
Deep Reinforcement Learning
Controller for 3D Path Following and
Collision Avoidance by Autonomous
Underwater Vehicles
Simen Theie Havenstrøm1, Adil Rasheed1,2* and Omer San3

1Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 2Mathematics
and Cybernetics, SINTEF Digital, Trondheim, Norway, 3School of Mechanical and Aerospace Engineering, Oklahoma State
University, Stillwater, OK, United States

Control theory provides engineers with a multitude of tools to design controllers that
manipulate the closed-loop behavior and stability of dynamical systems. These methods
rely heavily on insights into the mathematical model governing the physical system.
However, in complex systems, such as autonomous underwater vehicles performing
the dual objective of path following and collision avoidance, decision making becomes
nontrivial. We propose a solution using state-of-the-art Deep Reinforcement Learning
(DRL) techniques to develop autonomous agents capable of achieving this hybrid objective
without having a priori knowledge about the goal or the environment. Our results
demonstrate the viability of DRL in path following and avoiding collisions towards
achieving human-level decision making in autonomous vehicle systems within extreme
obstacle configurations.

Keywords: continuous control, collision avoidance, path following, deep reinforcement learning, autonomous under
water vehicle, curriculum learning

1 INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are used in many subsea commercial applications such
as seafloor mapping, inspection of pipelines and subsea structures, ocean exploration, environmental
monitoring, and various research operations. The wide range of operational contexts implies that
truly autonomous vehicles must be able to follow spatial trajectories (path following), avoid collisions
along these trajectories (collision avoidance), and maintain a desired velocity profile (velocity
control). In addition, AUVs are often underactuated by the fact that they operate with three
generalized actuators (propeller, elevation, and rudder fins) in six degrees of freedom (6-DOF)
(Fossen, 2011). The complexity that arises when combining the control objectives, a complicated
hydrodynamic environment and disturbances, and the physical design with three generalized
actuators spurs an intriguing control challenge. The current work is an attempt to address these
challenges. Since path following and collision avoidance are the two main challenges addressed in
this paper, a brief overview of the state of the art is provided in the following subsections.

1.1 Path Following
The path-planning and path-following problems are heavily researched and documented in classical
control literature. The control objective is to plan a collision-free optimal path, defined relative to
some inertial frame, and minimize tracking errors, i.e., the distance between the vehicle and the path.

Edited by:
Holger Voos,

University of Luxembourg,
Luxembourg

Reviewed by:
Marcello Cirillo,
Scania, Sweden

Martin Ludvigsen,
Norwegian University of Science and

Technology, Norway

*Correspondence:
Adil Rasheed

adil.rasheed@ntnu.no

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 26 May 2020
Accepted: 08 December 2020
Published: 25 January 2021

Citation:
Havenstrøm ST, Rasheed A and San O
(2021) Deep Reinforcement Learning
Controller for 3D Path Following and
Collision Avoidance by Autonomous

Underwater Vehicles.
Front. Robot. AI 7:566037.

doi: 10.3389/frobt.2020.566037

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660371

ORIGINAL RESEARCH
published: 25 January 2021

doi: 10.3389/frobt.2020.566037

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.566037&domain=pdf&date_stamp=2021-01-25
https://www.frontiersin.org/articles/10.3389/frobt.2020.566037/full
https://www.frontiersin.org/articles/10.3389/frobt.2020.566037/full
https://www.frontiersin.org/articles/10.3389/frobt.2020.566037/full
https://www.frontiersin.org/articles/10.3389/frobt.2020.566037/full
http://creativecommons.org/licenses/by/4.0/
mailto:adil.rasheed@ntnu.no
https://doi.org/10.3389/frobt.2020.566037
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2020.566037

For road vehicles, several path/motion planning strategies are
demonstrated (Karaman and Frazzoli, 2011). In their recent
studies, Ljungqvist et al. (2019) and Cirillo (2017)
demonstrated the use of the Lattice-based method for path/
motion planning. In both works where the focus was path
planning, the algorithms developed were tested on real
vehicles. Pivtoraiko et al. (2009) contributed with a principled
mechanism to construct an efficient, precise, and deferentially
constrained search space upon which any planner might operate.
However, most of these works were limited to fully actuated
surface vehicles. Three-dimensional (3D) path following involves
tracking errors that are composed of horizontal and vertical
components and forms an accurate representation of the real
engineering operations for AUVs (Chu and Zhu, 2015). Typically,
a variant of the Proportional Integral Derivative (PID) controller
based on reduced order models (ROM) is used to control elevator
and rudder to eliminate tracking errors (Fossen, 2011, ch. 12).

More advanced approaches are also available. A classical
nonlinear approach is found in Encarnacao and Pascoal
(2000), where a kinematic controller was designed based on
Lyapunov theory and integrator backstepping. To extend the
nonlinear approach reliably in the presence of disturbances and
parametric uncertainties, Chu and Zhu (2015) proposed an
adaptive sliding mode controller, where an adaptive control
law is implemented using a radial basis function neural
network. To alleviate chattering, a well-known “zig-zag”
phenomenon occurring when implementing sliding mode
controllers due to a finite sampling time, an adaptation rate
was selected based on the so-called minimum disturbance
estimate. Xiang et al. (2017) proposed fuzzy logic for adaptive
tuning of a feedback linearization PID controller. The heuristic,
adaptive scheme accounts for modeling errors and time-varying
disturbances. They also compare the performance on 3D path
following with conventional PID and nonadaptive backstepping-
based controllers, both tuned with inaccurate and accurate model
parameters, to demonstrate the robust performance of the
suggested controller. Liang et al. (2018) suggested using fuzzy
backstepping sliding mode control to tackle the control problem.
Here, the fuzzy logic was used to approximate terms for the
nonlinear uncertainties and disturbances, specifically for use in
the update laws for the controller design parameters.

Many other methods exist, but most published works on the
3D path-following problem incorporate either fuzzy logic,
variants of PID control, backstepping techniques, or any
combination thereof. More recently, there have been
numerous attempts to achieve path following and motion
control for AUVs by applying machine learning (ML) directly
to low-level control. Specifically, Deep Reinforcement Learning
(DRL) seems to be the favored approach. DRL controllers are
based on experience gained from self-play or exploration, using
algorithms that can learn to execute tasks by reinforcing good
actions based on a performance metric. Yu et al. (2017) used a
DRL algorithm known as Deep Deterministic Policy Gradients
(DDPG) (Lillicrap et al., 2015) to obtain a controller that
outperformed PID on trajectory tracking for AUVs. A DRL
controller for underactuated marine vessels was implemented
in Martinsen and Lekkas (2018a) to achieve path following for

straight-line paths and later in Martinsen and Lekkas (2018b) for
curved paths using transfer learning from the first study. The
DRL controller demonstrated excellent performance, even
compared to traditional Line-of-Sight (LOS) guidance. More
recently, Meyer et al. (2020b) demonstrated that a DRL
controller can achieve very impressive results in achieving the
combined objective of path following and collision avoidance
with a complex layout of stationary obstacles. Exciting results
validating the real-world applications of DRL controllers for
AUVs and unmanned surface vehicles can be found in
Carlucho et al. (2018) and Woo et al. (2019). The first paper
implemented the controller on an AUV equipped with six
thrusters configured to generate actuation in pitch moment,
yaw moment, and surge force. They demonstrated velocity
control in both linear and angular velocities. The latter paper
implemented a DRL controller on an unmanned surface vehicle
with path following as the control objective and presented
impressive experimental results from the full-scale test.
Common to all these studies is that all the potential of DRL in
path following is demonstrated in a 2D context only.

1.2 Collision Avoidance
Collision Avoidance (COLAV) system is an important part of the
control systems for all types of autonomous vehicles. AUVs are
costly to produce and typically equipped with expensive gears as
well. Therefore, maximum efforts must be made to ensure their
safe movements at all times. COLAV systems must be able to do
obstacle detection using sensor data and information processing
and obstacle avoidance by applying steering commands based on
detection and avoidance logic. The two fundamental perspectives
of COLAV control architectures are described in the literature:
deliberate and reactive (Tan, 2006).

Deliberate architectures are plan driven and therefore
necessitates a priori information about the environment and
terrain. It could be integrated as part of the on-board
guidance system (McGann et al., 2008), or at an even higher
level in the control architecture, such as a waypoint planner
(Ataei and Yousefi-Koma, 2015). Popular methods to solve the
path-planning problem include A* algorithms (Carroll et al.,
1992; Garau et al., 2005), genetic algorithms (Sugihara and
Yuh, 1996), and probabilistic roadmaps (Kavraki et al., 1996;
Cashmore et al., 2014). Deliberate methods are computationally
expensive, due to information processing about the global
environment. However, they are more likely to make the
vehicle converge to the objective (Eriksen et al., 2016).
Reactive methods on the other hand are faster and process
only real-time sensor data to make decisions. In this sense, the
reactive methods are considered local and are used when rapid
action is required. Examples of reactive methods are the dynamic
window approach (Fox et al., 1997; Eriksen et al., 2016), artificial
potential fields (Williams et al., 1990), and constant avoidance
angle (Wiig et al., 2018). A potential pitfall with reactive methods
is local minima manifested as dead ends (Eriksen et al., 2016).

