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End-effector-based robotic systems provide easy-to-set-up motion support in

rehabilitation of stroke and spinal-cord-injured patients. However, measurement

information is obtained only about the motion of the limb segments to which the

systems are attached and not about the adjacent limb segments. We demonstrate in

one particular experimental setup that this limitation can be overcome by augmenting an

end-effector-based robot with a wearable inertial sensor. Most existing inertial motion

tracking approaches rely on a homogeneous magnetic field and thus fail in indoor

environments and near ferromagnetic materials and electronic devices. In contrast,

we propose a magnetometer-free sensor fusion method. It uses a quaternion-based

algorithm to track the heading of a limb segment in real time by combining the

gyroscope and accelerometer readings with position measurements of one point along

that segment. We apply this method to an upper-limb rehabilitation robotics use case

in which the orientation and position of the forearm and elbow are known, and the

orientation and position of the upper arm and shoulder are estimated by the proposed

method using an inertial sensor worn on the upper arm. Experimental data from five

healthy subjects who performed 282 proper executions of a typical rehabilitation motion

and 163 executions with compensation motion are evaluated. Using a camera-based

system as a ground truth, we demonstrate that the shoulder position and the elbow angle

are tracked with median errors around 4 cm and 4◦, respectively; and that undesirable

compensatory shoulder movements, which were defined as shoulder displacements

greater ±10 cm for more than 20% of a motion cycle, are detected and classified 100%

correctly across all 445 performed motions. The results indicate that wearable inertial

sensors and end-effector-based robots can be combined to provide means for effective

rehabilitation therapy with likewise detailed and accurate motion tracking for performance

assessment, real-time biofeedback and feedback control of robotic and neuroprosthetic

motion support.

Keywords: end-effector-based robots, inertial measurement units, sensor fusion, posture biofeedback, real-time

tracking, rehabilitation robots, compensation motion detection, upper-limb rehabilitation

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.554639
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.554639&domain=pdf&date_stamp=2020-11-27
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:passon@control.tu-berlin.de
https://doi.org/10.3389/frobt.2020.554639
https://www.frontiersin.org/articles/10.3389/frobt.2020.554639/full


Passon et al. Inertial-Robotic Motion Tracking

1. INTRODUCTION

1.1. Motivation and Background
Spinal cord injury or stroke can lead to movement disorders like
a paresis of the upper limb (Gowland et al., 1992; Popovic and
Sinkjaer, 2000). As a result, patients are often gravely impaired
in activities of daily living for the rest of their lives. Primary
objectives during rehabilitation training are the enhancement
of patients’ health situation and self-sufficiency. Stroke patients
can often additionally benefit from regained motor functions
due to the therapy. Robot-assisted rehabilitation and Functional
Electrical Stimulation (FES) are well-known technologies and
popular means for enhancement of the physical therapy in
modern rehabilitation settings (Oujamaa et al., 2009; McCabe
et al., 2015). These systems actively support patients during
motions that they cannot perform sufficiently well or not often
enough without support.

The role of sensor systems in such rehabilitation systems is
3-fold:

1. Feedback control is commonly used to adjust the motion
support to the individual patient in real time and thereby
enable the execution of accurate movements (Marchal-
Crespo and Reinkensmeyer, 2009; Schauer, 2017). This
requires sufficiently precise sensor systems that yield real-time
measurements of the currently conducted motion.

2. At the same time, such sensor systems facilitate objective
recording and assessment of the patients’ motor performance,
such as speed of execution, completion of tasks and reaction
times (Oña et al., 2018).

3. A third major advantage of motion tracking in rehabilitation
systems is that it enables biofeedback that informs the patients
about their ownmotion and positive or negative aspects of that
motion and their performance (Zhi et al., 2018), for example
in a virtual reality environment. While such a biofeedback
facilitates gamification of the rehabilitation tasks (Novak et al.,
2014), it is also of crucial importance when the patients
perform undesired compensatory motions, which means they
compensate weakness of the to-be-trained joint or muscle
by exaggerated or unphysiological motions of other joints or
muscles (Ma et al., 2019).

In upper limb motion, for example, a decreased range of motion
of the shoulder and/or elbow joint is often compensated by
movement (flexion, inclination, translation) of the upper body
or, with the upper body fixed, by movement of the shoulder
girdle (Liu et al., 2013; Grimm et al., 2016; Levin et al.,
2016). Both movements are possible, both facilitate the desired
movement in an undesirable way. The trunk is, for example,
moved forward to reach an object instead of extending the arm
(Robertson and Roby-Brami, 2011). Preventing compensation
during rehabilitation training improves the therapy outcome
and decreases long-term problems, such as pain, orthopedic
illnesses and learned non-use (Levin et al., 2009). In reaching
tasks, moderately to severely impaired patients exhibit mean
shoulder displacements of 14 cm, while these displacements are
only around 4 cm in healthy subjects (Cirstea and Levin, 2000).
An automatic biofeedback that prevents compensatory motion

requires a real-time motion tracking solution that is sufficiently
precise to distinguish these levels of shoulder displacement due
to upper-body or shoulder girdle movements.

1.2. Motion Tracking in Exoskeletons vs.
End-Effector-Based Robots
In robot-assisted rehabilitation training of the upper limb, a range
of different rehabilitation systems with different motion tracking
solutions are available or have been proposed (Vito et al., 2014).
They can be subdivided into two main groups: (1) exoskeleton-
based systems and (2) end-effector-based systems (Maciejasz
et al., 2014). The amount of inherently available measurement
information decreases from exoskeletons to end-effectors, as
illustrated in Figure 1 and detailed in the following.

Exoskeletons reproduce the kinematic structure of the limb
they are attached to. The joints of the human limb are assisted and
moved by the corresponding joints of the exoskeleton, which also
provide measurement information by means of built-in sensors.
Major drawbacks of exoskeletons are that they are quite obtrusive
and must be adjusted precisely to the individual segment lengths
and joint axes, which can be time-consuming (Maciejasz et al.,
2014). A misalignment can even cause unwanted pain and in
the worst case long-term damage (Sicuri et al., 2014; Bertomeu-
Motos et al., 2018). Besides that, the estimation of the human arm
joint angles from the exoskeleton ones is often non-trivial if their
kinematic structures differ (Nordin et al., 2014). Therefore, rather
complex solutions have been proposed, such as extended inverse
kinematics posture estimation (EIKPE) models (Wu et al., 2015;
Cortés et al., 2016). Some exoskeletons even self-align the robot’s
active rotational axes to the user’s joint axes by means of passive
rotational joints, which further increases kinematic complexity
(Trigili et al., 2019). If the exoskeleton is well-adjusted to the
subject and a transformation of its kinematics to the anatomical
frames is available, good measurements of the subject’s arm pose
and joint angles can be obtained (Nordin et al., 2014).

End-effector-based systems are robotic systems that are only
attached to the distal segments of the limbs, which is typically
realized by a handle for the hand, a forearm brace, or a footplate.
A subgroup of end-effector-based systems are cable-driven
motion support robots, which use ropes to provide gravitation-
compensating and motion-promoting forces to a distal limb
segment. Compared to exoskeletons, end-effector-based systems
require far less adjustment to individual patients (Burgar et al.,
2000; Lum et al., 2002). However, as a direct consequence of
the reduced contact between human and robotic system, only
the motion of one body segment is measured by the robot,
and the motion of all adjacent segments must be inferred using
mechanical models (Nordin et al., 2014) or additional sensors.
For end-effector-based upper limb rehabilitation systems, which
yield direct measurement of a distal segment, the motion of the
upper arm is commonly inferred using the simple assumption of
a fixed shoulder position (Dipietro et al., 2007; Rosati et al., 2007).

Figure 1 summarizes the general observation that an easier
setup and positioning of the patient comes at the cost of reduced
measurement information and accuracy. This drawback can
be compensated if end-effector-based systems are combined
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FIGURE 1 | Trade-off between the amount of arm motion measurement information and system complexity in rehabilitation robots. The easier setup of

end-effector-based robotic systems comes at the cost of reduced measurement information. The proposed hybrid solution (right) combines both advantages.

with wearable sensor technology that ideally requires only little
setup effort.

