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Repetitive Robot Behavior Impacts
Perception of Intentionality and
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Abdulaziz Abubshait* and Agnieszka Wykowska

Social Cognition in Human-Robot Interaction (S4HRI) Unit, Istituto Italiano di Tecnologia, Genova, Italy

Gaze behavior is an important social signal between humans as it communicates

locations of interest. People typically orient their attention to where others look as this

informs about others’ intentions and future actions. Studies have shown that humans

can engage in similar gaze behavior with robots but presumably more so when they

adopt the intentional stance toward them (i.e., believing robot behaviors are intentional).

In laboratory settings, the phenomenon of attending toward the direction of others’ gaze

has been examined with the use of the gaze-cueing paradigm. While the gaze-cueing

paradigm has been successful in investigating the relationship between adopting the

intentional stance toward robots and attention orienting to gaze cues, it is unclear

if the repetitiveness of the gaze-cueing paradigm influences adopting the intentional

stance. Here, we examined if the duration of exposure to repetitive robot gaze behavior

in a gaze-cueing task has a negative impact on subjective attribution of intentionality.

Participants performed a short, medium, or long face-to-face gaze-cueing paradigm with

an embodied robot while subjective ratings were collected pre and post the interaction.

Results show that participants in the long exposure condition had the smallest change in

their intention attribution scores, if any, while those in the short exposure condition had a

positive change in their intention attribution, indicating that participants attributed more

intention to the robot after short interactions. The results also show that attention orienting

to robot gaze-cues was positively related to how much intention was attributed to the

robot, but this relationship became more negative as the length of exposure increased. In

contrast to subjective ratings, the gaze-cueing effects (GCEs) increased as a function of

the duration of exposure to repetitive behavior. The data suggest a tradeoff between the

desired number of trials needed for observing various mechanisms of social cognition,

such as GCEs, and the likelihood of adopting the intentional stance toward a robot.

Keywords: social cognition, human robot interaction, gaze cueing, intentional stance, intention attribution,

attention orienting

INTRODUCTION

Humans rely on non-verbal behavior to interact with one another. For example, when we observing
someone looking at an apple, we infer that that person is hungry. This process, in which people
make inferences about what others are thinking, is called mentalizing (Baron-Cohen, 1995), and
is essential for successful human social interactions (Frith and Frith, 2006). Mentalizing is a highly
automatic process that we engage in (Frith and Frith, 2006). Assuming that others’ behavior is based
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on their thoughts, emotions, and internal states is called
adopting the intentional stance (Dennett and Haugeland, 1987;
Dennett, 1989). While it is assumed that when humans interact
with one another they adopt the intentional stance (i.e., they
explain and predict others’ behaviors with reference to their
underlying thoughts, feelings, and intentions), an interesting
question remains if (and when) people adopt the intentional
stance toward artificial agents that resemble humans, such as
humanoid robots. Although prior studies (e.g., Marchesi et al.,
2019) have uncovered instances where people do adopt the
intentional stance toward humanoid robots, here we ask if certain
procedures used in experimental design can actually create
obstacles for measuring the intentional stance in human–robot
interaction (HRI).

Several studies do in fact show that people are capable of
adopting the intentional stance toward artificial agents in some
cases. For example, when robots, avatars, or computers perform
unexpected actions (Morewedge, 2009; Waytz et al., 2010),
resemble humans in their physical appearance (Kiesler et al.,
2008; Admoni et al., 2011), display emotions (Fussell et al., 2008),
react to people’s actions (Terada et al., 2007), exhibit humanlike
non-verbal behaviors such as shrugging (Carter et al., 2014),
cheat (Short et al., 2010), or engage in eye contact with others
(Ito et al., 2004; Yonezawa et al., 2007), humans are more likely
to adopt the intentional stance toward them. When humans
adopt the intentional stance, it can lead to positive outcomes in
HRI1 as robots that are perceived as intentional are seen as more
trustworthy (Kiesler et al., 2008; Carter et al., 2014), are able to
engage humans better (Yamazaki et al., 2010), and have positive
effects on people’s moods (Carter et al., 2014). Adopting the
intentional stance toward robots can also have positive effects on
human performance inHRI as they can facilitate learning (Brown
and Howard, 2013), improve physical interactions where hand–
eye coordination is needed (Carter et al., 2014), induce social
facilitation effects (Bartneck, 2003; Woods et al., 2005; Looije
et al., 2010), and improve interactions in team settings (Breazeal
et al., 2005). By the same token, not adopting the intentional
stance toward social robots can pose a problem for HRI, as
humans might be engaging fewer socio-cognitive mechanisms in
social interactions with robots, and thereby less social attunement
(i.e., activation of socio-cognitive mechanisms) occurs between
the two agents (Wiese et al., 2012, 2018; Wykowska et al., 2014;
Özdem et al., 2016; Caruana et al., 2017; Ciardo et al., 2020; for a
review, see Perez-Osorio et al., 2015; Wiese et al., 2017; Schellen
and Wykowska, 2019).