To improve both the deliberate and the reactive approach, a
hybrid approach is used in practice by combining the strengths of
both. Such architectures are comprised of deliberate, reactive, and
execution layers. The deliberate layer handles high-level

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660372

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

planning, while the reactive layer tackles incidents happening in
real time. The execution layer facilitates the interaction between
the deliberate and reactive architectures and decides the final
commanded steering (Tan, 2006). The hybrid approach is
demonstrated in Meyer et al. (2020a) where a DRL agent
trained in a purely synthetic environment could achieve the
combined objective of path following and collision avoidance
with real sea traffic data (moving obstacles) in the Trondheim
fjord while complying with collision avoidance regulations. There
are still challenges in state-of-the-art COLAV methods for
vehicles subjected to nonholonomic constraints, such as
AUVs. Instability issues, neglecting vehicle dynamics and
actuator constraints leading to infeasible reference paths, and
algorithms causing the vehicle to stop are recurring challenges
seen in the literature. Additionally, extensive research discusses
methods for COLAV in 2D that cannot be directly applied to 3D.
In many cases where such methods are adapted to 3D, however,
they do not optimally take advantage of the extra dimension
(Wiig et al., 2018).

1.3 Research Goals and Methods
The current study is aimed at the following:

• Figuring out if it is possible to tame an underactuated AUV
with 6-DOF to achieve the combined objective of path
following and collision avoidance in 3D using DRL. It is
hoped that this will provide additional insight into the
dynamical system from a new perspective.

• Exploring the potential of curriculum learning (Bengio et al.,
2009) in the context of training AUVs. The basic idea
behind curriculum learning is to start small, learn easier
aspects of the task or easier subtasks, and then gradually
increase the difficulty level.

In order to achieve the research goals, we employ a DRL
controller as the motion control system operating the control
fins of the AUV, to learn the control law through exploration. As
the DRL algorithm, we have used the Policy Proximal
Optimization (PPO), proposed by Schulman et al. (2017).
The agent commands the control fins, while a traditional PI-
controller maintains a desired cruise speed. The key idea lies in
the fact that the agent learns to operate both the elevator and
rudder at the same time and should therefore be able to learn an
optimal strategy for navigating in both planes. The challenge of
DRL control is establishing a reward function such that safe and
effective tracking behavior is incentivized. To implement
curriculum learning, scenarios ranging from beginner to
expert level difficulty are constructed. Initially, the agent
starts with only a path without any obstacle or ocean current
disturbances and trains until it masters that difficulty level.
Then, obstacles are progressively added and eventually ocean
current disturbances are introduced to form the expert level
scenario. The scenarios are detailed in Section 3.1. In a COLAV
sense, the predefined path can be viewed as the deliberate
architecture, where it is assumed that the waypoints are
generated by some path-planning scheme, and the random
and unforeseen obstacles are placed on this presumed

collision-free path. The DRL agent operates in effect as the
reactive system that must handle the threat of collisions rapidly
but at the same time chooses effective trajectories to reach the
target.

The article is organized as follows: In Section 2, the
background theory on AUV modeling, the path-generation,
and DRL is given. The implementation of the simulation
model and the utilized DRL algorithm are briefly described in
Section 3. Section 4 presents the results followed by conclusions
and proposed future work in Section 5.

2 THEORY

2.1 AUV Model
This section introduces a dynamic model that can be used to
accurately simulate an AUV in a hydrodynamic environment.
This is done by using a 6-DOF maneuvering model which is
represented by 12 highly coupled and nonlinear first-order
ordinary differential equations (ODEs). Dynamic models for
AUVs comprise a kinematic (Section 2.1.2) and a kinetic
(Section 2.1.3) part. Kinematics represent the geometrical
evolution of the vehicle and involves a coordinate
transformation between two important reference frames.
Kinetics considers the forces and moments causing vehicle
motion. The kinetic analysis is typically important when
designing motion control systems because actuation can only
be achieved by applying control forces and moments. Before
delving into the details of the kinematic and kinetic equations, the
notation used to detail the model’s states and parameters are
presented in Table 1. This notation is used by the Society of Naval
Architects and Marine Engineers (SNAME (1950)) (Fossen,
2011, p. 16).

2.1.1 Reference Frames
Two reference frames are especially important in the modeling of
vehicle dynamics. The North-East-Down (NED) frame denoted
{n} and the body frame denoted {b}. The NED coordinate system
is considered to be inertial, with principal axis pointing towards
true north, east, and downwards—normal to Earth’s surface—for
the xn, yn, zn axes, respectively. Since the NED frame is considered
inertial, Newton’s laws of motion apply. The body frame has its
origin located at the vehicle’s center of control (CO), which in
general is a design choice. The CO is not automatically placed at
the vehicle’s center of mass (CM) since this point might be time-
varying. A typical point for the CO for AUVs is therefore the
center of buoyancy (CB). The body frame’s xb axis points along
the longitudinal axis of the vehicle, the yb axis points transversal,
and the zb axis points normal to the vehicle surface. To relate
vectors in different coordinates, we utilize the Euler-angle
rotation matrix seen in Eq. 1.

Rn
b(Θnb) � ⎡⎢⎢⎢⎢⎢⎣ cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψcϕsθ

sψcθ cψcϕ + sϕsθsψ −cψsϕ + sθsψcϕ
−sθ cθsϕ cθcϕ

⎤⎥⎥⎥⎥⎥⎦, (1)

where sϕ � sinϕ, cϕ � cos ϕ.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660373

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

The Euler angles describing the vehicle’s attitude is contained
in Θnb � [ϕ, θ,ψ]T . To obtain a vector expressed in the body
frame in NED coordinates, a matrix multiplication with the
rotation matrix is applied. To rotate the inverse way, i.e., from
{n} to {b}, we use the transposed rotation matrix (Rn

b)T � Rb
n.

2.1.2 Kinematic Equations
The kinematic state vector is the concatenation of the position of
the vehicle in NED coordinates and the vehicle’s attitude with
respect to the NED frame. This vector is symbolized by
η � [pn,Θnb]T � [x, y, z, ϕ, θ,ψ]T . The velocity vector expressed
in {b}, vb, is utilized to find a differential equation for pn. Rotating
this vector by applying Eq. 1 yields the differential equation for
the position in {n}:

_pn � vn � Rn
b(Θnb)vb, (2)

where the body-fixed velocity vector is defined as vb � [u, v,w]T
and the components are defined according to Table 1.

To write a differential equation for the whole kinematic state
vector, an equation describing the time-evolution of the Euler
angles is obtained by transforming the linear velocities expressed in
{b}, according to Eq. 3. Note that this transformation is not well
defined for θ � (π/2). An alternative representation avoiding the
singularity is quaternion parameterization (Fossen, 2011, p. 25).

_Θnb � TΘ(Θnb)ωb
b/n �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 sϕtθ cϕtθ

0 cϕ −sϕ
0

sϕ
cθ

cϕ
cθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
q
p
r

⎤⎥⎥⎥⎥⎥⎦ (3)

where tθ � tanθ. Combining Eqs. 2, 3, the complete kinematic
differential equation can be written as Eq. 4.

_η � [_pn

_Θnb
] � [Rn

b(Θnb) 0
0 TΘ(Θnb)][vb

ωb
b/n

] � JΘ(η)ν. (4)

2.1.3 Kinetic Equations
The kinetic equations of motion for a marine craft can be
expressed as a mass-spring-damper system. The mass terms
naturally stem from vessel body, while the spring forces acting
on the body arise from buoyancy. The damping is a result of the
hydrodynamic forces caused by motion. The model implemented
is adapted from da Silva et al. (2007) and all model parameters
can be seen in Table 2. The AUV specifications on which the
model parameters are based are given by the tables given in the
appendix. Furthermore, it is based on the following assumptions:

• The AUV operates at a depth below disturbances from wind
and waves.

• The maximum speed is 2m/s.
• The moment of inertia can be approximated by that of a

spheroid.
• The AUV is passively stabilized in roll and pitch by placing

the CM a distance zG under the CO.
• The AUV shape is top-bottom and port-starboard

symmetric.
• As a fail-safe mechanism, the AUV is slightly buoyant.

The vessel’s motion is governed by the nonlinear kinetic
equations expressed in {b} according to Equation 5:

M _νr Mass forces︸

︷︷

︸+C(νr)νr Coriolis forces︸

︷︷

︸+D(νr)νr Damping forces︸

︷︷

︸
+ g(η) Restoring forces︸

︷︷

︸ � τcontrol,

(5)

where νr � ν − νc is the velocity relative to the velocity of an ocean
current, represented by νc in {b} . When no currents are present,
we see that ν � νr . Furthermore, only irrotational currents are
considered.

2.1.3.1 Mass Forces
The systems inertia matrix,M, is the sum of the inertia matrix for
the rigid body (RB) and the added mass (A). Added mass is the
inertia added from the weight of the fluid that the vessel displaces
when moving through it. Because of the symmetry assumptions,
both matrices are diagonal. However, the rigid body matrix is
defined in the center of gravity, such that it must be shifted to the
center of control, yielding some coupling terms:

M � MRB +MA

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m − X _u 0 0 0 mzG 0
0 m − Y _v 0 −mzG 0 0
0 0 m − Z _w 0 0 0
0 −mzG 0 Ix − K _p 0 0

mzG 0 0 0 Iy −M _q 0
0 0 0 0 0 Iz − N _r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6)

2.1.3.2 Coriolis Forces
Naturally, the added mass will also affect the Coriolis-
centripetal matrix, C(νr), which defines the forces
occurring due to {b} rotating about {n}. Moreover, the
linear-velocity independent parameterization of the rigid
body Coriolis-centripetal matrix is utilized, easing the

TABLE 1 | Notation for marine vessels as given by SNAME (1950).