The conventional gold standard for human motion
assessment are multi-camera systems that track a set of reflective
or active markers that are worn on anatomical landmarks.
However, these systems are expensive, and they require a
complex marker and camera setup as well as a clear line-of-sight
between each marker and at least two cameras at all times (Kirk
et al., 2005; Zhou and Hu, 2008). Other optical systems, such as
depth cameras (e.g., Microsoft Kinect) or single cameras have
not reached comparable accuracy due to occlusion, jitter, low
and varying sampling frequency or viewing-angle-dependent
performance deterioration (Yahya et al., 2019).

Body-worn goniometers overcome the line-of-sight
restrictions and can yield root-mean-squared error values
(RMSE) around 2◦ (Tognetti et al., 2015). However, they are
obtrusive in the sense that they span across joints, and they only
measure joint angles but neither orientations nor velocities nor
positions (Tognetti et al., 2015).

Inertial measurement units (IMUs) are wearable sensors that
provide all this informationwithout requiring cables or clear lines
of sight between the sensors (Held et al., 2018). However, IMUs
require, in general, more complex sensor fusion algorithms to
address magnetic disturbances, integration drift, and sensor-to-
segment misalignment. Each IMU is composed of three types
of sensors (gyroscopes, accelerometers, and magnetometers)
and measures the three-dimensional angular rate, acceleration,
and magnetic field vector in its intrinsic coordinate system.
IMUs are small and lightweight enough to be considered
completely unobtrusive and assure zero influence on the motion
performance. Recent advances in inertial motion tracking have
helped to overcome long-standing challenges, such as sensor-to-
segment calibration (Taetz et al., 2016; Nowka et al., 2019; Olsson
et al., 2019) or the requirement of a homogeneous magnetic field
(Laidig et al., 2017b; Laidig et al., 2019; Seel and Ruppin, 2017)
and to provide a similar accuracy as optical systems (Seel et al.,
2015; Filippeschi et al., 2017; Salchow-Hömmen et al., 2019).

1.3. State of the Art in Sensor Systems for
End-Effector-Based Upper Limb Therapy
Since the application-related focus of the present work lies
on upper-limb rehabilitation robots, we also briefly review
existing systems and solutions for this specific application
domain. A comprehensive survey of upper-limb rehabilitation
systems is given in Maciejasz et al. (2014) and Mekki et al.
(2018). We focus more specifically on systems and methods
that combine end-effector-based motion support systems with
wearable or optical motion tracking solutions to compensate
the lack of measurement information of the former by
means of the latter. Below we provide an overview of
existing combinations and of their solutions for compensatory
motion detection.

For end-effector-based rehabilitation robots, two main sensor
setups have been proposed: on the one hand the combination
with a depth camera and on the other hand combinations with
inertial sensors or solely accelerometers.

Regarding camera-based solutions, Brokaw et al. (2013)
combined a wrist brace robot with a Kinect (Microsoft, USA)
sensor to calculate the trunk and arm joint angles during reaching
motions and demonstrated that these angles can be used to
prevent compensatory movements. However, they reported large
tracking errors of the Kinect due to occlusion and problems
to distinguish between the subject’s arm and the robot. In a
similar work, Zhi et al. (2018) recently published results on
compensatory motion classification based on Kinect’s skeletal
tracking information. Occlusion occurred, and a solution for
posture biofeedback was not presented. Another approach using
a Kinect and two end-effectors for each arm was evaluated by
Valdés and der Loos (2017). They detected trunk compensation
by measuring motions of the shoulder-spine joint using the
Kinect. Two biofeedback strategies were compared, both of which
were shown to reduce compensatory movements. However, yet
again a continuous clear line-of-sight is required, which is
especially a problem if the therapist has for any reason to act on
the patient.
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Mihelj (2006) presented the combination of a hand-attached
robot with two accelerometers at the upper arm. This approach
yields accurate upper-limb joint angles. However, the inverse-
kinematics algorithm requires shoulder joint fixation, for
example by binding the trunk to a chair with belts, which leads
to additional setup effort. Bertomeu-Motos et al. (2015b) further
improved the method by Mihelji proposing only the use of one
accelerometer at the upper arm, but also for this method the
shoulder position must be known and fixed during the therapy.
A similar yet even more restrictive approach, which uses a
forearm cuff that prevented forearm pronation-supination and
wrist movements, is found in Papaleo et al. (2015) and is also used
by Scotto di Luzio et al. (2018).

To our best knowledge, the only combination of an end-
effector-based robot with inertial sensors that does not require
shoulder fixation was proposed by Bertomeu-Motos et al. (2015a)
and validated in stroke patients (Bertomeu-Motos et al., 2018).
The elbow angle and shoulder position are estimated using
inertial sensors on the upper arm (only accelerometer) and
on the outer edge of the shoulder, with accuracies below
6◦ and 5 cm, respectively. However, the proposed algorithms
require two sensor units, and they rely on magnetometer
readings, which implies that they are unreliable if the earth-
magnetic field is disturbed, such as in indoor environments,
near ferromagnetic material or electronic devices, i.e., practically
in all realistic clinical settings (de Vries et al., 2009; Le Grand
and Thrun, 2012; Subbu et al., 2013; Shu et al., 2015;
Salchow-Hömmen et al., 2019). Furthermore, compensatory
motion detection or biofeedback has not been considered in
that article.

In a previous work, we combined a cable-driven end-effector-
based robot with magnetometer-free inertial sensors worn on the
forearm and upper arm (Passon et al., 2018). We demonstrated
that fusing cuff position measurements of the robotic system
with inertial sensor readings is advantageous and enables
magnetometer-free tracking of the complete forearm orientation
and position. For temporary compensatory displacements of the
trunk or shoulder (less than a half minute), we were able to
estimate the upper arm heading and the true shoulder position
accurately. However, the approach failed to provide long-time
stable estimates under longer lasting compensation movements
or static compensatory postures.

In summary, depth-camera-based solutions can lead to
reliable compensation motion detection but only under
continuous line-of-sight restrictions. These restrictions can be
overcome by means of wearable inertial sensors, but there is a
lack of practical solutions that provide long-time stable motion
tracking of the entire upper limb in realistic environments
with inhomogeneous magnetic fields. To date there is no
inertial sensor-based solution that yields all of the following
desirable features:

(1) Accurate measurement information of the complete
orientation of the upper arm independent of the local
magnetic field;

(2) Reliable long-time stable real-time detection of shoulder
displacements and associated compensatory motion.

FIGURE 2 | Example setup: the cable-based rehabilitation robot Diego

(Tyromotion GmbH, Austria) is augmented by one wearable inertial sensor at

the upper arm to enable tracking of the upper arm and shoulder motion.

1.4. Contributions of the Paper
In order to address the aforementioned challenges, we propose
new methods that leverage the full potential of combining
end-effector-based rehabilitation robots with wearable inertial
sensors. We will demonstrate in one particular experimental
setup that the measurement limitations of an end-effector-based
robot can be overcome by exploiting inertial measurements.
Simultaneously, fundamental limitations of inertial motion
tracking are overcome by a novel magnetometer-free
sensor fusion method that exploits the end-effector-based
measurements. In brief, the main contributions of this
paper are:

1. We introduce sensor fusion methods that combine robotic
measurements from one segment and inertial measurements
of an adjacent segment to determine long-time stable
measurements of the full orientation and the endpoint of that
adjacent segment in the robotic measurement frame while

• using nomagnetometer readings at all,
• allowing the adjacent segment to move freely,
• and requiring no initial heading alignment or

position calibration.

2. We apply the proposed methods to augment the cable-based
forearm-attached robot shown in Figure 2 with a wearable
IMU and determine long-time stable measurements of the
upper arm orientation and shoulder position in real time.

3. We perform an experimental validation with five subjects
and a camera-based ground truth measurement, and we
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demonstrate that the achieved measurement accuracy is
around 4◦ and 4 cm, respectively.

4. We propose a method that detects compensatory motions
with shoulder displacements greater±10 cm that last for more
than 20% of a motion cycle, and we demonstrate that typical
rehabilitationmotions conducted by healthy subjects with and
without compensatory motion are 100% correctly classified by
this method.

