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This paper describes a portable, prosthetic control system and the first at-home use

of a multi-degree-of-freedom, proportionally controlled bionic arm. The system uses a

modified Kalman filter to provide 6 degree-of-freedom, real-time, proportional control.

We describe (a) how the system trains motor control algorithms for use with an advanced

bionic arm, and (b) the system’s ability to record an unprecedented and comprehensive

dataset of EMG, hand positions and force sensor values. Intact participants and

a transradial amputee used the system to perform activities-of-daily-living, including

bi-manual tasks, in the lab and at home. This technology enables at-home

dexterous bionic arm use, and provides a high-temporal resolution description of daily

use—essential information to determine clinical relevance and improve future research

for advanced bionic arms.

Keywords: bionic arm, myoelectric prostheses, proportional control, Kalman filter, take-home

INTRODUCTION

Electromyography (EMG) from the residual forearm has been used to control commercially
available and research-grade prosthetic arms (Kuiken et al., 2016; Hargrove et al., 2017; Ottobock,
2017; Touch Bionics Inc, 2017; Wendelken et al., 2017; George et al., 2018; Page et al., 2018; Perry
et al., 2018; Mobius Bionics, 2020). Although research has demonstrated proportional control of
multiple, independent degrees of freedom (DOFs) (Davis et al., 2016; George et al., 2018; Page et al.,
2018), commercially available prostheses still suffer from a variety of limitations (Biddiss and Chau,
2007), including limited number of pre-determined grips (Touch Bionics Inc, 2017), temporal delay
due to sequential inputs used to select grips (Ottobock, 2017; Mobius Bionics, 2020), fixed output
force (e.g., from traditional classifier algorithms) (Resnik et al., 2018a), extensive training that lasts
days to weeks (Resnik et al., 2017, 2018a, 2019), and non-intuitive methods of control [e.g., inertial
measurement units (IMUs) on residual limb or feet] (Resnik et al., 2018b; Mobius Bionics, 2020).

Dexterous control of multiple DOFs, and the training associated with them, are not always
amenable to deployment on portable systems with limited computational power, and as a result
only a few pattern-recognition (i.e., classifiers) (Kuiken et al., 2016; Resnik et al., 2017; Mastinu
et al., 2018; Simon et al., 2019) or direct control algorithms have been studied at home (Pasquina
et al., 2015; Simon et al., 2019). A Kalman filter (Wu et al., 2006), modified with non-linear, ad-hoc
adjustments (George et al., 2019a; Nieveen et al., in review) can provide a computationally efficient
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approach (George et al., 2020c) to study proportionally
and independently controlled multi-DOF prostheses at home.
Proportional control algorithms enable realistic and life-like
prosthetic control and can induce device embodiment in
transradial amputees (Page et al., 2018).

High temporal resolution of the position and forces applied
to the prosthesis is necessary to describe the interactive and
refined movements made possible with proportionally controlled
prostheses. These data are also necessary to describe key
aspects of actual prosthesis use: revealing when objects were
manipulated; whethermovements were performed unilaterally or
bilaterally (for bilateral amputees); which grasps were preferred;
how often each DOF was used; and when new inter-digit
collaborative movements were employed.

Preliminary at-home use of this portable, prosthetic control
system, capable of providing six-DOF, real-time, proportional
control was published previously (George et al., 2019a). Here we
describe the portable system and the tasks completed at home
in greater detail, including how the modified Kalman filter is
trained and implemented on the portable system, as well as the
system’s ability to record an unprecedented dataset of EMG, hand
positions, and force sensor values. This technology constitutes an
important step toward the commercialization of dexterous bionic
arms by demonstrating at-home use and the ability to record
prosthesis use with high temporal resolution.

MATERIALS AND METHODS

Design Considerations
A portable take-home system designed to research advanced
bionic arms should meet several criteria for optimal performance
and data collection: (a) the systemmust accurately and efficiently
control the prosthesis; (b) training of the control algorithm must
not be too long or burdensome to prevent its daily use—and thus
should include the ability to quickly load a previously trained
control algorithm; (c) high-temporal-resolution data should be
stored automatically so that researchers can study at-home use
without influencing the users with in-person observation; and
(d) the system must be easy to use and allow the user to adjust
control preferences.

