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In this paper, we present a robotic painting system whereby a team of mobile robots

equipped with different color paints create pictorial compositions by leaving trails of color

as they move throughout a canvas. We envision this system to be used by an external

user who can control the concentration of different colors over the painting by specifying

density maps associated with the desired colors over the painting domain, which may

vary over time. The robots distribute themselves according to such color densities by

means of a heterogeneous distributed coverage control paradigm, whereby only those

robots equipped with the appropriate paint will track the corresponding color density

function. The painting composition therefore arises as the integration of the motion

trajectories of the robots, which lay paint as they move throughout the canvas tracking

the color density functions. The proposed interactive painting system is evaluated on a

team of mobile robots. Different experimental setups in terms of paint capabilities given

to the robots highlight the effects and benefits of considering heterogeneous teams when

the painting resources are limited.

Keywords: interactive robotic art, robotic swarm, painting, human-swarm interaction, heterogeneous multi-robot

teams

1. INTRODUCTION

The intersection of robots and arts has become an active object of study as both researchers and
artists push the boundaries of the traditional conceptions of different forms of art bymaking robotic
agents dance (Nakazawa et al., 2002; LaViers et al., 2014; Bi et al., 2018), create music (Hoffman
andWeinberg, 2010), support stage performances (Ackerman, 2014), create paintings (Lindemeier
et al., 2013; Tresset and Leymarie, 2013), or become art exhibits by themselves (Dean et al., 2008;
Dunstan et al., 2016; Jochum and Goldberg, 2016; Vlachos et al., 2018). On a smaller scale, the
artistic possibilities of robotic swarms have also been explored in the context of choreographed
movements tomusic (Ackerman, 2014; Alonso-Mora et al., 2014; Schoellig et al., 2014), emotionally
expressive motions (Dietz et al., 2017; Levillain et al., 2018; St.-Onge et al., 2019; Santos and
Egerstedt, 2020), or interactive music generation based on the interactions between agents (Albin
et al., 2012), among others.

In the context of robotic painting, the focus has been primarily on robotic arms capable of
rendering input images according to some aesthetic specifications (Lindemeier et al., 2013; Scalera
et al., 2019), or even reproducing scenes from the robot’s surroundings—e.g., portraits (Tresset and
Leymarie, 2013) or inanimated objects (Kudoh et al., 2009). The production of abstract paintings
with similar robotic arm setups remainsmostly unexplored, with some exceptions (Schubert, 2017).
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While the idea of swarm painting has been substantially
investigated in the context of computer generated paintings,
where virtual painting agents move inspired by ant behaviors
(Aupetit et al., 2003; Greenfield, 2005; Urbano, 2005), the
creation of paintings with embodied robotic swarms is lacking.
Furthermore, in the existing instances of robotic swarm painting,
the generation paradigm is analogous to those employed in
simulation: the painting emerges as a result of the agents
movement according to some behavioral, preprogrammed
controllers (Moura and Ramos, 2002; Moura, 2016). The robotic
swarm thus acts in a completely autonomous fashion once
deployed, which prevents any interactive influence of the human
artist once the creation process has begun. Even in such cases
where the human artist participates in the creation of the painting
along with the multi-robot system (Chung, 2018), the role of the
human artist has been limited to that of a co-creator of the work
of art, since they can add strokes to the painting but their actions
do not influence the operation of the multi-robot team.

In this paper, we present a multi-robot painting system based
on ground robots that lay color trails as they move throughout
a canvas, as shown in Figure 1. The novelty of this approach
lies in the fact that a human user can influence the movement
of robots capable of painting specific colors, thus controlling
the concentration of certain pigments on different areas of
the painting canvas. Inspired by Diaz-Mercado et al. (2015),
this human-swarm interaction is formalized through the use of
scalar fields—which we refer to as density functions—associated
with the different colors such that, the higher the color density
specified at a particular point, the more attracted the robots
equipped with that color will be to that location. Upon the
specification of the color densities, the robots move over the
canvas by executing a distributed controller that optimally covers

FIGURE 1 | A group of 12 robots generates a painting based on the densities

specified by a human user for five different colors: cyan, blue, pink, orange,

and yellow. The robots lay colored trails as they move throughout the canvas,

distributing themselves according to their individual painting capabilities. The

painting arises as a result of the motion trails integrating over time.

such densities taking into account the heterogeneous painting
capabilities of robot team (Santos and Egerstedt, 2018; Santos
et al., 2018). Thus, the system provides the human user with a
high-level way to control the painting behavior of the swarm as a
whole, agnostic to the total number of robots in the team or the
specific painting capabilities of each of them.

The remainder of the paper is organized as follows: In section
2, we formally introduce the problem of coverage control and its
extension to heterogeneous robot capabilities, as it enables the
human-swarm interaction modality used in this paper. Section
3 elaborates on the generation, based on the user input, of color
densities to be tracked by the multi-robot system along with the
color selection strategy adopted by each robot for its colored trail.
Experiments conducted on a team of differential-drive robots
are presented in section 4, where different painting compositions
arise as a result of various setups in terms of painting capabilities
assigned to the robots. The effects of these heterogeneous
resources on the final paintings are analyzed and discussed in
section 5, which evaluates the color distribution in the paintings,
both through color distances and chromospectroscopy, and
includes a statistical analysis that illustrates the consistency of
results irrespectively of initial conditions in terms of robot poses.
Section 6 concludes the paper.

