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Contemporary research in human-machine symbiosis has mainly concentrated on

enhancing relevant sensory, perceptual, and motor capacities, assuming short-term and

nearly momentary interaction sessions. Still, human-machine confluence encompasses

an inherent temporal dimension that is typically overlooked. The present work shifts the

focus on the temporal and long-lasting aspects of symbiotic human-robot interaction

(sHRI). We explore the integration of three time-aware modules, each one focusing on

a diverse part of the sHRI timeline. Specifically, the Episodic Memory considers past

experiences, the Generative TimeModels estimate the progress of ongoing activities, and

the Daisy Planner devices plans for the timely accomplishment of goals. The integrated

system is employed to coordinate the activities of a multi-agent team. Accordingly,

the proposed system (i) predicts human preferences based on past experience, (ii)

estimates performance profile and task completion time, by monitoring human activity,

and (iii) dynamically adapts multi-agent activity plans to changes in expectation and

Human-Robot Interaction (HRI) performance. The system is deployed and extensively

assessed in real-world and simulated environments. The obtained results suggest that

building upon the unfolding and the temporal properties of team tasks can significantly

enhance the fluency of sHRI.

Keywords: human robot interaction (HRI), artificial time perception, eterogeneous multi-agent planning,

autonomous systems, collaborative task execution

1. INTRODUCTION

Fluent, symbiotic Human-Robot Interaction (sHRI) is an important, yet challenging problem in
robotics research as evidenced by the increasing number of published works (Rosenthal et al., 2010;
Fernando et al., 2014; Liu et al., 2016; Riccio et al., 2016) and review papers (Coradeschi and Loutfi,
2008; Green et al., 2008; Carrillo and Topp, 2016; Tsarouchi et al., 2016). Despite the significant
resources devoted in sHRI, the majority of existing systems consider mainly the spatial aspects of
the world without encapsulating the concept of the time dimension. As a result, contemporary
research has largely concentrated on enhancing robotic sensory, perceptual, and motor capacities,
assuming short-term and nearly momentary interaction between agents (Das et al., 2015; Baraglia
et al., 2016; Devin and Alami, 2016; Churamani et al., 2017). Still, human-machine confluence
encompasses inherent temporal aspects that are often considered only implicitly in robotic
applications, with clear negative effects regarding the integration of artificial agents into human
environments. In example, robotic agents face difficulties in distinguishing between the entities
involved in different past events or implement reasoning on past event sequencing, cannot feel
rush or adapt to human temporal expectations and cannot effectively plan not only how, but also
when tasks should be accomplished (Wilcox et al., 2012). Our recent work has addressed artificial
temporal cognition, with a focus on human-like time representations and duration processing
mechanisms for robots (Maniadakis et al., 2009, 2011; Maniadakis and Trahanias, 2012, 2015).

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.503452
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.503452&domain=pdf&date_stamp=2020-11-12
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mmaniada@ics.forth.gr
https://doi.org/10.3389/frobt.2020.503452
https://www.frontiersin.org/articles/10.3389/frobt.2020.503452/full


Maniadakis et al. Time-Aware Multi-Agent Symbiosis

Interestingly, besides the fact that several cognitive
architectures have considered for robotic systems over the
last years (Langley et al., 2009; Rajan and Saffiotti, 2017;
Kotseruba and Tsotsos, 2018), the notion of time is often
represented rather implicitly in the knowledge base, without a
clear view on the past, the present and the future of the robot
life. For example, environment state changes are typically stored
in a flat atemporal domain, being unable to distinguish between
yesterday and a month before. The present work introduces
a new cognitive framework that clearly separates between the
well known notions of “past,” “present,” and “future,” which are
widely adopted by humans in their daily activities.

More specifically, three important phases of human-robot
interaction can be easily identified in which time has a major
role. These regard (i) the representation and memorization of
past experiences on a temporally rich domain to facilitate time-
informed reasoning in forthcoming sessions, (ii) the perception
of the temporal features of evolving real-world procedures
to support action coordination with other agents in the
environment, and (iii) the planning of actions to facilitate timely
accomplishment of goals given the temporal constraints and the
dynamic unfolding of multi-agent collaboration. Targeting the
implementation of time-aware robotic cognitive systems, we have
developed computational modules addressing complementary
cognitive skills along the past, present and future disciplines
mentioned above (Maniadakis et al., 2016b, 2017; Sigalas et al.,
2017a,b; Hourdakis and Trahanias, 2018).

In this paper we present the implementation of a composite
sHRI system, that comprises the aforementioned time-aware
cognitive modules. The composite system (a) exploits past
experiences to reason about current human needs, (b) monitors
and analyzes the ongoing human activity to infer the completion
time of human tasks and the user’s performance profile on the
task, and (c) plans synergistic robot activities properly adapted
to the human profile and the progress of the task in order to
accurately satisfy human expectations. The paper summarizes
the integration of the time-aware cognitive modules emphasizing
mostly on their interactions and the beneficial features they bring
to the composite system.

To demonstrate the validity of the proposed approach, the
composite system is deployed in the real world and is assessed
in a complex multi-agent interaction scenario that involves two
robots and a human. A series of experiments with real humans
showed that complementary to the embodiment of cognitive
systems (i.e., link robot actions to body characteristics), the
“entiment” of robotic cognition to the temporal context of sHRI
(i.e., take into account when things happened or should happen)
facilitates the coordination of robot behavior with the dynamic
unfolding of the sHRI scenario. Overall, the use of time-informed
robotic cognition facilitates the seamless integration of artificial
agents in the real world, enhancing their ability to respond more
accurately, flexibly, and robustly, in full accordance to the human
expectations and needs.

The rest of the paper is organized as follows. Section
2 outlines related wok on the subject of time cognition,
including issues of memory, temporal predictions and time-
informed planning. Section 3 outlines the proposed interaction

scenario that is employed in the current work, while section 4
provides details on the implementation of the composite system
and the individual components. Section 5 presents a detailed
experimental evaluation of the system in a set of human-centered
experiments, while section 6 concludes the paper and discusses
further research directions on the subject.

2. LITERATURE REVIEW

Over the years, a number of cognitive robotic architectures have
considered the implementation of high-level cognitive functions
taking into account temporal information, such as the constraints
on the timing of tasks (Alami et al., 1998). For example, the
deliberation for the completion of multiple and diverse robot
tasks can be implemented based on six types of robot functions,
namely planning, acting, observing, monitoring, goal-reasoning,
and learning (Ingrand and Ghallab, 2017), where the need for
timing robot activities has been also considered.

The broader field of human robot interaction has been
significantly facilitated by the integration of modules which
provide robust solutions on well-studied problems in the
field of robotics. For example, Lemaignan et al. (2017)
proposed a practical implementation for social human-
robot interaction combining geometric reasoning, situation
assessment, knowledge acquisition, and representation of
multiple agents, for human-aware task planning. Churamani
et al. (2017) built a human-robot interaction module to engage
personalized conversations in order to teach robots to recognize
different objects. Devin and Alami (2016) developed a framework
which allows robots to estimate other agents’ mental states e.g.,
goals, plans and actions and take them into account when
executing human-robot shared plans. Das et al. (2015) proposed
another framework for human-robot interaction based on the
level of visual focus of attention. The latter was implemented on
a Robovie-R3 robotic platform in order to interact with visitors
in a museum. Adam et al. (2016) implemented a framework for
physical, emotional and verbal human-robot interaction on a
NAO robot.

Nevertheless, in these works the temporal dimension of
human-robot interaction has not been adequately considered,
since the focus of the relevant implementations was on the
spatial aspects of task completion. As a result, the implemented
systems are unable to develop a wider conception of the timeline
linking the past, the present, and the future. The present work
contributes to fill this gap by proposing an integrated system that
directly considers the temporal characteristics of sHRI in order
to realize long-term, timely and fluent cooperation of humans
and robots. Previous works related to the components of the
composite system are reviewed below.

2.1. Knowledge Representation and
Reasoning
Robotic systems that naturally interact with humans for long
periods should be equipped with the ability to efficiently store
and manage past memories, as well as with the ability to exploit
past experiences to predict future outcomes. Still, the temporal
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aspects of a robotic memory system have not yet been adequately
examined, with most systems using flat, non-timed memories to
assimilate past experiences. Accordingly, events that occurred at
different past moments can be hardly distinguished, which results
in poor performance in sHRI scenarios.

A common issue when encoding past events regards the
management of the stored information, given the constantly
increasing storage space over time.Memory forgetting (or decay),
is a biologically inspired memory mechanism (Hardt et al., 2013)
which may cope with this issue. The Decay Theory (Altmann and
Gray, 2000) dictates that information stored in memory tends to
“fade out” and/or eventually be forgotten as time passes. Prior
attempts to computationally implement memory forgetting (Ho
et al., 2009; Biswas and Murray, 2015) fail to dynamically adapt
to variations in task requirements and, thus, are not suitable to
support long-term sHRI. A dynamic memory system is proposed
by the Time-Based Resource-Sharing (TBRS) theory (Barrouillet
et al., 2004), which combines decay and interference theories
and, thus, allows information to be “refreshed” as well. Still,
recent TBRS implementations (Oberauer and Lewandowsky,
2008, 2011), exhibit rather low memory performance in terms
of recall accuracy. Moreover, Adaptive Resonance Theory
networks (Carpenter and Grossberg, 1987) are also used
to encode memories. However, current implementations fail
to effectively model a human-inspired long-term robotic
memory, either because of limitations on the perceived
information (Tscherepanow et al., 2012), or on the information
retrieval and refreshing (Taylor et al., 2009) or, even, because of
absence of forgetting mechanisms (Leconte et al., 2016).

Evidently, the exploitation of the stored information in order
to infer or predict the state(s) of the interaction would greatly
facilitate sHRI (Maniadakis et al., 2007). Yet, only recently there
have been some works researching memory-based inferencing.
For example, Hidden Markov Models (HMMs) are used in order
to infer actions consisting of a sequence of “intentions” (Kelley
et al., 2008). However, the need of previously modeled and
task-dependent actions, limits the employment of the system
in complex real-world setups. This obstacle is alleviated in
some of contemporary works, such as Nuxoll and Laird (2012)
and Petit et al. (2016). The former refers to the employment
of the Soar cognitive architecture in order to exploit episodic
memories and enhance the cognitive capabilities of artificial
systems, while, the latter, uses a-posteriori reasoning to store and
manage previously acquired knowledge. However, both of these
works face severe limitations regarding the constantly increasing
storage requirements, negatively affecting performance in long-
term HRI.