The remaining paper is structured as follows. The general
hardware setup and problem statement are presented in
Section 2. The developed methods for sensor fusion, shoulder
position estimation and detection of compensation movements
are introduced in Section 3. The experimental procedure
including a description of the rehabilitation robot that is
considered for validation and the analysis of conducted
experiments with five healthy subjects is given in Section 4.
Finally, a discussion of the results is presented in Section 5, and
conclusions follow in Section 6.

2. KINEMATIC MODEL AND SENSOR
FUSION TASK

Before defining the sensor fusion task, we describe the general
properties and assumptions of the kinematic system and possible
example realizations. Consider a kinematic chain consisting of
two rigid segments, and let both be connected by a joint with up
to three rotational degrees of freedom.

(i) Assume that one of both segments is in contact with a robotic
system, and call this segment the connected segment and the
other one the adjacent segment.

(ii) The robot is assumed to yield real-time information of the
position of the joint between both segments in a fixed robotic
coordinate system.

(iii) The robot, however, yields no information on the
orientation of the adjacent segment, and we also refrain from
assuming that any point along that segment remains fixed
in space.

Two examples are given to illustrate the relevance of this general
kinematic system and the meaning of the assumptions. In the
first example, the connected and adjacent segments are the shank
and thigh, respectively. A cable-based robotic system with above-
ankle and below-knee cuffs measures the cuff positions and
determines the knee position by extrapolating the line between
both cuffs. The orientation of the thigh, however, cannot be
determined if we refrain from assuming a fixed hip position.
In the second example, a robotic system connects to the upper
extremity via a forearm brace, which enables measurements of
the orientation and position of the forearm and elbow but not
the motion of upper arm and the unconstrained shoulder. In
both examples, the adjacent segment is the proximal one of both
segments, whichmakes sense in the context of end-effector-based
robots. However, it should be noted that neither the kinematic
model nor the methods we will propose are limited to that case.

To obtain complete measurement information of the motion
of both segments, a wireless wearable IMU is attached to the

FIGURE 3 | Kinematic model of the upper extremity with definitions of the

robotic frame R, the intrinsic IMU frame A, the inertial reference frame I, and

the joints E and S.

adjacent segment. Figure 3 shows one specific example of such
a hybrid inertial-robotic measurement system for the upper
extremity. We assume that the distance of the sensor to the joint
is approximately known. We further assume that the relative
orientation between the inertial sensor and the segment is known
either by careful sensor-to-segment attachment or by employing
methods that automatically determine this information from
almost arbitrary movements of the kinematic system (Müller
et al., 2016; Laidig et al., 2017a; Olsson et al., 2019).

The IMU yields three-dimensional measurements of the
acceleration, the angular rate and the magnetic field vector in its
own intrinsic coordinate system. Since these measurements are
obtained from micro-electro-mechanical systems (MEMS), they
are prone to considerable bias and noise errors. Nevertheless,
the orientation of the sensor can be determined with respect
to an inertial frame of reference with a vertical axis and a
horizontally northbound axis. This is a standard problem in
inertial sensor fusion, and several suitable orientation estimation
algorithms exists.

However, two issues arise: Firstly, the inertial reference
is not aligned with the robotic coordinate system—only the
vertical axes of both frames coincide. Secondly, IMU-based
orientation estimation requires a homogeneous magnetic field
and therefore fails in indoor environments and in the proximity
of ferromagnetic material and electronic devices. In the realistic
case of a disturbed and inhomogeneous magnetic field, only
the inclination but not the heading of the sensor can be
determined reliably.

We conclude that neither the robotic system nor the inertial
sensor yields the desired orientation and position information of
the adjacent segment. Only the inclination of the segment and
the position of one of its ends can be determined. The task that
should be addressed in the following is to determine the full
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orientation and position of the segment by fusing the robotic and
inertial measurements.

For the specific example application of a forearm-connected
robotic system, we deduce accuracy requirements for the
hybrid system to detect the shoulder displacements that
are characteristic for compensatory motions in upper-limb
rehabilitation of neurological patients: to reliably distinguish
between the aforementioned physiological and compensatory
shoulder displacement amplitudes [4 vs. 14 cm (Cirstea and
Levin, 2000)] during one motion, a method should ideally
be able to track the shoulder position with a tracking
error of at most 5 cm in average over the course of
that motion.

3. PROPOSED METHODS

The novel methods are presented in three steps: First we will
propose methods that solve the given sensor fusion task for the
general kinematic system and determine the orientation of the
adjacent segment. We will then demonstrate how the joint angle
and the adjacent segment’s endpoint position can be calculated
from the estimated segment orientation. Finally, we will consider
the specific application of upper-limb rehabilitation and propose
methods for distinguishing proper motions from motion with
undesirable shoulder displacements.

3.1. Coordinate Systems and Notation
Let the right-handed robotic workspace coordinate system
{xR, yR, zR} be defined by the y-axis yR pointing horizontally
forward and the z-axis zR straight up, as illustrated in
Figure 3. The adjacent segment’s coordinate system {xA, yA, zA},
in which the inertial measurements are taken, is defined with
the x-axis xA being parallel to the longitudinal axis of the
segment and pointing toward the joint with the connected
segment. The inertial reference coordinate system of the
orientation estimates is denoted {xI, yI, zI}. The reference frame
I has a vertical z-axis but horizontal x- and y-axes with
an arbitrary, slowly drifting heading, as will be explained
later on.

While the lower right index is used to denote to which
coordinate system a vector is attached, the lower left index is
used to describe in which coordinate systems it is expressed. For
example, xA denotes the x-axis of the coordinate system A;

A
xA

denotes the coordinates of that x-axis in the very same frame,
which trivially and constantly is [1, 0, 0]⊺; finally,

R
xA denotes

the coordinates of that x-axis in the robotic workspace frame
R. For quaternions, the upper and lower left indices are defined
such that A

R
q is the quaternion that fulfills [0,

R
v⊺]⊺ = A

R
q ⊗

[0,
A
v⊺]⊺ ⊗ R

A
q for any vector v ∈ R

3. Note that the abbreviated
notation

R
v = A

R
q ⊗

A
v ⊗ R

A
q is used in the further course

of this work, i.e., we assume that the quaternion multiplication
operator ⊗ regards three-dimensional vectors automatically as
their pure quaternion counterpart. Finally, we define the operator
[·]normalize that maps any vector to a vector with the same
direction but Euclidean norm one.

3.2. Estimation of the Adjacent Segment’s
Orientation
We estimate the orientation of the adjacent segment with respect
to an inertial reference frame by employing a quaternion-based
sensor fusion algorithm that uses strapdown integration of the
angular rates and geodetic accelerometer-based corrections (Seel
and Ruppin, 2017). Note that, while the algorithm is capable
of also performing magnetometer-based corrections, we refrain
from using the magnetometer readings and only fuse gyroscope
and accelerometer measurements.

Denote the raw accelerometer readings of the IMU by AãA
and the raw gyroscope readings by

A
ωA in the coordinate system

of the adjacent segment. Here, ã is the specific force (Titterton
et al., 2004), which is the sum of the linear acceleration a due to
velocity changes and gravitational acceleration. At each sampling
instant t, the sensor fusion algorithm takes AãA(t), AωA(t) and
provides the quaternion A

I
q that describes the orientation of the

segment frameA with respect to the reference frame I .
This orientation estimate has reliable and accurate inclination

components, but the heading is unknown in the following sense:
The reference frame has a vertical z-axis but an arbitrary heading
that depends on the initial orientation of the IMU and the initial
values of the orientation estimation filter. Moreover, that heading
of the reference frame is drifting slowly due to gyroscope bias
and integration drift, which implies that there is an unknown and
slowly drifting heading offset δ between the frames I andR.

In the present contribution, we demonstrate that this missing
heading information can be inferred if the position

R
pE of the

joint in the robotic frame is known. We will estimate the heading
of the adjacent segment by exploiting the kinematic relation
between the acceleration measured by the inertial sensor and the
numerically determined second time derivative of

R
pE.