One successful paradigm to measure social attunement in
HRI is the gaze-cueing paradigm (Wiese et al., 2012; Wykowska
et al., 2014; Perez-Osorio et al., 2015; Kompatsiari et al., 2018)
as prior work has shown that attentional orienting to gaze
cues is the foundation of many (often higher-level) social-
cognitive processes, such as mentalizing (Baron-Cohen, 1995;
Nummenmaa and Calder, 2009; Teufel et al., 2010; Pfeiffer et al.,

1While studies have shown positive outcomes of attributing intentionality to
robots in HRI, future studies should consider ethical implications of attributing
intentionality toward an inanimate object. For similar arguments (see de Graaf,
2016; Lake et al., 2017).

2011). The gaze-cueing paradigm generally starts with a gazing
stimulus (i.e., a face or face-like drawing) that looks directly at
an observer (i.e., participant) and then makes a gaze shift to a
certain direction (e.g., right or left), which shifts the observer’s
attention to the gazed-at location (Friesen and Kingstone, 1998;
Driver et al., 1999; Langton and Bruce, 1999; Quadflieg et al.,
2004), if the observer engages in joint attention with the gazer.
After the gaze- shift, a target appears either in the same (i.e.,
valid trial) or a different location (i.e., invalid trail) relative to
the gaze cue. Studies have consistently shown that people are
faster at responding to valid trials compared to invalid trials,
with the magnitude of the difference between valid reaction times
and invalid reaction times indicative of how strongly or how
frequently attentionwas oriented to the gazed-at location (i.e., the
gaze-cueing effect: GCE). Studies investigating the GCE have also
shown that the effects are observed even when gaze was counter-
indicative of the target location, which suggests the reflexivity
of attention orienting to gaze cues (Ristic and Kingstone, 2005;
Kingstone et al., 2019).

More recent studies have shown that attention orienting to
gaze cues can be top-downmodulated (i.e., volitional), depending
on the social relevance of the gaze. For example, attention
orienting to gaze cues is stronger when the gazer is of higher
social rank (Shepherd et al., 2006; Jones et al., 2010; Ohlsen et al.,
2013; Cui et al., 2014; Dalmaso et al., 2014), is physically similar to
the observer (Hungr and Hunt, 2012), is perceived as trustworthy
(Süßenbach and Schönbrodt, 2014), has the possibility to see
(Teufel et al., 2010), or when gaze cues are meaningful to the
context of the gaze (Perez-Osorio et al., 2015). Paramount to
our study, prior work has also shown that GCEs are enhanced
when gaze shifts are thought to originate from an intentional
agent (Wiese et al., 2012; Wykowska et al., 2014; Caruana et al.,
2017), compared to just a pre-programmed machine, which
suggests that adopting the intentional stance toward a robot can
influence how strongly it can induce attentional orienting to its
directional cues.

Although previous literature showed that, indeed, people are
able to socially attune with a robot, and perhaps more strongly
so if they adopt the intentional stance toward it, more recent
studies have shown that using artificial agents in gaze-cueing
studies can have negative consequences (Abubshait et al., 2020a).
Therefore, it is unclear if classical psychological paradigms such
as the gaze-cueing paradigm are the best choice to investigate
socio-cognitive mechanisms, due to the fact that the gaze-cueing
paradigm is quite unnatural in terms of social context. Not only
does it often employ 2D stimuli on the screen (which is unlike
natural social interactions), but it also uses repetitive movements
(i.e., the gaze-cueing paradigm employs many trials of robots
gazing in one of two directions). Prior work has shown negative
impacts of multiple exposures on subjective perceptions of robots
over time (Bergmann et al., 2012), and recent approaches in social
neuroscience (Schilbach et al., 2013) highlight the need for more
ecologically valid paradigms for studying mechanisms of social
cognition. Furthermore, the fact that multiple interactions over
time might change our perceptions of a robot is in line with Epley
et al’s (2007) theory of anthropomorphism, which suggests that
repetitive interactions can decrease our likelihood to attribute
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mental states (i.e., adopting the intentional stance) toward a
robot since we no longer have the motivation to understand its
behavior: effectance motivation. While prior studies have shown
negative impacts of multiple exposures on subjective ratings, it
is unclear if this effect can also be generalized to behavioral
measurements, such as the GCEs. Specifically, it is unclear if the
standard procedure of the gaze-cueing paradigm in HRI conceals
aspects of social attunement, due to the fact that many trials are
needed to establish an accurate and stable GCE (e.g., face-to-face
studies include 160 trials; Lachat et al., 2012).

