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Lost in the Woods? Place
Recognition for Navigation in Difficult
Forest Environments
James Garforth* and Barbara Webb

School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Forests present one of the most challenging environments for computer vision due to

traits, such as complex texture, rapidly changing lighting, and high dynamicity. Loop

closure by place recognition is a crucial part of successfully deploying robotic systems

to map forests for the purpose of automating conservation. Modern CNN-based place

recognition systems like NetVLAD have reported promising results, but the datasets used

to train and test them are primarily of urban scenes. In this paper, we investigate how well

NetVLAD generalizes to forest environments and find that it out performs state of the art

loop closure approaches. Finally, integrating NetVLAD with ORBSLAM2 and evaluating

on a novel forest data set, we find that, although suitable locations for loop closure

can be identified, the SLAM system is unable to resolve matched places with feature

correspondences. We discuss additional considerations to be addressed in future to

deal with this challenging problem.

Keywords: visual perception, place recognition, forests, scene statistics, navigation, SLAM, field robotics

1. INTRODUCTION

Mobile robotic systems have the potential to aid in forest management by improving the efficiency,
scale and accuracy of tree health data gathering. In order to do this, robots must be able to navigate
autonomously around large GPS-denied forest environments where modern visual Simultaneous
Localization and Mapping (SLAM) techniques often struggle (Garforth and Webb, 2019).

An important part of the SLAM pipeline is loop closure, wherein the system recognizes that it
has returned to a previously visited location (or “place”) and can update its beliefs about intervening
states, reducing the effect of drifting sensor readings. The place recognition algorithms used for
loop closure in many classic SLAM techniques work by converting images to local descriptors and
performing a search over previous descriptors for a likely match.

Deep learning approaches, particularly Convolutional Neural Networks (CNNs), such as
NetVLAD (Arandjelovic et al., 2016), have demonstrated substantial promise for matching of
images or places from databases. Less has been done to investigate their effectiveness at working for
robotic loop closure applications. These often require fine place granularity, real-time performance,
and the ability to deal with distinctive environments that are not classically represented in the large
place datasets, such as forests.

In this paper, we identify NetVLAD as a candidate for improving loop closure in forest
environments, and demonstrate its superior performance, compared against a baseline of
traditional approaches, in a series of experiments. Our main contributions are as follows:
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• Demonstrating the capacity of NetVLAD’s underlying
architecture for describing forest scenes.

• Comparison with state of the art loop closure techniques to
demonstrate state of the art performance on challenging forest
datasets, even in the presence of changing environmental
conditions.

• Evaluation of NetVLAD as loop closuremechanism for a robot
performing SLAM in a forest using a new data set.

2. RELATED WORK

2.1. Visual SLAM
Visual Simultaneous Localization and Mapping systems are
typically feature-based, extracting salient features from video
frames in order to track the motion of the camera over time.
Since Klein and Murray (2007) this tracking tends to be done
in its own thread to improve performance, separated from
the less time critical task of building a 3D map of the world
by feature triangulation. The influential ORBSLAM improves
tracking performance further with fast ORB features, as well as
multiple techniques for map optimization.

Other sensors than a single camera have been used for SLAM
applications, such as stereo pairs or depth cameras (RGBD, as
in Whelan et al., 2015). Both of these provide useful depth
information to a SLAM system, but at the cost of power, weight,
computational complexity and their own unique challenges. The
setup of a stereo camera’s baseline determines the range at
which it can reliably estimate depth, and it must still be able
to match features between its two images. An RGBD camera
relies on reflected infrared light for depth estimation, and so is
sensitive to ambient lighting or reflective properties of a scene.
These problems are less prevalent under controlled laboratory
conditions, but in the field many researchers still opt for a
monocular camera setup.

Combining camera with inertial data, as in OKVIS
(Leutenegger et al., 2015) and VINS-Mono (Qin et al., 2018),
helps to improve local motion estimation, but requires carefully
co-calibrated sensor data. This data is absent from most
existing datasets, limiting a thorough analysis of visual-inertial
SLAM performance.