Accurate and Efficient Control
For accurate and efficient control, the system must be able to
record EMG from the residual forearm, predict new kinematic
positions, and send those positions to the prosthesis quickly with
minimal or no perceived delay between the intention tomove and
the movement itself. Previous work in our lab has demonstrated
responsive control of prostheses at update cycles of 33ms (30Hz)
using a modified Kalman filter (Wendelken et al., 2017; George
et al., 2018; Page et al., 2018; Kluger et al., 2019). The goal of this
work was to implement these algorithms on a portable computer
and provide position updates with minimal delay between the
user intent (muscle activation) and the prosthesis movement. We
have shown that updates at 33ms provide responsive control and
lead to embodiment of the physical prosthesis (Page et al., 2018).
Updates at this speed are also within the optimal controller delay
for prosthesis control (Farrell and Weir, 2007).

Fast Training for Daily Use
For daily use, training of the control algorithm should be intuitive
and fast. The time required to train a control algorithm includes
data collection while the participant mimics preprogrammed
movements of the prosthesis (George et al., 2020d), and training
of the control algorithm itself (e.g., training the modified Kalman
filter matrices). When training, or retraining, is required, it
should be as fast as possible to minimize the setup time prior to
use. Lengthy setup and training could make advanced prostheses
burdensome to incorporate into daily life and prevent their
acceptance among amputees. The system should also allow
reloading of a previously trained control algorithm on demand.

Comprehensive Record of Unsupervised Arm Use
A common approach to measure prosthesis use is to place
IMUs on the prosthesis and record movement acceleration and
angular velocity (Hargrove et al., 2017; Resnik et al., 2017, 2018b;
Graczyk et al., 2018). However, this approach fails to discriminate
between gross movements from the residual limb and actual
movement of the prosthesis’s hand and wrist. Video collection
via body cameras can be used to record actual prosthesis use
and other metrics (such as compensation strategies), but require
storage of large video files and time-intensive post-hoc analyses
(Spiers et al., 2017). Furthermore, the presence of a video camera
reminds study participants they are being watched even though
lab personnel are not physically present. However, with a portable
system, prosthesis use at home can be studied by recording
every movement for each DOF. By also recording the force
applied to DOFs, interactive prosthesis use can be discerned
from passive arm movements, such as those that might occur
during walking or exploratory hand movements that are not
functionally directed. Beyond describing total prosthesis use,
this rich dataset can reveal detailed, refined movements and
collaborative interactions between DOFs—including the force
applied with each movement.

User-Friendly Control Adjustments
Finally, a prosthetic control system should be easy to use and
allow adjustments to fit unique preferences. This includes a quick
and simple approach to turn the system on, train the control
algorithm and load a previously trained control algorithm.
Control adjustments could also include flexibility to lock a DOF
during dexterous tasks to prevent unwanted movements—for
example locking the thumb and solely using the index finger
could provide a more stable pinch. In addition, feedback from
participants in our lab suggest the system should also provide
users flexibility to operate specific DOFs (e.g., wrist) in a velocity-
control mode (Kluger, 2019).

Hardware and Signal Acquisition
The components of the portable system are shown in
Figure 1. The DEKA LUKE Arm (DEKA; Manchester NH,
USA) has 6 DOFs including thumb (D1) adduction/abduction;
D1 flexion/extension; index (D2) flexion/extension; coupled
middle, ring, and pinky (D3–D5) flexion/extension; wrist
flexion/extension, which also includes a slight radial and ulnar
deviation, respectively; and wrist pronation/supination. It also
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FIGURE 1 | Portable take-home system for dexterous prosthetic control. The Ripple front-end acquires, filters, and amplifies EMG (at 1 kHz) to estimate motor intent

using a modified Kalman filter with the battery powered Nomad neural interface processor. Communication occurs using a CAN protocol with the DEKA LUKE Arm to

send commanded movements to the arm (at 30Hz) and receive back the actual kinematic positions for six DOFs and the forces from 13 sensors (nine torque sensors,

four pressure sensors at 30Hz).

has 19 sensors: six that report the position of each DOF and 13
that report the forces on each digit—including four directions on
D1, two on the D2, and one on each of D3, D4, and D5—and
on the lateral, dorsal, and palmar (distal and proximal) aspects of
the hand. The prosthesis itself records the aggregated use (i.e.,
time) within bins of movement velocity and electrical current
draw for each DOF. It also records the total time each sensor
experienced various forces (ten bins from zero to amax of 25.5N)
and the total time each DOF spent in various positions (ten bins
across range of motion, which varies by DOF). We designed a
custom python socket so that our compiled algorithms could
communicate with and store data from the DEKA LUKE Arm’s
CAN-BUS interface (at 30 Hz).