In the current study, we examined the effect of the duration
of exposure to repetitive gaze behavior on both subjective
perceptions of intentionality and gaze-induced attentional
orienting in a gaze-cuing paradigm. Using a face-to-face gaze-
cueing paradigm with a humanoid robot (i.e., iCub: Metta et al.,
2008), participants were assigned to either a short exposure
(i.e., 96 trials), a medium exposure (i.e., 176 trials), or a long
exposure condition (i.e., 256 trials), while we collected pre-
and post-ratings of adopting the intentional stance (InStance
Questionnaire, Marchesi et al., 2019) and attributing mental
capacities (Weisman et al., 2017). If the duration of interaction
with a robot does indeed influence attribution of intentionality
toward a robot, we expect that participants assigned to the
different exposure conditions would experience changes in
likelihood to adopt the intentional stance toward iCub after their
interaction differently. To that extent, we expected to observe a
different impact of interaction with the robot on the adoption of
the intentional stance, depending on duration of the interaction.
Additionally, we hypothesized that the relationship between
adopting the intentional stance and GCEs (i.e., social attunement
via attention orienting) would depend on the duration of
exposure to repetitive behavior.

METHODS

Participants
Twenty-seven participants were recruited (M = 24.4; range =

19–49; 17 females; 25 right-handed) and were quasi-randomly
assigned to one of three exposure conditions (i.e., short, medium,
or long exposure). Participants were compensated 15 euros upon
completion of the study. The experiment was conducted in
accordance with the World Medical Association Declaration
of Helsinki ethical principles for medical research involving
human subjects and was approved by the local Ethical Committee
(Comitato Etico Regione Liguria). An a priori power analysis
was conducted using R version 3.6 and the pwr package to
determine our sample size. The analysis was based on an f
test of three independent groups, an alpha of 0.05, a medium
effect size of 0.4 (based on prior research: Kompatsiari et al.,
2018) and power set to (1—b = 0.8). The analysis resulted in a
sample size of 63 participants (i.e., 21 participants per group).
While the a priori power analysis suggested a larger sample
(N = 63), due to nationwide COVID-19 lockdowns, we were
only able to collect half of the required sample. To alleviate
this issue, we used Bayesian models to test our hypotheses as
opposed to parametric analyses. While Bayesian inferences are
not immune to symptoms related to small sizes, the use of the

correct priors can provide an advantage to testing our hypotheses
(McNeish, 2016).

Apparatus
The gaze-cueing experiment used the iCub robot along with
two 27-in. screens that were rotated sideways (i.e., vertically)
for target presentation (see Kompatsiari et al., 2018 for a
similar setup). iCub’s movements were controlled by the
YARP gaze platform (Metta et al., 2006). iCub’s eye vergence
was set to 5◦ and remained constant, while the timing
trajectories of the eye and neck movements were set to 200
and 400ms, respectively, to allow for smoother and natural-
lookingmovements. Data collection and target presentation were
controlled and programmed using OpenSesame (Mathôt et al.,
2012). Responses were collected using a standard keyboard.

Questionnaires
The questionnaires used in the study included the Intentional
Stance questionnaire measuring people’s tendencies to adopt
the intentional stance toward robots (Marchesi et al., 2019);
the anthropomorphism questionnaire measuring people’s
anthropomorphic and attachment tendencies (Neave et al.,
2015); the Body, Heart and Mind questionnaire measuring
people’s perceptions of mental life (Weisman et al., 2017); and
finally a simple perceived predictivity question measuring how
much subjects can predict iCub’s actions. The gaze-cueing task
also included a question regarding people’s subjective perceptions
of their engagement toward iCub (see gaze-cueing task section
for details). All items were translated and administered in Italian
and can be found on osf.io/y6c9b.

The Intentional Stance Questionnaire is a set of 34 scenarios.
Each scenario contained three pictures of iCub involved in
regular daily scenes (e.g., playing cards with another human,
sorting objects into containers). Below each scenario, two
sentences were presented that described the scenario, one in
mentalistic terms (e.g., “iCub pretends to be a gardener”)
presented on the right, and the other in mechanistic terms (e.g.,
“iCub adjusts the force to the weight of the object”) presented
on the left. Participants were tasked to move a slider (positioned
initially between the two sentences) toward the description that
best fit the scenario. The logic behind this questionnaire was
that if participants moved the slider toward the mentalistic
description, they likely adopted the intentional stance, while if
they chose the mechanistic description, they were more likely
to adopt the “design stance” (Dennett and Haugeland, 1987) for
explaining the robot’s behavior. Based on a split-halves analysis,
the questionnaire was split into two sections that were correlated
with each other. The first half was presented at the beginning
of the study, and the second half was presented at the end
of the study, with the order of items of each half presented
randomly. The items were scored on a 10-point-magnitude scale
with an additional decimal point, with 0 indicating adopting
the design stance and 10 indicating adopting the intentional
stance. The scores were calculated by averaging all items together.
Descriptions of the remaining questionnaires can be found in the
Supplementary Material.
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FIGURE 1 | Trial sequence of the gaze-cueing paradigm: Each trial started with iCub’s eyes closed. iCub would then open its eyes and fixate on the observer’s eyes to