Many recent works inmonocular SLAMhave revolved around
replacing discrete features with aligning images directly through
minimizing photometric error. The most successful of these are
LSD-SLAM (Engel et al., 2014) and its successor DSO (Engel
et al., 2017). These “direct” approaches have the advantage of not
needing to detect corners in images and are thereforemore robust
to scenes containing large featureless regions like walls. Feature
extraction also often accounts for much of the processing in
feature-based SLAM, so direct systems can achieve performance
benefits by forgoing it. These systems still have their limitations,
however, and in their comparison of the two approaches, Yang
et al. (2018) note that direct methods are more vulnerable to the
effect of rolling shutter cameras and to highly dynamic lighting.
The abundance of these in available forest data, as well as the
lack of necessary photometric calibration, make feature-based
methods an easier choice for mapping forests. Supporting the
continued use of the feature-based approach, in Gao et al. (2018)

the loop-closure enabled version of DSO is compared against
ORBSLAM2 and accuracy of the two systems is notably similar.

2.2. Navigating and Mapping Forests
Traditionally, work in the field of forest mapping has been
done from stationary or ground-based platforms, using heavy
and power-hungry laser-based scanning, and requiring offline
processing of the data to form a map (Takashi et al., 2014;
Pierzchała et al., 2018). Mobile, online systems often extract only
tree trunks from the scene, such as in Schultz et al. (2016) or Liao
et al. (2016), a simplification that has also been used for RGBD
systems in Fan et al. (2020). This avoids much of the complexity
of the forest scene but also limits the usefulness of the final map
to only information about placement of trees.While recent works
show impressive results for improving laser-basedmapping of the
whole scene (Tinchev et al., 2018), laser-based sensors are still
expensive and need a lot of power. A niche remains for navigating
in real time using only monocular cameras, with the aim of
enabling deployment on light, nimble and low cost Unmanned
Aerial Vehicles (UAVs).

A number of recent works have looked at the problem of
visual trail following under forest canopy, starting with Giusti
et al. (2015) and more recently Maciel-Pearson et al. (2018).
These represent only reactive navigation, rather than mapping,
but what they do show us is the potential of neural network
based approaches for cutting through the visual complexity of
forest scenes. Silva et al. (2020) have recently improved such a
trail following system by integrating depth information extracted
from a SLAM system, LSD-SLAM (Engel et al., 2014), to augment
their trail following, but do not evaluate its performance.

Natural environments like forests present a series of problems
for traditional visual SLAM systems, as outlined in Garforth and
Webb (2019). Firstly, they undergo frequent rapid changes in
illumination due to the effect of the canopy blocking parts of
the bright sky. Secondly, they contain a lot of in-scene motion as
leaves and ground vegetation move with the wind. Finally, all of
those plants result in an abundance of texture that can overwhelm
feature detection algorithms.

2.3. Loop Closure
Visual SLAM systems keep track of the motion of the camera
through the world over time, but due to sensor noise and
other sources of inaccuracy, this ego-motion estimate experiences
some drift. If the system can detect when it has returned to
a previously visited location then it can estimate and optimize
out drift that accrued in between. This is the purpose of loop
closure. While loop closure and place recognition are similar
tasks, they have notably different priorities and deployment or
evaluation challenges. The “places” in place recognition datasets
are sampled from a wide variety of geographic locations, can
represent hundreds of square meters of space (e.g., a large city
intersection) and do not usually overlap with each other. A
proposed match here is clearly correct or incorrect. In a robotic
loop closure context, input images are a continuous, if down-
sampled, video stream with no discrete places and plenty of
overlap. The challenge here is not to always find all of the
closest matches for all images, but rather to recognize the general
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similarity of the current location to a previously visited region,
and thus initiate a process of view alignment.