For the prosthetic control algorithm and data storage we used
the Nomad neural interface processor (Ripple Neuro; Salt Lake
City, UT, USA) for several reasons: an external, exchangeable
battery provides up to 4 h of power; wireless communication to
external devices; 500 GB of hard disk storage; and up to 512
channels for data acquisition and stimulation. We modified the
Ripple firmware provided with the Nomad so that our compiled
control algorithms could directly: acquire, filter and store EMG
(1 kHz); start and stop via external buttons; and communicate
over WiFi with external devices (TCP socket). Using a front-
end amplifier (Figure 1; Ripple Neuro, Salt Lake City, UT, USA)
we filtered (15 to 375Hz bandpass; 60/120/180Hz notch) the
implanted EMG (iEMG) or surface EMG (sEMG, both were
sampled at 1 kHz). sEMG in intact participants was recorded
with a Micro + Stim front-end (Ripple Neuro, Salt Lake City,
UT, USA), and iEMG in the amputee participant was recorded

with an active gator front end (Ripple Neuro, Salt Lake City,
UT, USA). The Nomad runs Linux 8 (jessie) environment with
an Intel R© CeleronTM processor (CPU N2930) at 1.83 GHz with
2-GB RAM. Control algorithms were converted to C using
MATLAB R© Coder and compiled for stand-alone use on the
portable Nomad.

EMG Feature Calculation and Decoding of
Motor Intent
Training the prosthetic control algorithm [i.e., modified Kalman
filter (George et al., 2019a)] first requires the user to mimic
preprogrammedmovements of the prosthesis as it cycles through
several movement trials for each DOF (Figure 2C; George
et al., 2020d). Features were then calculated for each differential
EMG pair (496 total pairs from 32 single-ended electrodes,
Figure 2D) by taking the mean-absolute value of a moving
300-ms window (Figure 2E). Using the kinematic positions and
the EMG features, the portable computer chose 48 optimal
features using the Gram-Schmidt forward-selection algorithm
(Efron et al., 2004; Hwang et al., 2014; Nieveen et al., 2017) and
computed the Kalman filter matrices (Wu et al., 2006). Forty-
eight channels were used because, anecdotally, that number
had consistently provided good control for in-lab experiments
using our desktop system. Nieveen et al. suggests that a small
improvement in performance could be achieved with a few more
channels (e.g., 55), although this number will vary by participant
and training session (Nieveen et al., 2017). Increasing the number
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FIGURE 2 | (A) X-ray of the elbow and residual forearm of a transradial amputee implanted with implanted three Utah Slanted Electrode Arrays (USEAs) and (B) 32

single-ended EMG leads (iEMG) and reference and ground. (C) The amputee mimics preprogrammed movements of the prosthesis (kinematics) while the portable

Nomad system records iEMG voltage signals. (D) A representative iEMG channel that is active primarily during extension of the index finger. (E) A representative

feature [mean absolute value of the iEMG channel in (D)] that is used to train the prosthetic control algorithm. Implanted Utah Slanted Electrode Arrays (USEAs) were

not used with the portable system, but could be incorporated in future versions.

of channels will also increase the control algorithm training and
prediction times.

The Kalman filter presented by Wu et al. (2006) was modified
to improve stability and reduce the effort required to sustain
grasping movements by using an ad-hoc latching filter (Nieveen
et al., in review). External, ad-hoc thresholds were also then
applied as follows and as previously described in George et al.
(2020a):

x̂mod=

{

x̂new·G−T
1−T when x̂new≥ T

0 when x̂new< T
(1)

where x̂new is the output from the Kalman filter (defined to exist
between −1 and +1), x̂mod is the output with the modifications
applied, G is the gain (set to 1), and T is the threshold (set to 0.2
for all DOFs). This equation is for the positive direction of each
DOF (e.g., flexion, abduction, pronation); a similar equation that
preserves the sign and directionality for the negative direction
was applied accordingly. Note that the non-modified output
(x̂new) is fed recursively back to the Kalman filter to preserve
stability while the modified output is only used to control
prosthetic arm. In equation (1), x̂mod is normalized to 0 to +1
(or−1, if in the negative direction) using the ′1− T′ divisor.

Human Subjects
In this manuscript, one amputee and two intact participants used
the portable system. All participants used the system in the lab,

but only the amputee and one of the intact participants used the
system, under supervision, at home.