2. DENSITY-BASED MULTI-ROBOT
CONTROL

The interactive multi-robot painting system presented in
this paper operates based on the specification of desired
concentration of different colors over the painting canvas. As
stated in section 1, this color preeminence is encoded through
color density functions that the human user can set over the
domain to influence the trajectories of the robots and, thus,
produce the desired coloring effect. In this section, we recall
the formulation of the coverage control problem as it serves as
the mathematical backbone for the human-swarm interaction
modality considered in this paper.

2.1. Coverage Control
The coverage control problem deals with the question of how
to distribute a team of N robots with positions xi ∈ R

d,
i ∈ {1, . . . ,N} =: N , to optimally cover the environmental
features of a domain D ∈ R

d, d = 2 and d = 3 for
ground and aerial robots, respectively. The question of how
well the team is covering a domain is typically asked with
respect to a density function, φ :D 7→ [0,∞), that encodes the
importance of the points in the domain (Cortes et al., 2004;
Bullo et al., 2009). Denoting the aggregate positions of the robots
as x = [xT1 , . . . , x

T
N]

T, a natural way of distributing coverage
responsibilities among the team is to let Robot i be in charge of
those points closest to it,

Vi(x) = {q ∈ D | ‖q− xi‖ ≤ ‖q− xj‖, ∀j ∈ N },

that is, its Voronoi cell with respect to the Euclidean distance.
The quality of coverage of Robot i over its region of dominance
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can be encoded as,

hi(x) =
∫

Vi(x)
‖xi − q‖2φ(q) dq, (1)

where the square of the Euclidean distance between the position
of the robot and the points within its region of dominance reflects
the degradation of the sensing performance with distance. The
performance of the multi-robot team with respect to φ can then
be encoded through the locational cost in Cortes et al. (2004),

H(x) =
N
∑

i=1

hi(x) =
N
∑

i=1

∫

Vi(x)
‖xi − q‖2φ(q) dq, (2)

with a lower value of the cost corresponding to a better coverage.
A necessary condition for (2) to be minimized is that the position
of each robot corresponds to the center of mass of its Voronoi cell
(Du et al., 1999), given by

Ci(x) =
∫

Vi(x)
qφ(q) dq

∫

Vi(x)
φ(q) dq

.

This spatial configuration, referred to as a centroidal Voronoi
tessellation, can be achieved by letting the multi-robot team
execute the well-known Lloyd’s algorithm (Lloyd, 1982), whereby

ẋi = κ(Ci(x)− xi). (3)

The power of the locational cost in (2) lies on its
ability to influence which areas of the domain the robots
should concentrate by specifying a single density function,
φ, irrespectively of the number of robots in the team. This
makes coverage control an attractive paradigm for human-swarm
interaction, as introduced in Diaz-Mercado et al. (2015), since
a human operator can influence the collective behavior of an
arbitrarily large swarm by specifying a single density function,
e.g., drawing a shape, tapping, or dragging with the fingers on
a tablet-like interface. In this paper, however, we consider a
scenario where a human operator can specify multiple density
functions associated with the different colors to be painted and,
thus, a controller encoding such color heterogeneity must be
considered. The following section recalls a formulation of the
coverage problem for multi-robot teams with heterogeneous
capabilities and a control law that allows the robots to optimally
cover a number of different densities.

2.2. Coverage Control for Teams With
Heterogeneous Painting Capabilities
The human-swarm interaction modality considered in this paper
allows the painter to specify a set of density functions associated
with different colors to produce desired concentrations of colors
over the canvas. To this end, we recover the heterogeneous
coverage control formulation in Santos and Egerstedt (2018).
Let P be the set of paint colors and φj :D 7→ [0,∞), j ∈ P ,
the family of densities associated with the colors in P defined
over the convex domain, D, i.e., the painting canvas. In practical
applications, the availability of paints given to each individual

robot may be limited due to payload limitations, resource
depletion, or monetary constraints. To this end, let Robot i,
i ∈ N , be equipped with a subset of the paint colors, p(i) ⊂ P ,
such that it can paint any of those colors individually or a color
that results from their combination. The specifics concerning the
color mixing strategy executed by the robots are described in
detail in section 3.

Analogously to (1), the quality of coverage performed by
Robot i with respect to Color j can be encoded through the
locational cost

h
j
i(x) =

∫

V
j
i (x)

‖xi − q‖2φj(q) dq, (4)

where V
j
i is the region of dominance of Robot i with respect to

Color j. A natural choice to define the boundaries of V
j
i is for

Robot i to consider those robots in the team capable of painting
Color j that are closest to it. If we denote as N j the set of robots
equipped with Color j,

N
j = {i ∈ N | j ∈ p(i) ⊂ P},

then the region of dominance of Robot i with respect to Color
j ∈ p(i) is the Voronoi cell in the tessellation whose generators
are the robots inN j,

V
j
i (x) = {q ∈ D | ‖xi − q‖ ≤ ‖xk − q‖,∀k ∈ N

j}.

Note that, if Robot i is the only robot equipped with Color j, then

the robot is in charge of covering the whole canvas, i.e., V
j
i = D.