Three state of the art loop closure algorithms are compared
in Lowry and Andreasson (2018): a binary Bag of Words
(BoW) model similar to that used in ORBSLAM2 (Gálvez-
López and Tardós, 2012; Mur-Artal and Tardós, 2017), FAB-
MAP (Cummins and Newman, 2008), and a Vectors of Locally
Aggregated Descriptors (VLAD, Jégou et al., 2010). All of these
methods reduce images to easily comparable descriptors that
can be used to judge image similarity. Lowry and Andreasson
compare performance of various descriptor sizes, on a number
of datasets including one section of forest, and find that VLAD
performs best in most cases.

2.4. Deep Learning and Place Recognition
Image matching is a popular domain for Deep Neural
Networks, and when the images being matched against represent
locations the task is known as place recognition (Lowry
et al., 2015). In many areas of computer vision, DNNs have
led to rapid advancement in image processing performance,
demonstrating robustness to appearance (Gomez-Ojeda et al.,
2015), lighting (Gomez-Ojeda et al., 2018), and viewpoint
changes (Chen et al., 2017).

In the case of Kendall et al. (2015), Walch et al. (2017), and
more recently Li et al. (2019), the output can be as complex as
a 6 degree of freedom pose regression respective to the original
“map” of images. What all of these systems have in common,
however, is that the domain against which they can match novel
images is fixed at the point at which they are trained. This makes
them unsuitable for deployment in many real world robotic
applications, such as loop closure, where the environment has not
been previously mapped.

More suitable are networks designed to produce descriptors,
similarly to classical approaches. Notable among these is
NetVLAD (Arandjelovic et al., 2016), which is trained end-to-end
for the place recognition task rather than using representations
from a similar task, such as object classification. NetVLAD
combines a layer replicating the descriptive power of VLAD
descriptors on top of features learned from training on datasets
of millions of scene images. The result is a network trained to
produce feature vectors where the euclidean distance between
two compared vectors should be smaller when the images
they were produced from observe the same scene. NetVLAD’s
descriptors are small enough to be plausibly used for real time
place matching, and have been shown to be robust to a lot of
visual appearance change.

The CNN-based method of Chen et al. (2017) takes a different
approach from whole-image descriptors, instead describing
regions within images in a way that makes them robust to partial
views of scenes. Vysotska and Stachniss (2019) have taken what
could be considered the opposite approach and attempt to match
not single image descriptors but sequences of image descriptors.
In this way they adaptively define what a “place” is in each
context, and are much better prepared to work with recognition
in continuous video data. Unfortunately, this work does not have
publicly available code, so we focus on the network they built
upon: NetVLAD.

3. METHODS

3.1. Datasets
The forest datasets used in this work were mostly taken from
Garforth and Webb (2019), and are summarized in Figure 1.

The SFU Mountain dataset (Bruce et al., 2015) follows the
same route along a mountain path on 4 separate occasions under
different environmental conditions (dry, wet, dusk, and night)
and provides hand-identified matches between a sub sample of
places along that route. We split it into “Road” and “Forest”
sections based on when the vehicle turns onto a path under
forest canopy.

The Hillwood datasets were recorded from two different aerial
vehicles: Parrot’s AR and Parrot Bebop drones. These represent
more difficult forest paths with less of a defined track and less
constrained in motion than the ground vehicle in SFU. We
supplement these with a new dataset, Forest Loop, also recorded
on a Bebop drone. The aim with this dataset was to follow a
simple circuit and keep the motion as smooth as possible. In this
way it is ideal for testing SLAM’s frame to frame tracking as well
as loop closure.

Finally, the Unreal dataset follows UAV-like paths similar
to Hillwood and Forest Loop, but does so in a photorealistic
simulated forest rendered with the Unreal game engine.

3.2. Recognizing Forests
Of the versions of NetVLAD reported in Arandjelovic et al.
(2016), the most successful builds on VGG-16 (Simonyan and
Zisserman, 2014). Before we test NetVLAD on the forest places
task, we want to confirm that the underlying network has the
ability to classify our datasets as forests. It is the descriptive ability
of this network that NetVLAD’s final pooling layer builds upon,
so without it further tests would be unnecessary.