Transradial Amputee
For the amputee, eight iEMG leads (Ripple Neuro; Salt Lake
City, Utah, USA) with four electrodes each, and a ninth lead
with an electrical reference and ground, were implanted in
lower-arm extensor and flexor muscles as described previously
(George et al., 2019a; Figures 2A,B). The electrode connector
exited through a percutaneous incision and mated with an active
gator connector (Figure 2A; Ripple Neuro; Salt Lake City, Utah,
USA). This participant also had Utah Slanted Electrode Arrays
implanted in the median and ulnar nerves but these devices were
not used with the portable system. Surgical details have been
previously described (Wendelken et al., 2017; George et al., 2018,
2019a; Page et al., 2018).

Intact Participants
Intact individuals were able to use the portable system with a 3D
printed, custom-made bypass socket (Paskett et al., 2019) and a
custom-made neoprene sleeve with 32 sEMG electrodes, plus one
reference and one ground (George et al., 2020b). Inexpensive,
stainless steel-coated, marine grade, brass snaps were crimped
into the neoprene to serve as dry electrodes and soldered to
flexible wire for easy connection via a SAMTEC connector. The
electrodes were roughly evenly spaced over flexor and extensor
forearm muscles, about half on the flexors, and half on the
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extensors (covering about 8 inches distal to the elbow). Precise
placement was not a concern as we relied on the Gram–Schmidt
forward selection algorithm to choose the 48 most informative
bipolar pairs for the motor decode algorithm (see section EMG
feature calculation and decoding of motor intent).

As described previously (Paskett et al., 2019), the bypass
socket is an open source device which suspends a prosthetic arm
beneath the intact arm of the healthy volunteer and provides
adequate range-of-motion so that the healthy volunteer can
perform activities of daily living with an upper-limb prosthesis.
The bypass socket was designed so that the electrode sleeve
could be pulled up onto the forearm, locating the 32 recording
electrodes over the extrinsic flexor and extensor hand muscles
and the reference and ground electrodes over the ulna, about
2 cm distal to the elbow.

All experiments and procedures were performed with
approval from the University of Utah Institutional Review Board.

RESULTS

EMG Recordings Are Consistent Across
Desktop and Portable Systems
To ensure that the EMG was stored correctly on the Nomad,
we concurrently recorded EMG with the portable system and
a laboratory desktop system in one intact participant while
the participant completed a training session (394 s in length).
The correlation coefficient was calculated after concatenating
the sEMG data from all 32 recorded channels. As expected,
concurrent recordings of sEMG on the portable and desktop
systems were highly correlated (ρ = 0.95; p < 0.001) and the
sEMG features (mean-absolute value sEMG data with a 300-
ms window) were nearly identical between the two systems (ρ
= 0.99; p < 0.001). Due to slight variation in clock speeds,

a temporal delay was observed (about 100 ps/sample) which
reduced the correlation coefficient. However, the correlation of
the sEMG features suggests functional equivalency between the
two recording systems.

Portable System Offers a Simple User
Interface and Customizable Control
Options
Three external buttons were employed to create a simple user-
friendly interface. Pressing the first button initiated a new
training session, which automatically granted control of the
prosthesis to the user once training was complete (Figure 3A,
see also Supplementary Video 1). The second button initiated a
previously trained and compiled control algorithm (if available),
so that the user could have on-demand control of the prosthesis.
Finally, sequential inputs on a third button was used to toggle
between position or velocity control modes or to freeze a DOF at
a desired position.

Portable System Can Be Trained Rapidly
Using Steady-State Modified Kalman Filter
The system was trained in 7.5 min—including the time needed
to collect the training data (4.2min) and the subsequent channel
selection and computation of the modified Kalman filter matrices
(about 3.3min) (Table 1). Timing data for Table 1 were recorded
during training and testing with one intact participant in the
lab. Because training data and the corresponding Kalman filter
matrices have the same dimensions regardless of the user, the
times listed in Table 1 are universal. Loop speeds were calculated
as the average over a 16.5 second window (500 samples) while
the user actively controlled the prosthesis. Training data included
four trials of flexion and extension for D1, D2, D3/D4/D5,
and the wrist; D1 adduction and abduction; wrist pronation

FIGURE 3 | Training the prosthetic control algorithm with the portable system. (A) The user [shown here as an intact subject using a bypass socket (Paskett et al.,

2019) to support the LUKE Arm] presses a button on the Nomad to start the training sequence, and then mimics the prosthesis while the Nomad cycles through each

of six DOFs—(B,C) show D1 adduction and D2 flexion, respectively.
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TABLE 1 | Computational times required for training and testing (running) the

steady-state, modified Kalman filter on the portable system.