To address the aforementioned issues, we have implemented
a time-aware episodic memory module (Sigalas et al., 2017a,b)
for autonomous artificial agents, which enables memory storage
and management, as well as sHRI state prediction and inference.
As thoroughly described in section 4.1, symbolic information
is stored in a temporally rich domain, which encodes the
involved entities and the relation between them. Each entity is
characterized by an importance factor which dictates its life-
cycle and, thus, determines whether to keep or erase the related
information. Separate HMMs are generated and trained on

demand in order to categorize the stored information, query the
memory about past events, infer “hidden” information about an
episode’s attributes and predict future actions.

2.2. Temporal Information During Action
Observation
Time perception, i.e., the ability to perceive the temporal
properties of an ongoing activity, is a field that remains
relatively unexplored in artificial cognitive systems. This can be
attributed to the fact that such investigations often require task
dependent and contextual data, which are difficult to obtain.
Recently, however, temporal information has been increasingly
used for action recognition, which indicates that there is a
strong correlation between low-level behaviors and temporal
properties. For example, local spatio-temporal features (Laptev,
2005) have been showcased to have increased discriminative
power (Wang et al., 2009), since strong variations in the data
(such as characteristic shifts in motion and space), can be
captured more accurately in the spatio-temporal domain. In
this context, various descriptors and feature detectors have been
proposed. In Laptev (2005), temporal information is attained
by convolving a spatio-temporal function with a Gaussian
kernel, while in Scovanner et al. (2007), a 3D SIFT descriptor
is proposed, which extends SIFT to the time-domain. Dollàr
et al. proposed the Cuboid detector, which applies Gabor filters
along the temporal dimension. Temporal structure for activity
recognition has also been investigated using graphical models,
including spatio-temporal graphs (Lin et al., 2009) and semi-
latent topic models (Wang and Mori, 2009). In contrast to the
aforementioned works, which examine the temporal structure
of an activity, in the current work we measure its duration. As
we demonstrate the use of this information can lead to robust
descriptors for the human activity.

To facilitate temporal predictions by mere observation, we
have introduced Generative Time Models (GTMs) (Hourdakis
and Trahanias, 2018) that can accurately predict the duration
of an unfolding activity. i.e., observation models that provide
in real-time estimations of temporal quantities that characterize
the activity. This concept, that is predicting the time-related
properties of an activity, is novel to robotics and with great
potential. Information provided by the GTMs can be employed
by different disciplines including human-robot interaction, scene
perception, robot planning, and process modeling. In the current
work, GTMs are employed to implement the observation models
that allow the robot to predict the duration and completion-time
of an activity performed by a human agent.

2.3. Time-Informed Planning of
Collaborative Activities
Several works have considered the notion of time in planning
solo robot behavior in the form of action sequences, frequently
with the use of PDDL that uses first-order predicates to describe
plan transitions (Cashmore et al., 2015), or NDDL that considers
a “timeline” representation to describe sequences of temporal
conditions and desired values for given state variables (Py et al.,
2010), and is adopted by the EUROPA Planning Library (Rajan
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et al., 2007; Barreiro et al., 2012) and its subsequent advancement
that considers the description of hierarchical plans (Antonelli
et al., 2001). Opportunistic planning provides an alternative view
for scheduling long-horizon action sequences (Cashmore et al.,
2018). The use of hierarchical plans is additionally considered
in Stock et al. (2015), focusing on the unification of sub-plans
to improve implementation efficiency. Moreover, the high-level
Timeline-based Representation Framework provides a structured
library for managing operational modes and the synchronization
among events (Cesta et al., 2009), or with the use of the
forward search temporal planner POPF (Cashmore et al., 2014).
Extensions of this framework has been used among other in
industrial human-robot collaboration (Pellegrinelli et al., 2017;
Umbrico et al., 2017) to ensure controllability.

To implement tasks involving multi-agent collaboration,
planning algorithms often rely on constraints which
provide ordering between the independently implemented
activities (Morris et al., 2001; Shah et al., 2007; Smith et al., 2007;
Morris, 2014). Existing approaches explore the controllability of
alternative strategies, to identify plans that successfully schedule
the required activities in a way that satisfies constraints until
the final completion of the goal (Cimatti et al., 2016). Despite
their success in coordinating pairs of interacting agents, relevant
works suffer in terms of scalability because they assume a
significant amount of resources to be devoted to the formulation
of the full plan.

Interestingly, relevant works consider the use of time in
full isolation, without the ability to blend time with other
quantities for the time-inclusive multi-criteria evaluation of
plans. For example, time-labeled Petri-nets have been used
to accomplish fluent resource management and turn-taking
in human-robot collaboration focusing mainly on dyadic
teams (Chao and Thomaz, 2016). In a different work time has
been sequentially combined with space to minimize annoyance
among participating agents (Gombolay et al., 2013). Other
works follow a similar tie-isolated formulation, representing
agent interaction as a multi-criteria optimization problem. The
objective function is derived from the preference values of
participating agents and the temporal relations between entities
are mapped on the constraints of the problem (Wilcox et al.,
2013). More recent works follow basically the same formulation,
representing time in the set of constraints that confine available
solutions (Gombolay et al., 2017). Besides the fact that criteria
such as the workload and the user preferences can be addressed
with these approaches, time is largely kept separate form other
quantities, thus not used for the formulation of time-informed
multi-criteria objectives. Moreover, the works mentioned above
do not consider predictive estimates on the performance of
interacting agents and the expected release of constraints
among tasks.

Recently, decentralized approaches are used for multi-
robot coordination, which work on the basis of auctions. For
example, Melvin et al. (2007) considers scenarios in which tasks
have to be completed within a specified time window, but
without allowing overlapping between time windows. Modern
approaches are targeting this issue with particularly successful
results in simulation environments (Nunes et al., 2012; Nunes

and Gini, 2015). In other similar problems the routing of
working parts is assigned to the most suitable transportation
agent through an auction-based mechanism associated to a
multi-objective function (Carpanzano et al., 2016). However, the
relevant approaches assume auctions to proceed on an agent-
centered point of view which does not consider the capacities
and special skills of other team members. Therefore, it is hard to
maximize the usability of all members for the benefit of the team
(i.e., it might be beneficial for the team if the second optimal agent
undertakes a given task).

To address the issues mentioned above, we have recently
introduced the Daisy Planner (DP) (Maniadakis et al.,
2016a,b), a new scheme of time-informed planning, which
relies on the daisy representation of tasks and adopts time-
inclusive multi-criteria ranking of alternative plans. DP
operates under the assumption of pursuing immediate, locally
optimal assignment of tasks to agents. This is in contrast
to previous works on scheduling multi-agent interaction
that typically prepare long plans of agents’ activities for
all future moments (Gombolay et al., 2013; Hunsberger,
2014; Cimatti et al., 2016), under the risk of frequent re-
scheduling, due to external disturbances that may render
current plans inapplicable. In such cases, re-scheduling
may take up to a few tenths of seconds (Pellegrinelli et al.,
2017). DP effectively operates as a lightweight process which
minimizes the chances for re-planning in the case of unexpected
events (Isaacson et al., 2019).

3. MULTI-AGENT INTERACTION
SCENARIO

Without loss of generality, and for the sake of brevity, the
adopted scenario considers the case of three agents: a human
and two robots (a humanoid and a robotic arm). We note,
however, that the proposed methodology is readily applicable to
the case of more than three cooperating agents. In this section, we
summarize the scenario that will be used as a motivating example
for the rest of the paper (see Figure 1). The scenario assumes that
the three agents cooperate for the timely delivery of breakfast to
the human.

In particular, to predict the breakfast preferences of the human
at a given day, the system exploits past sHRI sessions. After
querying the episodic memory based on the current date (i.e.,
day of week, month, and season), the weather conditions and the
user’s mood and health, themost likely breakfast menu is inferred
and forwarded to the planner that synchronizes the activities
of involved agents. The collaboration scenario assumes agents
to undertake the tasks they are more efficient to implement.
Therefore, the human undertakes table cleaning for the breakfast
to be served, given his superior performance for the task in
comparison to the two robots. At the same time, the humanoid
robot gets the responsibility to fetch the breakfast to the table.
We use a bowl carefully mounted on humanoid’s chest to support
the transfer of breakfast items. This is accomplished with the help
of the robotic arm, which places the appropriate number of items
in the humanoid’s bowl.
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FIGURE 1 | The human-robot-robot “breakfast preparation” collaborative evaluation scenario.

The number of breakfast items is dynamically determined
according to the progress of table cleaning by the human. The
collaboration of the two robots aims at getting and fetching the
maximum number of items, after considering the performance
profile of the human and additionally that the breakfast should
be delivered with the minimum possible delay. As a result,
a fast performing, dedicated human that is willing to finish
breakfast as soon as possible may be served a minimal breakfast
menu, while a very relaxed person will, on the contrary, enjoy
a full breakfast menu. The above described breakfast delivery
scenario facilitates the grounded assessment of the integrated
time-informed system which accomplishes the fluent and timely
synchronization of the robots with human activities.

3.1. Task Requirements and System
Modules
The implementation of the above described scenario assumes the
integrated performance of modules targeting diverse parts of the
sHRI timeline. More specifically, to capitalize on the information
gained from past sHRI sessions, the composite system must
be able to (a) maintain a temporally-rich representation of
past HRI events being easily searched using temporal criteria,
which enables focusing on the past time periods of interest and
(b) accurately infer or predict the state of the HRI, based on
past experiences.

Beyond associating relevant past experience to the current
situation, fluent HRI requires real-time monitoring of human
activities. Our implementation achieves this (a) by developing
accurate predictions on the completion of human actions with
few training iterations and minimal prior information about
the performed activity, and (b) by estimating human efficiency
toward the real-time profiling of the interacting human.

Following the above, it is important to effectively proceed
to the accomplishment of the joint goal, by coordinating the
activities of team members. To this end, the multi-agent action
planner is necessary to (a) maximally exploit the individual
skills that each one of the heterogeneous participating agents
brings into the team, and (b) implement plans that are flexibly

and proactively adapted to the expectations of the user and the
dynamic temporal characteristics of the collaborative scenario.