We use a Keras implementation of VGG-16 by Kalliatakis
(2017) to evaluate whether the network can correctly identify
forest data. The weights provided for this version of VGG-16 are
pre-trained for classification on Places365 (Zhou et al., 2017),
which according to the authors provides a “quasi-exhaustive”
dataset of possible scene categories including a variety of different
types of forest.

Each video frame is resized to a standard input size (224 ×

224) and passed through the network, which provides an ordered
list of possible scene category labels. The top prediction is used as
the classification label for the frame. We record the percentage of
frames classified as one of the “forest” labels, as well as noting
other commonly assigned labels. This process is repeated for
each dataset.

3.3. Recognizing Places in Forests
3.3.1. Setup
We set up NetVLAD using the Tensorflow code and pre-trained
weights provided by Cieslewski et al. (2018). The only parameter
that we have to set is how many of the principal descriptor
dimensions to use in our descriptors. As the original authors
establish a good trade-off between accuracy and size at 128
dimensions, and we are interested in real time performance, we
use that value.
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FIGURE 1 | Table showing datasets used in this work, with video count, frame rate, resolution and an example frame.

3.3.2. Evaluation
We duplicate the methodology described in Lowry and
Andreasson (2018) for evaluating place recognition performance.
NetVLAD is used to produce descriptors for each image in the
database and each query image. For each query, the squared
euclidean distance is calculated between the query descriptor and
each of the database descriptors and the top N are considered as
potential matches. If one of these matches is within D images of
the correct match in the sequence then it is considered to be a true
positive. As the datasets tested here are of a small scale compared
to city-sized datasets NetVLAD was originally demonstrated on,
values of N and D are set to 1 and 2, respectively.

To make this task more difficult, database and query images
are also cropped from the full image frame such that they are
offset by 40% from one another.

3.3.3. Evaluating on Data With Ground Truth
We use the same two SFU video pairs as Lowry and Andreasson
(2018): with the dry conditions as our database set and the wet
or dusk conditions as query sets. For fair comparison with the
original results we report performance for the whole datasets, but
as we are specifically interested in performance under the more
challenging canopy covered section, we also report results for a
test set with the open road sections removed. Note that in this
case the database set is not reduced, as we would expect this to
artificially improve performance.

3.3.4. Evaluation on Data With No Ground Truth
We wish to evaluate performance on more forest data than just
the SFU videos, but what little data is available does not have
ground truth, primarily due to the poor performance of GPS
under canopy cover. Instead we use a methodology of splitting
a single video into two by alternately sampling frames. This way,
our database and query videos do not contain any of the same
frames but two frames sampled from next to each other should
usually still represent the same place.

There are two parameters to consider when using this method.
First, the step size between places in a video, which we set to
3 s (36 or 90 frames for Hillwood AR and Bebop, respectively)
in order to generate an equivalent number of places as in the
SFU dataset (∼150). Given the speed of the UAV recording the
Hillwood data, this offset should represent a maximum of 5 m
between places. The second parameter is the offset between the
database and query frames. At an offset of 0, the sets would be
identical, whereas if the offset equals the step size the “ground

truth” identity of the frames would be misaligned.We test a range
of values between these two unhelpful extremes.

3.4. Loop Closure
Our final evaluation is of NetVLAD’s potential as a loop closure
mechanism in visual SLAM, which we perform in two ways.
Firstly, we compare the descriptors generated for each dataset
route against themselves and plot the distances as a confusion
matrix to look for regions of low distance at the sites of
known loop closures. Settings for distance thresholds or other
mechanisms of identifying a loop closure will vary between
SLAM systems, but usually rely on repeated recognition of
similarity within a short period of time. This method allows
us to evaluate whether regions of similarity emerge from the
system without artificially defining the boundaries of “places”
within the data.