Process Computation time

Training

Data collection 252 s

Channel selection 198 s

Train steady state Kalman filter 0.7 s

Total Time 7.5 min

Testing

Update positions 0.7 ms

and supination; and grasping and extending all digits together
(Figures 3B,C, see also Supplementary Video 1). The trained
modified Kalman filter was automatically saved to a log file
and could be recompiled onto the Nomad as a stand-alone
application for on-demand use (e.g., the second external button).
This was accomplished over the Nomad’s wireless network using
a laptop and required <30 s.

Prior to use, the steady-state modified Kalman gain matrix
(K) was calculated by iteratively running the filter until the
fluctuations in each value of the gain matrix were <1 × 10−6,
reaching steady state after about 25ms. With the gain (K), the
observation (H) and the state-transition (A) matrices, a steady
state matrix (Ŵ) was then calculated:

Ŵ = A− K∗H∗A (2)

Thus, new position predictions (x̂new) were calculated with
only two matrix multiplications involving the previous positions
(x̂previous) and 48 EMG features (z):

x̂new= Ŵ∗x̂previous+K∗z (3)

This simplification avoided a computationally expensive matrix
inversion required by the recursive algorithm. Consequently, the
time required to predict new positions and update the prosthesis
was on average <1ms, far below the update loop speed of 33ms
(Table 1). If the user desires, a velocity control mode for any
DOF can also be provided using the position output from the
Kalman filter (x̂new):

x̂velocity= x̂velocity+x̂new
∗1t∗γ (4)

where 1t is the loop speed (33ms) and γ a dampening factor
(set to 0.95). In our previous experiments, some amputee subjects
have preferred specific DOFs, such as wrist rotation or wrist
flexion, to operate in velocity mode (Kluger, 2019).

Portable System Can Be Used at Home to
Complete Various Activities of Daily Living
The portable system was used by both intact participants to
perform arm dexterity tests and activities of daily living in the

FIGURE 4 | After the motor control algorithm was trained, intact participants

used the portable system with a bypass socket in the lab to perform (A) an

arm dexterity test and activities of daily living: (B) opening a jar; (C) pouring

motion; and (D) using a smart phone.

lab (Figure 4), as well as by one intact participant to perform
two-handed tasks at home (Figure 5). One transradial amputee
used the system at home, under staff supervision, to perform
tasks of his choosing, some of which were not possible with his
commercial prosthesis (Table 2 and Figure 6).Table 2 shows that
the most common movements used were grasp (D1–D5 flexion)
and pinch (D1 and D2 flexion) in combination with the wrist
movements. Several successfully completed tasks were not listed
in Table 2 because of similarity to other tasks (e.g., picking up
another dog toy, pill bottle, TV remote, or a potato from the
pantry; or turning on exterior faucet).

Rich Dataset From Portable System
Reveals Novel Information About
Prosthesis Use
EMG (sampled at 1 kHz), kinematic positions and forces applied
to the prosthesis (both sampled at 30Hz) were stored on the
Nomad while a transradial amputee grasped, held and released
an orange (Figure 7; see also Supplementary Video 4). Three
phases of movement were clearly identified: preparing to grasp
(when the index finger is near full extension); grasping (where
the algorithm predicted the finger to be near full flexion but the
orange restricted the actual position to about the rest position,
which resulted in a dramatic increase in force); and releasing the
orange (where the finger extended toward near full extension).

Data are saved at a rate of 250 MB/h in an ‘.hd5’ format. As
a result, the 500 GB capacity of the Nomad can record nearly
2,000 h of arm use.

DISCUSSION

We have described a portable, prosthetic control system
and the first at-home use of a multi-degree-of-freedom,
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FIGURE 5 | Two-handed activities of daily living at home using a bypass socket and the portable system: (A) using scissors; (B) donning a sock; and (C) folding a

towel.

TABLE 2 | List of tasks chosen by the amputee to attempt at home using the portable system.