Under this partition strategy, as illustrated in Figure 2, the area

that Robot i is responsible for with respect to Color j, V
j
i , can

differ from the region to be monitored with respect to Color k,
Vk
i , j, k ∈ p(i).
With the regions of dominance defined, we can now evaluate

the cost in (4). Thus, the overall performance of the team can
be evaluated by considering the complete set of robots and color
equipments through the heterogeneous locational cost formulated
in Santos and Egerstedt (2018),

Hhet(x) =
∑

j∈P

∑

i∈N j

∫

V
j
i (x)

‖xi − q‖2φj(q) dq, (5)

with a lower value of the cost corresponding to a better coverage
of the domainwith respect to the family of color density functions
φj, j ∈ P .

Letting Robot i follow a negative gradient descent of Hhet

establishes the following control law.

Theorem 1 (Heterogeneous Gradient Descent, Santos and
Egerstedt, 2018). Let Robot i, with planar position xi, evolve
according to the control law ẋi = ui, where

ui = κ
∑

j∈p(i)
M

j
i(x)(C

j
i(x)− xi), (6)
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FIGURE 2 | Regions of dominance for four neighboring robots with respect to colors blue (1) (A), and red (2) (B). For each color, the resulting Voronoi cells are

generated only by those robots equipped with that painting color. Source: Adapted from Santos and Egerstedt (2018).

with M
j
i(x) and C

j
i(x), respectively, the heterogeneous mass and

center of mass of Robot i with respect to Color j, defined as

M
j
i(x) =

∫

V
j
i (x)

φj(q) dq, C
j
i(x) =

∫

V
j
i (x)

qφj(q) dq

M
j
i(x)

. (7)

Then, as t → ∞, the robots will converge to a critical point of the
heterogeneous locational cost in (5) under a positive gain κ > 0.

Proof: See Santos and Egerstedt (2018).

Therefore, the controller that minimizes the heterogeneous
locational cost in (5) makes each robot move according to a
weighted sum where each term corresponds with a continuous-
time Lloyd descent—analogous to (3)—over a particular color
density φj, weighted by the mass corresponding to that painting
capability.

The controller in (6) thus enables an effective human-swarm
interaction modality for painting purposes where the human
painter only has to specify color density functions for the
desired color composition and the controller allows the robots
in the team to distribute themselves over the canvas according
to their heterogeneous painting capabilities. Note that, while
other human-swarm interaction paradigms based on coverage
control have considered time-varying densities to model the
input provided by an external operator (Diaz-Mercado et al.,
2015), in the application considered in this paper heterogeneous
formulation of the coverage control problem, while considering
static densities, suffices to model the information exchange
between the human and the multi-robot system.

3. FROM COVERAGE CONTROL TO
PAINTING

In section 2, we established a human-swarm interaction
paradigm that allows the user to influence the team of robots so
that they distribute themselves throughout the canvas according
to a desired distribution of color and their painting capabilities.
But how is the painting actually created? In this section, we
present a strategy that allows each robot to choose the proportion
in which the colors available in its equipment should be mixed in

order to produce paintings that reflect, to the extent possible, the
distributions of color specified by the user.

The multi-robot system considered in this paper is conceived
to create a painting by means of each robot leaving a trail of color
as it moves over a white canvas. While the paintings presented
in section 4 do not use physical paint but, rather, projected
trails over the robot testbed, the objective of this section is to
present a color model that both allows the robots to produce a
wide range of colors with minimal painting equipment and that
closely reflects how the color mixing would occur in a scenario
where physical paint were to be employed. To this end, in order
to represent a realistic scenario where robots lay physical paint
over a canvas, we use the subtractive color mixing model (see
Berns, 2000 for an extensive discussion in color mixing), which
describes how dyes and inks are to be combined over a white
background to absorb different wavelengths of white light to
create different colors. In this model, the primary colors that act
as a basis to generate all the other color combinations are cyan,
magenta, and yellow (CMY).

The advantage of using a simple model like CMY is two-
fold. Firstly, one can specify the desired presence of an arbitrary
color in the canvas by defining in which proportion these should
mix at each point and, secondly, the multi-robot system as a
collective can generate a wide variety of colors being equipped
with just cyan, magenta and yellow paint, i.e., P = {C,M,Y}
in the heterogeneous multi-robot control strategy in section 2.2.
The first aspect reduces the interaction complexity between the
human and the multi-robot system: the painter can specify a
desired set of colors C throughout the canvas by defining the
CMY representation of each color β ∈ C as [βC,βM ,βY ],βj ∈
[0, 1], j ∈ P , and its density function over the canvas φβ (q), q ∈
D. Note that a color specified in the RGB color model (red,
green, and blue), represented by the triple [βR,βG,βB], can be
directly converted to the CMY representation by subtracting the
RGB values from 1, i.e., [βC,βM ,βY ] = 1 − [βR,βG,βB]. Given
that the painting capabilities of the multi-robot system are given
by P = {C,M,Y}, the densities that the robots are to cover
according to the heterogeneous coverage formulation in section
2.2 can be obtained as,

φj(q) =
⊕

β∈C
βjφβ (q), j ∈ P ,
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where ⊕ is an appropriately chosen composition operator.
The choice of composition operator reflects how the densities
associated with the different colors should be combined in order
to compute the overall density function associated with each
CMY primary color. For example, one way to combine the
density functions is to compute themaximum value at each point,

φj(q) = max
β∈C

βjφβ (q), j ∈ P .