engage in mutual gaze. Next, iCub would make a gaze shift to either the right or left. Next, a target appeared for 200ms. If the target appeared in the same direction of

the cue, the trial was considered valid. Targets appeared in the opposite direction of the cue for invalid trials. The stimulus onset asynchrony (SOA) was set to 500ms.

Gaze-Cueing Protocol
Each trial of the gaze-cueing paradigm started with iCub’s eyes
closed. 2,000ms later, iCub opened its eyes and looked directly
at the participant for 500ms; 2,000ms later, iCub looked at one
of the two screens (i.e., at the left screen or the right screen);
500ms later, a target (i.e., a T or V) appeared on either of the two
screens. On valid trials, the target appeared on the same screen
that iCub was looking at. On invalid trials, the target appeared
on the opposite screen (e.g., iCub looked at the right screen and
the target appeared on the left screen). The target appeared for a
duration of 200ms, and iCub remained looking at the screen until
participants responded, which ended the trial. iCub’s gaze validity
was non-predictive of the target location (i.e., 50% valid trials and
50% invalid trials). Each block consisted of 16 trials, which ended
by asking participants about their subjective perception of iCub’s
engagement. The short exposure condition consisted of 96 trials
(i.e., 6 blocks), the medium exposure condition consisted of 176
trials (i.e., 11 blocks), and the long exposure condition consisted
of 256 trials (i.e., 16 blocks). See Figure 1 for the trial sequence of
the Gaze-cueing protocol.

Procedure
After participants provided written consent, they were seated at
a desk ∼125 cm away from iCub. The two screens were placed
laterally on the desk 32.5 cm away from the robot on each side
(i.e., 75 cm apart from one another). The screens were tilted
back vertically 12.5◦ and rotated 76◦ toward the participant from
the lateral position. The screens were ∼105 cm away from the

participants. The target stimuli were either a “T” or “V” and were
4.5◦ and 7◦.

Next, participants completed the first set of questionnaires,
which included an anthropomorphism questionnaire (Neave
et al., 2015), the Intentional Stance Questionnaire (ISQ, Marchesi
et al., 2019), a mental capacity questionnaire (Weisman et al.,
2017), and a perceived predictivity question. After completing
the questionnaires, which were presented in random order,
participants completed a practice session of the gaze-cueing task
with iCub. The practice session contained 16 gaze-cueing trials.
One half of participants were instructed to press the “T” key
with their right index finger and the “V” key with their left
index finger, while the other half were instructed to do the
opposite. Next, participants completed the experimental gaze-
cueing task. Upon completion, participantsmoved on to the post-
questionnaire phase, which included the ISQ, the mental capacity
questionnaire, and the predictivity question. Finally, participants
were debriefed and thanked for their participation.

Analyses
Main Analyses
While classical parametric and null hypothesis significance
testing (NHST) require larger sample sizes, we opted to use
Bayesian inference to alleviate issues with the inability to collect
the desired sample size. Bayesian inference can provide three
major advantages that directly influence the present study. First,
we alleviate issues that are related to smaller sample sizes
due to the fact that the use of prior distributions to estimate
the posterior distributions can help find better estimates of
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the relationships in question (McNeish, 2016). Second, using
Bayesian inference provides the advantage of examining the
results in terms of probabilities, and not simply whether the null
hypothesis is accepted or rejected, which is easily interpreted
and can be generalized to future studies. Finally, we are able
to use credible intervals that fit our data and not simply
ones that are conventional, as researchers suggest that the
conventional 95% credible interval band is not appropriate for
Bayesian statistics due to the fact that it restricts our posterior
distributions (Kruschke, 2014). While some researchers suggest
using an 89% credible interval (McElreath, 2020), we opted to
use a 90% credible interval for rounding purposes. For both
Bayesian models, we used five Markov Chain Monte Carlo
(MCMC) chains with 10,000 samples. The first 500 samples
were used as warm-up and discarded. All Bayesian models used
weakly informed priors based on the observed mean and a wide
SD (i.e., SD= 10).

