method was Baseline, (b) for another population the encoding
method was Plasticoding. The morphological properties, in the
Flat season robots are bigger for Plasticoding than for Baseline,
while they also have more sensors (Figure 11). Concerning
controller properties, we observe differences that directly relate
to sensor differences in morphology: The Flat season for the
Plasticoding robots have higher Sensors Reach and Recurrence
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FIGURE 11 | Comparison of morphological properties in different environmental conditions. Line plots show the progression of the means of the population (quartiles

over all runs), while boxplots show the distribution of the means in the final generation. Significance levels for the Wilcoxon tests in the boxplots are ∗ < 0.05, NS not

significant. Note that, naturally, the values of Baseline are the same in Flat or Tilted.

(Figure 12). This indicates that, in Plasticoding, robots evolve
to have sensors sending signals to more motors, and that
the brain of the robot has more memory, when compared to
Baseline. Notably, given that the neurons of the controllers are
oscillators, recurrence can only make a difference if there are
inputs. In simpler words, memory is only needed if there is
something to remember, and this may explain why both metrics
(Sensor Reach and Recurrence) are increased at the same time.
Therefore, the selection pressure for higher Recurrence in the
Flat environmental condition suggests that sensors are useful in
the context of seasons, provided that robots have capacity for
phenotypic plasticity.

In the Flat environmental condition, this phenotypic
differentiation is clearly reflected on the emergent behavior,
i.e., behavior that emerges from the interaction among
morphology, controller, and environment to achieve the
rewarded behavior (task). The Balance of the robots is
lower for Plasticoding than for Baseline (Figure 13), and
this behavioral property agrees with their predominant gait,
which is rolling for Plasticoding and rowing or dragging
for Baseline. While rolling requires an imbalance at the
center of mass of the robots, rowing and dragging requires

the opposite. Note that this rolling gait was expected to be
observed because rolling is a common emergent behavior when
evolving in a static Flat environmental condition (Miras and
Eiben, 2019a). Nevertheless, though rolling is predominant
for Plasticoding in Flat, this is not the case for Baseline,
which predominantly delivers a gait of rowing/dragging,
which is more common when evolving in a static Tilted
environmental condition (Miras and Eiben, 2019a) instead.
This corroborates with our discussion in the beginning of this
section, concerning a pressure for the most generalist strategy
for locomotion.

Finally, the rewarded behavior (task) shows that the
phenotypic and behavioral changes caused by Plasticoding helped
to improve the performance on the task when in the Flat
season. The Speed of the evolved population is 58% higher for
Plasticoding than for Baseline. This difference was proven to be
significant with a Wilcoxon test presenting a p-value of 0.015
(Figure 13). It is no surprise that Baseline delivers robots that
perform worse on the task when in the Flat environmental
condition, considering that the Baseline gave in to the selection
pressure existent in the Tilted environmental condition for robots
that row and drag.
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FIGURE 12 | Comparison of controller properties in different environmental conditions. Line plots show the progression of the means of the population (quartiles over

all runs), while boxplots show the distribution of the means in the final generation. Significance levels for the Wilcoxon tests in the boxplots are ∗ < 0.05, NS not

significant. Note that, naturally, the values of Baseline are the same in Flat or Tilted.

The red dotted lines in the boxplots of Speed (Figure 13) mark
a reference for a “known achievement.” These lines represent
the means of Speed when evolving populations in a static
environmental condition, i.e., the environmental condition were
always the same through the their lifetime, and serve as a
reference of what could be achieved in a less constrained scenario.
This leaves us with an open question: is it possible through
phenotypic plasticity to achieve a performance non-different from
when evolving in static environmental conditions, or is this
degradation at least to some extent, inevitable given the costs of
evolving regulatory capabilities?