The question remaining is how a robot should combine its
available pigments in its color trail to reflect the desired
color density functions. The formulation of the heterogeneous
locational cost in (5) implies that Robot i is in charge of covering

Color j within the region dominance V
j
i and of covering Color

k within Vk
i , j, k ∈ p(i) ⊂ P . However, depending on the

values of the densities φj and φk within these Voronoi cells, the
ratio between the corresponding coverage responsibilities may be
unbalanced. In fact, such responsibilities are reflected naturally

through the heterogeneous mass, M
j
i(x), defined in (7). Let us

denote as [αC
i , αM

i , αY
i ], α

j
i ∈ [0, 1], αC

i + αM
i + αY

i = 1, the
color proportion in the CMY basis to be used by Robot i in its
paint trail. Then, a color mixing strategy that reflects the coverage
responsibilities of Robot i can be given by,

α
j
i =

M
j
i(x)

∑

k∈p(i)M
k
i (x)

, j ∈ p(i) ⊂ P . (8)

Note that, when M
j
i(x) = 0,∀j ∈ p(i) ⊂ P , the robot is not

covering any density and, thus, α
j
i , j ∈ P , can be undefined.

Figure 3 illustrates the operation of this painting mechanism
for three different density color specifications. Firstly, the
mechanism is simulated for a robot equipped with all
three colors—cyan (C), magenta (M), and yellow (Y)—in
Figures 3A,C,E. As seen, the robot lays a cyan trail as it moves
to optimally cover a single cyan density function in Figure 3A.
In Figure 3C, two different density functions are specified, one
magenta and one yellow, and the robot lays down a trail whose
color is a combination of both paints. Finally, in Figure 3E, the
robot is tasked to cover a density that is a combination of the
CMY colors. Since the robot is equipped with all three colors, the
trail on the canvas exactly replicates the colors desired by the user.

For the same input density specifications, Figures 3B,D,F
illustrate the trails generated by a team of three robots equipped
with different subsets of the color capabilities. As seen, the color
of the individual robot trails evolve as a function of the robot’s
equipment, the equipments of its neighbors, and the specified
input density functions. A simulation depicting the operation of
this painting mechanism can be found in the video included in
the Supplementary Materials.

4. EXPERIMENTAL RESULTS WITH
PROJECTED TRAILS

The proposed multi-robot painting system is implemented on
the Robotarium, a remotely accessible swarm robotics testbed

at the Georgia Institute of Technology (Wilson et al., 2020).
The experiments, uploaded via web, are remotely executed on
a team of up to 20 custom-made differential-drive robots. On
each iteration, run at a maximum rate of 120 Hz, the Robotarium
provides the poses of the robots, tracked by a motion capture
system, and allows the control program to specify the linear
and angular velocities to be executed by each robot in the
team. An overhead projector affords the visualization of time-
varying images onto the test bed during the execution of the
experiments. The data is made available to the user once the
experiment is finalized.

The human-swarm interaction paradigm for color density
coverage presented in section 2 and the trail color mixing strategy
from section 3 are illustrated experimentally on a team of 12
robots over a 2.4 × 2m canvas. The robots lay trails of color as
they cover a set of user-defined color density functions according
to the control law in (6), where κ = 1 for all the experiments
and the single integrator dynamics ui, i ∈ N are converted
into linear and angular velocities executable by the robots using
the near-identity diffeomorphism from Olfati-Saber (2002), a
functionality available in the Robotarium libraries. In order to
study how the limited availability of painting resources affects
the resulting painting, for the same painting task, nine different
experimental setups in terms of paint equipment assigned to the
multi-robot team are considered. While no physical paint is used
in the experiments included in this paper, the effectiveness of the
proposed painting system is illustrated by visualizing the robots’
motion trails over the canvas with an overhead projector.

The experiment considers a scenario where the multi-robot
team has to simultaneously cover a total of six different color
density functions over a time horizon of 300 s. These density
functions aim to represent commands that would be interactively
generated by the user, who would be observing the painting being
generated and couldmodify the commands for the color densities
according to his or her artistic intentions. Note that, in this
paper, these time-varying density functions are common to all the
experiments and simulations included in sections 4, 5 to allow the
evaluation of the paintings as a function of the equipment setups
in Table 2. In an interactive scenario, the density commands are
to be generated in real time by the user, by means of a tablet-
like interface, for example. In this experiment, the color density
functions involved are of the form,

φβ (q) =
K

2πσxσy
exp

(

−
(qx − µ̄x)

2 + (qy − µ̄y)
2

2σ 2
x σ 2

y

)

, (9)

with β ∈ {1, . . . , 6} = C, q = [qx, qy]
T ∈ D. The color associated

with each density as well as its parameters are specified inTable 1,
and µ̄x and µ̄y are given by

µ̄x = µx − Ax sin(2π fxt),

µ̄y = µy − Ay sin(2π fyt).
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FIGURE 3 | Painting mechanism based on heterogeneous coverage control. Each subfigure shows the color trails laid by the robots (left) as they move to optimally

cover a user-specified color density function (right) by executing the controller in (6). The symbols located to the right of the robot indicate its painting capabilities.