3.2.1. Joint Acceleration Disagreement
We use the approximately known distance

A
pE between the

IMU and the joint to determine an IMU-based estimate of the
joint acceleration aE in the inertial reference frame. For this
purpose, we first determine the specific force ãE in the A-frame
by accounting for the radial and tangential acceleration due to
rotation around the joint:

AãE = AãA +
(

[AωA]×
)2

ApE + [Aω̇A]× ApE , (1)

where [·]× denotes the cross product matrix, and the time
derivative Aω̇A is determined by numerical differentiation of
the low-pass filtered angular rate (5th-order Butterworth filter
with a cutoff frequency of 2.5Hz). We then use the orientation
quaternion A

I
q to transform the specific force into the inertial

reference frame and to remove the gravitational acceleration to
obtain the acceleration of the joint:

IaE = A
Iq ⊗ AãE ⊗

I
Aq− [0, 0, 9.81]⊺ . (2)

Ideally,
I
aE and the second time derivative

R
p̈E are the same

quantity expressed in different frames (I and R), which only
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differ in their heading. In practice, however, when transforming
both signals into the same frame, we find high frequency
deviations caused by noise and soft-tissue motion. Thus, the best
we can ask for is that they are similar in the sense of a small sum
of squared differences of the low-pass filtered signals (5th-order
Butterworth filter with a cutoff frequency of 0.5Hz).

Denote the unknown heading offset between the framesR and
I by δ(t) ∈ [0, 2π) and recall that it is an unknown but only
slowly drifting angle. For any given value of δ and any moment
in time, we can determine the disagreement d(δ) :[0, 2π) → R

between a given value of
I
aE and a given value of

R
p̈E by

d(δ, IaE,Rp̈E) : =









cos( δ

2 )
0
0

sin( δ

2 )









⊗ IaE ⊗









cos( δ

2 )
0
0

− sin( δ

2 )









− Rp̈E.

(3)

Let the cost function c(δ, t) :[0, 2π)×R
+ → R be the sum of the

squares of this disagreement over a moving window:

c(δ, t) : =
m

∑

k=1

d(δ, IaE(t − kTs),Rp̈E(t − kTs))
2, (4)

where m is the width of the moving window. Finally, define
a grid-based optimization function optdelta(1, t) that takes a
given moment t > mTs and a given set 1 of heading offset
values and returns the value from the grid-set that minimizes the
disagreement over the time window [t −mTs, t]:

optdelta(1, t) = argmin
δ∈1

(

c(δ, t)
)

. (5)

3.2.2. Relative-Heading Estimation
The slowly drifting relative heading δ, and thus the heading
of the adjacent segment in the robotic workspace frame R, is
determined by the following algorithm.

Every 5 s, a time window containing the last 20 s of data is
considered, and that time window is split into five sub-windows
(see Figure 4). For each sub-window, we say that there is no

FIGURE 4 | Example case with five delta updates (blue verticals).

Sub-windows are filled green if enough considerable motion is contained.

Each time window with at least three green sub-windows is marked by a blue

(otherwise red) arrow.

considerable motion if the elbow position
R
pE remains within

a sphere of ten-centimeters diameter throughout the 4 s. If at
least three sub-windows of the considered time window contain
considerable motion, then the entire window is said to contain
enough considerable motion.

Initially, the estimated heading offset δ̂ is undefined. At each
of the first five time windows that contain enough considerable
motion, the estimate is updated by the following two-steps:

δ̃ = optdelta
({

0◦, 5◦, . . . , 355◦
}

, t
)

, (6)

δ̂ = optdelta
({

δ̃ − 5◦, δ̃ − 4◦, . . . , δ̃ + 5◦
}

, t
)

. (7)

At all subsequent time windows that contain enough
considerable motion, the algorithm checks whether the last
five estimates each change by at most 5◦ from one estimate to the
next. As soon as this condition is fulfilled, the algorithm is said
to have converged, and all following estimates are determined in
a one-step update on a reduced grid that is centered around the
estimate δ̂

− of the previous time window:

δ̂ = optdelta
({

δ̂
− − 5◦, δ̂− − 4◦, . . . , δ̂− + 4◦, δ̂− + 5◦

}

, t
)

.

(8)

Obviously, we could likewise use the two-step update for all
time windows with enough considerable motion or we could
switch back to that two-step update whenever consecutive
results of the one-step update are five degrees apart. However,
the experimental results in Section 4.3 will demonstrate that
such extensions would be useless in the sense that they are
never triggered.

The proposed periodic updates provide new estimates of the
heading offset δ̂ every 5 s as long as the adjacent segment moves.
When there is almost no motion, the estimate remains constant.
Note that the method’s accuracy level is directly determined
by the user. With the proposed parametrization, the highest
accuracy that the algorithm can achieve is 1◦, which is more than
sufficient for the present application.

3.3. Estimation of the Joint Angle and
Segment Endpoint Position
We use the estimated heading offset δ̂ between the framesR and
I to determine the orientation A

R
q of the adjacent segment in the

robotic workspace frameR:

I
Rq =











cos( δ̂

2 )
0
0

sin( δ̂

2 )











, (9)

A
Rq = I

Rq⊗ A
Iq . (10)

By assumption, the longitudinal axis xC of the connected segment
is known in the robotic workspace frame R. The joint angle can
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thus be determined as the angle between the longitudinal axes of
both segments:

ϑE,hyb = ∢

(

RxC,
A
Rq⊗ AxA ⊗ R

Aq
)

. (11)

The orientation A
R
q is further used to calculate the position

R
pS

of the endpoint of the adjacent segment from the joint position

R
pE and the segment length lA:

RpS = RpE −
A
Rq⊗ AxAlA ⊗ R

Aq . (12)

For segment lengths of up to half a meter, orientation errors
of 1◦ cause endpoint position errors below 1 cm. Therefore, if
position errors in the range of 1 cm are negligible, then a heading
estimation accuracy level of 1◦ is sufficient.

3.4. Detection of Compensatory Motions
for Biofeedback
In upper-limb rehabilitation, compensatory shoulder motions
lead to an inefficient rehabilitation training and can even have a
harmful effect for the user. The methods proposed above enable
upper arm and shoulder motion tracking by combining end-
effector-based robots that connect to the forearm and a wearable
IMU on the upper arm.

We propose a method that detects whether the user
compensates weakness of affected muscles or joints by trunk or
shoulder girdle motions. Without loss of generality, we consider
a scenario with periodic arm rehabilitation motions, and we aim
at distinguishing the following two cases:

• The proper movement (prop.mov.) in which most of the
motion is realized by shoulder joint and elbow joint motions
and only minor shoulder displacements around a mean of
4 cm occur (cf. Cirstea and Levin, 2000),

• The compensatory movement (comp.mov.) in which the
shoulder and elbow joint remain rather stiff and large portions
of the motion are realized by shoulder girdle or trunkmotions,
which leads to shoulder displacements around amean of 14 cm
(cf. Cirstea and Levin, 2000).

The estimated shoulder position
R
pS is monitored in real-time

whether it leaves a tolerated range. An acceptable region of
±10 cm around the therapeutically desired shoulder position
covers typical variations during proper arm motions (see
Section 4.3). Even healthy subjects sometimes temporarily
exceed this limit. In order to tolerate for such short-time
deviations, we allowed shoulder displacements of more than
±10 cm for up to 20% of an iteration during repetitive
movement training. In applications where such a violation is
unacceptable or undesired, these values could of course be
lowered. Each iteration is examined when it is completed and
detected shoulder displacements are then directly signalized.
Whenever such compensatory motions are detected, the user
is instructed to move back to the nominal shoulder position
and to redo or resume the therapy task. Figure 5 shows
one potential implementation of a visual biofeedback. The
indicator in the lower right corner of the rehabilitation game

FIGURE 5 | Potential realization of a visual biofeedback: (A) rehabilitation

game with an indicator that shows a green circle inside the gray tolerance area

when the movement is proper. (B) Blue circle outside the gray area indicating a

large shoulder displacement. (C) Orange background indicating a large

shoulder displacement for longer than the maximum tolerated duration.

shows the tolerated shoulder position region as a gray circle
in the center. The estimated current shoulder position is
indicated by a smaller circle, which is green during proper
movements and turns blue when it is outside the gray tolerance
area, i.e., when the shoulder displacement is larger than the
preset threshold. If that condition is fulfilled for longer than
a short user-defined duration, which might be chosen as
a percentage of the current cycle duration, the indicator’s
background is highlighted in orange to provide a strong
warning feedback.