Task Completion time Detailed description

Successful

Lock front door (dead-bolt)† 13 s Used grasp (D1–D5 flexion) to grab and pull the door toward him so the bolt lined up and could be locked using

intact arm

Open front door 7 s Used grasp to pull down on the handle and to pull door open

Open refrigerator and retrieve

water bottle

25 s Used grasp and wrist flexion/extension to open refrigerator, grasp water bottle, and transfer to intact arm

Open oven door 16 s Used grasp and wrist flexion/extension to grab the handle, open, and then shut the door

Turn on bathroom faucet 29 s Used both grasp and pinch (D1 and D2 flexion) while turning faucet with gross arm movement

Open cabinet doors 22 s Used precise pinch and wrist flexion/extension to grab small handles and pull doors open (2 doors)

Pick up dog toy 8 s Used grasp and wrist flexion/extension to pick up a dog toy, and hold it for dog to bite

Put on shoe
†

22 s Used grasp and wrist flexion to hold shoe tongue while donning shoe held with the intact arm. Included a release

and readjustment of the grip on the shoe tongue

Move garbage can 9 s Used grasp and wrist flexion/extension to grasp the garbage can handle and move it about 10 feet

Check for mail at box 8 s Used pinch and wrist extend to open mail box (as if he were to put/take mail) and then close with intact arm

Failed

Input garage code on key pad NA This task required a pointed finger position (D2 extended; D1, D3, D4, and D5 flexed) which, was not included in

the training. The amputee could make the motion; however, it was not stable enough to successfully complete task

Turn on push button oven light NA This task required a pointed finger position (D2 extended; D1, D3, D4, and D5 flexed) which was not included in

the training. Amputee could make the motion; however, it was not stable enough to successfully complete task

†Denotes a task where amputee used the prosthesis and their intact hand simultaneously.

proportionally controlled bionic arm. The system uses a
modified Kalman filter to provide real-time, proportional
control—including independent, and simultaneous movement—
across 6 DOFs. We have shown that the modified Kalman
filter can be trained in 7.5min using the Nomad, a
portable electrophysiological recording system equipped
with an ordinary processor. In addition, the time needed
to acquire EMG and compute and update the prosthetic
arm positions was <1ms on average—far below the 33ms
update cycle—and provided real-time movement updates for
the users.

The portable system also stores EMG, position and force data
with unprecedented temporal resolution. This comprehensive
dataset will be crucial for fully understanding how proportional
control algorithms are used during unsupervised at-home use.
Because of the Nomad’s large storage capacity and USB and
Bluetooth connections it could also be configured to collect and
store other types of data (e.g., video, bilateral arm use with IMUs).

To study at-home prosthetic use, previous take-home systems
have stored limited usage data, including the time the device
was turned on (Graczyk et al., 2018; Simon et al., 2019),
aggregated hand movement (Simon et al., 2019), how often
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FIGURE 6 | Transradial amputee performed supervised activities of daily living,

of his own choice, at home using the portable take-home system. Images

show the participant (A) turning faucet in the bathroom; (B) locking the

dead-bolt on the front door; a bi-manual task not possible with his commercial

prosthesis; (C) opening the mail box; and (D) retrieving water from the

refrigerator.

specific predefined grasps were used (Kuiken et al., 2016;
Hargrove et al., 2017; Simon et al., 2019) or force applied to a
limited number of sensors on the hand (Graczyk et al., 2018).
Although these approaches may be sufficient for less refined
control algorithms, to fully understand how proportional control
is used, both high-temporal-resolution kinematic and force data
for each DOF are necessary.

The example in Figure 7 highlights how the comprehensive
data recorded reveals complex interactions between the various
DOFs with proportional control. The stable D2 kinematics
implies that the amputee held the orange with a fixed grasp from
pick up to release; however, the force data revealed a dip in
force during this same period. Close inspection of the kinematics
from the opposing D1 also shows that a subtle readjustment
occurred to improve the grasp stability (this can be seen in

Supplementary Video 4). These refined movements are possible
because of proportional control algorithms. Because DOFs are
coupled together during object manipulation, the connection
between each DOF must be considered.

Rich datasets like this will help researchers and clinicians
study at-home, unsupervised use; improve prosthetic control
algorithms, and training paradigms (George et al., 2018) by
understanding the types of grasps and DOFs commonly used;
understand when mastery of prosthesis control occurs and when
interventions might be applied or lifted; better describe noise
encountered in real-world environments and design features
and algorithms that reduce its influence on motor performance;
and address many other unanswered questions about at-home
use of advanced upper-limb prostheses. These rich datasets will
also enable future at-home trials to study the benefits and use
of high-resolution sensory feedback from intraneural electrical
stimulation—a feature soon to be added to the portable system.