(A,C,E) Show the operation of the painting mechanism in section 3 for a single robot equipped with all three colors, i.e., cyan (C), magenta (M), and yellow (Y), thus

capable of producing all color combinations in the CMY basis. In (A), the robot lays a cyan trail according to the density color specification β1. The robot equally mixes

magenta and yellow in (C) according to the color mixing strategy in (8), producing a color in between the two density color specifications, β2 and β3. Finally, in (E), the

robot exactly replicates the color specified by β4. On the other hand, (B,D,F) depict the operation of the painting mechanism with a team of 3 robots, where the

Voronoi cells (color coded according to the CMY basis) are shown on the density subfigures.

TABLE 1 | Experimental parameters associated with the user-specified color density functions.

β Color βC βM βY K µx µy σ x σ y Ax Ay fx fy

1 Yellow 0.0000 0.0863 0.5569 60 0 0.8 0.22 0.22 1.1 0.1 1/40 0

2 Orange 0.0000 0.3529 0.5569 40 0 0.4 0.22 0.22 1.1 0.1 1/37 2/15

3 Pink 0.0549 0.5529 0.3451 40 0 0 0.22 0.22 1.1 0.1 1/35 0

4 Blue 0.4314 0.3098 0.1373 60 0 −0.4 0.22 0.22 1.1 0.1 1/33 2/15

5 Cyan 0.9686 0.0353 0.0275 40 0 −0.8 0.22 0.22 1.1 0.1 1/30 0

6 Yellow Sun 0 0 1 60 0.5 0.3 0.125 0.125 0.1 0.1 1/5 1/5

Figure 4 illustrates the evolution of the painting for a specific
equipment setup as the robots move to cover these densities at
t = 100s and t = 300s.

The multi-robot painting strategy is evaluated under a series
of painting equipment setups to assess the differences that result

from the heterogeneity of the team, which can be motivated by
the scarcity or depletion of painting resources or by a design
choice of the human user, for example. Table 2 outlines the color
painting capabilities available to each of the robots in the different
experimental setups. The paintings which result from five of these
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FIGURE 4 | Evolution of the painting according to the density parameters in Table 1, for the Setup 3 given as in Table 2. The robots distribute themselves over the

domain in order to track the density functions as they evolve through the canvas. In each snapshot, the densities that the multi-robot team is tracking at that specific

point in time are depicted in the bottom right corner of the image. The color distribution of the color trails reflects the colors specified for the density functions within

the painting capabilities of the robots. Even though none of the robots is equipped with the complete CMY equipment and, thus, cannot reproduce exactly the colors

specified by the user, the integration of the colors over time produce a result that is close to the user’s density specification.

TABLE 2 | Paint equipment for the different experimental setups.

Setup Paint equipment Heterogeneity

ID ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Sunset 8-bit RGB

1

C × × × × × × × × × × × × 12

0 0M × × × × × × × × × × × × 12

Y × × × × × × × × × × × × 12

2

C × × × × × × × × × × × × 12

0.2786 0.2680M × × × × × × × × × × × × 12

Y × × × × × × × × × × × × 12

3

C × × × × × × × × 8

0.3060 0.2963M × × × × × × × × 8

Y × × × × × × × × 8

4

C × × × × × × × × × 9

0.3340 0.3121M × × × × × × × × × 9

C × × × × × × × × × 9

5

C × × × × × × × × × 9

0.3921 0.3783M × × × × × × × × × 9

Y × × × × × × × × × 9

6

C × × × × × × × × 8

0.4488 0.4398M × × × × × × × × 8

Y × × × × × × × × 8

7

C × × × × × × × × 8

0.5686 0.5498M × × × × × × × × 8

Y × × × × × × × × 8

8

C × × × × × × 6

0.6904 0.6835M × × × × × × 6

Y × × × × × × 6

9

C × × × × × × 6

0.8148 0.8004M × × × × × × 6

Y × × × × × × 6

configurations (the ones with an odd setup ID) are shown in
Figure 5. The generative process for the paintings in Figure 5 is
illustrated in the video included in the Supplementary Materials.

Note that all these experiments where run with identical
initial conditions in terms of robot poses, according to the
identifiers in Table 2. For the purpose of benchmarking, a
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FIGURE 5 | Paintings generated for the densities in (9), with the team of 12 robots in their final positions. (A) Corresponds to a simulated painting and it is used for

benchmarking. According to the painting equipment setups in Table 2 we can see how, as the robots in the team are equipped with more painting capabilities, the

color gradients become smoother and more similar to the ideal outcome.

simulated painting is generated for painting setup 1, i.e., with
a homogeneous equipment capable of reproducing any color.
This simulated painting is created under the same heterogeneous
density coverage control and color mixing strategies as in
the robotic experiments, but considering unicycle dynamics
without actuator limits or saturation andwith no communication
delays (Figure 5A). Given the paintings in Figures 5B–F, we
can observe how the closest color distribution to the simulated
painting is achieved in Figure 5B, which corresponds to the
case where all the robots have all the painting capabilities—
i.e., the team is homogeneous—and, thus, can reproduce any
combination of colors in the CMY basis.