4. TIME-INFORMED MULTI-AGENT
INTERACTION IMPLEMENTATION

Figure 2 depicts the sHRI composite system, designed according
to the previously delineated requirements, featuring the
interconnections of the individual time-aware cognitive
modules. The implemented modules are involved in distinct
aspects of the sHRI process extracting complementary pieces
of temporal information. As evident in Figure 2, the Episodic
Memory builds on past experiences to make predictions of the
human agents’ needs and preferences. The relevant predictions
are fed to DP which guides and coordinates agents’ activities
toward the implementation of the mutual goal, adequately
synchronized with the evolution of real-world events. The
GTM module effectively monitors the progress of human task
implementation to predict remaining time and user efficiency,
which are used by the DP to successfully steer and refine
the cooperative plans. The extracted temporal features are
additionally encoded to memory for future reference. The above
described continuous interplay of Episodic Memory, GTM, and
DP results into a composite system with a context and human
personality driven performance that accomplishes to effectively
map robot services to the needs of the individual humans.

The proposed approach implicitly addresses issues regarding
the commitment of the agents to their common goal
(Castelfranchi, 1995). This comes from the central coordination
of the team by the planner, which eliminates motivational,
instrumental, and common ground uncertainty as they are
described in Michael and Pacherie (2015). In that sense, every
member of the team holds normative expectation from the
others, which are crucial for the successful accomplishment of
the common goal (Castro et al., 2019). However besides the
coordination of the team by the planner, currently, there is no
means to explicitly communicate expectations or obligations
among partners, an information that might be crucial for the

Frontiers in Robotics and AI | www.frontiersin.org 5 November 2020 | Volume 7 | Article 503452

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Maniadakis et al. Time-Aware Multi-Agent Symbiosis

FIGURE 2 | Abstract representation of the proposed sHRI system.

human to understand that things are under control and the task
progresses as expected. This is something that will be considered
in the future versions of the system.

4.1. Past–Encoding of Elapsed HRI
Sessions
Development of an episodic memory module, able to effectively
encode past episodes on a temporally rich domain, may
significantly facilitate sHRI by exploiting past experiences to infer
current human needs. Specifically, the episodic memory serves
to store, manage and symbolically represent user memories, in
a manner which, on one hand enables storing of large numbers
of entities and, on the other hand, facilitates fast and efficient
search. Typically, memory stores andmanages all of the perceived
information. However, for the task at hand, we focus on the users’
breakfast preferences, storing, and exploiting only breakfast-
related entities along with their temporal (e.g., date of occurrence,
duration of activity, etc.) or other (user mood and health, weather
conditions, etc.) information.

Turning to the usability of episodic memory, robotic systems
should ideally adapt their activities in accordance to user
needs. To this end, exploitation of elapsed sHRI episodes
may significantly facilitate the inference of user preferences
at the given context. Valuable information stored in memory
may regard the configuration of past breakfast menus (i.e.,
combinations of breakfast items) in association with the
evolution of relevant attributes, e.g., human mood and health, on
a daily basis.

4.1.1. Episodic Memory Design
As described in our previous works (Sigalas et al., 2017a,b),
episodes are stored in memory in the form of connected multi-
graphs (Figure 3A), where the nodes represent the episode
entities (i.e., Scenario, Event, Action, Actor, Object, or Feature)
and the edges represent the links (bi-directional parent-child
relationships) among entities, during the unfolding of the
episode. Each link of the multi-graphs is assigned an importance
factor which affects the entity’s lifecycle and varies according to
the ongoing task, i.e., entities which are more “relevant” to the
task are considered more important than other “irrelevant” ones.
Importance is represented by a damped sine wave (i.e., decays
over time), as shown in Figure 3B. The latter is mathematically
formulated as:

I(t) = e−λt cos (ωt). (1)

where λ is the amplitude decay constant, ω is the angular
frequency and t represents the lifetime of the entity (t = 0 at
the first occurrence of the said entity).

The information stored in memory is evaluated and updated
periodically (at the positive peaks of the importance sinusoidal)
where it can be either refreshed, merged with an overlapping
entity, or forgotten, as summarized below.

• Refresh: Each time an entity is perceived or considered by the
system, its importance timeline is set to t = 0, which indicates
that it is refreshed as a memory-entity, and its importance
starts decaying again following Equation (1).
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FIGURE 3 | (A) Connected Episodic Multi-graph. (B) Exemplar importance function.

• Merging: Repeated instances of the same entity (e.g., a person
seen twice) are merged together. This is feasible due to
the multigraph nature of the memory, allowing for multiple
“incoming” and “outgoing” links, as illustrated in Figure 3A.
The multigraph provides efficient memory indexing and thus
facilitates fast response on memory recall queries. The given
representation allows for queries of the type “what happens
every morning” or “what happens every time user JD is sick,”
and thus facilitates statistical analysis on human behavior
and preferences.

• Forgetting: The efficient management of memory assumes
a forgetting mechanism to filter out “noise,” which means
to discard entities being of low importance for the stored
episodes. Whenever an entity’s importance drops below the
so called “forgetting threshold,” the entity is deleted from the
memory together with all adjacent (incoming and outgoing)
association links with other entities. Forgetting is an iterative
process, in the sense that, erasing an entity affects also its
children, which, if left with no incoming links (i.e., have no
other “parent” than the erased one), will be erased as well.

4.1.2. Probabilistic Inference
In order to exploit the stored information and make predictions
about user needs and preferences, we employ a Hidden Markov
Model (HMM) inference schema (Sigalas et al., 2017a). By
querying the memory, it is possible to retrieve information about
past episodes, properly filtered by selection criteria. These criteria

vary depending on the task at hand and the required inference;
e.g., “what does JD eats for breakfast during weekdays,” or “what
did JD say when the phone rang yesterday morning.”

Separate HMMs are developed on the fly—and on demand—
to exploit the time-stamped data retrieved from memory. The
recalled past episodes along with the selected attributes, are used
to train the HMM (estimate its parameters) and infer scenario-
relevant information. Training is accomplished by employing
the forward-backward algorithm (Rabiner, 1989), a two-step
iterative process that uses observations to predict the model state,
which is subsequently used to update the model parameters.
Similarly, in order to make a history-based inference of a user’s
preference, the HMM exploits the observed episode attributes
to predict the upcoming state, based on the currently estimated
model parameters. To facilitate training, a feature selection
mechanism (for the current implementation we use the Boruta
algorithm; Kursa et al., 2010) is periodically employed, in order
to select the most relevant—to the query—features and, thus,
increase inference accuracy.

HMMs are perfectly suited for the task at hand, because
they provide a very flexible generalization of sequence profiles
allowing for inputs of varying length. Moreover, they efficiently
encapsulate the hierarchical structure of real world episodes while
they are also incrementally trained, allowing for fast operation
during the online scenario unfolding.

By exploiting stored information in combination with the
HMM-based inference, the Episodic Memory module manages
to: (a) estimate the HRI state, e.g., agent actions in relation to the
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objects in the scene, (b) infer hidden HRI information, e.g., user’s
intentions, and (c) identify abnormal unfolding, e.g., emergency
events or unexpected situations. In the scenario considered in
the present work, the HMM is used to predict the breakfast
preferences of the user, which are further fed to the planner in
order to effectively guide the scenario unfolding.

4.1.3. Episodic Memory Enhancement
The Episodic Memory module was further enhanced toward
the direction of increasing the performance of the HMM-based
inference mechanism, in terms of both the efficiency (i.e., high
inference/prediction accuracy) and effectiveness (i.e., robust and
fast HMM training and inferencing). To this end, we extended
the inference by: (a) not discarding the HMM after usage and (b)
periodically train each HMM, instead of updating it only when
queried. Initially, a feature selection mechanism [the Boruta
algorithm (Kursa et al., 2010) as already mentioned above] is
employed to select the most relevant -to the task- features, which
are then used to incrementally train the HMM.

4.1.4. Episodic Memory Key Strengths
The above presentation dictates that, in comparison to previous
relevant works, the Episodic Memory module bears important
features:

• Encodes episodes as symbolic information on a temporally
rich domain.

• Dynamically manages (e.g., merges or forgets) the stored
episode details, based on their temporally decaying
importance.

• Provides accurate inference about the current or future state(s)
of the HRI, based on the personalized preferences, as derived
from the stored information.

4.1.5. Episodic Memory Interface
The episodic memory is the representation of user’s past
experiences. It is directly interfaced with the Daisy Planner either
for storing new information, or for inferencing the current of
future state(s) of the unfolding scenario. The interface and the
capacities that the memory module brings to the system, are
summarized below.

Input. The memory accepts two types of input from DP.
(a) Whenever an action is accomplished, the planner feeds
memory with the relevant information; i.e., involved entities
and their characteristics, general information about the current
day and so forth; (b) DP sends requests about the ongoing or
forthcoming states of the HRI. These requests are formulated
as plain database queries, stating the predicted value(s) and the
accompanying constraints.

Output. The output of the inference mechanism depends
strongly on the incoming query. Based on a given request and
constraints, the HMM is updated accordingly and the most likely
response is fed to the planner.

Role. As evident, the episodic memory module serves two
purposes: Storing and managing of past episodes, using a time-
aware symbolic representation and estimating the current or

future state(s) of the ongoing scenario, based on the time-
stamped information and the corresponding (temporal or
other) constraints.

4.2. Present—Temporal Features of
Perceived Human Activity
Temporal information, i.e., activity duration, allows robotic
systems to plan their actions ahead, and hence allocate effort and
resources to tasks that are time-constrained or critical. In human
cognition, such perception models are widely used (Zakay, 1989),
despite the fact that our time-perception is subjective, and
dependent on the implicit sense-of-time feeling that stems from
our sensorimotor pathways (Zakay and Block, 1996). In contrast
to that, robots and artificial systems may potentially perform this
task more consistently, by observing and analyzing the statistical
properties of the observed behaviors (Bakker et al., 2003).
Recently, we have demonstrated how such duration estimates can
be obtained using a model based method to derive the progress of
the activity (Hourdakis and Trahanias, 2013), called Generative
Time Models (GTMs) (Hourdakis and Trahanias, 2018).