Degree of freedom Forces and moments Velocities Positions

1 Translation in the x direction (surge) T u x
2 Translation in the y direction (sway) Y v y
3 Translation in the z direction (heave) Z w z
4 Rotation about x axis (roll) K q ϕ
5 Rotation about y axis (pitch) M p θ
6 Rotation about z axis (yaw) N r ψ

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660374

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

implementation of irrotational ocean currents (Fossen, 2011,
p. 222) (note that there are still linear-velocity terms caused by
the added mass). It is this trick that makes it possible to collect
the rigid body and add mass terms to represent the 6-DOF
model by the elegant Eq. 5. When using the linear-velocity
independent parameterization, the Coriolis-centripetal
matrix is written as

C(νr) � C(νr)RB + C(νr)A

�

⎡⎢⎢⎣

0 −mr mq mzGr −Z _wwr Y _vvr
mr 0 −mp Z _wwr mzGr −X _uur
−mq mp 0 −(mzGp + Y _vvr) −mzGq + X _uur 0
−mzGr −Z _wwr mzGp + Y _vvr 0 (Iz −mz2G − N _r)r (− Iy +M _q)q
Z _wwr −mzGr mzGq − X _uur (− Iz +mz2G + N _r)r 0 (Ix − K _pp
−Y _vvr X _uur 0 (Iy −M _q)q (− Ix + K _p)p 0

⎤⎥⎥⎦
.

(7)

2.1.3.3 Damping Forces
The components of hydrodynamic damping modeled are linear
viscous damping, nonlinear (quadratic) damping due to vortex
shedding, and lift forces from the body and control fins. Thus, the
damping matrix, D(νr), can be expressed as

D(νr) � D +Dn(νr) + L(νr). (8)

The linear damping is given by

D � −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 0 0 0
0 Yv 0 0 0 Yr

0 0 Zw 0 Zq 0
0 0 0 Kp 0 0
0 0 Mw 0 Mq 0
0 Nv 0 0 0 Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The nonlinear damping is given by

Dn(ν) � −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu|u|
∣∣∣∣u∣∣∣∣ 0 0 0 0 0

0 Xv|v||v| 0 0 0 Yr|r||r|
0 0 Zw|w||w| 0 Zq|q|

∣∣∣∣q∣∣∣∣ 0

0 0 0 Kp|p|
∣∣∣∣p∣∣∣∣ 0 0

0 0 Mw|w||w| 0 Mq|q|
∣∣∣∣q∣∣∣∣ 0

0 Nv|v||v| 0 0 0 Nr|r||r|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, the lift is given by

L(ν) � −
⎡⎢⎢⎣

0 0 0 0 0 0
0 Yuvf + Yuvb 0 0 0 Yurf

0 0 Zuwf + Zuwb 0 Zuqf 0
0 0 0 0 0 0
0 0 Muwf

+Muwb
0 Muqf 0

0 Nuvf + Nuvb 0 0 0 Nurf

⎤⎥⎥⎦
u.

2.1.3.4 Restoring Forces
The restoring forces working on the AUV body are functions of the
orientation, weight, and buoyancy of the vehicle. Because the vehicle
is assumed to be slightly buoyant and the passive stabilization of roll
and pitch, the restoring force vector can be written as

G(η) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W − B)sin θ
−(W − B)cos θ sin ϕ
−(W − B)cos θ cos ϕ

zGW cos θ sinϕ
zGW sin θ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

2.1.3.5 Control Inputs
There are three control inputs: propeller thrust, rudder, and
elevator fins denoted as n, δr and δs, respectively. All actuators

TABLE 2 | AUV model parameters.

Parameter Description Value

Mass and Coriolis matrix
m Mass 18
Zg COG relative to CO 0.01
Ix Moment of inertia, roll 0.0405
Iy Moment of inertia, pitch 1.070
Iz Moment of inertia, yaw 1.070
X _u Added mass, surge −1.029
Y _v Added mass, sway −16.153
Z _w Added mass, heave −16.153
K _p Added mass, roll 0
M _q Added mass, pitch −0.758
N _r Added mass, yaw −0.758
Damping matrix
Xu Linear damping, surge −2.4
Yv Linear damping, sway −23
Zw Linear damping, heave −23
Kp Linear damping, roll −0.3
Mq Linear damping, pitch −9.7
Nr Linear damping, yaw −9.7
Yr Linear damping, yaw on sway 11.5
Zq Linear damping, pitch on heave −11.5
Mw Linear damping, heave on pitch 3.1
Nv Linear damping, sway on yaw −3.1
Xu|u| Nonlinear damping, surge −2.4
Yv|v| Nonlinear damping, sway −80
Zw|w| Nonlinear damping, heave −80
Kp|p| Nonlinear damping, roll −6.4e-4
Mq|q| Nonlinear damping, pitch −9.1
Nr|r| Nonlinear damping, yaw −9.1
Yr|r| Nonlinear damping, yaw on sway 0.3
Zq|q| Nonlinear damping, pitch on heave −0.3
Mw|w| Nonlinear damping, heave on pitch 1.5
Nv|v| Nonlinear damping, sway on yaw −1.5
Yuvf Fin lift, sway −19.2
Zuwf Fin lift, heave −19.2
Muqf Fin lift, pitch −3.072
Nuqf Fin lift, yaw −3.072
Yurf Fin lift, yaw on sway 7.68
Zuqf Fin lift, pitch on heave −7.68
Muwf Fin lift, heave on pitch −7.68
Nuvf Fin lift, sway on yaw 7.68
Yuvb Body lift, sway −10.956
Zuwb Body lift, heave −10.956
Muwb Body lift, heave on pitch −3.309
Nuvb Body lift, sway on yaw 3.309
Restoring force matrix
W Weight 176.58
B Buoyancy 177.58
Control force matrix
Yuuδr Rudder fin on sway 19.2
Nuuδr Rudder fin on yaw 7.68
Zuuδs Elevator fin on heave −19.2
Muuδs Elevator fin on pitch −7.68

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660375

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

are constrained according toTable 3. The constraint on the thrust
force guarantees that the low-speed assumption holds. The
control inputs are related to the control force vector according
to Eq. 10:

τcontrol �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 Yuuδru

2
r 0

0 0 Zuuδsu
2
r

0 0 0
0 0 Muuδsu

2
r

0 Nuuδru
2
r 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ n
δr
δs

⎤⎥⎥⎥⎥⎥⎦. (10)

This completes the details of the model implemented. The
numerical values used in the simulation can be found in
Table 2. For a complete derivation of the model and how the
numerical values are obtained from the specifications and
assumptions, da Silva et al. (2007) and Fossen (2011) are
referred to for extensive explanations.

2.1.4 Simulation Model for Ocean Current
To simulate the environmental disturbances in the form of
ocean currents, a 3D irrotational ocean current model is
implemented. The model is based on generating the
intensity of the current, Vc � ‖νc‖2, by utilizing a first-order
Gauss-Markov Process (Fossen, 2011, Ch. 8):

_Vc � −μVc + w, (11)

where w is white noise and μ≥ 0 a constant. An integration limit is
set so that the current speed is limited between 0.5 to 1 m/s. The
current direction is static and initialized randomly for each episode.
The current direction is described by the sideslip angle and angles of
attack are symbolized by αc and βc, respectively. These angles
represent from what direction the current hits the body frame. In
NED coordinates, the linear ocean current velocities can be obtained
by Eq. 12 (Fossen, 2011, Ch. 8).

vnc � Vc
⎡⎢⎢⎢⎢⎢⎣ cos αc cos βc

sin βc
sin αc cos βc

⎤⎥⎥⎥⎥⎥⎦. (12)

There are no dynamics associated with the sideslip angle
and the angle of attack in the simulations. The current
direction stays fixed throughout an episode. To obtain the
linear velocities in the body frame, we apply the inverse Euler-
angle rotation matrix, as seen in Eq. 13:

⎡⎢⎢⎢⎢⎢⎣ uc

vc
wc

⎤⎥⎥⎥⎥⎥⎦ � Rn
b(Θnb)Tvnc . (13)

Since the ocean current is defined to be irrotational, the full
current velocity vector is written]c � [uc, vc,wc, 0, 0, 0].

2.1.5 Control Fin Dynamics
To simulate the operation of the control fins more
realistically, the output of the controller passes through a
first-order low-pass filter with time constant Tf . The intention
behind this implementation is to remove noisy outputs from
the DRL agent, without having to add a cost to the control
action derivatives _δr and _δs. The implementation of the
discrete low-pass filter for the control fins is given by
Equation 14:

δi,t � (1 − a)δi,t−1 + aut , i � r or s (14)

where the filter parameter a is related to the time constant by
a � Δt/(Tf + Δt), ut is the raw control action, and Δt is the
simulation step size (Haugen, 2008).