To measure changes in questionnaire scores, we first scored
the pre-items and post-items separately. Next, we calculated a
difference score between pre- and post-scores (i.e., post-score—
pre-score). Positive values would indicate higher scores after
exposure. Negative values would indicate lower scores after
exposure. A value of 0 would suggest no change after exposure.
By creating difference scores, we were able to examine how
participants changed their scores as opposed to only predicting
their final scores. To examine whether people adopted a different
stance after exposure, we used a Bayesian regression model to
predict participants’ difference ISQ scores from the exposure
length (a dummy coded variable: Short = 0, Medium = 1,
Long = 2) and each participant’s Pre-ISQ scores. No interaction
term was included between the two variables as we were only
interested in the effect of exposure duration. Using this method
would allow us to compare each of our conditions to the
Short Exposure condition without the need for follow-up tests
and control for baseline differences in ISQ scores. Mean ISQ
scores for the three exposure duration groups are presented in
Table 1.

To examine if adopting the intentional stance affected GCEs
as a function of Exposure, we first calculated a GCE for each
participant. To do so, we excluded trials that were faster than
100ms and slower than 1,500ms. Next, we removed incorrect
trials and trials that were slower than 2.5 SD away from the
individual mean. Afterwards, we calculated the GCE, which is the
difference between valid and invalid reaction times (i.e., invalid
RT—valid RT), with larger positive GCE indicating stronger
attention orienting in relation to iCub’s gaze. After calculating
the GCE, we used a Bayesian regression to regress GCE onto the
mean-centered Pre-ISQ scores, Exposure length (i.e., a dummy
coded variable: Short = 1, Medium = 2, Long = 3), and their
interaction. This regression model would allow us to examine
(A) if gaze-cueing effects were different depending on the length
of exposure to repetitive behavior (i.e., main effects) and (B) if
the relationship between GCEs and ISQ scores is dependent on
exposure length. Similar to the previous analysis, using dummy
coding allows us to follow up on any interactions without the use
of post-hoc tests. Mean RTs in valid and invalid conditions across
the three exposure duration groups are presented in Table 2.

TABLE 1 | Instance questionnaire scores.

Pre ISQ Post ISQ Difference ISQ

Exposure Length M SD M SD M SD

Short 4.20 2.96 4.77 2.60 0.57 1.27

Medium 3.18 2.11 3.76 1.28 0.58 1.12

Long 3.98 1.66 4.06 0.08 0.08 1.18

Positive ISQ differences indicates a higher rating at post.

TABLE 2 | Reaction time data.

Valid Invalid GCE

Exposure Length M SD M SD M SD

Short 494.99 59.18 502.64 68.00 7.65 11.80

Medium 484.23 125.46 496.86 118.06 12.62 13.86

Long 477.23 50.63 492.49 56.33 15.26 10.19

GCE is the difference between valid and invalid trials.

Exploratory Analyses
Additional exploratory analyses were conducted to investigate
if attribution of mental capacities (i.e., Body, Heart, and
Mind; Weisman et al., 2017) and perceived predictivity were
correlated with gaze-cueing effects, if individual differences in
anthropomorphism were correlated to adopting the intentional
stance, how adopting the intentional stance related to attribution
of mental capacities, if the perceived predictivity and mental
capacity ratings changed as a function of exposure, and if
subjective ratings of engagement decreased over time, as prior
work has shown a correlation between robots that engage in gaze
behavior and subjective ratings of engagement (Admoni et al.,
2011; Kompatsiari et al., 2018). Due to the exploratory nature
of these analyses, we only report descriptive statistics, coefficient
estimates, and the 90% confidence level rather than significance
level, as not to inflate alpha levels. Exploratory analyses and
results can be found in the Supplementary Material.

RESULTS

Main Results
All participants performed the gaze-cueing task with high
accuracy (M= 95.8%, SD= 0.03). One participant was identified
as an outlier and was removed from the analyses due to a GCE
score of more than 3 SD away from the mean (SD=−3.19). Data
of the remaining 26 participants were analyzed.

InStance Scores
The Bayesian model did not run into issues with convergence
and fit the observed data well (R̂ = 1 and MCSE = 0 for all
parameters). It took about 0.92 s for each chain to converge.
The posterior distribution of the Bayesian model showed that
the short exposure condition had a mean of 1.87 with a 90%
PI [1.01, 2.72], the medium condition had a mean of 1.57 with
90% PI [0.77, 2.39], and the long condition had a mean of
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FIGURE 2 | Change in ISQ ratings after exposure. The graph illustrates the difference in pre- and post-ratings. A positive increase illustrates that the rating changed to

a higher rating at post, while a zero value would indicate no changes between pre- and post-ratings. The observed ISQ difference scores show the short and medium

exposure conditions show a positive increase in ISQ scores after completing of the gaze-cueing task, while the long exposure condition shows no increase.