4.2.1. GTM Design
For the current implementation, GTMs are used to observe,
analyze and subsequently predict the temporal properties of
the human’s activity (see Figure 4). This is accomplished by
segmenting and decomposing the observed activity based on the
human’s motions. For the example of wiping the table, where we
have repeating oscillatory motions, the primitives are described
by their amplitude and period. To obtain the primitives, a GTM
segments the signal obtained by tracking the human hand, by
looking for local extrema at small 1t intervals and stores their
starting ts and ending te times. To evaluate the local extrema it
looks into the derivative of the signal, which at a point of a peak
has a zero-crossing at the peak maximum.

To identify peak signal positions, the algorithm smooths the
signal’s first derivative, by convolving it with a Gaussian kernel,
and then stores the indices of the zero-crossings on the smoothed
derivative. For each index, a prominence value is calculated,
which indicates whether there has been a significant change in
the motion direction vector. The algorithm returns the n largest
peaks whose prominence exceeds a certain threshold value.

The current work focuses mainly on the table wiping task,
using a GTM to extract the oscillatory motions that the human
produces, and associate them with the task progress (Figure 4).
However, the GTM concept can easily generalize, because
it uses a modular architecture, with the activity and agent
components kept separate. Consequently, components from a
GTM formulation can be re-used to other tasks. To create
robust temporal predictors, a GTM analyzes an activity using
two observation models: (1) task progress, and (2) control. The
first estimates the progress of the task, i.e., how much of the
activity has been completed. The latter, identifies and records
information about the observed motions that appear during the
activity. For each motion, it records (i) the effect it has on the
task progress, i.e., how much of the task is completed each time
the motion is executed, (ii) the duration of each motion, and (iii)
how frequently it appears during the activity. A GTM uses this
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FIGURE 4 | A GTM observing a human, while cleaning a table. The model extracts the low-level behavioral primitives of the human and associates them with the

quantified task progress (small top-right plot). For the “wipe the table” activity, task progress is calculated by measuring the percent of the table surface that has been

wiped by the sponge.

information to predict the probability of a motion occurring, i.e.,
how many times each motion is expected to appear in the future
in the course of this activity, and how it will affect its progress.

To accomplish this, a GTM builds behavioral profiles based on
motion primitives that are observed, and uses them to infer future
task progression in respect to the human performance. To create
its temporal predictors, the GTM employs the observed primitive
models. For each primitive observed, the model segments the
overall motion, and uses those segmentation intervals in order
to infer how the task progresses in each interval. To make the
predictions, the model follows a finite mixture approach, in
which a belief is formed about the probable primitive models that
will be observed by the model.

Having segmented and described each primitive that is
observed, a GTM approximates the activity progress O in future
time-steps, using a finite mixture model. To estimate O we sum
the expected progress to the task by each observed primitive,
weighted by the primitive’s probability, as shown in Equation (2):

O(t) =

k
∑

i=1

p(i)φi (2)

where p(i) are the weight factors, that satisfy p(i) ≥ 0, for all

integers i ∈ 1, k, and
∑k

i=1 p(i) = 1, while φi =
∫ t
0 fM(i)

(t)dt
provides the overall contribution of the primitive i to the task
progress, with fM(i)

(t) being the function that describes how each
primitive contributes to the task progress at a certain point in
time. A GTM uses Equation (2) to predict future states for the
activity progress, i.e., the expected change for the task progress
is calculated using the probability of observing the primitive,
and how much the latter contributes for the task completion.
Using Equation (2), one can derive useful information about the

observed activity. Given the weight factor p(i),∀i ∈ 1, k for all
primitives one can estimate, using Equation (2), how the task

progress will change from t to tk =
∑k

i=1

(

p(i)di
)

:

O(t + tk) = O(t)+

k
∑

i=1

(

p(i)

∫ t+di

t
fM(i)

(t)dt

)

(3)

Equation (3) provides an estimate of the activity progress forward
in time, using the fM(i)

as basis functions. Based on Equation (3),
robust predictions on the duration of an activity can be obtained.
For the current implementation, the model is used to provide
estimates that can infer how long a human agent will require in
order to finish the table wiping task. Amore detailed presentation
of the above model can be found in Hourdakis and Trahanias
(2018).

4.2.2. GTM Enhancement
For the current implementation, GTMs were extended to
estimate the efficiency of the agents when performing a task, i.e.,
the extent to which the actions performed are productive toward
finishing the activity. To this end, efficiency is relevant to self-
learning, and measures the quality of task execution for a given
activity. To accomplish this, we measure for each primitive the
fraction of the percent of the activity it completes against its
duration (Equation 4).

eh =
Prt

Prd
(4)

where Prt indicates the percent of the task that has progressed
due to a primitive, and Prd the duration of that primitive. Both
quantities are readily available and computed using the GTM
mathematics, as described in Hourdakis and Trahanias (2018).
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Efficiency values are estimated online while the human activity
progress, and they are sent to the planner for further processing
and timely adaptation of the multi-agent collaboration strategy.

4.2.3. Key Strengths
GTMs can make accurate predictions online, making them an
ideal candidate to process the immediate planning context of an
interaction session. Their key strengths are summarized below:

• Provide robust predictions with few training iterations.
• Use a modular architecture, with segregated Control and

Activity observation components, which allows the concept of
GTMs to generalize across tasks.

• Can extract additional metrics, such as efficiency, which are
useful for planning.

4.2.4. GTM Interface
GTMs provide a module that profiles and predicts the
future performance indicators of a human. Below we outline
the module’s input, output conventions and role in the
composite system.

Input. Input in the GTM is in the form of visual images,
obtained by a camera. For the current experiment, the camera
is mounted approximately 2 m above the table, in order to
observe the table wiping task. At initialization, the human marks
the rectangle containing its hand, which is used by the GTM
for tracking.

Output. Using the raw camera images and tracker input, the
GTM identifies the primitives of the human, and estimates two
measures: (1) the expected duration of the experiment, and (2)
the human’s efficiency. This information is subsequently sent to
the planner.

Role. The role of the GTM is to extract and estimate a
temporal profile of the human participating in an interaction
session. This profile is used to predict future task states, and
temporal parameters regarding the human’s performance.

4.3. Future—Plan Robot Behaviors in
Coordination With Human Activities
The fluent coordination of multi-agent activities plays a crucial
role in the joint accomplishment of goals. We have recently
introduced (Maniadakis et al., 2016a,b), a time-informed planner
that attributes tasks to agents in a step-by-step manner,
accomplishing the effective coordination of multiple agents (see
also, Isaacson et al., 2019). The planner assumes the daisy-like
representation of the composite behavior and is thus termed
Daisy Planner (DP). In particular, each task consisting of an
action sequence is represented as a petal of the composite
daisy graph. Constraints link actions among tasks that can be
implemented in parallel, to indicate that the completion of a
certain action is a prerequisite for the action of the other task
to commence.

The planer is designed as a lightweight immediate optimal
planning module, particularly appropriate for dynamic multi-
agent environments where unexpected events (e.g., a phone
ring, or the drop of human performance) may increase the
implementation time of tasks and trim off team productivity. The

DP avoids searching extended solutions of complex agent-task
assignments that span over the future timeline, in order to flexibly
and with low-cost adapt to unpredicted circumstances. The local
view of the planner makes processing particularly light-weight,
because it does not synthesize and does not compare complex
future scenarios as it is the case with previous works (Wilcox
et al., 2013; Gombolay et al., 2017), which additionally suffer from
the need of resource-expensive rescheduling when unexpected
events occur.

The planner functions under the assumption of task
assignment to agents based on their availability. In order to
find the best petal fit for a given non-busy agent, DP considers
the capacities of all team members and builds upon the skills
that the current agent brings into the team, trying to make
it maximally useful for the team and the given interactive
scenario. This is different to existing approaches based on
Timed Petri Nets (Chao and Thomaz, 2016) in which agents
are pre-assigned the sets of actions they are implementing.
The planner effectively combines time with other quantitative
measures that outline key features of task implementation, such
as efficiency, robustness, even fatigue, and like/dislike for the
case of humans, in order to construct composite time-inclusive
criteria for ranking alternative multi-agent plans. This is in
contrast to other works that include time as a constraint that
confines the search of viable solutions (Gombolay et al., 2017).

4.3.1. DP Design
The setup of the DP assumes the identification of tasks that
have to be fully implemented by a single agent. For example,
to implement the task “pour oil in salad,” the very same agent
must grasp the oil bottle, move it above the salad, pour the oil
and put the bottle back on the table. Therefore, “pour oil in
salad” is represented as a petal of the composite daisy-represented
scenario. Each task/petal consists of a sequence of actions that
start and end at the rest state.

To initialize DP, the duration and quality of implementation
for all possible action-agent pairs is provided to the planner.
Duration information is obtained by summarizing previous trials
and has the form of (min, max) experienced time. The quality
of implementation is set by the experimenter, e.g., the humanoid
is declared with poor quality to grasp and manipulate complex
objects, but high quality to navigate. Using this information, the
DP successfully matches tasks with the skills of individual agents,
being able to construct particularly productive teams, which may
flexibly consist of heterogeneous agents.

The planner employs the fuzzy number representation
of time to facilitate the processing of temporal information
(Maniadakis and Surmann, 1999). Following the well-known
representation of fuzzy numbers in trapezoidal form with
the quadruplet (p,m, n, q), a fuzzy duration in the form
“approximately a to b moments” is represented with the
fuzzy trapezoidal number (0.9a, a, b, 1.1b). In the current
work, parameters a and b correspond to the minimum and
maximum experienced implementation times, as discussed
above. The use of fuzzy calculus (Dubois and Prade, 1988)
provides the means to effectively associate the temporal
properties of individual actions, predict delays of alternative
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FIGURE 5 | Exemplar cases of plan constraints, depicted in red. (A) Illustrates the case of two constraints used to prioritize the actions of petals implemented in

parallel. (B) Illustrates the case of two constraints on E2. As soon as F3 is reached, the planner releases the constraint G3 → E2, to comply with temporal constraints

(i.e., avoid the delay of breakfast delivery).

planning scenarios and enable corrective measures to be
taken in order to enforce the coordination of the individual
activities (Maniadakis and Trahanias, 2016a). Moreover, it
facilitates the comparison of agents’ utility on different tasks
(by combining implementation time and effectiveness), therefore
enabling the use of optimization criteria for the locally optimal
attribution of tasks to agents. In particular, each non-busy agent is
assigned a new task in a way that maximizes agent’s utility for the
team, given the current, short-term view of team performance.
Full implementation and assessment details of DP have been
presented in Maniadakis et al. (2016a,b), and are not repeated
here and re not listed here for the clarity of presentation.