2.2 3D Path Following
In this section, the path-following problem is formally
introduced. A set of nw waypoints is used to generate the
path, starting at the origin of the NED coordinates for
simplicity. Any well-defined path for a vehicle that cannot
accelerate infinitely fast must be G2 continuous. Methods such
as cubic and spline interpolation establish G2 continuity and are
straightforward to implement in 2D but cannot be applied
directly in 3D interpolation. In fact, some spline methods have
been shown to produce paths that do not visit all waypoints in 3D
(Chang and Huh, 2015). This is undesirable as the path should
visit all waypoints in the correct sequence. Chang and Huh (2015)
proposed a 3D extension of quadratic polynomial interpolation
(QPMI) to create a G2 continuous path by using second-order
polynomials and a membership function to smoothly switch
between polynomials. They choose quadratic polynomials
because this is the lowest order possible for obtaining G2

continuity, and higher-order polynomials are prone to be
corrupted by Runge’s phenomenon. To generate a QPMI path
in 3D, we start by writing the path Pp as a function of the along-
track distance, s, such that Pp(s) : (x(s), y(s), z(s)). Each
waypoint m has a Euclidian distance sm associated with it. For
the first waypoint, this distance is zero, i.e., s1 � 0, and the others
are obtained by the generalized equation

sm � ∑m
i�2

�������������������������������
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

√
. The

quadratic polynomials linking three waypoints together can be
written as

xm(s) � axms
2 + bxms + cxm,

ym(s) � ayms
2 + byms + cym,

zm(s) � azms
2 + bzms + czm,

m � 2, 3, . . . , nw − 1.

(15)

And the coefficients can be found by solving the following matrix
equations:

TABLE 3 | Specifications for simulated AUV adapted from da Silva et al. (2007).

Symbol Description Value Unit

m Mass 18 kg
L Length 108 cm
W Weight 176 N
B Buoyancy 177 N
zG Position of CM w.r.t. CB in z axis 1 cm
d Diameter 15 cm
δmax Maximum control fin deflection 30+ deg
ηmax Maximum propeller thrust 14 N

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660376

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

⎡⎢⎢⎢⎢⎢⎣ axmbxm
cxm

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ s
2
m−1 sm−1 1
s2m sm 1
s2m+1 sm+1 1

⎤⎥⎥⎥⎥⎥⎥⎦
− 1⎡⎢⎢⎢⎢⎢⎣ x(sm−1)

x(sm)
x(sm+1)

⎤⎥⎥⎥⎥⎥⎦, (16)

⎡⎢⎢⎢⎢⎢⎢⎣ aymbym
cym

⎤⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ s
2
m−1 sm−1 1
s2m sm 1
s2m+1 sm+1 1

⎤⎥⎥⎥⎥⎥⎥⎦
− 1⎡⎢⎢⎢⎢⎢⎣ y(sm−1)

y(sm)
y(sm+1)

⎤⎥⎥⎥⎥⎥⎦, (17)

⎡⎢⎢⎢⎢⎢⎣ azmbzm
czm

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ s
2
m−1 sm−1 1
s2m sm 1
s2m+1 sm+1 1

⎤⎥⎥⎥⎥⎥⎥⎦
− 1⎡⎢⎢⎢⎢⎢⎣ z(sm−1)

z(sm)
z(sm+1)

⎤⎥⎥⎥⎥⎥⎦,
m � 2, 3, . . . , nw − 1.

(18)

A path represented by nw waypoints requires nw − 2
polynomials to generate the QPMI path, as seen in the
previous equations. A group of polynomials linking three and
three waypoints is therefore obtained. The group of polynomials
representing the path is written asPp(s) : (X(s),Y(s),Z(s)),
where the group X(s),Y(s),Z(s) is expressed in a general
form as

X(s) �
⎧⎪⎨⎪⎩

x2(s), s1 ≤ s< s2,
μr,m(s)xm+1(s) + μf ,m(s)xm(s), (2≤m< nw − 1), s2 ≤ s< snw−1,

xnw−1(s), snw−1 ≤ s≤ snw,
(19)

Y(s) �
⎧⎪⎨⎪⎩

y2(s), s1 ≤ s< s2,
μr,m(s)ym+1(s) + μf ,m(s)ym(s), (2≤m< nw − 1), s2 ≤ s< snw−1,

ynw−1(s), snw−1≤ s≤ snw,
(20)

Z(s) �
⎧⎪⎨⎪⎩

z2(s), s1 ≤ s< s2,
μr,m(s)zm+1(s) + μf ,m(s)zm(s), (2≤m< nw − 1) s2 ≤ s< snw−1,

znw−1(s), snw−1 ≤ s≤ snw,
(21)

and μr,m(s), μf ,m(s) are membership functions given by

μr,m(s) �
s − sm

sm+1 − sm
,

μf ,m(s) �
sm+1 − s
sm+1 − sm

,

m � 2, 3, . . . , nw − 1.

(22)

Note that the first and the last polynomial are not overlapping
any of the others; hence, the membership functions can be
thought of as equal to one and zero in these regions. In the
intermediate waypoints, the polynomials are blended smoothly
by linearly increasing and decreasing the contribution of the two
polynomials. In the paper by Chang and Huh (2015), they go on
to proveG2 continuity and details of the derivation of themethod.

2.2.1 Guidance Laws for 3D Path Following
To define the tracking errors, the Serret-Frenet ({SF}) reference
frame associated with each point of the path is introduced. The
xSF axis points tangent to the path, the ySF axis points normal to
the path, and the zSF axis points an orthogonal direction to both
such that zSF � xSF × ySF (Encarnacao and Pascoal, 2000). The
tracking-error vector, ε � [s, e, h]T , is defined by the along-track,
cross-track, and vertical-track error. The tracking-error vector
points towards the closest point on the path from the vessel.

Because the origin of the {SF} frame can be arbitrarily placed, the
point on the path closest to the vessel is chosen as the origin in the
simulation. This yields s � 0, which intuitively makes sense in a
path-following scenario since the path is not dependent on time.
There is therefore no error in the along-track distance
component.

To achieve path following, it is important to align the velocity
vector of the vessel in n, Vn, with the tangent vector of the path.
When this is not the case, a user-specified look-ahead distance Δ
is used to guide the vessel back to the path. Therefore, the desired
course is not directed towards the closest point on the path.
Rather it converges smoothly while the vessel returns back to the
path further downstream. This is done by defining guidance laws
for the desired pitch and heading which is based on the
components of ε and Δ. First, we obtain the tracking errors by
Equation 23 (Breivik and Fossen, 2009):

ε � RSF
n (υp, χp)T(Pn − Pn

p), (23)

where Pn is the position of the vessel and Pn
p is the closest point on

the path. Now the desired azimuth and elevation angle can be
calculated according to

χd(e) � χp + χr(e),
υd(h) � υp + υr(h), (24)

where χr(e) � arctan(e/Δ) and υr(h) � arctan(h/ ������
e2 + Δ2

√). It is
seen that driving e and h to zero will in turn drive the correction
angles χr(e) and υr(h) to zero, and the velocity vector then aligns
with the tangent of the path given when χ � χd � χp and υ � υd �
υp.

2.3 Deep Reinforcement Learning
In RL, an algorithm, an agent, makes an observation st of an
environment and performs an action at . The observation is
referred to as the state of the system and is drawn from the state
space S. The action is restricted to the well-defined action space
A. When an RL task is not infinitely long but ends at some time T,
we say that the problem is episodic and that each iteration
through the task is an episode.

After performing an action, the agent receives a scalar reward
signal rt � r(st , at). The reward quantifies how good it was to
choose action at when being in state st . The objective of the agent
is typical tomaximize the expected cumulative reward. The action
choices of the agent are guided by a policy π(s), which can be
either deterministic or stochastic. In the case that the learning
algorithm involves a neural network, the policy is parametrized
by the learnable parameters of the network, denoted by θ. When
the policy is stochastic and dependent on a neural network, we
write π(s) � πθ(a|s).

2.3.1 Proximal Policy Optimization
The actor-critic algorithm known as Proximal Policy
Optimization was proposed by Schulman et al. (2017). We
briefly present the general theory and the algorithm which is
used in this research. Let the value function V(s) represent the
expected cumulative reward during an episode when following
the current policy. In addition, let the state-action value function

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660377

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Q(a, s) define the expected cumulative reward by following the
policy and by taking initial action a. Then the advantage function
A(s, a) is given by

A(s, a) � Q(s, a) − V(s). (25)

The advantage function represents the difference in expected
return by taking action a in state s, as opposed to the following
policy. Because both Q(s, a) and V(s) are unknown, an estimate
of the advantage function, Ât , is calculated based on an estimate
of the value function V̂(s), which is made by the critic neural
network. When the value function is estimated, an alternative
for estimating the advantage function is the generalized
advantage estimate (GAE), given in Equation 26 Schulman
et al. (2015).

Ât � δt + (cλ)δt+1 +/ + (cλ)T− t+1δT−1
where δt � rt + cV̂(st+1) − V̂(st)

(26)

Here, T is a truncation point which is typically much smaller
than the duration of an entire episode. As before, γ is the discount
factor. As the GAE is a sum of uncertain terms, the tunable
parameter 0≤ λ≤ 1 is introduced to reduce variance. However,
λ< 1 makes the GAE biased towards the earlier estimates of the
advantage function. Hence, choosing λ is a bias-variance
trade-off.