It is interesting to note the significant changes in the
characteristics of the painting for different equipment
configurations of the robots. For equipment setups 3, 5, 7,
and 9, where some robots—or all—are not equipped with all
the color paints, the corresponding paintings do not show as
smooth color gradients as the one in Figure 5B. However, the
distribution of color for these paint setups still qualitatively
reflects the color specification given by the densities in Table 1.
Even in the extreme case of Equipment 9 (see Figure 5F), where
none of the robots is equipped with all CMY paints—in fact, half

of the robots only have one paint and the other half have pairwise
combinations—the robot team still renders a painting that,
while presenting colors with less smooth blending than the other
setups, still represents the color distribution specified by the
densities in Table 1. For Setups 3 and 7, the team has the same
total number of CMY painting capabilities but the distribution
is different among the team members: in Setup 3 none of the
robots are equipped with the three colors, while in Setup 7 there
are some individuals that can paint any CMY combination and
others can paint only one color. Observing the Figures 5C,E,
while the resulting colors are less vibrant for the equipment
in Setup 3, there seems to be a smoother blending between
them along with the vertical axis. Setup 7 produces a painting
where overall the colors are more faithful to the ideal outcome
presented in Figure 5A, but that also contain stronger trails
corresponding to the pure primary colors appear throughout the
painting. If we compare Figures 5D,E we can see how, by adding
a small amount of painting capabilities to the system, the color
gradients are progressively smoothed. This observation suggests
to further analyze the variations that appear on the paintings as
a function of the heterogeneous equipment configurations of the
different setups. This will be the focus of the next section.
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5. ANALYSIS AND DISCUSSION

As described in section 1, the robotic painting system developed
in this paper generates illustrations via an interaction between
the color density functions specified by the user and the
different color equipment present on the robots. In particular,
the different equipments not only affect the color trails left
by the robots, but also affect their motion as they track the
density functions corresponding to their equipment. While
Figure 5 qualitatively demonstrates how the nature of the
painting varies with different equipment setups, this section
presents a quantitative analysis of the variations among paintings
resulting from different equipment setups. We also analyze the
reproducibility characteristics of themulti-robot painting system,
by investigating how paintings vary among different realizations
using the same equipment setups.

Let S denote the number of distinct equipment setups of the
robots in the team—where each unique configuration denotes
a robot species. We denote sι ∈ [0, 1] as the probability that a
randomly chosen agent belongs to species ι, ι ∈ S = {1, . . . , S},
such that

S
∑

ι=1

sι = 1, and s = [s1, . . . , sS]
T.

For each equipment setup in Table 2, these probabilities can be
calculated as a function of how many agents are equipped with
each subset of the paint colors.

We adopt the characterization developed in Twu et al. (2014),
and quantify the heterogeneity of a multi-robot team as,

H(s) = E(s)Q(s), (10)

where E(s) represents the complexity and Q(s), the disparity
within the multi-robot system for a given experimental setup,
s. More specifically, E(s) can be modeled as the entropy of the
multi-agent system,

E(s) = −
S
∑

ι=1

sι log(sι),

and Q(s) is the Rao’s Quadratic Entropy,

Q(s) =
S
∑

ι=1

S
∑

κ=1

sιsκδ(ι, κ)2, (11)

with δ :S × S 7→ R+ a metric distance between species of
robots. More specifically, δ represents the differences between the
abilities of various species in the context of performing a particular

FIGURE 6 | For each input color (given in Table 1): mean of the input density function (circle), and center of mass of the resulting color according to (13) (square). The

dotted lines depict the covariance ellipse according to (14). As seen the heterogeneity of the multi-robot team [as defined in (10)] impacts how far the colors are

painted from the location of the input, as given by the user.
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task. For example, if we have three robots, one belonging to
species s5 (p(s5) = {C}) and two belonging to species s8 (p(s8) =
{C,M,Y}) and we have to paint only cyan, then the distance
between agents should be zero, since all of them can perform the
same task. However, if the task were to paint a combination of
yellow and magenta, then the species s5 could not contribute to
that task and, therefore, δ > 0.

Similar to Twu et al. (2014), we formalize this idea by
introducing a task space, represented by the tuple (T, γ ) where
T denotes the set of tasks, and γ :T 7→ R+ represents an
associated weight function. In this paper, the set of tasks T
simply correspond to the different colors specified by the user,

as shown in Table 1. Consequently, a task t
j
β ∈ T corresponds

to the component j, j ∈ {C,M,Y}, of color input β ∈ C. The
corresponding weight functions for the tasks are calculated as,

γ (t
j
β ) =

βj
∑

β̃∈C

∑

k∈P
β̃k

.

With this task-space, the task-map, ω :S 7→ 2T , as defined in
Twu et al. (2014), directly relates the different robot species with
the CMY colors, i.e., if the color equipment of species ι is denoted

as p(ι), then it can execute tasks t
j
β if j ∈ p(ι).

Having defined the task-space, (T, γ ), and the task-map,ω, the
distance between two agents i and j can be calculated as in Twu
et al. (2014),

δ(T, γ ,ω)(ι, κ) =

∑

t∈(ω(ι)∪ω(κ))\(ω(ι)∩ω(κ))

γ (t)

∑

u∈(ω(ι)∪ω(κ))

γ (u)
.

This task-dependent distance metric between different robot
species can then be used to compute the disparity as
shown in (11).

Having completely characterized the disparity, Q(s), and the
complexity, E(s), of an experimental setup under a specific
painting task, one can compute the heterogeneity measure
associated with them according to (10). To this end, the third
column in Table 2 represents the heterogeneity measure of the
different setups. The heterogeneity values have been computed
for the sunset-painting task from Table 1, as well as for a generic
painting task that considers the whole 8-bit RGB color spectrum
as objective colors to be painted by the team. This latter task
is introduced in this analysis with the purpose of serving as
a baseline to evaluate the comprehensiveness of the proposed
sunset painting task. As it can be observed in Table 2, the
heterogeneity values obtained for the sunset and the 8-bit RGB
tasks are quite similar and the relative ordering of the setups with
respect to the heterogeneity measure is the same, thus suggesting
that the sunset task used in this paper requires a diverse enough
set of painting objectives for all the equipment setups proposed.
Armed with this quantification of team heterogeneity, we now
analyze how the spatial characteristics of the painting differ as
the equipment configurations change.