In short, the immediate optimal planning approach followed
by the DP, aims at naturalistic, smooth and low anxiety
collaboration among the participants rather than generating
globally-optimized minimum-time behaviors. This is particularly
the case in most human daily collaborative tasks where
participants share jobs based on expertise, tiredness, etc.

4.3.2. DP Enhancement
The current article elaborates on the management of constraints
which prioritize action execution between tasks that may
implement in parallel but constrain each other. In particular,
the present work considers the time each constraint is expected
to release in order to make more informative decisions when
attributing agents to tasks.

For example, consider the case shown Figure 5A, where two
constraints (shown in red) determine the ordering of action
execution between agents working on different tasks. The first
constraint (top red arrow) specifies that the humanoid robot
must have completed its way to the robotic arm, before the latter
starts placing the fruits in the humanoid’s bowl. The second
constraint (bottom red arrow) specifies that the fruit should be

in the bowl before the humanoid departs to deliver breakfast to
the human.

To effectively manage time resources, the planner needs
to know when the humanoid is expected to arrive close
to the robotic arm. The planner knows that navigation was
initiated, for example, 34 s ago and the whole navigation
takes approximately 50–60 s, represented by the fuzzy number
quadruplet (45, 50, 60, 66). Therefore, the remaining time for
humanoid’s navigation is thr,n = (45, 50, 60, 66) − 34 =

(11, 16, 26, 32). At the same time, the time needed by the
robotic arm for grasping the fruits is known from previous
trials to be tar,g = (10.8, 12, 20, 22) and for picking the fruits
tar,p = (2.7, 3, 4, 4.4). Thus, the total time needed by the
arm to prepare fruit placement is tar,g+p = (13.5, 15, 24, 26.4).
The difference1 between thr,n and tar,g+p according to the LR-
calculus, results to the fuzzy number (−15.4,−8, 11, 18.5) which
reflects the predicted desynchronization of the two agents. The
defuzzification of this interval (implemented by the classic graded
mean integration representation; Khadar et al., 2013) results into
1.516 s, indicating that robotic arm is not yet delayed, but should
soon proactively initiate fruit grasping to avoid introducing
idle time in humanoid’s schedule. It is noted that the forward
looking, proactive release of constraints based on the real-time
monitoring of scenario unfolding is a new feature that has not
been addressed by previous works.

Moreover, in the current work DP is enhanced to develop
personalized sHRI that exploits real-time human temporal
profiling, thus introducing an additional new feature to the state
of the art. To slightly complicate the scenario considered in the
present study, we assume that a high performing human might

1The subtraction of fuzzy numbers is as follows: (a1, a2, a3, a4)− (b1, b2, b3 , b4) =

(a1 − b4, a2 − b3, a3 − b2, a4 − b1).
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probably be in a high arousal state, he/she highly dislike delays,
and would only be satisfied with the delivery of the breakfast
immediately after table cleaning. In contrast, a low performing
person may be in a low arousal state and most likely would
thoughtlessly accept small delays in the order of a few seconds,
with the benefit of having more fruits delivered. The above builds
on the well studied link of emotional state and time perception,
which shortly claims that time seems to fly when we are in a high
arousal state, and to drag on when we are bored (Droit-Volet and
Meck, 2007).

Following the scenario, human efficiency eh ∈ [0, 1], defined
in Equation (4), is an important parameter for determining the
number of breakfast items to be served to the human. To explain
this further, we consider a second example focused on multi-
agent collaboration (see Figure 5B). We assume that the planner
is informed of the estimated remaining time for the human to
complete the cleaning task th,cl and his current level of efficiency
eh. The robotic arm has just added an item in humanoid’s bowl
and the planner is ready to decide whether there is enough time
for the arm to add one more item in the bowl, or, the humanoid
should start navigation toward the human, to avoid delay. The
planner knows by experience that the total time required by
the arm to grasp, pick and place an item in humanoid’s bowl is
tar,g+p+p and additionally that the time needed by the humanoid
to deliver breakfast to the human is thr,d. The sign of the
defuzzified difference between the total robot synergy time and
the human time scaled by his/her efficiency is used to decide task
allocation as described below:

robotT = tar,g+p+p + thr,d;

humanT = 1
0.5+eh

th,cl;

if defuz(robotT − humanT) < 0 then
Arm adds a new item in humanoid’s bowl;

else

Humanoid delivers breakfast to human;
end

Clearly th,cl and eh can drastically affect planner decisions.
This is not only because decision making assimilates the latest
estimate of human completion time th,cl, but additionally because
efficiency values eh are used to scale the human available time.
In particular, eh values close to one reduce further the human
available time humanT, to stress the assumption that a highly
efficient human in high arousal does not accept delay in breakfast
delivery. On the other hand, eh values close to zero have
an opposite effect increasing the available time humanT, thus
indicating that relaxed humans would tolerate a short delay
under the benefit of having a richer breakfast.

Noticeably, besides the fact that previous works have also
considered user efficiency in multi-agent interaction (Gombolay
et al., 2017), the real-time assimilation of the relevant information
to adapt team performance is an aspect that has not been
addressed so far by existing works, but is greatly and inherently

facilitated by the immediate planning approaches adopted
by the DP.

It is noted that even if the planner decides the immediate
depart of the humanoid, it may often be the case that active
constraints inhibit the humanoid’s navigation. This might be
because not all three items are yet placed in the humanoid’s bowl.
This is particularly the case depicted in Figure 5B. However,
given that the humanoid should preferably depart to avoid delay,
the planner has the option to release all the constraints inhibiting
the humanoid’s departure, making the robot free and ready to go.

4.3.3. Key Strengths
In comparison to previous relevant works, the Daisy Planner:

• Implements plans that are flexibly and directly adapted to the
dynamic unfolding of the collaborative scenario, which due to
the immediate planning approach adopted, avoids re-planning
of multi-agent activities.

• Operates as a lightweight process that effectively scales to
handle large multi-agent teams, because the complexity of
short-term task attribution increases linearly with the number
of agents.

• Exploits the predicted temporal features derived from the
real-time monitoring of agents’ activities in order to enhance
coordination between team members and more accurately
meet the expectations of users.

4.3.4. DP Interface
The planner is the eye to the future for the composite system.
It is directly interfaced with the Episodic Memory and GTM
to develop and maintain a dynamic third-person perspective
on user expectations. The interface and the capacities that the
planner brings to the system, are summarized below.

Input. The planner sends queries to the memory to get
back inferred estimates of the human preferences which are
interpreted as the goal that the composite team has to achieve.
To adequately orchestrate interaction, the planner is informed
about the progress of action execution by the individual
agents and the efficiency of human on the action he/she is
currently implementing.

Output. The planner tracks the implementation of tasks
by the individual agents and requests the timely execution of
the relevant actions to enhance coordination. Additionally, it
informs thememory about the evolution and the implementation
details of the composite scenario (which agent implemented each
task, when the implementation started and how long it took),
which are stored for future reference.

Role. The DP actively guides the participating robots to
map their activities on human expectations and times. It is
implemented as a lightweight procedure that (i) composes
effective multi-agent teams consisting of heterogeneous
members, (ii) exploits information on the human behavioral
profile to develop assumptions about his/her temporal
expectations and accordingly adapt the performance of
robotic agents, (ii) enforces the timely interaction among agents
considering the inter-dependencies between the individual
activities, (iii) provides to the system a third person perspective
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on how humans perceive the notion of time, and (iv) flexibly
adapts robot activities to the performance of the other
team members (e.g., robots may speed up to catch up a fast
performing human).

5. EXPERIMENTAL RESULTS

The proposed approach has been implemented and validated
in a realistic scenario that regards the interaction of three
agents, i.e., one human and two robots, as summarized in
section 3. In the current work two robots are used, namely
the Kinova JACO six-joint robotic arm manipulator and the
Softbank Robotics NAO humanoid, which contribute to the
robot team complementary skills for serving the human. The
details of technical implementations and the experimental
setup are described below, followed by the real-world and the
quantitative assessment of specific modules and the composite
system as a whole.

5.1. Enabling Robotic Skills
To implement the scenario discussed throughout the paper in the
real world, a variety of robotic modules have been implemented
to facilitate task accomplishment by the individual agents and
guarantee the success of the synergistic multi-agent performance.

5.1.1. NAO Mapping and Localization
Initially, a 2D-map of the environment is created utilizing a
planar-LIDAR mounted on the NAO robot’s head and the leg
odometry with the ROS mapping package2. This map is a
typical occupancy grid highlighting where obstacles are located.
Subsequently, the robot can localize itself in the map with a
particle filter fusing in real-time the laser scan readings and
the leg odometry. This is done with the Adaptive Monte Carlo
Localization ROS package3.

5.1.2. NAO Path and Step Planning
Having defined a goal where the robot should navigate to, a
plan is generated with the move_base ROS package4. First, a
global planner based on the Dijkstra algorithm is employed to
search for an optimal, obstacle free trajectory. This trajectory
is fed to a local planner, in our case the Timed-Elastic-
Band (TEB) planner (Rösmann et al., 2013) to compute the
motion-parameters which are necessary for the robot to follow
the prescribed trajectory. This local planner directly considers
obstacles that can unexpectedly appear (i.e., someone passing
in front of the robot) and the robot’s kinematic constraints.
The obtained desired velocities are then transformed to desired
footstep locations with our custom ROS humanoid robot
step planner.

5.1.3. NAO Walk Engine
Subsequently, the desired step locations are fed to the
walking engine that computes in real-time the walking
pattern (Piperakis et al., 2014) and tracks that pattern

2ROS OpenSlam Gmapping http://wiki.ros.org/gmapping
3ROS Adaptive Monte Carlo localization, https://github.com/ros-planning/

navigation
4ROS move_base http://wiki.ros.org/move_base

using onboard proprioceptive sensing such as the IMU,
joint encoder, and pressure measurements (Piperakis and
Trahanias, 2016; Piperakis et al., 2018) and/or external odometry
measurements (Piperakis et al., 2019a,b) along with the current
contact status (Piperakis et al., 2019c), to achieve fast and
dynamically stable locomotion. The latter is vital to the success
of the task since the humanoid carries a significant weight
(mounted LIDAR and bowl with items) and still manages stable
omnidirectional walk. The same module is also responsible for
maintaining NAO’s balance during fruit filling.