The second key component in PPO is introducing a surrogate
objective. It is hard to apply gradient ascent directly to the RL
objective. Therefore, Schulman et al. suggest a surrogate
objective such that an increase in the surrogate provably
leads to an increase in the original objective Schulman et al.
(2017). The proposed surrogate objective function is given by
Equation 27.

LCLIP(θ) � Êt[min(πθ(at|st)
πθold(at |st)

Ât , clip(πθ(at |st)
πθold(at |st)

, 1 − ϵ, 1 + ϵ)Ât)].
(27)

The tuning parameter ϵ reduces the incentive to make very
large changes to the policy at every step of the gradient ascent.
This is necessary as the surrogate objective only estimates the
original objective locally in a so-called trust region. During a
training iteration, N actors (parallelized agents) are enabled to
execute the policy and in that way sample trajectories for T
timesteps. Then the GAE is computed based on the sampled
trajectories, and the advantage estimation is used to optimize the
surrogate objective for K epochs using minibatches of size M per
update. The PPOmethod is seen in its general form in Algorithm
1 (Schulman et al., 2017).

Algorithm 1: Proximal Policy Optimization, actor-critic style

for iteration: 1,2... do
for actor: 1,2...N do
Run policy πθold for T time-steps
Compute advantage estimate Â1 . . . ÂT

end
Optimize surrogate L w.r.t. θ, with K epochs and mini-batch

size M < NT

θold←θ
end

3 METHOD AND IMPLEMENTATION

The simulation environments are built to comply with the
OpenAI Gym (Brockman et al., 2016) standard interface. For
the RL algorithms, the Stable Baselines package which offers
improved parallelizable implementations based on OpenAI
Baselines (Dhariwal et al., 2017) library is utilized. The
complete code can be found on Github1. Ten different
scenarios are created: five for training and five for testing.

3.1 Environment Scenarios
Training scenarios are constructed by generating a path from a
random set of nw waypoints which are generated such that
unrealistically sharp turns are avoided. The first scenario used
in curriculum learning is called beginner, where only a path and no
obstacles or ocean current is present. Then the agent is introduced
to the intermediate level, where a single obstacle is placed on the
half-way mark. The next level is called proficient. Here, two more
obstacles are placed equally distanced from the half-way mark.

The last part of training happens in the advanced and expert
level scenarios. In the advanced level difficulty, we generate the
proficient challenge, but additionally five more obstacles are
placed randomly off-path, such that an avoidance maneuver
could induce a new collision course. The distinction between
the expert and the advanced level is the inclusion of the ocean
current disturbance. In all scenarios, the first and the last third of
the path are collision-free, in order to keep part of the curriculum
from the beginner scenario (pure path following) present
throughout the learning process. This enables the agent to not
forget knowledge learned from doing path following only.
Figure 1 illustrates the different training contexts the agent is
exposed to. In addition to training, the agent progressively
through these scenarios, quantitative evaluation is performed
by sampling a number of episodes such that the agents’
performance across the various difficulty levels can be
established. After evaluating the controllers by statistical
averages, qualitative analysis is done in designated test
scenarios. These are designed to test specific aspects of the
agents’ behavior. The first scenario tests a pure path following
on a nonrandom path (in order for results to be reproducible)
both with and without the presence of an ocean current. Next,
special (extreme) cases where it would be preferable to use only
one actuator for COLAV, i.e., horizontally and vertically stacked
obstacles, are generated. The agents are also tested in a typical
pitfall scenario for reactive COLAV algorithms: a dead end. See
Section 4.2 for illustrations of the test scenarios.

1

Link: https://github.com/simentha/gym-auv

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660378

Havenstrøm et al. DRL for AUV

https://github.com/simentha/gym-auv
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Figure 1 | Training scenarios used in curriculum learning.

Figure 2 | Rendering of the sonar simulation during an active episode.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5660379

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

3.2 Obstacle Detection
Being able to react to the unforeseen obstacles requires the AUV
to perceive the environment through sensory inputs. This
perception, or obstacle detection, is simulated by providing the
agent a 2D sonar image, representing distance measurements to a
potential intersecting object in front of the AUV. This setup
emulates a Forward Looking Sonar (FLS) mounted on the front of
the AUV. A 3D rendering of the FLS simulation is seen in
Figure 2. The specific sensor suite, the sonar range, and the
sonar apex angle are configurable and can therefore be thought of
as hyperparameters.

Depending on the sensor suite of choice, the number of sensor
rays can get quite large. It is also notable that this issue is
exponentially larger in 3D compared to 2D, slowing the
simulation speed significantly as searching through the sonar
rays (line search) is computationally expensive. For this reason,
the sensor suite used in this research is 15 by 15, providing a grid
with 10+ spacing between each sonar ray when scanning with a
140+ apex angle. This amounts to a total of 225 line searches per
sensor update and in order to limit this stress on computational
resources, the update frequency is set to 1Hz. Moreover, the sonar
range is limited to 25m.

3.3 Reward Function
Reward function design is a crucial part of any RL process.
The goal is to establish an incentive so the agent learns certain
behavioral aspects. This is done by trying to imitate human-
like behavior. For instance, following the path is objectively
desirable, but this goal must be suspended in the case of a
potential collision. When (and by what safety margin) to react
is inherently a subjective choice. Regulating this trade-off is a
balancing act, where following the path notoriously would
result in many collisions and being too cautious would be
ineffective. Additionally, a configuration involving excessive
roll, i.e., the angular displacement of the AUV around its own
longitudinal axis, is undesirable because that implies
inverting or even swapping the two actuators’ effect (the
rudder would operate as the elevator and vise versa) in
terms of combating course and elevation errors. Not using
the actuators too aggressively is therefore key to achieving
smooth and safe operation. Thus, a reward function
incorporating these important aspects of AUV motion
control is developed.

The first part focuses on path following and simply penalizes
errors between desired and actual course and elevation angle, as
given by Equation 28:

rpft (~χ, ~υ) � cχ~χ
2 + cυ~υ

2, (28)

where cχ and cυ are negative weights deciding the severity of
being off the course and elevation angles calculated by the
guidance laws. The next incentive is avoiding obstacles
blocking the path seen through the 2D sonar image. First, the
range measurements are converted to a proportionally inverse
quantity we have called obstacle closeness. This quantity is written
as c(di,j) � clip(1 − (di,j/dmax), 0, 1), where di,j is the i’th and j’th
pixel distance measurement and dmax is the sonar range. This

transformation sets all sensor inputs zero as long as there are no
obstacles nearby, effectively deactivating learning in this part of the
neural net during the beginner scenario. The term incentivizing
obstacle avoidance is written in Equation 29. It is calculated as a
weighted average in order to remove the dependency on a specific
sensor suite configuration. Furthermore, a small constant ϵc is used
to remove singularities occurring when obstacle closeness in a sector
is exactly one and cc is a scaling parameter.

roat (d) � −
∑i∈I∑j∈J βoa(θj,ψi)(ccmax((1 − c(di,j))2, ϵc))− 1

∑i∈I∑j∈J βoa(θj,ψi) .

(29)

Since the vessel-relative orientation of an obstacle determines
whether a collision is likely, the penalty related to a specific closeness
measurement is scaled by an orientation factor dependent on the
relative orientation. The vessel-relative scaling factor is written as
βoa(θj,ψi) � (1 − (2|θi|/ca))(1 − (2

∣∣∣∣∣ψj

∣∣∣∣∣/ca)) + ϵoa. Here, ϵoa is a
small design constant used to penalize obstacles at the edge of the
configuration, and θj and ψj define the vessel-relative sonar
direction. Figure 3 illustrates how the 2D sonar image is
weighted in terms of the sector importance given by βoa. As is
clear, obstacles that appear centermost in the sonar image will yield
the largest penalty.

To find the right balance between penalizing being off-track
and avoiding obstacles—which are competing objectives—the
weight parameter λr ∈ [0, 1] is used to regulate the trade-off.
This structure is adapted from the work by Meyer et al.
(2020a); Meyer et al. (2020b), which performed similar
experiments in 2D. In addition, we add penalties to roll, roll
rate, and the use of control actuation to form the complete
reward function:

Figure 3 | How the reward is scaled according to the sonar-data’s
vessel-relative direction. Note that the grid illustrated is much finer than the 15
by 15 sensor suite used during simulation.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603710

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

rt(~χ, ~υ, d, ϕ, r, δr , δs) � λrr
pf
t (~χ, ~υ) + (1 − λr)roat (d) + cϕϕ

2 + crr
2

+ cδrδ
2
r + cδsδ

2
s .

(30)

3.4 Feedback/Observations
The list of state observations, referring to the states of the
dynamical model, and the agents’ inputs during training and in
operation is seen in Table 4. The inputs are normalized by the true
or the empirical maximum, so that values passed into the neural
network are in the range [−1, 1]. Input normalization is used to
improve the speed of convergence and the symbols are denoted by
subscript o to indicate that these are the actual values passed as
observations. The nonlinear activation functions of neural
networks tend to saturate if the inputs get too large; hence,
normalization is a means used to counteract this effect.
Furthermore, large input values might lead to huge error
gradients, which in turn causes unstable training. Normalization
is therefore a simple form of preprocessing contributing to faster
and more stable training (Yann LeCun et al., 1998).