4. EXPERIMENTAL VALIDATION

The proposed methods are validated experimentally in a specific
application example of robot-assisted upper-limb rehabilitation.
We first describe the robotic system, then the experimental
procedure, and finally the results.

4.1. The Cable-Based Rehabilitation Robot
We consider the cable-based rehabilitation robot Diego
(Tyromotion GmbH, Austria), which is an active arm weight
compensation and motion support system (Jakob et al., 2018). It
facilitates three-dimensional arm therapies that would otherwise
be impossible for patients with paretic upper limbs or would
require continuous manual support by a therapist. Such motion
support can reduce physical fatigue of the patient and therapist
and can thereby enable longer therapy sessions. The therapy
focus can be on different movements like reaching or lifting or
even on the motion of specific joints. The robot is equipped with
a virtual game environment to further motivate the patient, even
during frequent repetitions of the same movement.

Two retractable ropes are connected to the forearm using
one cuff around the wrist and another cuff close to the elbow,
as depicted in Figure 2. The rope forces are controlled by
independent drives, which also provide measurements of the
length of the ropes. Near the outlet of each rope, a low-
friction spherical shell moves along with the rope and provides
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FIGURE 6 | Illustration of the performed motion with and without compensation movements (comp.mov. and prop.mov.). The optically tracked paths of the three

markers [shoulder (solid), elbow (dashed), hand (dotted)] are highlighted in blue (prop.mov.) and red (comp.mov.). The desired (nominal) shoulder position is depicted

by the green cross. The time labels above the single frames specify the elapsed time since the beginning of the motion cycle.

two-dimensional measurement of the rope deflection angle.
Combining the length and angle measurements yields estimates
of the rope end points, i.e., the forearm cuff positions

R
pW at the

wrist and
R
pP of the proximal cuff, in a robot-fixed coordinate

system. The elbow position in the robotic workspace frame is
calculated by extrapolating the line between both cuff positions
into the elbow joint:

RpE = lp
[

RpP − RpW
]

normalize + RpP , (13)

where lp is the known approximate distance between the
proximal cuff attachment point and the elbow.

It is important to note that these robotic position
measurements are drift-free but provided at a sampling
rate of only 25Hz and susceptible to disturbances by rope
oscillations. These disturbances are significant, since the ropes
are not always taut—especially when the direction of motion
changes suddenly—and small changes of the aforementioned
deflection angles have large effects on the estimated endpoint
position. In previous research, we have demonstrated that
these shortcomings can be overcome by augmenting the robot
with a wearable IMU on the forearm, and highly accurate
measurements of the forearm position and orientation can
be achieved (Passon et al., 2018). In the present work, we
build on this previous result and use the improved forearm
measurements. However, the methods proposed in Section 3

can likewise be applied when direct measurements of the Diego
system or another robotic system are used.

While the Diego system can measure the wrist and elbow
position, it has no means for determining the shoulder position.
Instead the system requires that the nominal shoulder position

R
pnomS is defined at the beginning of each trial. For this purpose,

the therapist positions the patient into the desired upper-body
posture and briefly holds the end of one of the ropes onto
the shoulder joint. Throughout the trial, the robotic system
estimates the upper arm motion using the assumption that the
shoulder remains fixed at the nominal position, as proposed in
previous literature (Dipietro et al., 2007; Rosati et al., 2007).
This implies that the elbow angle is determined according
to (11) but with

R
xA being the normalized vector between

the elbow position and the nominal shoulder position. It is
assumed that the therapist restraints the trunk or shoulder such
that the shoulder position remains constant throughout the
session or that the patient follows the instruction to perform
the exercise without compensatory motion. In the following, we
will compare the results of the conventional literature method
of the non-augmented system with the results of the proposed
hybrid method of the inertial-robotic augmented system. We
will generally consider the case of a proper movement in which
the aforementioned assumptions are fulfilled and the case of
a compensatory movement in which either the fixation is not
accomplished correctly or the patient does not follow the
instruction, i.e., in both cases the shoulder deviates from its
nominal position.

4.2. Experimental Setting and Procedure
The proposed methods for hybrid motion tracking and posture
biofeedback are evaluated in experiments with five healthy
subjects (age of 25–35 years, two female and three male),
hereinafter also termed S1–S5. The performed trials involving
human participants were reviewed and approved by the ethics
committee of the Berlin Chamber of Physicians (Eth-40/15). The
chosen subjects cover a large range of body height (160–192 cm)
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FIGURE 7 | Exemplary data from one complete trial of one subject with colored vertical bands highlighting the time periods of exemplary trials (cf. Figures 8, 9).

(Top/Middle) Distance of the hand (dH0
) and shoulder (dS0

) from their respective initial positions at t = 0, as measured by the optical reference (opt.ref.). While hand

motion is similar, the proper and compensatory movements exhibit clearly different amounts of shoulder motion. (Bottom) The upper arm heading offset (δ) drifts by

more than 180◦ within the 8-min trial.

and upper arm length (28–33 cm). During the trials, each subject
sits on a chair with the right arm connected to the Diego
system as shown in Figure 2. Both ropes of the robotic system

Diego are attached at the forearm and the IMU (MTx
TM

, Xsens,
Netherlands) is fixed on the lateral aspect of the upper arm
(approximately midway along the longitudinal axis). The weight
relief of both ropes is adjusted to 6N to assure tightly stretched
ropes, whichminimizes positionmeasurement errors. A standard
PC (Intelr,CoreTM i5 with four cores) running Linux (Ubuntu
18.04) was utilized to run the software and connect to the devices.
The control algorithms and device interfaces were implemented
in Matlab/Simulink (MATLAB R2017b; MathWorks, USA) and
C/C++ using a modified Linux real-time target to generate
an executable (Sojka and Píša, 2014). Using this setup, the
methods are found to be highly real-time-capable. The real-time-
critical magnetometer-free orientation estimation algorithm part
is definitely able to run at the sampling rate of the sensor (here
100Hz), even on-board the sensor. The most time-consuming
part of the methods is the heading estimation including the joint
acceleration disagreement. This non-real-time-critical procedure
requires about half a second of computation time and must be
executed every 5 s in parallel to the real-time-critical part.

A box-shaped object (suitcase) is placed on a table in
front of the subject at such height that its top surface is
slightly lower than the shoulder. The outer edge of that
surface marks a rectangular path that the right hand should
follow in counterclockwise cyclic motions, as illustrated in
Figure 6. Note that the path is dimensioned and positioned
such that the subject can comfortably perform the motion
by shoulder joint and elbow joint motions, i.e., without
bending the trunk and without considerable displacements
of the shoulder. This ensures that each subject can conduct

both the proper and the compensatory movements as defined
in Section 3.4.

The subjects are asked to perform each of both movements
for time periods of at least two and up to 5min. In the transition
phase between both time periods, the subjects are instructed to
slowly increase the level of compensatory movements and to
accustom themselves to the unnatural motion performance. Both
time periods and the transition phase are indicated in Figure 7,
while the difference between proper and compensatory motion is
illustrated in Figure 6.

A camera (Canon EOS 600D) is positioned above the subject
to obtain reference measurements of positions and angles in the
horizontal plane of the motion. The trials are recorded with a
frame rate of 50 frames per second and a resolution of 1,280 ×

720 pixels. Three adhesive labels (blue filled circle on a bigger
white circle, cf. Figure 6) are affixed on the subject’s arm—one
on the center of the back of the hand, another one on the skin
above the center of the shoulder joint, and a third one close to the
elbow joint but with sufficient distance to the proximal forearm
cuff to assure visibility of the marker from above.

After each trial, the trajectories of the markers are
reconstructed from the recorded video by means of the
open source software Kinovea (https://www.kinovea.org),
and the elbow angle as well as the heading of the upper arm
are calculated using standard vector algebra. This yields an
approximate ground truth, which is hereafter termed optical
reference (opt.ref.).