5.1.4. Jaco Motion Planning
For the Jaco arm, safe and accurate pick and place actions
for the end-effector are learned through an offline imitation
process as proposed in Koskinopoulou and Trahanias (2016)
and Koskinopoulou et al. (2016). Those actions are executed via
inverse kinematics in order to pick all requested breakfast items
and place them in the bowl carried by the NAO robot.

5.1.5. Jaco Object Detection
The actions are triggered by visual detection of the corresponding
items with an RGBD camera based on their color information
with the cmvision_3d ROS package5. First, a detected utensil
is picked by JACO and afterwards is placed when the bowl
is detected.

5.2. Experimental Setup
To examine the performance of the system in the real-world,
twenty volunteer FORTH employees have been recruited to
interact with the robots, following the scenario summarized in
section 3. In particular, the cohort for the sHRI study consisted
of 14 men and 6 women with an average age of 34.5 ± 4.6 years
(range, 27–45 years).

Significant variations have been observed in the times spend
by the users to implement the table cleaning task. In this context,
the time spent by a user is directly correlated to his/her efficiency
for the task (see Equation 4) estimated for each participant.
Table 1 summarizes task completion times per participating
agent for each run with a different user. Clearly, in all cases the
NAO-JACO pair has accomplished to successfully and timely
deliver the fruits menu to the human. In most cases the robots
complete their tasks prior to the human, as evidenced by the
comparison of the last and third-to-last columns.

To classify the experiment participants based on their
performance, we use a k-means clustering approach to identify
participants with similar behavioral characteristics. In particular,
for each participant, the table cleaning time and their average
efficiency are provided as input to the k-means algorithm.
Multiple clustering arrangements have been explored, assuming
two, three, four, and five clusters. The three-clusters arrangement
is observed to group human behavioral features with sufficiently
low classification cost (see Figure 6A). The efficiency distribution
of each group is additionally depicted in Figure 6B, along with
the relevant means.

The three clusters are assigned the labels Inattentive, Normal,
and Dedicated as an implicit but representative description of the

5ROS cmvision_3d https://github.com/OSUrobotics/cmvision_3d
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TABLE 1 | Real-User experiment data.

NAO to Place Place Place NAO to Table

JACO 1st fruit 2nd fruit 3rd fruit human cleaning

User Start End Start End Start End Start End Start End Start End

U1 1 55 1 66 67 108 109 150 152 190 1 185

U2 1 52 1 64 65 100 101 139 141 183 1 182

U3 1 52 1 65 66 105 106 141 143 182 1 191

U4 1 51 1 63 64 101 102 139 141 181 1 188

U5 1 57 1 74 75 111 112 152 154 192 1 194

U6 1 54 1 71 72 107 108 153 155 190 1 178

U7 1 55 1 66 67 105 – – 107 145 1 155

U8 1 52 1 64 65 109 – – 110 152 1 146

U9 1 48 1 59 60 104 – – 105 142 1 168

U10 1 49 1 64 65 102 – – 104 144 1 171

U11 1 51 1 67 68 107 – – 108 149 1 147

U12 1 55 1 68 69 108 – – 110 150 1 163

U13 1 47 1 61 62 101 – – 103 142 1 161

U15 2 53 2 68 69 112 – – 113 153 1 157

U15 1 53 1 65 66 110 – – 111 155 1 152

U16 1 55 1 65 – – – – 67 115 1 121

U17 2 54 2 62 – – – – 65 117 1 134

U18 1 51 1 61 – – – – 63 112 1 129

U19 1 53 1 64 – – – – 67 118 1 123

U20 1 48 1 60 – – – – 63 110 1 127

FIGURE 6 | (A) Human’s behavior classification. (B) Normal distributions of each group’s efficiency.

different human behavioral profiles observed. The grouping of
human participants into Inattentive, Normal, and Dedicated is
reflected in Table 1 presentation and has been further adopted
in the present work as a means to provide a more informative
analysis on the evaluation of the system in human-robot
interaction as presented below in section 5.3.

In addition to real-user experimentation and in order to
explore the performance of the composite system in a broad
range of situations and user profiles, a simulation environment
has been implemented, which facilitates rigorous quantitative
assessment of the proposed time-aware sHRI approach. To

adequately assess the flexibility of the proposed solution, we
simulate human agents assuming the same three types of user
profiles, namely, Inattentive, Normal, andDedicated, as they have
been observed in the real-world experiments. The details of the
underlying experimental procedure are given in section 5.4.

5.3. Real User Evaluation
5.3.1. Memory-Based Inference
The scenario assumes the inference of the breakfast preferences
of the human, based on past experiences. To this end, the system
capitalizes on the probabilistic inference capacity of the episodic
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FIGURE 7 | (A) Feature importance according to Boruta feature selection algorithm. Features with red color are characterized as non-important and are rejected,

whereas features with green color are characterized as important and are accepted. Inference accuracy w.r.t. prediction days and (B) number of attributes, (C)

training period.

memory module to predict the user’s breakfast choice, after
considering the menu combinations he/she had in the past. The
foreseen breakfast menu is fed to the planner which guides the
two robots in fetching breakfast items and delivering them to the
collaborating human, at the right time.

A data collection procedure has been adopted to provide
the ground truth for assessing the performance of the episodic
memory inferencing. In particular, we asked the 20 participants
to provide their breakfast preferences, i.e., a selection of three
fruits among six available fruit options (20 possible triplets), for
35 consecutive days. Additional information was also provided,
i.e., current date, weather conditions, scenario location, user’s
clothing, state of arousal, fatigue, health, and mood, summing up
to 8 attributes. We divided the dataset into two parts: the first
25 days are stored in memory as past experiences in the form of
multi-graph episodes, while the last 10 serve as the test set for
system predictions.

The data considered as “past experiences” are used for training
the HMM inference engine. Specifically, in order to infer the user
preferences for the ith day (i > 25) the memory is queried to
obtain insight on the relevant breakfast menus the user had in
the previous 1, . . . , i − 1 days. This information is used to train
an HMM, which is employed to predict user’s breakfast choices
on the ith day. The actual user choice at the given day is used as
ground truth for assessing the success of breakfast predictions.

The inferencing mechanism has been evaluated against
multiple configuration setups. In particular, we assessed
the effectiveness of the HMM-based inferencing by making
predictions of the users’ breakfast menu preferences for a
period of 1–10 days ahead (i.e., days 26–35). For performance
enhancement we used only those attributes which are statistically
significant to the system. In particular, Figure 7A illustrates the
importance of the observed features, as computed by the Boruta
feature selection algorithm. Important features, denoted with
green color, are accepted to be used for state inferencing, whereas
non-important features, illustrated with red color, are rejected.

In order to assess the performance of the inference
mechanism, we conducted two sets of experiments with (i)
varying input configurations of the four important attributes,
namely date, weather conditions and user’s mood and health,

and with (ii) varying HMM training configurations using the
most recent 10, 15, 20, or 25 days of training “history”
(Figures 7B,C, respectively). In the first case, the HMM has
been trained using 25 days of “history” and the corresponding
combination of attributes, while in the second case the whole set
of important attributes has been used for training, along with the
corresponding “history.”

Regarding the first set of experiments, Figure 7B

demonstrates how the different attributes, i.e., the HMM
observations, affect system performance. As observed, not all
attributes have the same effect on the accuracy of the inference
mechanism, as also implied by the relevant importance.
For example “Weather Conditions” and “User’s Health” play a
minimal role, in contrast to the “User’s Mood” which significantly
improved inference performance. On the other hand, Figure 7C
highlights the impact of the training period, i.e., number of past
days (“history”) used for the HMM training, on the inference
accuracy. Clearly, performance is improved as the number of past
days included in the training increases, i.e., more information is
provided to the HMM.

In short, the proposed inference mechanism, has made
highly accurate breakfast menu predictions, compatible with
the personalized preferences of the individual users. Naturally,
prediction accuracy decays as the looking ahead period, i.e., the
period for which the mechanism is required to make predictions,
extends to the future. Nevertheless, inference accuracy remained
above 90% for the first 4 days, while managing to provide with
adequately accurate prediction (above 80%) for a period of up
to 7 days.

5.3.2. Duration Prediction
GTMs are used to predict the duration for the table cleaning task
implemented by a human. For this reason, we deploy a GTM
that is able to estimate accurately the time required for a human
to finish the task. The experimental setup consists of a room,
containing a table. A logitech HD camera is mounted at 2 m
above the floor, in order to have visibility of the whole surface.

To detect the progress for the wiping the table activity, we
determine a table region that designates the area to be wiped.
In addition, the task observation module employs the output of
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the tracking module (i.e., location of the sponge), in order to
identify what percent of the extracted plane has been wiped. To
accomplish this, we use a hitmap as a matrix with dimensions
equal to the table’s width and length. As the sponge wipes the
table, the matrix cells, whose rows and columns correspond to
the {x, y} coordinates of the sponge’s position, are being updated
from 0 to b (a scalar value), in order to indicate that the surface
in these coordinates has been wiped. The value b ranges from [0
to 10] indicating the strength of the sponge while cleaning. In
our experiments, b is set to 6 to match the used sponge strength.
The sum of thematrix cells, divided by the product of the matrix’s
rows, columns and value b, provides the percentage of the surface
being wiped. The value b is used to reflect the fact that when
wiping a surface, one usually wipes the same area more than
once. Therefore, while wiping -and updating the table matrix-
one should only consider a region of the table clean if it has been
wiped over b times.

To analyze the human activity we observe the wiping motions
by tracking the center of the sponge, using the color based
tracking framework proposed in Henriques et al. (2012). We
then calculate the motion vector changes in each wiping segment,
and use them to identify new primitive movements. These
primitives are labeled according to the effect they have on the task
progress, and used as predictors for the activity. Hence, having
obtained the task progress, GTMs employ information from the
observed primitives to detect the intervals that correspond to

TABLE 2 | Average duration estimates, ground truth duration, and error measured

during the wipe the table experiment, for the Inattentive, Normal and Dedicated

user profiles.