In addition to the state observations, the neural network inputs
a flattened 2D sonar image measuring closeness. It is possible to
pass the sonar image directly through the neural network,
essentially learning to map raw sensor data to control action.
By the fact that neural networks are capable of representing any
continuous nonlinear function, this should be feasible in theory
(Nielsen, 2015). However, as this requires a high-dimensional
observation space, a larger neural network is needed to learn a
control law. In turn, a larger neural net requires more data and
more updates to converge, prolonging an already time-
consuming process. To address this issue, dimensionality
reduction is performed by max pooling the raw closeness
image from (15, 15) to (8, 8). While max pooling tends to be
more restrictive (a high closeness measurement indicates a small
distance between the vehicle and an object in a vessel-relative
channel), the extra dimension that 3D offers provides a viable
path to pass the obstacles in most cases. Moreover, being
restrictive favors safety and obstacle avoidance.

For the neural networks, we utilize theMLP-Policy (multilayer
perceptron) provided by Stable Baselines which incorporates a
fully connected, two hidden-layer neural networks with 64
neurons in each layer using hyperbolic tangents (tan h) as the
activation functions. The input size and the output size are
decided by the observation space and the action space,
respectively. As we pass 14 state observations plus the 64-pixel
output from max pooling the raw sonar image, the total input
vector is of size 78 × 1. The action space is naturally the rudder
and elevator fin commands, meaning a 2 × 1 output vector. The
value of the parameters used during the training is given in
Table 5.

4 RESULTS AND DISCUSSIONS

This section covers the results obtained from applying the
finalized DRL controllers in the various scenarios introduced
in Section 3.1. Firstly, test reports from quantitative tests, which
are obtained by running the simulation for a large sample of
episodes and calculating statistical averages, are given. In light of
these results, the behavioral aspects can be interpolated to
visualize and pinpoint clearer trends. Secondly, the reports
from testing the controllers in special-purpose scenarios are
shown and analyzed to qualify if the agents have indeed
learned to operate the AUV intelligently. Three values for the
trade-off parameter λr were used during the training to obtain

TABLE 4 | Observation table for end-to-end training for path following. All states
and errors are normalized by the empirical or true maximum value.

Observation Max

Relative surge + speed uro � ur
umax

∈ [−1,1] 2
Relative sway speed vro � vr

vmax
∈ [−1, 1] 0.3

Relative heave speed wro � wr
wmax

∈ [−1,1] 0.3
Roll ϕo � ϕ

ϕmax
∈ [−1, 1] π

Pitch θo � θ
θmax

∈ [−1, 1] π
Yaw ψo � ψ

ψmax
∈ [−1, 1] π

Roll rate po � p
pmax

∈ [−1,1] 1.2
Pitch rate qo � q

qmax
∈ [−1,1] 0.4

Yaw rate ro � r
rmax

∈ [−1, 1] 0.4
Course error ~χo � χd−χ

χmax
∈ [−1, 1] π

Elevation error ~υo � υd−υ
υmax

∈ [−1, 1] π
Ocean current velocity, surge uc,o � uc

Vc,max
∈ [−1, 1] 1

Ocean current velocity, sway vc,o � vc
Vc,max

∈ [−1,1] 1
Ocean current velocity, surge wc,o � wc

Vc,max
∈ [−1, 1] 1

TABLE 5 | Parameter table for training and simulation setup.

PPO Description Value

α Learning rate 2.5e-4
γ Discount rate 0.99
λ GAE parameter 0.95
τ Entropy bonus coefficient 0.001
T Number of steps per policy updates 1,024
K Number of epochs 4
M Batch size 64
N Number of parallel actors 4
Environment
Δ Look-ahead distance 3
nw Number of training path waypoints 7
ca Sonar span apex angle 140
sr Sonar range 25
− Sensor suite (15, 15)
− Sensor min. pool output (8, 8)
− Sensor update frequency 1
[Vmin ,Vmax] Ocean current intensity limits [0.5, 1]
da End-goal acceptance radius 1
Tf Control fins time constant 0.2
Reward function
cχ Course error penalty coefficient −1
cυ Elevation error penalty coefficient −1
cc Obst. closen. penalty scaling −12.5
ϵc Minimum obstacle penalty closeness −5e − 3
ϵoa Minimum vessel-relative scaling −0.05
cϕ Roll penalty coefficient −1
cr Roll rate penalty coefficient −1
cδr Rudder action penalty coefficient −0.1
cδs Elevator action penalty coefficient −0.1
λr path following/COLAV trade-off [0.9, 0.5, 0.1]

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603711

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

three expert level controllers. This gives rise to a rational
hypothesis on the test outcomes. The agent trained with λr �
0.9 should on average yield a lower tracking error, while
maintaining a higher collision rate. The reversed results should
be seen in the case of λr � 0.1.

4.1 Quantitative Results
The quantitative results are obtained by running each training
scenario, configured randomly in each episode, for N � 100
episodes. As metrics, we use success rate, collision rate, and
average tracking error over all episodes. Success is defined as
the agent reaching the last waypoint within an acceptance radius
of 1m from the destination without colliding. Equivalently, a
collision is deemed to have happened if the distance between the
AUV and any obstacle, at any time during an episode, is less than
a specified safety radius dsafety � 1m. Table 6 lists the full report
from the quantitative tests. The results show a clear connection to
the hypothesis that higher λr should result in lower tracking
errors but a higher collision rate on an average. Conversely, low λr
should result in fewer collisions but higher average tracking error.
This matches exactly the expectation. The quantitative results can
be interpolated to find general expressions for the success rate,
collision rate, and average tracking error as functions of λr . The
collision rate and the average tracking error are well described by
exponential functions y � aebx + c. It is also seen that a quadratic
function y � ax2 + bx + c describes the success rate as a function
of the trade-off parameter quite well. This matches the
expectations as higher λr induces more collisions and therefore
lowers the success rate. On the other hand, during the episodes
where the agent manages to avoid collisions, it always succeeds
because the tracking error is very low. Lower λr configurations
naturally have the opposite problem. The low collision rate is due
to being more willing to go off track but makes it less likely to
reach the end goal within the acceptance radius. Figure 4 plots
the data points from Table 4 together with the curve-fitted
functions of λr .

4.2 Qualitative Results
In the qualitative tests, four different scenarios (Section 3.1) are
set up in order to test different behavioral aspects of the
controllers. The first test sees the controllers tackle a pure
path-following test, both with and without the presence of an
ocean current. Figure 5 plots the results of simulating one
episode.

For λr � 0.9, an average tracking error of 0.45m and 0.52m in
the ideal and disturbed environment is obtained, respectively. For
λr � 0.5, we obtained 0.54m and 0.98m. Finally, λr � 0.1 achieved
1.64m and 3.95m. This amounts to a 15%, 81%, and 141%
increase in tracking error due to the disturbance, respectively.
When testing, all controllers are run in deterministic mode to
ensure that all results are reproducible. For the same reason, the
current is fixed at a constant intensity and direction. From the
test, we obtain the same performance observed in the quantitative
tests. The agent tuned with λr � 0.9 manages to obtain an average
tracking error as low as 0.45m in ideal conditions, showcasing
impressive tracking on curved 3D paths. Further, it is observed
that the tracking errors increase significantly from λr � 0.5 to 0.1.
This is also reflected in the sensitivity of tracking error due to the
presence of the disturbance. Most of the error happens where the
path curvature is high. In addition, all cases are successful, except
with the current disturbance, which is visibly off-track as it passes
the last waypoint.

A recurring problem seen when applying purely reactive
algorithms is getting trapped in local minima, which in a
practical sense materialize as dead ends. Therefore, the last
test investigates if the agents have acquired the intelligence to
solve a local minima trap in the form of a dead-end challenge. In
addition, this can affirm the robustness and generality learned by
the agents, as this is a completely novel situation. The obstacles
are configured as a half sphere with radius 20 m. This means that

Figure 4 |Curve-fitted data from Table 4. The average tracking error and
the collision are fitted to exponential functions, while the success rate is fitted
to a quadratic polynomial.

TABLE 6 | Test results from sampling N � 100 random training scenarios.

Trade-
off

Metric Intermediate Proficient Advanced Expert Avg.

Success
rate [%]

68 66 62 52 62

λr � 0.9 Collision
rate [%]

16 28 34 38 29

Avg.
tracking
error

1.67 2.91 3.14 3.09 2.70

Success
rate [%]

100 100 86 59 86

λr � 0.5 Collision
rate [%]

0.00 0.00 8.00 36.0 11

Avg.
tracking
error [m]

1.97 3.76 4.44 4.33 3.63

Success
rate [%]

65 68 45 54 54

λr � 0.1 Collision
rate [%]

0 0 0 3 0.75

Avg.
tracking
error [m]

3.98 6.15 7.91 7.33 6.34

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603712

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the agent will sense the dead end 5m prior to the center (due to
25m sonar range) and must take the appropriate actions to escape
it. The simulation, figured in Figure 6, shows that λr � 0.9 fails in
this test and cannot escape the dead end on account of it being too
biased to staying on the path. On the other hand, λr � 0.5, 0.1
behaves somewhat similarly and manages to escape and reach the
goal position. This is impressive performance as this scenario is
novel for the agents and due to being a classical pitfall scenario for
reactive algorithms.