The robotic workspace coordinate system and the one of the
opt.ref. were initially calibrated and aligned with each other. For
this purpose, the length and width of the suitcase were measured.
The robot’s coordinate systemwas calibrated bymeasurements of
each cable while they were subsequently pulled to all four edges of
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FIGURE 8 | Shoulder motion during a cycle with compensation motion (Compensatory Mov.) and a cycle without this undesired motion (Proper Mov.); (Left):

horizontal-plane trajectories; (Right): x/y-position and measurement error. The proposed method (Hyb.) agrees better with the optical reference (Opt.Ref.) than the

conventional method (Conv.), which assumes a fixed shoulder. The gray band and circle indicate the shoulder position range that is used for compensatory motion

detection.

TABLE 1 | Estimated shoulder position deviations (Euclidean distance) from

opt.ref., medians over all subjects in centimeter.

Type Method Median Probability/Correlation

Proper mov.
Conv. 3.9

}

p = 0.106, r= 0.003
Hyb. 3.7

Compensatory mov.
Conv. 20.1

}

p < 0.001, r= 0.845
Hyb. 4.1

A Welch’s T-test (probability p and Pearson correlation coefficient r) between Conv. and

Hyb. yields no significant effect for prop.mov., but a large effect for comp.mov.

the suitcase. For the opt.ref., the length and width of the suitcase
were adjusted in the software Kinovea. The nominal shoulder
position

R
pnomS of the robot alone, as explained in Section 4.1,

was initially determined by one rope pulled to the shoulder joint
just before each trial. This nominal shoulder position was set as
the origin of both the rob. and opt.ref. coordinate systems.

4.3. Experimental Results
The proposed method for hybrid motion tracking is validated on
recorded data of experimental trials with five subjects as outlined
above. On average they performed prop.mov. for around 4:15min
[3:13 (S2)–5:00 (S4)min] and comp.mov. for around 2:47min
[2:04 (S4)–4:09 (S1)min]. This resulted in an average of 57 [45
(S2)–69 (S1)] prop.mov. cycles and in an average of 33 [16 (S4)–
48 (S1)] comp.mov. cycles. The average cycle time of all five
subjects is 4.6 s for the prop.mov. and 5.4 s for the comp.mov.

The validation results of all five subjects are given in
Figures 10–12 as well as in Tables 1–3. Detailed insights are

provided by plots of exemplary data from S2 shown in Figures 7–
9 as well as in Figure 6.

Figure 7 presents the motion of the hand and shoulder with
respect to the initial position that is defined at time 0. The
figure also depicts the heading offset δ for the entire duration
of the experiment for S2. The hand moved along the same
path throughout the experiment. However, while the shoulder
displacements are mostly below 10 cm for prop.mov., the
shoulder deviates between 10 and 30 cm during the comp.mov.
from the nominal shoulder position. The colored vertical bands
in Figure 7 highlight the time periods of exemplary trials, for
which detailed data is presented in Figures 8, 9. In Figure 6, for
both highlighted time periods, four still images of the camera
system are superimposed, and trajectories of the hand, elbow and
shoulder markers are indicated.

The plot at the bottom of Figure 7 shows that the heading
offset of the magnetometer-free inertial orientation estimation
is drifting at ∼0.5 deg/s during the entire experiment due
to integration of gyroscope bias. This observation is in
good agreement with a-posteriori analysis of the gyroscope
readings during rest, which revealed bias magnitudes of
0.1–0.76 deg/s (average of 0.34 deg/s) for the utilized IMU.
Note that the proposed method does not require initial
rest phases or static gyroscope calibration and that the
aforementioned bias values were only determined for validation
purposes but not removed from the gyroscope readings at
any point.

4.3.1. Shoulder Position Results
The shoulder position is estimated using the upper arm
orientation and the elbow position (see Section 3.4). For one
exemplary trial of both movement types, Figure 8 depicts the
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FIGURE 9 | Elbow angle from a trial with compensatory movement (Compensatory Mov., red) and another without (Proper Mov., blue). The result of the hybrid

method (Hyb.) agrees well with the optical reference (Opt.Ref.), while the conventional method (Conv.) that assumes a constant shoulder position yields clearly larger

errors, especially in the case of comp.mov.

TABLE 2 | Estimated elbow angle errors with respect to opt.ref., median values

over all subjects in degree.

Type Method Median Probability/Correlation

Proper mov.
Conv. 9.3

}

p < 0.001, r= 0.706
Hyb. 2.3

Compensatory mov.
Conv. 16.3

}

p < 0.001, r= 0.724
Hyb. 3.6

A Welch’s T-test (probability p and Pearson correlation coefficient r) between Conv. and

Hyb. yields large effects for both, prop. and comp.mov.

motion in the horizontal plane. The deviation from the opt.ref. is
calculated using the Euclidean norm. The hyb. estimates shown
in Figure 8 agree well with the opt.ref., with median values below
4 cm. The conv.method assumes a fixed shoulder position, which
works adequately for prop.mov. but yields errors above 20 cm
during the depicted comp.mov. cycle. Here, the robot does not
measure any shoulder motion and the resulting conv. errors
reproduce the actually conducted shoulder motion as measured
by the opt.ref. The presented exemplary results are consistent
with the medians over all subjects (see Table 1), which are all
close to 4 cm except for the median of 20.1 cm of the conv.method
during comp.mov.

Figure 10 shows the distributions of the deviations from
the opt.ref. for conventional (conv.) measurements and for the
results of the proposed hybrid (hyb.) methods. The upper whisker
represent the 95th percentile and the lower one the 5th percentile
of all values over time. The inner boxes themselves depict the
quartiles, i.e., the 25th percentile, the median and the 75th
percentile. All time-based medians of the proposed hyb.method
are near or below 5 cm, and all corresponding upper whiskers

stay below 10 cm. The results of the conventional (conv.) method
are comparable for the prop.mov., but reach significantly higher
time-based medians of up to 23.5 cm (S3) and upper-whisker
values up to 32.3 cm (S4) for the comp.mov.Welch’s T-test states
a large effect for comp.mov. (probability p< 0.001 and Pearson
correlation coefficient r = 0.845). No significant effect is stated
for prop.mov. with p = 0.106 and r = 0.003.

4.3.2. Elbow Angle Results
The elbow angles of exemplary motion cycles are shown in
Figure 9. The results, as presented in that figure, of the proposed
hyb.method resemble the opt.ref. signals even during comp.mov.,
and medians below 3◦ are achieved. In contrast, deviations of up
to 20◦ occur with the conv.method even in the prop.mov. cycle,
and the median during the comp.mov. cycle reaches almost 15◦.
These results are consistent with the results over all subjects,
as presented in Table 2 and Figure 11. All time-based median
deviations between the hyb. measurement and the opt.ref. are
near or below 4◦, and the 95th percentiles mostly stay below
10◦. The conv.measurements yield significantly larger time-based
medians in the range of 5.9–18.4◦ and upper whiskers with up
to 48.2◦. Welch’s T-test states large effects for both, prop. and
comp.mov., with p< 0.001 and r > 0.7.

4.3.3. Parameter Sensitivity Analysis
The distance

A
pE of the IMU to the elbow joint, the length

lA of the adjacent segment (here upper arm) and the cutoff
frequency for the determination of the time derivative Aω̇A have
to be manually determined or chosen. We perform a parameter
sensitivity analysis to investigate their impact on the estimated
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FIGURE 10 | Time-based violin plot of estimated shoulder position deviations (Euclidean distance) from the opt.ref., with upper/lower whiskers of the inner box plots

at the 95th/5th percentile of all values over time. Horizontal red lines indicate median values over all subjects.

FIGURE 11 | Time-based violin plot of estimated elbow angle deviations from the opt.ref., with upper/lower whiskers of the inner box plots at the 95th/5th percentile

of all values over time. Horizontal red lines indicate median values over all subjects.

shoulder position and elbow angle. None of these parameters is
particularly sensitive.