Secondly. we perform an integration with ORBSLAM2 (Mur-
Artal et al., 2015), a popular visual SLAM system, which uses
DBoW2 (Gálvez-López and Tardós, 2012), a Bag of Words
method, to propose potential loop closures. We replaced DBoW2
with a simple threshold on the distance between NetVLAD
descriptors to decide when to propose an image as a loop closure.
Note at this stage the test system is not optimized for running in
real time and so the image descriptors are pre-calculated for the
whole dataset, and loaded from a file for comparison at runtime.
ORBSLAM2 evaluates our loop closures as usual, extracting
features from new and old images to try and align them.

This system needed a dataset to be tested on, as previous work
(Garforth and Webb, 2019) has shown that SLAM has difficulty
tracking forest videos, and in order to test a loop closure we
need continuous tracking between the first and second visit to the
loop location. This has not been achieved on Hillwood, and SFU
contains only challenging 180◦ rotated loop closures. Our new
“Forest Loop” dataset was gathered specifically to provide both a
smooth motion to aid in tracking and a closed circuit to test our
loop closure system on real robot data.

4. RESULTS

4.1. Classifying Forests
As can be seen in Table 1, VGG-16 achieves reasonable
classification of forests on all real datasets. More than half of the
misclassifications of SFU Forest dry are as “field road” which is
reasonable given that some open track still exists in the dataset.
Hillwood AR is primarily misclassified as “trench,” “driveway,” or
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TABLE 1 | Percentage of correct classification matches achieved by NetVLAD

when using a different camera from the stereo pair for the query vs. database

dataset.

Dataset Forest Other common labels

Hillwood Bebop 99.10% Orchard (0.28%), trench (0.20%)

SFU Forest Dry 86.31% Field road (9.64%), corn field (1.18%)

Hillwood AR 80.00% Trench (6.21%), driveway (3.41%), yard (2.51%)

Forest Loop 77.69% Trench (14.81%), yard (2.21%), landfill (1.66%)

Unreal 60.95% Fishpond (15.84%), pond (5.71%), aquarium (1.87%)

TABLE 2 | Percentage of correct place matches achieved by different place

recognition algorithms on pairs of routes under different environmental conditions

from the SFU dataset.

Datasets BOW FAB-MAP VLAD NetVLAD Full NetVLAD Forest

Dry-Dry – – – 97.3 93.9

Dry-Wet 12.6 18.4 28.5 37.0 50.0

Dry-Dusk 15.1 22.6 32.2 47.3 53.3

Dry-Night – – – 9.59 30.0

Results for the first three algorithms are from the work of Lowry and Andreasson (2018).

The fourth column reports on NetVLAD, and the final covers the same algorithm but

reports only for the final canopy-covered section of the dataset.

“yard.” The reason for these is less obvious, but this dataset was
recorded at a time of year when a lot of leaves were on the ground,
a feature that was perhaps also present in some of the original
training data for “driveway” and “yard.”

The simulated forest data is classified significantly less
accurately than real data, with the most common non-forest
labels being pond, fishpond and aquarium (which account for
23.63% of classifications between them). The artificial lighting
conditions seem the most likely explanation for this, which is
not unsurprising given the results of Garforth and Webb (2019)
and furthers their warning about using simulated data to test
algorithms meant to work in the real world.

Aside from in simulation, initial results show that the network
underlying NetVLAD is able to learn features specific to forests,
which reassures us that full NetVLAD has the potential for
describing places within forests.

4.2. Place Recognition Against Baseline
Table 2 shows the rates of correct matches achieved by NetVLAD
between pairs of routes from the SFU dataset under various
environmental conditions. These are presented alongside the
results for other place recognition systems from Lowry and
Andreasson (2018) for the same pairings, where available.

The rates of correct matches in Table 2 show NetVLAD
achieves a substantial increase over VLAD features, as well as
BoW and FAB-MAP, in both previously tested forest setups.
Notably we have taken the best result across descriptor sizes for
BoW, FAB-MAP, and VLAD, so in most cases our 128 dimension
NetVLAD descriptor would also use less memory. This makes a
strong case for using it in the loop closure settings where those
other descriptors are typically used.

TABLE 3 | Percentage of correct place matches when sub-sampling a single

video to produce database and query sets.