In the next test, we dissect if the agents learned to operate the
actuators effectively according to how the obstacles are posed. In
extreme cases, obstacles would be stacked horizontally and
vertically, and optimally no control energy should be spent on

taking the AUV towards “the long way around.” Instead, it should
use the actuator in order to avoid the path on the lateral side of the
stacking direction. Surely, an intelligent pilot would pass the
obstacles in this manner. From the plots (Figure 7), it is observed
that all agents waste little control energy using the “opposite”
control fin. The agent with λr � 0.9 uses more than the others due
to being slower to react. It therefore has to spendmore energy as it
approaches the obstacle and might have to pull all levers to avoid
collisions. The agent with λr � 0.1 is seen to plan further ahead, as
it takes action earlier than the other two, but it also travels far off
the path. The controller with λr � 0.5 can be seen to operate with
human-like decision making. It steers clear of the obstacles in a
nice and smooth curve, and it does not deviate in the plane that is
not obstructed by obstacles.

The results obtained from the test scenarios demonstrate a
clear connection to the reward function, as intended. In a pure
path-following test, the agent biased towards path following
manages to track the path with great precision. On the other
hand, regulating the trade-off closer to COLAV yields agents that
are willing to go further off track to find safe trajectories. This is
reflected in the average tracking error and in the collision rate.
Furthermore, it is seen that the latter controllers seem to react by
spending less aggressive control. The controller tuned with λr �
0.5 is seen to be effective in avoiding the obstacles and is also not
deviating towards the suboptimal dimension. The expert level
agent tuned with λr � 0.1 shows great caution and from the
quantitative analysis shows 99.25% collision-free samples out of
400, where collisions occurred at expert level difficulty only.

A current limitation in the simulated setup is the assumption
that all states, including the ocean current, is available for
feedback. We have therefore omitted the navigation part of
the classical feedback loop for marine crafts. In a full-scale
test, state estimation and sensor noise would naturally be part
of the feedback loop, necessitating the need for a navigation
module.

Figure 5 | The pure path-following test. As expected, higher λr are better at path following.

Figure 6 | A dead-end test, where the obstacles are configuration as a
half sphere with a radius of 20m.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603713

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Figure 7 | The horizontal and vertical obstacle test. Here, we are interested in seeing if the agent has learned which actuator to use to avoid the obstacles.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603714

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

5 CONCLUSION AND FUTURE WORK

In this research, DRL agents were trained using state-of-the-art
RL algorithm PPO and deployed to tackle the hybrid objective of
3D path following and collision avoidance by an AUV. A
curriculum learning approach was utilized to train the agent
with increasing levels of complexities starting with path
following, followed by the introduction of complexities in the
obstacle layouts and ultimately the introduction of ocean
currents. The AUV was operated by commanding three
actuator signals in the form of propeller thrust, rudder, and
elevator fin angles. A PI-controller maintained a desired cruise
speed, while the DRL agent operated the control fins. The agent
made decisions based on the observation of the state variables of
the dynamical model, control errors, the disturbances, and
sensory inputs from an FLS. The main conclusions are as follows:

• It was observed that agents biased towards path following
achieved the objective with an average error of 0.5m even in
the presence of a perturbing ocean current, clearly
indicating its utility in the 3D case for vehicles with 6-
DOF and multiple control fins.

• Quantitative evaluation was performed using statistical
averages by sampling N � 100 episodes per difficulty level
and measuring the success rate (reaching the last waypoint
within an acceptance radius without collision), collision
rate, and average tracking error. By giving the agents the
ability to perceive the environment through an FLS and
providing the right incentives, it was observed that the
agents biased towards COLAV demonstrated great
obstacle avoidance capability under ideal conditions. The
best agent accomplished zero collisions out of 300 samples
without an ocean current and three out of 100 with the
ocean current. The DRL controllers were also tested in
special-purpose scenarios to investigate the quality of
path following in the special cases where no objects are
restricting the path, and optimal use of actuators in extreme
obstacle configurations and in a dead-end test. Testing
showed that the agents indeed had learned to maneuver
the AUV effectively applying most control action in the
unobstructed direction when encountering extreme obstacle
configurations. Moreover, the agents with less incentive to
stay on path managed to escape the local minima trap
involved in the dead-end challenge. Hence, the results
indicate that the agents had acquired enough general
knowledge about the system, to make intelligent
decisions when faced with novel situations.

• A reward system based on quadratic penalizations was
designed to incentivize the agent to follow the path and
also was willing to deviate if further on-path progress was
unsafe. In addition, avoiding excessive roll and use of

control actuation was avoided by penalizing such
behavior. As path following and avoiding collisions are
competing objectives, the agent must trade off one for
the others in order to achieve a successful outcome in an
episode. Since this trade-off is nontrivial, a regulating
parameter λr was introduced and tuned with three
different values to observe behavioral outcome. Both the
quantitative and qualitative evaluation confirmed the
intended relationship between behavioral outcome and
the trade-off regulation parameter. In addition, the
training history revealed differences in adaptability and
exploration/exploitation as the learning process advanced.
The implications of this finding are that specific incentives
make the agents more prone to certain weaknesses, which
then should be addressed when setting up the learning
process.

From the current studies, it is clear that DLR using
curriculum learning can be an effective approach to taming
an underactuated AUV with 6-DOF to achieve the combined
objective of path following and collision avoidance in 3D.
However, it is also important to stress that despite the
demonstrated potential of the DRL approach holds, it will
have very limited acceptability in safety-critical applications
because the whole learning process happens in a black-box
way, thereby lacking its explainability and analysability. Part
of this black-box nature is attributed to the deep neural
network that is at the heart of DRL because they lack
functional expressibility. To address this issue, the learning
of the trained agent can be put in the form of equations using
symbolic regression. The symbolic regression based on gene
expression programming has been demonstrated to discover
new physics and equations directly from sparse data
Vaddireddy et al. (2020). This will enable stability analysis
of the system to make them more reliable but this kind of
research is in its infancy at the moment.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SH developed the software framework facilitating this research
and is the lead author. AR and OS supervised the research and
provided guidance throughout the process, as well as
proofreading.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603715

Havenstrøm et al. DRL for AUV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

REFERENCES

Ataei, M., and Yousefi-Koma, A. (2015). Three-dimensional optimal path planning
for waypoint guidance of an autonomous underwater vehicle. Robot. Autonom.
Syst. 67, 23–32. doi:10.1016/j.robot.2014.10.007

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). “Curriculum
learning,” in Proceedings of the 26th annual international conference on
machine learning. (New York, NY: Association for Computing Machinery)),
41–48. doi:10.1145/1553374.1553380

Breivik, M., and Fossen, T. I. (2009). “Guidance laws for autonomous underwater
vehicles,” in Underwater vehicles, Editor. A. V. Inzartsev (Rijeka: IntechOpen).
doi:10.5772/6696

Brockman, Greg & Cheung, Vicki & Pettersson, Ludwig & Schneider, Jonas &
Schulman, John & Tang, Jie & Zaremba, Wojciech. (2016). OpenAI Gym.

Carlucho, I., Paula, M. D., Wang, S., Petillot, Y., and Acosta, G. G. (2018).
Adaptive low-level control of autonomous underwater vehicles using deep
reinforcement learning. Robot. Autonom. Syst. 107, 71–86. doi:10.1016/j.
robot.2018.05.016

Carroll, K. P., McClaran, S. R., Nelson, E. L., Barnett, D. M., Friesen, D. K., and
William, G. N. (1992). “Auv path planning: an a* approach to path planning
with consideration of variable vehicle speeds and multiple, overlapping, time-
dependent exclusion zones,” in Proceedings of the 1992 symposium on
autonomous underwater vehicle technology. (New York, NY, United States:
IEEE), 79–84. doi:10.1109/AUV.1992.225191

Cashmore, M., Fox, M., Larkworthy, T., Long, D., and Magazzeni, D. (2014).
“Auv mission control via temporal planning,” in 2014 IEEE international
conference on Robotics and automation (ICRA), Hong Kong, China, June 7,
2014 (New York, NY, United States: IEEE), 6535–6541. doi:10.1109/ICRA.
2014.6907823

Chang, S.-R., and Huh, U.-Y. (2015). Curvature-continuous 3d path-planning
using qpmi method. Int. J. Adv. Rob. Syst. 12, 76. doi:10.5772/60718

Chu, Z., and Zhu, D. (2015). 3d path-following control for autonomous underwater
vehicle based on adaptive backstepping sliding mode. 2015 IEEE international
conference on information and automation, Lijiang, China, August 8, 2015
(New York, NY, United States: IEEE), 1143–1147. doi:10.1109/ICInfA.2015.
7279458

Cirillo, M. (2017). “From videogames to autonomous trucks: a new algorithm for
lattice-based motion planning,” in 2017 IEEE intelligent vehicles symposium,
Redondo Beach, CA, August 8, 2015 (New York, NY, United States: IEEE),
148–153.

da Silva, Jorge Estrela, et al. (2007). “Modeling and simulation of the LAUV
autonomous underwater vehicle.” 13th IEEE IFAC International Conference on
Methods and Models in Automation and Robotics. Szczecin, Poland Szczecin,
Poland, 2007.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., et al.
(2017). Openai baselines. GitHub repository.