1.32 with 90% PI [0.53, 2.12]. When examining the means, the
90% credible intervals of the posterior sample show that there
is a 27% chance that the short and medium conditions overlap
in their estimates, which suggests that there is a meaningful
difference in their estimates. This difference is even smaller
for the short and long conditions as there is a 12% chance
that the means overlap. In other words, there is a 27 and a
12% chance, respectively, that the medium exposure and long
exposure conditions contain a mean of 1.87, respectively. The
model also predicts that there is an 83% overlap between the 90%
credible intervals of the short andmedium posterior distributions
and a 70% overlap between the short and long distributions. This
suggests that there is a 17% chance that a true difference between
short and medium conditions exists, and a 30% chance that a
true difference between the short and long conditions exists. See
Figure 2 for the observed data and Supplementary Figure 1A

for the posterior distributions. This suggests a linear relationship
between exposure length and adopting the intentional stance.

Due to a clear descriptive difference between the medium
exposure condition and the long exposure condition in Table 1

and Figure 2, we also examined the probabilities that the two
means overlap. The posterior distributions showed that there is
a 30% chance that the means of the medium exposure condition
and the long exposure condition overlap. In other words, there
is a 70% chance that there is a true difference between the
two means. This additional test provides more evidence for
the linearity of the relationship between exposure duration and
the change in ISQ ratings.

Gaze Cueing Effects
The Bayesian model predicting GCEs did not have issues with
convergence (R̂ = 1, MCSEMedium = 0.1, MCSELong = 0.1,
MCSEMedium = 0, for the rest of the parameters) and each chain
took approximately 1 s to converge. The posterior distribution of
the Bayesian model showed that the short exposure condition
had a mean of 7.41 with a 90% PI [−0.01, 14.85], the medium
exposure condition had a mean of 12.16 with 90% PI [1.88,
22.45], and the long exposure condition had a mean of 15.49 with
90% PI [5.2, 25.63], and the Pre-ISQ scores had a positive slope
of 1.27 with 90% PI [−1.45, 3.95]. The interaction term between
the medium exposure condition and the Pre-ISQ scores had a
slope of −1.92 with 90% PI [−6.34, 2.57], and the interaction
term between the long exposure condition and the Pre-ISQ scores
showed a slope of −2.99 with 90% PI [−8.29, 2.33]. The 90%
credible interval of the posterior distributions of the main effects
suggests that there is a 38% chance that a difference between the
short exposure and medium exposure conditions exist and a 60%
chance that a difference between the short exposure and long
exposure conditions. See Figure 3 for the observed data and
Supplementary Figure 1B for the posterior distributions.

Analysis of the interaction effects (i.e., the Pre-ISQ score–GCE
relationship as a function of length of exposure), showed that
there is a 50% overlap between the 90% credible interval of the
short exposure andmedium exposure posterior distributions and
only a 36% overlap between the 90% credible intervals of the
short exposure and long exposure posterior distributions. This
suggests that there is a 50% chance that a true difference between
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short exposure and medium exposure conditions exist, and a
64% chance that a true difference between the short and long
exposure conditions exist. These data suggest the linearity of the
relationship as it was becoming more negative as we move from
the short exposure condition to the long exposure condition.
However, the evidence is not very strong, which is possibly due
to our limited sample size. See Figure 4 for the observed data and
Supplementary Figure 1C for the posterior distributions.

FIGURE 3 | Gaze-cueing effects (GCEs) as a function of exposure. The graph

illustrates the mean values of GCE, which is the calculated difference between

valid and invalid trials, with more positive values indicating stronger attention

orienting in response to iCub’s gaze shifts. The GCEs show that attention

orienting to gaze-cues is enhanced as the length of exposure (i.e., trial

numbers) increased.

DISCUSSION

The aim of the current study was to examine if the duration of
exposure to a humanoid robot’s repetitive behavior in a gaze-
cueing task influences adopting the intentional stance toward it,
and if adopting of the intentional stance correlates with the GCE
depending on the duration of exposure to repetitive behavior.
Since previous work suggests that being exposed to robots for
long durations decreases the likelihood of anthropomorphizing
robots and is associated with negative affective responses, we
hypothesized that participants who were exposed to more
repetitive behavior would show a decrease in adopting the
intentional stance in comparison to those who are exposed to
less repetitive robot behavior. Additionally, we expected that the
relationship between ISQ scores and GCEs would depend on
exposure of the repetitive behavior of iCub (i.e., the relationship
changes as a function of being exposed to repetitive gaze behavior
of the robot). Finally, this study took a Bayesian approach to
investigate these effects, which allows us to examine our effects
in terms of probabilities and not whether an effect is significant
or not.