The distance
A
pE was chosen as 15 cm, which is

approximately half the average upper arm length of humans;
e.g., Chaffin et al. (2006) recommend 28.1 and 29.8 cm for the
upper arm length of female and male humans, respectively. We
now consider the case in which the assumed and the actual
IMU-to-elbow distance differ by 7.5 cm, and we investigate how
the measurement errors reported in Sections 4.3.1 and 4.3.2 are
affected by this parameter change. The median measurement
deviations increase by 0.06 cm (shoulder position) and 0.21◦

(elbow angle) on average over all subjects. This corresponds
to relative changes of <2% in the median shoulder position
error and <8% in the median elbow angle error. The 95th
percentile errors increase by 0.17 cm and 0.41◦ on average
over all subjects, respectively. This corresponds to relative
changes of <3% in the 95th percentile shoulder position
error and <6% in the 95th percentile elbow angle error. The
corresponding intra-subject changes are reported in detail
in Supplementary Tables 1, 2.

The length lA of the upper arm was measured manually.
We now consider the case in which the measured upper length
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FIGURE 12 | Cycle-based data (medians) from the complete trials of all subjects. (Top) The estimated upper arm heading offset (δ̂) agrees well with the true offset δ

between the upper arm headings of the optical reference and of the uncorrected orientation estimate by the IMU (all as medians of each trial iteration). (Bottom)

Errors of the shoulder position with respect to the opt.ref. as medians of each trial iteration. In the clear majority (91%) of all trials of all subjects, the median error of

the proposed method is smaller than five centimeters, while the conventional method (Conv.) fails to determine adequate shoulder positions during comp.mov. and in

the transition phase. (Right) Corresponding violin plots of the plots on the left excluding the transition phase. Upper/lower whiskers of the inner box plots show the

95th/5th percentiles. Horizontal red lines indicate median values over all subjects.

differ by ±2.5 cm, and we investigate how the measurement
errors are affected by these parameter variations. They have no
impact on the accuracy of the elbow angle results but on the
shoulder position error. We call that this error is defined as
the difference between the hybrid and the opt.ref. displacements
of the shoulder with respect to the nominal position. Since the
considered parameter change also affects the nominal shoulder
position of the hybrid measurement, it does not lead to a direct
offset in the shoulder displacement but has a more indirect
effect. The median measurement errors of the shoulder position
change by 0.05 cm (lA + 2.5 cm) and 0.07 cm (lA − 2.5 cm) on
average over all subjects. This corresponds to relative changes
of <2% in the median shoulder position error. The 95th
percentile errors change by 0.58 and −0.36 cm on average over
all subjects, respectively. This corresponds to relative changes
of <8% in the 95th percentile shoulder position errors. The
corresponding intra-subject changes are reported in detail in
Supplementary Table 3.

The cutoff frequency for the determination of the time
derivativeAω̇A was chosen as 2.5Hz.We now consider variations
of ±1Hz, and we investigate how the measurement errors are
affected by these parameter changes. The median measurement
deviations change by <0.005 cm (cutoff frequency + 1Hz)
and by −0.01 cm (cutoff frequency − 1Hz) for the shoulder
position, and by<0.005◦ (cutoff frequency ± 1Hz) for the elbow
angle on average over all subjects. This corresponds to relative
changes of <1% in the median shoulder position error and <1%
in the median elbow angle error. The 95th percentile errors
change by <0.005 cm and <0.005◦ (cutoff frequency ± 1Hz)

on average over all subjects, respectively. This corresponds to
relative changes of <1% in the 95th percentile shoulder position
errors and <1% in the 95th percentile elbow angle errors. The
corresponding intra-subject changes are reported in detail in
Supplementary Tables 4, 5.

4.3.4. Long-Time Stability Analysis
The cycle-based medians of the shoulder position errors of the
hybrid method and the conventional method with respect to
the opt.ref. are shown in Figure 12. It is evident that the results
of the proposed hyb.method constantly remain around 3–5 cm
and no linear long-time trend is present. This is in line with
the results presented in the violin plot on the bottom right
of Figure 12: the median cycle-based errors between the hyb.
measurement and the opt.ref. stay below 5 cm for all subjects
(95th percentiles between 3.7 and 7.4 cm) and around 4 cm
over all subjects. The conv. measurements yield significantly
larger medians up to 22.6 cm (20.5 cm over all subjects) and
upper whiskers with up to 27.3 cm in the case of comp.mov..
The estimated upper arm heading offset δ̂ is also depicted as
cycle-based medians over all trials of all subjects and reveals
long-time stable estimates of the heading offset with absolute
errors remaining under 5◦ for 90% of the measurements. This
is in line with the results shown in the violin plot on the top
right of Figure 12: the median absolute errors of the estimated
upper arm heading offset stay below 4◦ for all subjects (95th
percentiles between 1.7 and 12.0◦) and the median absolute
errors over all subjects are 1.4 and 2.7◦ for prop.mov. and
comp.mov., respectively.
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TABLE 3 | Table of confusion for real-time detection of compensatory motion from

data of a single motion cycle.

Predicted type

Subject Actual type Prop. Comp.

S1
Prop. 69 0

Comp. 0 48

S2
Prop. 45 0

Comp. 0 40

S3
Prop. 61 0

Comp. 0 31

S4
Prop. 47 0

Comp. 0 16

S5
Prop. 62 0

Comp. 0 28

4.3.5. Compensatory Motion Detection Results
The estimated shoulder position is utilized to detect
compensatory movements, for which biofeedback can be
provided as described in Section 3.4. A tolerated compensatory
shoulder motion range of ±10 cm is shown in the exemplary
plots of Figure 8. The detection algorithm identifies comp.mov.,
i.e., displacements of the shoulder which might be due to a not
correctly fixated patient’s shoulder or that the patient does not
follow the instruction to move with a fixed shoulder position,
when the tolerated shoulder range of ±10 cm is exceeded for
more than 20% of the duration of a trial. Table 3 demonstrates
that all 284 prop.mov. cycles are correctly recognized as proper
and that all 163 comp.mov. cycles are likewise correctly classified,
i.e., all 447 cycles out of 447 cycles are correctly classified.

5. DISCUSSION

The proposed augmentation of end-effector-based robotic
systems leads to considerable improvements in the considered
application scenario of the cable-based upper-limb rehabilitation
robot. It provides accurate shoulder motion measurements in
real time with time-based median measurement errors around
4 cm (all 95th percentiles below 10 cm) as well as real-time elbow
angle measurements with time-based median errors below 4◦

(95th percentiles mostly below 10◦). This is, particularly during
compensatory movements, a significant improvement compared
to the conventional approach of assuming a fixed shoulder
position during end-effector-based therapy (Dipietro et al., 2007;
Rosati et al., 2007). In Section 4.3.4, it is shown that the cycle-
based medians of the shoulder position errors of the proposed
method constantly remain around 3–5 cm (91% are smaller than
5 cm). Thus, the accuracy over one course of the conducted
motion is within the range, which meets the requirements we
defined toward the end of Section 2.

This accuracy is comparable to the results presented by
Bertomeu-Motos et al. (2015a), which uses a magnetometer-
based approach that was shown to depend on unrealistic
or restrictive homogeneity properties of the magnetic field

(Madgwick et al., 2011; Seel and Ruppin, 2017; Salchow-
Hömmen et al., 2019). Such an assumption is known to be
violated if robot components, nearby furniture or objects that
are handled by the subjects contain iron or other ferromagnetic
materials or electronic components. In fact, magnetic fields
inside buildings are so inhomogeneous that their patterns can
be analyzed for indoor localization and mapping (Le Grand and
Thrun, 2012; Subbu et al., 2013; Shu et al., 2015). For this reason
magnetometers do not provide reliable heading information for
robust motion tracking in indoor environments. The fact that
the methods proposed in Section 3 are magnetometer-free makes
them highly suitable for indoor applications and realistic robotic
environments. Long-time stability of the estimated positions and
orientations is achieved, and the proposed methods are highly
real-time-capable as described above. The combination of these
properties defines the novelty of the current approach with
respect to previous methods. One previous method (Wittmann
et al., 2019) exploits the patterns of the magnetic field in
indoor environments and only relies on IMUs. It provides
accurate estimates of the arm motion, however it requires the
user to rest in-between the therapy session to re-correct the
magnetometer-based drift. In contrast, the proposed method
is magnetometer-free and does not need that the user rests at
any time. Additionally, applied rehabilitation robots modify the
magnetic field due to their ferromagnetic materials, which will
influence the accuracy of the method by Wittmann et al. (2019).
Furthermore, the proposed approach provides the shoulder joint
position in the robotic coordinate system, which cannot be
provided by algorithms that do not include measurements of the
robot. This is also the case for other methods providing accurate
estimates of the arm orientation solely based on IMUs (Kok
et al., 2014). The latter approach by Kok et al. (2014) is even
magnetometer-free, however it cannot directly be implemented
in real-time. The proposed method of the current article is novel
in the sense that it provides long-time stable, magnetometer-free,
and real-time estimates of the orientation of the adjacent segment
and the endpoint of that segment, e.g., shoulder position, in the
robotic coordinate frame.