FIGURE 7 | Average distance from mean density input to the resulting center

of mass over the input colors of the painting as a function of the heterogeneity

among the robots [as defined in (10)]. As seen, with increasing sparsity of

painting equipment on the robots (signified by increasing heterogeneity), the

mean distance increases, indicating that colors get manifested farther away

from where the user specifies them.

5.1. Color Distance
We first analyze the complex interplay between motion trails
and equipment setups by computing the spatial distance between
the mean location of the desired input density function specified
by the user, and the resulting manifestation of the color in the
painting. To this end, we use the color distancemetric introduced
in Androutsos et al. (1998) to characterize the distance from the
color obtained in every pixel of the resulting painting to each of
the input colors specified in Table 1.

Let ρ(q) represent the 8-bit RGB vector value for a given pixel
q in the painting. Then, the color distance between two pixels qi
and qj is given as,

dp(qi, qj) = 1−
[

1−
2

π
cos−1

(

ρ(qi) · ρ(qj)
‖ρ(qi)‖‖ρ(qj)‖

)]

[

1−
‖ρ(qi)− ρ(qj)‖√

3 · 2552

]

(12)

Using (12), we can compute the distance from the color of each
pixel to each of the input colors specified by the user (given in this
paper by Table 1). For a given pixel in the painting q and input
color β , these distances can be interpreted as a color-distance
density function over the domain, denoted as ϕ

ϕ(q,β) = exp

(

−
dp(q,β)

ς2

)

,

where, with an abuse of notation, dp(q,β) represents the color
distance between the color β and the color at pixel q. For the
experiments conducted in this paper, ς2 was chosen to be 0.1.

Since we are interested in understanding the spatial
characteristics of colors in the painting, we compute the center
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of mass of a particular color β in the painting,

Cβ =
∫

D qϕ(q,β) dq
∫

D ϕ(q,β) dq
. (13)

The covariance ellipse for the color β at a pixel q is given as,

Vβ (q) =
√

(ϕ(q))(q− Cβ ). (14)

For each of the input colors, Figure 6 illustrates the extent to
which the color center of masses (computed by (13) and depicted
by the square filled by the corresponding color) are different from

TABLE 3 | Color sectors throughout the painting used for the

chromospectroscopy analysis, according to the density parameters specified in

Table 1.

Sector ID Objective color xmin[m] xmax[m] ymin[m] ymax[m]

1 Yellow −1.2 1.2 0.6 1

2 Orange −1.2 1.2 0.2 0.6

3 Pink −1.2 1.2 0.2 0.2

4 Blue −1.2 1.2 −0.6 −0.2

5 Cyan −1.2 1.2 −1 −0.6

6 Yellow Sun 0.3 0.7 0.1 0.5

themean locations of the input density functions (depicted by the
circle). For all the painting equipment setups in Figure 6, as the
heterogeneity of the team increases, the mean of the input density
function for each color and the resulting center of mass become
progressively more distant. This phenomenon is illustrated in
Figure 7, where the mean distance between the input density and
the resulting color center of mass is plotted as a function of the
heterogeneity of the equipment of the robots. For a given painting
P, this distance is computed as,

dc(P) =
∑

β∈C ‖µβ − Cβ‖
|C|

, (15)

where C represents the set of input colors, and µβ represents the
mean of the input density function for color β . As seen, with
increasing heterogeneity, the mean distance increases because
lesser painting capabilities on the robots do not allow them
to exactly reproduce the input color distributions. However,
even with highly heterogeneous setups, such as Setups 7
or 9, the multi-robot team is still able to preserve highly
distinguishable color distributions throughout the canvas, which
suggests that the coverage control paradigm for multi-robot
painting is quite robust to highly heterogeneous robot teams and
resource deprivation.

FIGURE 8 | Chromospectroscopy by sectors on the canvas (as indicated in Table 3) for each equipment configuration (as specified in Table 2). With increasing

heterogeneity, and consequently, sparser painting capabilities of the robots, colors distinctly different from the target colors begin to appear in each sector. For teams

with lower heterogeneity (Setups 1 and 3), anomalous colors in the chromospectroscopy typically appear from neighboring sectors only.

Frontiers in Robotics and AI | www.frontiersin.org 11 October 2020 | Volume 7 | Article 580415

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Santos et al. Multi-Robot Painting Through Motion Trails

5.2. Chromospectroscopy
The second method we utilize to quantify the differences among
the paintings as a function of the heterogeneity in the robot team
is using chromospectroscopy (Kim et al., 2014), which analyzes the
frequency of occurrence of a particular color over the canvas.
To this end, the painting is divided according to the sectors
described in Table 3, which are closely related to the areas of
high incidence of the objective color densities in Table 1. A
histogram representing the frequency of occurrence of each input
color per sector is described in Figure 8. For the purposes of
the chromospectroscopy analysis, the 8-bit RGB color map of
the canvas is converted into a 5-bit RGB color map, by reducing
the resolution of the color map and grouping very similar colors
together, i.e., for an input color β ∈ [0, 255]3, the modified color

for the chromospectroscopy analysis in Figure 8 is computed as

β̄ = β

b
, with b = 23.