To test our hypotheses, we employed a face-to-face gaze-
cueing paradigm with iCub, and used an experimental design
where observers completed a pre-questionnaire block, then the
gaze-cuing experiment with iCub, then a post-questionnaire
block. Results of the experiment indicated that the probability
of showing a large and positive ISQ change after interacting
with iCub was highest for participants who were exposed to
less repetitions of iCub’s gaze behavior and that the probability
of showing a large and positive change decreased as a function
of duration exposure. Specifically, the results showed that this
probability of showing a positive ISQ difference score decreased
by 73% from those who were exposed to iCub for a short duration
(i.e., fewer repetitions) to those who were exposed to iCub for

FIGURE 4 | Interaction between exposure and Pre-ISQ scores in GCE. The graph illustrates that an interaction is evident between the length of exposure and Pre-ISQ

scores. The interaction shows a positive correlation between ISQ scores and GCE when exposure length is short; however, this relationship becomes more negative

as exposure length increases.
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a medium duration. This probability decreased even further to
88% from participants who were exposed to iCub in the short
exposure condition in comparison to those who were exposed
to iCub for longer (i.e., long exposure condition). Interestingly,
participants in the long exposure condition did not change their
scores after the interaction in respect to their scores prior to
interacting with iCub. This indicates that shorter interactions
with a robot, even if it shows repetitive behavior, can still have
a positive influence on adopting the intentional stance.

Analyses of the GCEs showed that as the length of repetition
increased, GCEs were likely to become larger, as short exposure
had a high probability of inducing smaller GCEs as compared
to the medium exposure condition. This difference between
GCEs was even more likely when comparing the short exposure
condition and the long exposure condition, which indicates
that more trials (i.e., repetitions) are warranted in order to
measure GCEs. The results also showed that, as hypothesized,
the relationship between adopting the intentional stance and
gaze cueing was likely dependent on the length of exposure to
repetitive robot behavior. Initially, this relationship was positive,
however, as the duration of exposure increased, the relationship
showed a tendency to be more negative. While this effect was
not very strong, possibly due to being statistically underpowered,
it suggests that longer exposures to repetitive robot behavior
can reverse the positive relationship between joint attention (a
marker of social attunement) and adoption of intentional stance.

The finding that short exposure durations were likely to have
a positive effect on subjective ratings of adopting the intentional
stance is in line with prior work that used the gaze-cueing
paradigm and found that subjective ratings of the mind status
of a robot increases after completing the gaze-cueing paradigm
(Abubshait and Wiese, 2017; Abubshait et al., 2020b) and other
studies showing that initial impressions influenced subjective
ratings positively, but latter interactions kept the interactions
unchanged (Paetzel et al., 2020). Furthermore, the positive
impact of short interactions on adopting the intentional stance
might be due to interacting with a real embodied humanoid
robot, which initially might evoke social attunement, due to its
physical presence (Wainer et al., 2007). However, this effectmight
diminish after medium and long exposure conditions, due to the
repetitiveness of its behavior.

The finding that gaze cueing was likely related to adopting
the intentional stance depending on exposure is supported by
prior work investigating social engagement between children
and social robots that shows that initial interactions with robots
are paired with high social engagement but that this social
engagement is reduced after a while (Komatsubara et al., 2014;
Coninx et al., 2016; Ahmad et al., 2017). This suggests that
the reduction in social engagement can generalize to other
populations and not simply children. This account is also
supported by fMRI studies that argue that the action perception
network, a network in the brain that is involved in understanding
and predicting others’ actions (Decety and Grèzes, 1999), is
activated when trying to predict movements from others’ gaze
behavior (Ramsey et al., 2012) and unfamiliar robotic behavior
(Cross et al., 2012). After viewing repetitive actions performed by
humans and robots, this activation is reduced for only robotic

agents but not humans (Gazzola et al., 2007), which suggests
that attention orienting to gaze cues (a phenomenon related to
the social brain; Wiese et al., 2018) can be influenced by being
exposed to repetitive behaviors.

The results of this study highlight an important issue in the
field, which is that many of the effects of attributing intentionality
to robots that we see are short-lived. Epley et al. (2007) theory of
anthropomorphism provide an explanation to why, which is that
when people are exposed to repetitive behaviors from an agent,
it can reduce their motivation to understand the agent’s behavior,
which reduces the propensity to anthropomorphize the agent and
adopt the intentional stance toward it. Not only do we find this
short-lived effect in our data, but other studies also have found
similar results. For example, when using entertainment robots,
de Graaf et al. (2015) have found that the most important robot
characteristic to be perceived as social is that the robot should
be able to verbally respond in a free and social manner (i.e.,
unpredictable) and not a preprogrammed way.