In contrast, previous data collection during at-home
prosthetic use has relied on subjective surveys, usage logs,
IMUs, and the amount of time the device is turned on to
describe prosthetic use (Hargrove et al., 2017; Resnik et al., 2017,
2018b; Graczyk et al., 2018). However, these approaches only
approximate actual prosthesis use and could be misinterpreted.
Some pattern recognition studies have recorded kinematic
output and use of predefined grasps (Kuiken et al., 2016; Simon
et al., 2019).

Two of the tasks successfully completed by the amputee at
home required use of the intact arm along with the prosthesis—
donning a shoe and locking the front door (Table 2). However,
other tasks on the list could also be two-handed, such as using
the intact hand to remove mail from the box or food from
the refrigerator or oven while holding the door open with the
prosthesis. The two tasks where the amputee was unsuccessful
required a pointed finger position (D2 extended while D1,
D3, D4, and D5 were flexed). Even though this combination
was not included in the training sequence the amputee was
able to position the digits appropriately; however, the positions
were not stable enough to complete the task. Both of these
tasks also required the amputee to lift and hold the heavy
prosthesis vertically, which could have also added instability to
the control.

The most common arm movements used in the at-home
setting where opening and closing the hand, or pinching the
thumb and index finger, in combination with wrist movements.
Combination movements can be performed simultaneously
because the Kalman filter algorithm assumes independent DOFs.
To simplify control, the participant controlled the wrist with
a velocity mode (while the digits were in position control)—
allowing the user to first set a wrist position prior to completing
the grasp or pinch, if desired.

Because combination movements involving wrist were
so prevalent during at-home use, we recently studied
the benefits of training the modified Kalman filter with
combination movements involving the wrist, in addition to
single DOF movements (Paskett et al., in review). We found
that combination training sequences provide the user with
improved, intuitive wrist position control during simultaneous
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FIGURE 7 | (A) Transradial amputee picking up an orange using implanted EMG electrodes and the portable system. During this task, the portable system recorded

and stored (B) differential EMG (at 1 kHz), (C) kinematic output of the modified Kalman filter and actual kinematics of the prosthesis (at 30Hz) and (D) prosthesis

sensor values (at 30Hz). For simplicity, only one differential EMG channel (of 48 total) and only one sensor (D1 pressure sensor; out of 13 total pressure and torque

sensors and six DOFs) are shown.

movements. As a result, our future studies will also include wrist
combination movements.

An important aspect of the portable system is the fast
computation of position updates using a steady-state Kalman
filter. We initially implemented the full recursive Kalman filter
within each update cycle. However, the time required to complete
the update was near and often exceeded our 33-ms update
loop speed. Updating movement positions with the steady-
state Kalman filter was quick (less than our loop time) and
straightforward to implement. Malik et al. performed a rigorous
comparison of the steady-state and full recursive Kalman filter
using neural spike data and concluded that after steady-state
convergence the two predictions are essentially identical (Malik
et al., 2011). Our fast position update speeds will allow additional
features to be added, including high-resolution, biomimetic,
sensory feedback from intraneural (Wendelken et al., 2017;
George et al., 2019b) or electrocutaneous (George et al.,
2020a) stimulation.

The most computationally demanding aspect of training
was performing Gram-Schmidt forward selection to choose
the 48 most useful features out of the 496 differential pairs.
Despite taking considerable time up front, this down-selection
method has several advantages (Nieveen et al., 2017). First,
choosing the features up-front enables fast loop speeds (below
33ms) by eliminating the need to calculate complex features
(e.g., principal components) or even all 496 differential EMG
features during each update cycle. Second, forward selection
recursively selects features that are maximally correlated with the
training kinematics and minimally correlated with each other
by orthogonalizing the remaining channels after each channel

is selected. This ensures that each selected feature describes
kinematics and not uncorrelated noise. Refined movements, the
hallmark of proportional control algorithms, account for little
variance and could be inadvertently discarded using techniques
agnostic to the training kinematics. Finally, orthogonalization
in the forward selection algorithm avoids redundant features
and singularities.

It was possible to avoid the need for down-selection and only
use the original 32 single-ended features. However, by calculating
all possible differential pairs, signal from a specific muscle might
be better isolated from unwanted signal or noise and identified
by the forward selection algorithm. Indeed, when we allow the
forward selection algorithm to choose from among both the
32 monopolar and 496 bipolar pairs—which is the case in our
lab desktop system but not the portable system—the monopolar
channels are rarely selected.