User profile Av. Predicted time Av. Gr. truth Error [sec]

Inattentive 177.3 186.2 8.9

Normal 149.2 143.8 5.4

Dedicated 136.9 128.6 8.3

each primitive. Frequently occurring intervals within the activity,
are used as predictors for the task progress. In Table 2, we
illustrate the averaged results obtained from the three different
user groups.

As can be verified by the obtained results, duration predictions
are robust since they fall below 10% of the overall activity
duration for all three user groups. Therefore, they can support
the implemented scenarios.

5.3.3. Evaluation of DP-Driven sHRI
The current section focuses on the evaluation of the Daisy
Planner module, used to coordinate the activities of the agents
involved in the timely breakfast delivery scenario. The behavior
to be implemented by the three agents is separated into five
tasks represented by five distinct petals on a Daisy Plan, as
shown in Figure 8. The tasks are further split into actions
as tabulated in Table 3. For all three agents, the same table
shows the (min, max) times of action execution -as previously
mentioned in section 4.3—and the corresponding efficacy level
represented by the numbers 1 (lowest), 3, 5, 7, 9 (highest).
Efficacy values are defined by the experimenter, prior to the actual
experimentation. The manual setup of the planner rises some
scalability issues when addressing incrementally more complex
collaborative problems, since the skills of the individual agents
and how they fit to the domain tasks have to be explicitly defined.
Still, this is largely unavoidable and to the best of our knowledge,
there is no multi-agent collaboration method that assumes minor
input from the experimenter. On the other side, the current
approach relies on common knowledge about the application
and the separation of the composite behavior into tasks. Thus,
the DP setup can be rather straightforwardly implemented since
it does not assume sophisticated or difficult to obtain prior
knowledge. For example, it has been very easy to employ DP
for the coordination of two similar (Maniadakis et al., 2016b),
or heterogeneous robots (Maniadakis et al., 2016a) in different
application domains.

As discussed above, 20 different users have been involved in
the real-world experimentation with the JACO and NAO robots,

FIGURE 8 | The daisy representation of the tasks involved in the timely breakfast delivery scenario. Constraints among actions are depicted in red.
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TABLE 3 | Agents’ time and error level for each action.

Action Action Human NAO JACO

Code Name Time Efficacy Time Efficacy Time Efficacy

A1 Message: “Clean the table” [1,2] 9 [1,2] 9 [1,2] 9

A2 Wipe the table [122,197] 9 NaN 1 NaN 1

A3 Message: “Thank you” [1,2] 9 [1,2] 9 [1,2] 9

A4 -Rest [1,2] 9 [1,2] 9 [2,3] 9

B1 Move to fruit shelf [3,5] 9 [42,57] 7 NaN 1

B2 Wait bowl filling [14,93] 9 [14,93] 7 [14,93] 9

B3 Move to the table [3,6] 9 [33,48] 7 NaN 1

B4 Deliver breakfast [1,3] 9 [13,25] 7 [11,15] 9

B5 -Rest [1,2] 9 [1,2] 9 [2,3] 9

C1 Grasp fruit1 [1,3] 9 [38,56] 3 [11,15] 7

C2 Pick fruit1 [1,2] 9 [11,15] 5 [6,8] 9

C3 Place fruit1 in bowl [2,4] 9 [42,73] 3 [12,19] 9

C4 -Rest [1,2] 9 [1,2] 9 [2,3] 9

D1 Grasp fruit2 [1,3] 9 [38,56] 3 [11,15] 7

D2 Pick fruit2 [1,2] 9 [11,15] 5 [6,8] 9

D3 Place fruit2 in bowl [2,4] 9 [42,73] 3 [12,19] 9

D4 -Rest [1,2] 9 [1,2] 9 [2,3] 9

E1 Grasp fruit3 [1,3] 9 [38,56] 3 [11,15] 7

E2 Pick fruit3 [1,2] 9 [11,15] 5 [6,8] 9

E3 Place fruit3 in bowl [2,4] 9 [42,73] 3 [12,19] 9

E4 -Rest [1,2] 9 [1,2] 9 [2,3] 9

in order to assess the capacity of the composite time-informed
system to support sHRI. For each user, DP is fed with the three
breakfast items he will most likely be interested in at the given
day, as they are predicted by the episodic memory inferencing.
Accordingly, in the actual DP plan, fruit-1, fruit-2, and fruit-3
are substituted by the actual fruits to be served, i.e., kiwi, orange,
banana, and so on. Moreover, the GTM-based estimate of human
completion time and human efficiency on the table cleaning task
is used as real-time input into the planner in order to actively
adapt synchronization of the three agents.

Graphical representations of task and action execution in
different experimental sessions—one for each human profile—
are depicted in Figure 9. In particular, Figure 9A summarizes
interaction with user 4 of Table 1, who exhibits inattentive
performance. As shown in the figure, the JACO robotic arm
grasps and holds the first fruit (actions C1, C2), waiting the
humanoid to arrive in a reachable area. As soon as the humanoid
stops navigation (action B1), it waits for fruit filling, taking
care of balancing issues (action B2). The robotic arm places
the fruit it already holds in the bowl (action C3) and rests
(action C4) waiting further instructions by the planner. The slow
performance of the inattentive user provides enough time for
JACO to add two more fruits in the humanoid’s bowl (actions
D1–D4 and E1–E4). As soon as all fruits are placed in the transfer
bowl, NAO navigates toward the human (action B3), to deliver
breakfast fruits (action B4) and rest (action B5). Almost the same
time, the human completes cleaning (action A2), he gets fruits
(action A3), and he is ready to enjoy breakfast (action A4).

Human-robot interaction in the case of user 11 who exhibits
a normal performance profile is summarized in Figure 9B. The
procedure followed is similar to the one summarized above, but
now there is time for two fruits to be added in the bowl (actions
C1–C4, andD1–D4). The humanoid robot delivers the fruits with
a short delay of 2 s. The unfolding of multi-agent collaboration
for the given user can be visualized in high resolution at https://
youtu.be/1v4r0Xj8SF8.

Finally, Figure 9C summarizes the case of user 16 of Table 1,
with an Dedicated performance profile. The high efficiency of
this particular user is identified by the GTM, which informs
accordingly the DP. The latter foresees that there is enough time
for only one fruit to be added in the humanoid’s bowl by the
robotic arm (actions C1–C4). Immediately after that and in order
to avoid delivery delay, the humanoid is instructed to navigate to
human (action B3). The fruits are delivered on time and the user
is ready to enjoy breakfast.

5.3.4. User Satisfaction
To obtain insight on the users’ view on the experiment we used
a post-trial questionnaire consisting of five Likert statements
assessed in the scale “strongly disagree,” “weakly disagree,”
“neutral,” “weakly agree,” and “strongly agree.” More specifically,
the following five Likert statements are examined to reveal
user satisfaction:

Q1—User satisfaction: “The robots have delivered the right
breakfast.”
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FIGURE 9 | Indicative time distribution of individual tasks for breakfast serving. (A) Inattentive group, (B) Normal group, and (C) Dedicated group. Rest actions, of

approximately 1 s, are marked with dots.

TABLE 4 | Overview of the responses provided by participants in Q1–Q5.

Response Q1 Q2 Q3 Q4 Q5

Strongly disagree 0 0 0 0 0

Weakly disagree 0 0 2 0 0

Neutral 3 4 5 3 2

Weakly agree 9 6 9 11 4

Strongly agree 8 10 4 6 14

Q2—User satisfaction: “The robots have delivered breakfast
at the right time.”
Q3—Human oriented performance: “The implementation of
robot tasks was adapted to my performance.”
Q4—Performance expectancy: “Robots performed better
than expected.”
Q5—Attitude toward using technology: “Time informed
interaction is crucial for domestic robot applications.”

Immediately after the experiment participants are informed
that the current study is focused on time-aware multi-
agent interaction. Then, they are asked to provide their
individual opinions on the success of the system by filling
out the aforementioned questionnaire. The aggregated results
of participant responses on each question are summarized in
Table 4. Clearly the participants expressed a positive opinion
on the success of the experiment and the performance of the
composite system.

A one-way MANOVA revealed a significant multivariate
main effect for the type of participants, Wilks’ λ = 0.354, F

(4,15) = 6.82, p < 0.002. This has been further confirmed by

examining MANOVA nova separately for each participant type.
In particular, statistically significant effects have been revealed
for Inattentive Wilks’λ = 0.253, F (4,15) = 11.063, p < 0.0002, for
Normal Wilks’ λ = 0.233, F (4, 15) = 12.315, p < 0.0001 and for
Dedicated Wilks’ λ = 0.356, F (4,15) = 6.756, p < 0.002. The above
indicate that the answers provided by participants to Q1–Q5 are
affected by their own performance on the task.

The comparative study of the answers’ means revealed
significant statistical difference in the satisfaction of the
Dedicated and Inattentive groups, while none of them was
significantly different in comparison to the Normal group. In
particular, the comparison showed that the system makes the
Dedicated users more satisfied than the Inattentive ones, which
is due to the current parameterization of the system targeting
the minimization of robot delivery delay. The latter, i.e., the
robots’ task execution speed, is the factor which mostly affects
the overall user experience, and is yet another strong indicator of
the significance of “time” in sHRI sessions.

5.4. Quantitative Assessment
To proceed in the detailed quantitative assessment of the system,
we have implemented a simulation environment which assumes
simulated humans to interact with the two robots. We explore
system performance in a broad range of situations and user
profiles, by assuming three sets of 200 simulated users, each in
accordance to the Inattentive (L), Normal (N), and Dedicated
(A) profiles. In particular, to obtain GTM functionality within the
simulated environment we use the recorded table cleaning data
from real-users as they are classified in the three user profiles. To
develop more “simulated” users, each data set is scaled by α%,
with α randomly specified in the range [−10, 10]. Thus, for each
simulation run, a real human data set is randomly selected from
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the corresponding group L, N, or A and scaled to represent the
simulated human behavior.