This result generalizes to other areas in HRI that use repetitive
interactions with a robot as interventions with populations
diagnosed with autism spectrum condition (ASC). For example,
Zheng et al. (2020) examined the effect of repeated exposure
to a robotic platform and its effectiveness in improving the
joint attention skills of children with ASC. They found that,
unlike the suggestion of prior work, learned skills are not
maintained over longer periods (Zheng et al., 2020). Similarly,
Anzalone et al. (2019) showed a similar pattern where developing
children typically did not show improvements in joint attention
after prolonged exposures to a robot. These studies show that
exposure over longer periods may not have a clear benefit to
HRI. The results of our study shed light on this by showing
that changes in subjective judgments of intentionality do change
when interactions are short-lived. However, after long exposure
to iCub’s repetitive behavior, the change in attribution of
intentionality diminished. Therefore, roboticists have to carefully
investigate how longer durations of exposure can influence the
human interaction partner.

The current study also illustrates how a Bayesian framework
can be a better method in quantifying HRI. HRI studies often
have limited sample sizes due to their complex protocols (i.e.,
sample sizes of about 20 participants; e.g., Mutlu et al., 2006;
Terada et al., 2007; Wainer et al., 2007; Wang and Lewis, 2007;
Brown and Howard, 2013; de Graaf et al., 2015; Warren et al.,
2015; Zheng et al., 2020), which is problematic when analyzing
data using parametric statistics. By using a Bayesian framework,
we assume that the data are fixed and that the parameter estimates
are dynamic, while the opposite is true for parametric methods.
In other words, we assume that our parameter estimates for
specific behaviors (e.g., gaze-cueing effects in reaction times)
follow a distribution as opposed to it having a fixed estimate.
By doing so, this method allows us to update our prior
knowledge from past studies and estimate an updated parameter
distribution. Not only does it allow us to update our knowledge
from past studies, but it also allows roboticists to use probabilities
of an effect in question. Using probabilities to quantify HRI is
much more informative than using significance thresholds. For
example, it is more informative for researchers to know which
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robot has a 70% chance of successfully engaging in joint attention
with children with ASC as opposed to which robot significantly
engages in joint attention with children with ASC.

Despite the advantages of the methods used here, it is also
important to discuss some of the limitations associated with
the current study. First, the small sample size could render
the results unstable. While this could be a major issue when
using parametric analyses due to violations of the general linear
model’s assumptions, we do not believe that the small sample
size dramatically influenced our results. We believe that our
results are stable due to using a Bayesian framework, and more
so due to using uninformative priors (i.e., uninformative priors
are considered conservative even though we could have used
informed priors from prior gaze-cueing studies with iCub: e.g.,
Kompatsiari et al., 2018). By doing so, we inflate our credible
intervals, which underestimates the confidence of our results.
Another possible limitation is the use of a pre-/post-test design.
In this study, participants had to complete a questionnaire
that measured their attribution of intentionality to robots prior
to completing the gaze-cueing experiment. This design (i.e.,
participation in the test prior to the experiment) could have
biased the participants into attributing intentions to iCub. While
this is a limitation that can be addressed by using ecologically
valid behavioral measures of intention attribution (e.g., Mwangi
et al., 2018), due to our controlled lab setting this method was not
feasible. Still, the fact that participants did show group differences
when they completed short, medium, and long gaze-cueing tasks
with iCub suggests that the length of exposure does influence our
interactions with robots in general.

This study provides important contribution regarding
implementation of classical experimental protocols in HRI
studies by showing two effects that oppose one another. First, our
study showed that more trials (i.e., repetitions) were needed in
order to measure a social-cognitive process that is associated with
social attunement (i.e., gaze cueing), as the gaze-cueing effect was
more likely more positive as repetitions increased. On the other
hand, subjective ratings of adopting the intentional stance were
likely less related to GCEs as repetitions (i.e., trials) increased in
the gaze-cueing paradigm, which suggests that studies measuring
these two constructs (i.e., social attention and adopting the
intentional stance) may sacrifice the validity of one measurement
over the other. In our case, the validity of social attention was
likely to increase with more trials, but the validity of measuring
subjective intention attribution was likely to decrease with more
repetitions. Since the data suggest that we might not increase

the likelihood of adopting the intentional stance toward an
agent when it displays repetitive behavior over a longer duration,
it poses a challenge on how to maintain sufficient number of
trials for statistical power without decreasing the reception of
the robot as an intentional or a human-like agent. While the
gaze-cueing paradigm might be successful in evoking joint
attention, it might not decrease the perception of the robot as
human-like or intentional.
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