Importantly, within 8min of powering the system on, the user
can have real-time proportional control of six DOFs. The amount
of time required to both collect training data by mimicking
preprogrammed movements and to train the prosthetic control
algorithm are related to the number of trials for each mimicked
movement. In this work, and published elsewhere (George et al.,
2019a), an amputee familiar with the training process trained
with only four trials on each DOF and a grasp and extension of
all digits. With this training, he was able to control the prosthesis
in the lab and perform tasks not possible with his commercial
prosthesis at home (George et al., 2019a). A less experienced user
may require training with more trials; however, even if a naïve
user requires twice as many trials, the total training time is still
under 15 min.
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An important question we have yet to fully explore is
how often will retraining be required? The amputee in this
study successfully used a trained algorithm the following
day, suggesting daily training may not be necessary. It is
also reasonable to believe that training with data collected
across multiple days could provide better control (George
et al., 2020b), especially considering that iEMG leads are
relatively stationary when implanted into residual musculature.
However, training daily provides new users with the best
control algorithm given the EMG features collected on that
day and our experience suggests that over time they will
become more stereotyped and thus have improved control.
From the start, our training requires less time than pattern
recognition algorithms which can require 14–40 h of upfront, in-
lab training with experienced professionals (Resnik et al., 2017,
2018a).

Currently, to use a previously trained control algorithm,
the modified Kalman filter’s parameters must be recompiled
into a stand-alone application on the Nomad. Although this
process is very fast (<30 sec) and wireless, it currently
requires an external computer running MATLAB R©. Planned
future work includes the ability to directly load trained
parameters from a local file stored on the Nomad for on-
demand use.

Ultimately, the ability to communicate with an application
running on the Nomad was limited to one button (the other
two could only start and stop a compiled application). Thus,
we implemented sequential button pressing to selectively lock
an individual DOF. The amputee used this feature to lock wrist
rotation when using the system at home. For this amputee,
poor wrist control was not uncommon and was likely due
to dystonic muscle activity, common among those afflicted
with complex regional pain syndrome and multi-year arm
disuse prior to amputation (George et al., 2018). However,
despite the amputee’s having low-amplitude EMG signals (e.g.,
Figure 7B), the modified Kalman filter algorithm provided
control for five degrees of freedoms. Intact users did not
lock any DOFs and had all six, independent, proportionally
controlled DOFs.

Near the end of Supplementary Video 4, the amputee
displays difficulty releasing the orange. Release is normally an
easy task, requiring only muscle relaxation for the position
control algorithm to move the digits into an open resting
position. However, delayed object release in this case was
due to the participant’s dystonia—he could not relax muscle
easily for the hand to open. This did not occur often,
but dystonia was more prevalent during some lab visits
than others.

Future improvements will include wireless communication
to a tablet or phone app where control selections can be easily
made, communicated and saved locally on the Nomad. This
will enable real-time adjustments including setting specific DOFs
to velocity mode; adjusting the ad-hoc gains and thresholds
of the modified Kalman filter on a DOF-by-DOF basis; and
reloading a previous training or retraining the prosthesis
with a modified training protocol if the first training was
not satisfactory.

In its current form, the portable system is programmed
to communicate only with the DEKA LUKE Arm.
However, other custom communication sockets could
be designed to communicate through the micro D-sub,
USB or Bluetooth connections available to Nomad for
proportional control of and data logging from other
prosthetic limbs.

The current system also has significant cabling that
connect the DEKA LUKE Arm to its battery and the
Nomad to the DEKA LUKE Arm and the Ripple front-
end amplifier. Upcoming, at-home, unsupervised studies
will likely require a supportive partner/care-taker to assist
the amputee when donning the equipment and to aid in
securing the cables. The take-home study will begin with an
acclimation phase where the amputee (and partner/care-
taker) receive in-lab and at-home supervised training
prior to unsupervised use. We also envision a hip or
back-pack where the Nomad, batteries and excess cable
length can be organized and housed. In the future, wireless
communication between the Nomad, implanted electrodes and
prosthesis could eliminate cables and provide amputees with
greater independence.

The importance of reliability in a take-home system
cannot be understated—software and hardware must function
as intended in the everyday environment. To fully test
reliability, the system must be used at home, over many
days and for many uses. To date, the system has been
used on numerous occasions on campus and in the lab,
but only at home by our laboratory staff and by one
transradial amputee under staff observation (George et al.,
2019a). Ultimately, this system will be used in upcoming
take-home clinical trials to record high-resolution data and
study advanced, proportional control algorithms for upper-limb
prosthesis use.
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