Encarnacao, P., and Pascoal, A. (2000). 3d path following for autonomous underwater
vehicle. Proceedings of the 39th IEEE conference on decision and control (cat.
No.00CH37187) 3, 2977–2982. doi:10.1109/CDC.2000.914272

Eriksen, B. H., Breivik, M., Pettersen, K. Y., and Wiig, M. S. (2016). “A modified
dynamic window algorithm for horizontal collision avoidance for auvs,” in 2016
IEEE conference on control applications, Buenos Aires, Argentina, September
19–22, 2014 (New York, NY, United States: IEEE), 499–506. doi:10.1109/CCA.
2016.7587879

Fossen, T. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control.
New Jersey, NJ: John Wiley & Sons.

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach to
collision avoidance. IEEE Robot. Autom. Mag. 4, 23–33. doi:10.1109/100.
580977

Garau, B., Alvarez, A., and Oliver, G. (2005). “Path planning of autonomous
underwater vehicles in current fields with complex spatial variability: an
a* approach,” in Proceedings of the 2005 IEEE international Conference
on Robotics and automation, Barcelona, Spain, April 18–22, 2005 (New
York, NY, United States: IEEE), 194–198. doi:10.1109/ROBOT.2005.
1570118

Haugen, F. (2008). Derivation of a Discrete-Time Lowpass Filter (TechTeach).

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms for optimal
motion planning. Int. J. Robot Res. 30, 846–894. doi:10.1177/
02F0278364911406761

Kavraki, L. E., Svestka, P., Latombe, J. ., and Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. Autom. 12, 566–580. doi:10.1109/70.508439

Liang, X., Qu, X., Wan, L., and Ma, Q. (2018). Three-dimensional path following of
an underactuated auv based on fuzzy backstepping sliding mode control. Int.
J. Fuzzy Syst. 20, 640–649. doi:10.1007/s40815-017-0386-y

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., et al.
(2015). Continuous control with deep reinforcement learning. CoRR abs. 1509,
02971.

Ljungqvist, O., Evestedt, N., Axehill, D., Cirillo, M., and Pettersson, H. (2019).
A path planning and path-following control framework for a general 2-
trailer with a car-like tractor. J. Field Robot. 36, 1345–1377. doi:10.1002/rob.
21908

Martinsen, A. B., and Lekkas, A. M. (2018a). “Curved path following with
deep reinforcement learning: results from three vessel models,” in
OCEANS 2018 MTS/IEEE charleston, Charleston, SC, October 22–25,
2018 (New York, NY, United States: IEEE), 1–8. doi:10.1109/OCEANS.
2018.8604829

Martinsen, A. B., and Lekkas, A. M. (2018b). Straight-path following for
underactuated marine vessels using deep reinforcement learning. IFAC-
PapersOnLine 51, 329–334. doi:10.1016/j.ifacol.2018.09.502

McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., and McEwen, R.
(2008). A deliberative architecture for auv control. 2008 IEEE international
conference on robotics and automation, Pasadena, CA, May 19–23, 2018
(New York, NY, United States: IEEE) 1049–1054. doi:10.1109/ROBOT.2008.
4543343

Meyer, E., Heiberg, A., Rasheed, A., and San, O. (2020a). COLREG-compliant
collision avoidance for unmanned surface vehicle using deep reinforcement
learning. IEEE Access 8, 165344–165364. doi:10.1109/ACCESS.2020.3022600

Meyer, E., Robinson, H., Rasheed, A., and San, O. (2020b). Taming an autonomous
surface vehicle for path following and collision avoidance using deep
reinforcement learning. IEEE Access 8, 41466–41481.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press. .
http://neuralnetworksanddeeplearning.com/

Pivtoraiko, M., Knepper, R. A., and Kelly, A. (2009). Differentially constrained
mobile robot motion planning in state lattices. J. Field Robot. 26, 308–333.
doi:10.1002/rob

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015). High-
Dimensional Continuous Control Using Generalized Advantage
Estimation.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. CoRR abs 1707, 06347.

Sugihara, K., and Yuh, J. (1996). “Ga-based motion planning for underwater
robotic vehicles,” in Proc. 10th international symp. on unmanned
untethered submersible technology, Lee, NH, September 7–10, 1996
(Lee, NH, United States: Autonomous Undersea Systems Institute).
406–415.

Tan, C. S. (2006). A Collision avoidance system for autonomous underwater
vehicles. PhD thesis. Plymouth (United Kingdom): University of
Plymouth.

Vaddireddy, H., Rasheed, A., Staples, A. E., and San, O. (2020). Feature
engineering and symbolic regression methods for detecting hidden
physics from sparse sensors. Phys. Fluids 32, 015113. doi:10.1063/1.
5136351

Wiig, M. S., Pettersen, K. Y., and Krogstad, T. R. (2018). “A 3d reactive collision
avoidance algorithm for nonholonomic vehicles,” in 2018 IEEE conference on
control technology and applications (CCTA), Copenhagen, Denmark, August
21–24, 2018 (New York, NY, United States: IEEE), 67–74. doi:10.1109/CCTA.
2018.8511437

Williams, G. N., Lagace, G. E., and Woodfin, A. (1990). “A collision avoidance
controller for autonomous underwater vehicles,” in Symposium on
autonomous underwater vehicle technology, Washington, DC, June 5–6,
1990 (New York, NY, United States: IEEE), 206–212. doi:10.1109/AUV.
1990.110458

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603716

Havenstrøm et al. DRL for AUV

https://doi.org/10.1016/j.robot.2014.10.007
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.5772/6696
https://doi.org/10.1016/j.robot.2018.05.016
https://doi.org/10.1016/j.robot.2018.05.016
https://doi.org/10.1109/AUV.1992.225191
https://doi.org/10.1109/ICRA.2014.6907823
https://doi.org/10.1109/ICRA.2014.6907823
https://doi.org/10.5772/60718
https://doi.org/10.1109/ICInfA.2015.7279458
https://doi.org/10.1109/ICInfA.2015.7279458
https://doi.org/10.1109/CDC.2000.914272
https://doi.org/10.1109/CCA.2016.7587879
https://doi.org/10.1109/CCA.2016.7587879
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/ROBOT.2005.1570118
https://doi.org/10.1109/ROBOT.2005.1570118
https://doi.org/10.1177/02F0278364911406761
https://doi.org/10.1177/02F0278364911406761
https://doi.org/10.1109/70.508439
https://doi.org/10.1007/s40815-017-0386-y
https://doi.org/10.1002/rob.21908
https://doi.org/10.1002/rob.21908
https://doi.org/10.1109/OCEANS.2018.8604829
https://doi.org/10.1109/OCEANS.2018.8604829
https://doi.org/10.1016/j.ifacol.2018.09.502
https://doi.org/10.1109/ROBOT.2008.4543343
https://doi.org/10.1109/ROBOT.2008.4543343
https://doi.org/10.1109/ACCESS.2020.3022600
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1002/rob
https://doi.org/10.1063/1.5136351
https://doi.org/10.1063/1.5136351
https://doi.org/10.1109/CCTA.2018.8511437
https://doi.org/10.1109/CCTA.2018.8511437
https://doi.org/10.1109/AUV.1990.110458
https://doi.org/10.1109/AUV.1990.110458
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Woo, J., Yu, C., and Kim, N. (2019). Deep reinforcement learning-based controller
for path following of an unmanned surface vehicle. Ocean Engineering 183,
155–166. doi:10.1016/j.oceaneng.2019.04.099

Xiang, X., Yu, C., and Zhang, Q. (2017). Robust fuzzy 3D path following for
autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84,
165–177. doi:10.1016/j.cor.2016.09.017

Yann LeCun, G. B. O., Leon, B., and Müller, K.-R. (1998). Efficient BackProp.
Berlin, Heidelberg: Springer.

Yu, R., Shi, Z., Huang, C., Li, T., and Ma, Q. (2017). “Deep reinforcement learning
based optimal trajectory tracking control of autonomous underwater vehicle” in
2017 36th Chinese control Conference, Dalian, China, June 5–6, 1990 (New
York, NY, United States: IEEE), 4958–4965. doi:10.23919/ChiCC.2017.8028138

Conflict of Interest: AR is employed by SINTEF Digital.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The reviewer ML declared a shared affiliation, with no collaboration, with the
authors SH and AR to the handling editor at the time of the review.

Copyright © 2021 Havenstrøm, Rasheed and San. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 56603717

Havenstrøm et al. DRL for AUV

https://doi.org/10.1016/j.oceaneng.2019.04.099
https://doi.org/10.1016/j.cor.2016.09.017
https://doi.org/10.23919/ChiCC.2017.8028138
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles
	1 Introduction
	1.1 Path Following
	1.2 Collision Avoidance
	1.3 Research Goals and Methods

	2 Theory
	2.1 AUV Model
	2.1.1 Reference Frames
	2.1.3 Kinetic Equations
	2.1.3.1 Mass Forces
	2.1.3.2 Coriolis Forces
	2.1.3.3 Damping Forces
	2.1.3.4 Restoring Forces
	2.1.3.5 Control Inputs
	2.1.4 Simulation Model for Ocean Current
	2.1.5 Control Fin Dynamics

	2.2 3D Path Following
	2.2.1 Guidance Laws for 3D Path Following

	2.3 Deep Reinforcement Learning
	2.3.1 Proximal Policy Optimization

	3 Method and Implementation
	3.1 Environment Scenarios
	3.2 Obstacle Detection
	3.3 Reward Function
	3.4 Feedback/Observations

	4 Results and Discussions
	4.1 Quantitative Results
	4.2 Qualitative Results

	5 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	References