Offset (as fraction of step)

Dataset Step size 1/6 1/3 1/2 2/3 5/6

Hillwood AR 36 64.34 63.64 60.14 58.45 64.09

Hillwood Bebop 90 75.83 65.0 69.17 71.43 71.43

Step size (in frames) indicates rate at which frames are sampled and is set to the equivalent

of 3 s. Offset indicates distance between frames assigned to different sets.

Somewhat surprisingly, NetVLAD also performs better on the
canopy-covered sections of forest at the end of the SFU datasets
than it does on the track as a whole. The track at the start of the
SFU videos must be difficult to distinguish, likely due to most
frames consisting solely of a road and surrounding treeline. To
the eye these images are very similar, as noted in Garforth and
Webb (2019). Under the canopy, however, the more complex
skyline has been shown to be useful in navigation before (Stone
et al., 2016), so we posit that this is part of what the network is
using to achieve its improved performance.

Under canopy cover NetVLAD also shows resistance to
changing environmental conditions, achieving performance on
the difficult dry-night pairing that matches VLAD’s performance
on the two easier pairings. The skyline is not visible in the night
time data, so the performance here implies that this isn’t the only
useful feature being learned.

4.3. Evaluation Without Ground Truth
Table 3 shows the match percentages when comparing two
datasets produced by subsampling from a single video.We varied
the number of frames offset between the two subvideos and as
would be expected we find the performance to be better when
this is closer to 0 or to the step size, as this means frames recorded
closer in time exist in the two subvideos. Even at the worst case
for either dataset (58.45% for Hillwood AR or 65.0% for Bebop)
performance does not diminish toomuch, suggesting a resistance
to translations in the NetVLAD descriptors.

4.4. Loop Closure
We generated confusion plots of distances between pairs of
NetVLAD descriptions for videos from robots traversing forest
terrain. We can make out columns of blue (low distance)
in Figures 2, 3 at the indicated points where the path loops
back to previous visited locations, showing that the descriptor
comparison is able to successfully detect the similarity of these
forest locations. There are some other patches at points we had
not identified as full loops, but it is worth noting that in forested
conditions especially these “places” are not straightforward to
define, and parts of one scene may indeed be visible in a part of
another view from another part of the route, so some noise is
expected. Occasional incorrect matches would be dealt with in a
SLAM application through filtering and feature correspondence
checks. Additionally, as a baseline check, we compared two
different traversals of the same Forest Loop route in Figure 4 and
can see a clear path of high similarity near the diagonal between
the two videos.
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FIGURE 2 | Confusion matrix showing the squared euclidean distance

between frames of Hillwood Bebop. Note multiple loops returning to the start

as shorter distance patches.

FIGURE 3 | Confusion matrix showing the squared euclidean distance

between frames of Forest Loop. Loop closure at the end of the video

noticeable as shorter distance patch.

The only repeated traversals of the same path in the SFU video
occur while facing in opposite directions. These are challenging
conditions for any place recognition, so this video is test of how
far NetVLAD can be pushed. Figure 5 shows that the descriptor
comparison makes a clear distinction between forest and road
sections of the SFU video, but within these sections most places
seem equally similar to each other. We would not expect to be
able to close the loop in this dataset with NetVLAD.

FIGURE 4 | Confusion matrix showing the squared euclidean distance

between frames of Forest Loop on two different passes. The matching of the

route near the diagonal and the loop are both visible.

FIGURE 5 | Confusion matrix showing the squared euclidean distance

between frames of SFU dry. Road and forest sections very different from each

other. No loop matches.

If we look at sample frames from the regions NetVLAD
indicates are similar in Figure 6, we can see that the network
is producing low distance scores in spite of the presence of
potentially confusing factors, such as a rotated camera view, a
prominent object (tree) not previously visible, and a change in
lighting affecting the apparent texture of the ground.