Although all motions are performed in a horizontal plane,
the two-dimensional optical motion tracking yields only an
approximate ground truth. In preliminary trials, we investigated
the variance of the distance between the elbow and shoulder
marker. This distance, which should ideally be constant, has been
found to have standard deviations between at least 0.7 cm (S2)
and at most 1.2 cm (S3) around their mean value. We conclude
that this approximate ground truth is sufficiently precise for the
desired proof of concept.

Limitations of the validation are that healthy subjects
performed the motions and that the accuracy of the approximate
optical ground truth does not achieve the same level as
the golden standard of marker-based stereophotogrammetric
tracking systems, which is mainly due to the horizontal
projection, distortions by the camera lens symmetry, and
marker displacement caused by skin and muscle motion. As
mentioned above, the resulting inaccuracies of the camera-
based reference measurements are below 5 cm, which is small
enough for the present proof-of-concept study but not small
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enough to decide whether the proposed method yields accuracies
below state-of-the-art results. Furthermore, a limitation of the
proposed methods is the number of parameters and that their
ideal choice is not yet clear. However, first investigations, as
described in Section 4.3.3, revealed that their sensitivity against
changes is not severe. Variations of the cutoff frequency of
±1Hz cause only negligible changes in the range of 1% in
the measurement accuracy. The sensitivity of the measurement
errors to displacements of the IMU seems acceptable in practice
if the user places the sensor within a 15 cm (±7.5 cm) wide area
around the middle of the upper arm; even a distance of 7.5 cm
between assumed and actual position causes error increases
below 8% of the original error. To interpret the sensitivity of the
proposed methods against inexact upper-arm lengths, consider a
1.50 and a 1.90m tall subject with average upper-arm lengths of
27.9 and 35.3 cm, respectively Winter (2005). Even if one simply
uses the proposed 30 cm for both subjects, themeasurement error
increase can be expected to stay below 5% in both cases. In
sum, the proposed methods are not very sensitive against these
parameters and they can be used with the proposed values in
practice without jeopardizing the measurement accuracy.

It is worth noting that the proposed methods can be
extended to cases in which the motion of more segments
than only the directly adjacent body segment is of interest.
For example, if the foot is connected to an end-effector-based
robotic system, then we might want to track the motion of
the shin and the thigh. In such a case, the proposed method
can be used with an IMU on the shin to track the knee
position. This knee position estimate might then be used
to apply the method again with an IMU on the thigh and
determine the hip joint position. While the feasibility of such
a cascaded approach follows directly from the properties of
the proposed methods, further research is needed to investigate
which levels of accuracy can be achieved in practice and also
which performance is achieved by the proposedmethods in other
application scenarios.

As mentioned in Section 1, preventing compensation during
rehabilitation training improves the therapy outcome and
decreases long-term problems, such as pain, orthopedic illnesses
and learned non-use (Levin et al., 2009). One possibility to avoid
compensation are trunk and shoulder girdle restraints. Their
effects are discussed diversely in the literature. For example, 5 of 8
studies named by Greisberger et al. (2016) showed improvements
of arm motion recovery, whereas one of the included studies
states auditory feedback as more effective on movement patterns
directly after training, and the other two studies did not reveal
any effect. In conclusion, Greisberger et al. (2016) considered
the magnitude of change of the observed improvements as
not consistently clinically relevant. Indisputably there is an
additional donning and doffing effort, as well as a restriction
of natural trunk and shoulder girdle motion, which can also
be seen in healthy people performing arm movements. These
disadvantages can be avoided by using real-time biofeedback.
In contrast to trunk and shoulder restraint, biofeedback can
be adapted to the needs of the individual, e.g., in the case of
progress (Valdés and der Loos, 2017). Furthermore, indications
suggest that improvements are rather maintained after feedback
that is only provided when it is needed than after training

with concurrent physical guidance (Schmidt and Lee, 2014).
One possibility to detect compensation motion would be the
additional use of more IMUs as, e.g., on the torso. However,
the tracking of the trunk or shoulder position is severely limited
due to the occurring position drift. It is, of course, possible to
detect inclination changes, but translational motion of the trunk
without bending the torso would not be detectable nor drift-free
estimable. To detect motions of the shoulder girdle, even more
IMUs and thus more donning and doffing would be required.
Using only one IMU and the already available measurements
of the robot, as proposed here, reduces the hardware effort
and provides a drift-free and accurate tracking of the shoulder
position, that can be utilized to detect compensation motion of
the trunk and shoulder. In sum, the natural trunk and shoulder
motion is not restricted with the proposed solution, while still
the full monitoring of compensatory movements is possible
facilitating biofeedback when needed. Cirstea and Levin (2000)
found mean shoulder displacements of 14 cm for moderate to
severe impaired stroke subjects and around 4 cm for healthy
participants. Valdés and der Loos (2017) stated 3 cm of shoulder-
spine motion as physiological movements. The experimental
results in Section 4.3 show that the proposed method can
reliably distinguish between small shoulder displacements and
shoulder displacements of more than 10 cm that are performed
to compensate reduced motion in other joints. The proposed
and applied toleration of range violations for up to 20% of the
trial duration can of course be replaced by a tolerated time
period in case of non-repetitive motions. In our case, the 20%
of the trial duration equated to a time period of one second,
which would have leaded to the same perfect classification results.
It is, of course, necessary to determine the appropriate degree
of compensatory motion detection in clinical use, individually
for the desired therapy application and setting, i.e., when is a
biofeedback helpful and not useless or annoying.

6. CONCLUSIONS

End-effector-based rehabilitation robots offer motion support
with fast and easy robot-to-patient setup and adjustment. This
advantage is, however, achieved at the cost of a reduced
amount and accuracy of motion measurement information. A
conventional solution is to rely on a fixed shoulder position
assumption (Dipietro et al., 2007; Rosati et al., 2007). We
demonstrated that these limitations can be overcome by a hybrid
system design that uses wearable inertial sensors and real-time
sensor fusion methods without requiring a clear line-of-sight
and thus overcomes a major restriction in depth-camera-based
designs. The proposed approach accurately tracks the motion
of a body segment that is adjacent to the robot-connected body
segment. It assures long-time stability and complete immunity
to magnetic disturbances, which are common in indoor
applications and robotic environments. The generalizability and
the transfer of the proposed method’s benefits to other kinematic
chains and application scenarios are expected but cannot be
guaranteed from the investigated particular setup. Consequently,
this has to be investigated and demonstrated in future work.

We demonstrated that the method can be used to infer
real-time estimates of the complete orientation of the upper

Frontiers in Robotics and AI | www.frontiersin.org 16 November 2020 | Volume 7 | Article 554639

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Passon et al. Inertial-Robotic Motion Tracking

arm and the shoulder position in the robotic frame. This
enables the detection of undesirable compensatory trunk and
shoulder motions in upper-limb rehabilitation training and thus
facilitates real-time biofeedback, which is expected to improve
active involvement and therapy outcome (Levin et al., 2009).
Clinical validation in neurological patients will be subject of
future research. Simultaneously, it will be investigated if the
hybrid system can be utilized for feedback-controlled Functional
Electrical Stimulation (FES) and what its impact on such
solutions is.

Beyond the proposed methods, we believe that the general
approach of augmenting easy to setup end-effector-based robotic
systems with wearable sensors is promising and might provide
additional advantages over existing solutions in a range of
application scenarios, in which accurate real-time motion
tracking is required to realize feedback control, objective motion
assessment or biofeedback.
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