As seen in Figure 8, the heterogeneity of the robot team
significantly affects the resulting color distribution within each
sector. More specifically, as the heterogeneity of the team
increases, thus depriving the team of painting capabilities, the
canvas presents more outlier colors which are present outside
the corresponding target sectors. This is apparent in highly
heterogeneous teams (Setup 9), wheremagenta-like colors appear
in the top-most sector and cyan appears in the central sector. The
three central sectors show a high occurrence of non-target colors.
For slightly lesser heterogeneous teams, while the occurring
colors often do not correspond with the target colors in the
sectors—e.g., green in Sector 4 of Setup 3—, the colors seem

FIGURE 9 | Averaged paintings over 10 trials. Mean of the input densities (circle), center of mass of the resulting colors according to ϕ from (13) (square), and

covariance ellipse (dotted lines). The heterogeneity in the painting equipment of the robots has a significant impact on the nature of the paintings.
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FIGURE 10 | Box plots of the average distance between mean density input to resulting center of mass as computed in (15) for the 9 different equipment

configurations. The results are presented for 10 different experiments conducted for each equipment. As seen, the average distance increases with increasing

heterogeneity among the robots’ painting equipment.

consistent in their presence and correspond to limitations on
the equipment of the robots: in Setup 3, all robots are equipped
with only two colors, thus no robot is able to exactly replicate
any target color with 3 CMY components by itself. In the case
of teams with low heterogeneity, e.g., Setup 1 and Setup 3,
resulting colors are mostly consistent with the input target colors.
The presence of some colors which do not match the input
corresponds to colors belonging to the neighboring sectors. Some
specific examples of this include: (i) Setup 1: the presence of
yellow in Sector 3, orange in Sector 2, and Blue in Sector 5, (ii)
Setup 3: the presence of orange in Sector 1, and blue in Sector 5,
(iii) Setup 5: magenta and cyan-like colors in Sector 4.

Indeed, as one could expect, the chromospectroscopy reveals
that color distributions become less precise as the differences
in the painting capabilities of the robots become more acute—
observable as distinct paint streaks in Figure 5 which stand out
from the surrounding colors. Nevertheless, the distribution of
colors on each sector still matches the color density inputs even
for the case of highly heterogeneous teams, which suggests that
the multi-robot painting paradigm presented in this paper is
robust to limited painting capabilities on the multi-robot team
due to restrictions on the available paints, payload limitations on
the robotic platforms, or even the inherent resource depletion
that may arise from the painting activity.

5.3. Statistical Results
In order to understand if the statistics reported above remain
consistent for multiple paintings generated by the robotic
painting system, we ran 10 different experiments with random
initial conditions in terms of robot poses for each of the 9
equipment configurations described in Table 2. Figure 9 shows
the average of the paintings generated for each equipment,
along with the color density averages, computed using (13).

Although averaging the 10 rounds seems to dampen the presence
of outliers, we can still observe how the distance between the
objective color (represented by a circle) and the resulting color
distribution (square) generally increases as the team becomes
more heterogeneous. Furthermore, if we observe the color
gradient along the vertical axis of the painting, the blending of
the colors becomes more uneven as the heterogeneity of the
team increases. This phenomenon becomes quite apparent if we
compare the top row of Figures 9A–C to the bottom row (G–I).

Quantitatively, this distancing between objective and obtained
color density distribution is summarized in Figure 10, which
shows the mean distance between the input density and the
resulting colors. Analogously to the analysis in Figure 7, which
contained data for one run in the Robotarium for five out of the
nine setups, the average distances shown in Figure 10 show that
the resulting color distributions tend to deviate from the objective
ones as the team becomes more heterogeneous.

The results observed in this statistical analysis, thus, support
the observations carried out in the analysis of the paintings
obtained in the Robotarium. Therefore, the characterization of
the painting outcome with respect to the resources of the team
seems consistent throughout different runs and independent of
the initial spatial conditions of the team.

6. CONCLUSIONS

This paper presents a robotic swarm painting system based on
mobile robots leaving trails of paint as they move where a human
user can influence the outcome of the painting by specifying
desired color densities over the canvas. The interaction between
the human user and the painting is enabled by means of a
heterogeneous coverage paradigm where the robots distribute
themselves over the domain according to the desired color
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outcomes and their painting capabilities, which may be limited.
A color mixing strategy is proposed to allow each robot to
adapt the color of its trail according to the color objectives
specified by the user, within the painting capabilities of each
robot. The proposed multi-robot painting system is evaluated
experimentally to assess how the proposed color mixing strategy
and the color equipments of the robots affect the resulting
painted canvas. A series of experiments are run for a set of
objective density functions, where the painting capabilities of the
team are varied with the objective of studying how varying the
painting equipment among the robots in the team affects the
painting outcome. Analysis of the resulting paintings suggests
that, while higher heterogeneity results in bigger deviations with
respect to the user-specified density functions—as compared
to homogeneous, i.e., fully equipped, teams—the paintings
produced by the control strategy in this paper still achieve a
distribution of color over the canvas that closely resembles the
input even when the team has limited resources.
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