The results so far demonstrate this network’s potential
for use as a loop closure mechanism for SLAM in forests.
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FIGURE 6 | Place matches achieved on Hillwood Bebop dataset demonstrate robustness to rotation [view is shifting right from (A) to (D)], illumination changes [sun

passes behind cloud between (A) and (B)] and onset of previously unseen occluding objects [large tree comes into view in foreground between (C) and (D)].

FIGURE 7 | Example correct place match proposed by NetVLAD between the

beginning (A) and end (B) of Forest Loop.

Given this, our final experiment was the integration of
NetVLAD descriptors in ORBSLAM2 as a loop closure proposal
mechanism. Unfortunately, even though the system proposed
loop closures at appropriate frames (such as those shown in
Figure 7), the alignment of the point clouds required for the
global map optimization always failed to align the features from
the two matched frames. The resulting map can be seen in
Figure 8 with the loop still open.

The likely cause of these difficulties is the very highly textured
scenes providing an abundance of potential features, or the
notable change in lighting that occurs even in the few minutes
between the images in Figure 7, such that repeated visits to
the same location do not have a large enough overlap in
extracted features to find an alignment. This was a risk, given
the previously reported poor performance of SLAM systems in
these environments in Garforth andWebb (2019), and shows that

FIGURE 8 | ORBSLAM2 (Mur-Artal et al., 2015) successfully tracks the Forest

Loop video, but inevitable drift results in the start and end locations not

connecting as they should.

FIGURE 9 | Luminance change statistics of the new “Forest Loop” dataset,

compared to existing.

more work must be done on the frame to frame tracking part of
the mapping process before a full working forest SLAM system
can be produced.

Frontiers in Robotics and AI | www.frontiersin.org 7 November 2020 | Volume 7 | Article 541770

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Garforth and Webb Lost in the Woods?

FIGURE 10 | Contrast change statistics of the new “Forest Loop” dataset,

compared to existing.

FIGURE 11 | KL Divergence statistics (used as a representation of in-scene

motion) of the new “Forest Loop” dataset, compared to existing.

4.5. Scene Statistics
As we are reporting work with a new forest dataset, we present
here the scene statistics (as described in Garforth and Webb,
2019) of that data, compared to the previously existing datasets.
This data was also recorded using the Bebop Drone, so it notably
has the same camera properties as “Hillwood_Bebop.”

We can see that “Forest_Loop” is less variable in its
lighting (Figures 9, 10) than other forest datasets, while its in
scene motion (as measured by KL divergence in Figure 11) is
indistinguishable. No specific care was taken to avoid areas based
on lighting, but this data was recorded at a careful pace, keeping
a good distance away from foliage in order to improve matching
chances. Easier to track data forest data was our aim, and these

statistics would lead us to believe it has been at least partially
achieved.

5. CONCLUSION AND FUTURE WORK

In this paper we presented an investigation into the use
of place recognition network NetVLAD for loop closure in
challenging forest mapping scenarios. Even though NetVLAD
itself has not been trained to recognize places in forests, we
showed that its underlying VGG-16 network does categorize
a variety forest datasets correctly. We then demonstrated that
NetVLAD performs better than state of the art loop closure
approaches in this difficult environment, robust to the presence
of changing lighting, time of day, weather conditions, rotation,
and translation. Our results marked NetVLAD as a candidate for
proposing loop closures for SLAM, and we put together a test
system as well as gathering new data to confirm. We found that
NetVLAD reliably proposed loop closures to ORBSLAM, but that
the frame to frame ORB feature matching of the SLAM system
was not able to integrate these into the map. This is a useful
warning for anyone attempting SLAM in forests, and supports
feature matching as one avenue for further research.

A number of other improvements can be made to our
test integration with SLAM to produce a system ready for
deployment. Given ORBSLAM’s difficulty aligning feature points
at proposed loop closures, we would propose investigating a
feature-less “direct” SLAM method like DSO instead. Once a
pairing with good performance is found, we would replace our
offline NetVLAD descriptor calculation with one that runs in
real-time. Finally, to improve scalability as the map gets larger we
would consider a hierarchical graph and sequence based search
method, like that described in Vysotska and Stachniss (2019).
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