In close association to the unfolding of the scenario in the
real world, the experiment assumes the GTM to provide DP with
estimates of the hypothetical human table-cleaning duration.
Subsequently, the planner attributes tasks to the agents involved
in the scenario. The agents implement their tasks as indicated by
the user profile and the parameters of the given run. In order
to satisfy temporal constraints, the generated plans are adapted
online incorporating the latest GTM estimates of the human
cleaning behavior. The scenario completes with the delivery of
the breakfast menu to the simulated human.

The completion times for the table cleaning and breakfast
delivery tasks (by the human and the NAO robot, respectively)
for the 200 simulated runs are depicted in Figure 10A. The
three plots correspond to the L, N, A user profiles assumed in
the simulation runs. It is noted that NAO’s duration is strongly
biased by the number of fruit items to be served to the human.
More specifically, each time JACO grasps a fruit to be added
in NAO’s bowl it needs approximately 35 s. This explains the
quantization of NAO’s completion time in approximately 188 s
when delivering three fruits, 146 s when delivering two fruits, and
113 s when delivering only one fruit. According to the results,
in the case of the inattentive participant three items are usually
served (92% three items, 8% two items). In the case of the normal
human behavior two fruits are typically delivered (83% two items,
17% one item). Finally, in the case of dedicated participants only
one item is commonly served (98% one item, 2% two items). This
is because of the strict time constraints and the need to complete
fruit delivery prior to the completion of the table cleaning task by
the human.

Overall, according to Figure 10A, in the case of normal
and inattentive users, both humans and robots have similar
completion times. In 65.0% of the runs in the case of inattentive
user the robot is slightly delayed in comparison to the human.
As later explained (see Figure 10B) the relevant delays are very
short. The same is also true in 72.5% of the runs in the case of
normal human behavior. This is because the robots give priority
on fetching more fruits undertaking the risk of a very short
delay in the delivery of the breakfast. Turning to the case of the
dedicated human profile, the robots generally complete their task
much earlier than the human, as assumed by the rather strict
request to deliver breakfast prior to table cleaning. In only 4 out
of the 200 runs the robot is delayed in comparison to the human.
A close look on the unfolding of the 4 mentioned runs shows that
delays are introduced due to the occasionally very fast navigation
of NAO close to JACO which makes the planner believe there
is enough time for placing two breakfast items in NAO’s bowl,
which actually proves that is not the case.

Figure 10 summarizes the behaviors described above.
As indicated by the relevant Gaussian distributions the
implement environment.

5.4.1. Performance Metrics
To obtain insight on system’s performance in association to the
objective of fluent sHRI, the obtained results are quantitatively

assessed using three metrics namely inter-module synchronicity,
HRI synchronicity, and human idle time.

A. Inter-module Synchronicity. A key measure for assessing
the effectiveness of the proposed framework regards its ability
to exploit the time available for robot action, as it is predicted
by the GTM. In the examined scenario this regards spending
the predicted available time for fetching and transferring the
maximum number of fruits to the human.

We introduce the inter-module synchronicity metric eim−sync

which aims to reveal the temporal coupling of system modules
by contrasting the expected time of tasks implementation to the
actual time spent. The metric is defined as follows:
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where x ∈ {L,N,A}, txH,p is the early prediction of human

completion time and t
x
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x
H ∈ R

200 are the actual completion
times of NAO robot and human agent, respectively, for the total
of 200 simulation runs.

The obtained results are summarized in Table 5 (Cols. 2-
3). The high accuracy and low uncertainty values observed
for all three human profiles are explained by the largely
accurate predictions by the GTM module and the inherent
flexibility of the collaboration plans developed by DP, which
are sufficiently adapted to the actual implementation and the
temporal characteristics of multi-agent synergistic performance.

B. HRI Synchronicity. The current metric focuses on the
synchronicity of the composite artificial system with the real
world. In particular, the metric describes how well human and
robotic activities are synchronized, that is what is the average time
that one side has to wait for the other. Synchronicity, ehri−sync, is
defined as follows:

e
x
hri−sync = t

x
N − t

x
H (6)

where symbols are as above. As witnessed by the HRI
synchronicity values shown in Table 5 (Cols.4-5), the robotic
agents are effectively synchronized with the ongoing procedures
of the external environment. According to the same table, the less
accurate synchronization is observed in the case of the dedicated
user profile, which clearly indicates that, for the given profile,
the system prefers to complete earlier the robotic task in order
to minimize the risk of a possible human waiting. For the other
two profiles, the robotic agents are quite accurately synchronized
to humans.

The relevant observations are also reflected to the particularly
low idle time of dedicated humans, which increases in the case of
the Normal and Inattentive profiles (second plot of the figure).

C. Human Idle Time. To enhance human experience in sHRI
sessions, the implemented system should ideally minimize the
human waiting time and thus improve the responsiveness of the
composite system to human requests. Similar to Hoffman (2013),
we use the Idle Time metric to assess system performance. In
particular, the human idle time ex

h−idle
is defined as follows:

e
x
h−idle = max

(

t
x
H , t

x
N

)

− t
x
H (7)

Frontiers in Robotics and AI | www.frontiersin.org 19 November 2020 | Volume 7 | Article 503452

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Maniadakis et al. Time-Aware Multi-Agent Symbiosis

FIGURE 10 | (A) Actual times for Human-agent (lines) and NAO robot (dotted-lines) over 200 runs for the three groups. (B) Gaussian distributions of actual times for

Human-agent (lines) and NAO robot (dotted-lines) over 200 runs for the three groups. Green, purple, and red lines indicate the Inattentive, Normal, and Dedicated

group, respectively.
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TABLE 5 | Performance metrics evaluation.

Inter-module synchronicity HRI synchronicity Human idle time

User profile µ(eim−sync)(%) σ
2(eim−sync)(%) µ(ehri−sync) σ

2(ehri−sync) µ(eh−idle) σ (eh−idle)

Inattentive 98.3 0.07 2.4 126.34 5.7 31.7711

Normal 96.8 0.12 −1.9 174.72 6.3 32.1652

Dedicated 94.1 0.04 −14.8 52.38 0.3 5.5752

where symbols are as above. As shown in Table 5 (Cols.6-7) in
the case of inattentive and normal user profiles, there is a short
human waiting which averages to 5.7 s in the former case and 6.3
s in the latter. However, in the context of human daily activities,
durations in the range of few second are typically considered very
small and do not annoy humans. In the case of the dedicated
user profile, the robotic tasks typically complete earlier than the
human. The only 4 out of 200 cases that robots get delayed result
into the average of 0.3 s human idle time, which is particularly
low and satisfactory for humans.

6. CONCLUSIONS

The long-term symbiotic interaction between humans and robots
has tremendous potential as the robots bond with people, and can
significantly affect humans’ daily activities. Despite the increasing
research endeavors devoted to human-robot synergies, we still
know little about building systems that function smoothly and
effectively within the context of prolonged companionships.

The integration of “sense of time” into a robotic system is
at the core of a fluent sHRI, since it traverses almost every
aspect of the relevant interactions. In this work, we examined
the role of time focusing on three major disciplines of human-
robot interaction: (i) past episode storage and experience-based
inferring, (ii) activity duration prediction and human efficiency
estimation, (iii) multi-agent coordination for synergetic action
planning. The integrated performance of the relevant modules
(i) implements time-inclusive criteria to match (assign) tasks
to agents, coordinating heterogeneous agents to perform as
an effective team, (ii) combines user information referring

to different temporal granularities by blending the long-term,
memory-inferred user preferences with the short-term, real-
time predicted user expectations, (iii) monitors the dynamic

scenario progress in real time to support the situated adaptation

of multi-agent interaction, thus being particularly useful in

sHRI scenarios.
Each module (past/episodic memory, present/Generative

Time Models, future/daisy planner) benefits from the use of

time-informed symbolic representation of past sHRI episodes
facilitates highly accurate predictions about future scenario

unfoldings. Our ongoing and future work focuses on the

advancement of the individual modules in the directions shortly
summarized below:

• Episodic Memory. The analysis of past data may provide
significant insight into the needs and preferences of the

individual users. In this direction we are currently considering
mechanisms to exploit real-time robot experiences that
are stored in memory, through off-line (e.g., night-time)
training and dynamic querying mechanisms that recall or
infer information about the users to provide accurate and
personalized predictions. At the same time, research endeavors
aim to improve the efficiency of the episodic memory module
itself, either by fully automating the lifecycle—i.e., update,
merge or forget with respect to the importance factor—of each
stored memory, or by integrating the capacity to represent
and exploit higher level concepts, such as the knowledge or
behavioral expertise of different users.

• Generative Time Model. Given that accurate estimates of the
duration of human actions greatly facilitates fluency in HRI,
the current work puts forward the association of the temporal
primitives of actions with the task progress. A GTM is
employed to analyze human performance and provide robust
estimates about the temporal aspects of the observed activity.
Future work will extend the framework to discrete primitives,
in order to provide a holistic methodology on temporal
predictions and will consider comparative productivity
measurements with emphasis on fatigue detection.

• Daisy Planner. The orchestration of team members
considering their individual skills and limitations has
been beneficial for sHRI applications. Our future work
focuses on the temporal interruption of task implementation
to enable the adaption of robot behavior to urgent un-
predicted circumstances. Early work in this direction
has showed that to sufficiently address this issue, the
DP must distinguish between tasks (petals) which, when
interrupted, can be resumed from where they left off,
and tasks which, when interrupted, must be carried
out completely from the beginning. Another promising
direction regards the implementation of a hierarchical daisy
representation of tasks, thus extending the span of human-
robot interaction from the range of minutes to the range
of hours, including also the ability to merge tasks similar
to Stock et al. (2015).

Beyond improvements on the three core modules, future work
regards the exploitation of existing computational models of
human time perception (Maniadakis and Trahanias, 2012,
2016b), the time-informed kinesthetic teaching of robots
(Koskinopoulou et al., 2018, 2019), and how sense of time
interacts with emotions, a rather unexplored direction that has
the potential to significantly improve sHRI (Maniadakis et al.,
2017).
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Moreover, it is of particular importance to explore the
usability of the system in HRI setups that involve more agents
(both robots and humans). Along this line, planned experiments
will mainly focus on teams with dynamic synthesis (i.e., humans
may freely enter or leave the team) and more complex, natural
interaction setups with non-fully scripted scenario evolution.
Overall, we envision robotic systems that greatly capitalize on
temporal cognition to seamlessly integrate into the heavily time-
structured human societies.
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