Importantly, all aforementioned differentiation between
Plasticoding and Baseline that took place in the Flat season
did not take place in the Tilted season. This is also true for
the task performance, for which no gain or loss was achieved.
One possible explanation might be the fact that the Tilted
environmental condition is more challenging (Miras and Eiben,
2019a) than the Flat. In Figure 11, by observing the curves of
Size, we see that until around generation 25 the search is trying to
escape the local optimum mentioned in section 4.2. That is, first
the population turns into very small robots, then later on they
grow bigger. Notwithstanding, although we see a stable increase

in the average, there is a lot of variance maintained until the
end on the evolutionary period. Figure 14 helps to illustrate that,
showing that it is common to end up with very small robots, so
small that they can barely locomote. Perhaps one explanation
to this is that the obvious difficulty of evolving robots in the
Tilted environmental condition led evolution to exploiting the
Flat environmental condition instead.

6. CONCLUDING REMARKS

We investigated the effects of environmental regulation on
the evolution of robots using a novel encoding method
that we called Plasticoding. This regulation gave robots a
capacity for phenotypic plasticity, so that one same robot could
develop a different morphology, controller, or behavior given
changes in environmental conditions. In a set of experiments,
we evolved robots that had to cope with two different
environmental conditions during their life: one flat floor and
one inclined floor. Importantly, each of these conditions presents
a different selection pressure (Miras and Eiben, 2019b). This
means that in each one of these environments, the most
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FIGURE 13 | Comparison of behavioral properties in different environmental conditions. Line plots show the progression of the means of the population (quartiles over

all runs), while boxplots show the distribution of the means in the final generation. Significance levels for the Wilcoxon tests in the boxplots are ∗ < 0.05,

∗ ∗ ∗ < 0.001, NS not significant. The red dotted lines represent the mean Speed when evolving in a static environmental condition.

FIGURE 14 | Illustrations of the best robots for each experiment repetition using each encoding method. At the left of each green box is the morphology developed in

the Flat season, while at the right is the morphology developed in the Tilted season. Note that for the Baseline, naturally, in each green box both morphologies are the

same. These are top-down 2D illustrations that use a polygon representing each module, assuming every module is the same size: each polygon color is relative to

one type of module, as described earlier in Figure 1. Illustrations were rescaled to fit the frames accordingly. A video showing examples of best emergent robots is

available on the link https://www.youtube.com/watch?v=43wsQfWMo-Q&feature=youtu.be.
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likely emergent morphological and behavioral properties are
significantly different. By comparing the results achieved by
Plasticoding to a baseline encoding (similar encoding but with no
regulation capacity), we showed that environmental regulation
improves robot adaptation while leading to different evolved
morphologies, controllers, and behavior.

The novel encoding method that we proposed and utilized
is designed for a particular system of robot modules. However,
this paper presented a proof of concept concerning the benefits
of phenotypic plasticity through environmental regulation that
transcends the encoding utilized for the concept demonstration.
Furthermore, the method of regulation adopted by Plasticoding
is independent of the robot system and applicable to any simple
L-System because it disregards the content of the production
rules. The environment is determinant to natural life forms
not only indirectly through creating selection pressure, but also
directly through acting upon development (Sapolsky, 2017). For
these reasons, we believe environmental regulation has great
potential in helping to improve the quality of ER systems.
Nevertheless, this subject is very scarcely explored in the
literature. Therefore, our work is a fundamental step toward
a long-term vision: succeeding in creating robot artificial life
with complexity and adaptability comparable to what we see
in nature. For future work we propose to improve Plasticoding
through experimenting with a) the mutation probabilities, trying

to balance changes in the production-rules vs. regulatory clauses;
b) different methods of initialization for the production-rules
and regulatory clauses. Additionally, we propose to investigate
effects on evolvability through a) limiting phenotypic plasticity to

occur during morphogenesis only; b) allowing the inheritance
of regulatory changes (epigenetics). Finally, the effects of
environmental regulation should be investigated using additional
environmental conditions, and these conditions should occur
through diverse dynamics of change, e.g., fast changes, slow
changes, cyclical changes, etc.
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