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Soft robotics has widely been known for its compliant characteristics when dealing with
contraction or manipulation. These soft behavior patterns provide safe and adaptive
interactions, greatly relieving the complexity of active control policies. However, another
promising aspect of soft robotics, which is to achieve useful information from compliant
behavior, is not widely studied. This characteristic could help to reduce the dependence of
sensors, gain a better knowledge of the environment, and enrich high-level control strategies. In
this paper, we have developed a state-changemodel of a soft robotic arm, andwe demonstrate
howcompliant behavior could be used to estimate external load based on thismodel.Moreover,
we propose an improved version of the estimation procedure, further reducing the estimation
error by compensating the influcence of pressure deadzone. Experiments of both methods are
compared, displaying the potential effectiveness of applying these methods.
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1 INTRODUCTION

The realm of soft robotics is an ideal safe solution when dealing with collision and interaction due to
compliant behavior Laschi et al. (2016); Majidi (2013); Kim et al. (2013). The properties of compliant
behavior include intrinsic deformable structures Yi et al. (2018); Suarez et al. (2018), soft materials Yi
et al. (2017); Polygerinos et al. (2015b); Wang et al. (2017), and backdrivable actuation methods.
Various ways of achieving softness have been studied, including methods relying on compliant
elements like SEA Pratt and Williamson (1995), memory effects like SMA Mohd Jani et al. (2014),
dielectric elastomers like DEA O’Halloran et al. (2008), and pneumatic driven methods like PAMs
Tondu and Lopez (2000) and pneu-nets Mosadegh et al. (2014). The realm of soft robotics has been
actively inventing all kinds of soft machines to exploit their compliant nature in many aspects, such
as soft arms that are safe to interact with Chen et al. (2017): Chen et al. (2018); Malzahn and Bertram
(2014), soft fishes that swim naturally Marchese et al. (2014), soft gloves for rehabilitation
Polygerinos et al. (2013, Polygerinos et al. (2015a), and soft hands that are versatile for handling
objects Zhou et al. (2018); Zhou et al. (2019); Zhou et al. (2020).

The other potential use of softness is to gain valuable information from compliant behavior.
There exist several examples that utilize compliant behavior to gain environmental information
in the real world. For example, a human could estimate the weight of an object based on visual
information of the deformation. The soft robots are also intelligence-embedded agents. They
could not only handle local interaction compliantly but also store process information that may
be helpful Laschi and Cianchetti (2014). One important aspect is the ability to estimate the force
or load under interaction. However, it is not easy for soft robots to extract useful information
from compliant behavior.
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Oneway to achieve estimation from compliant behavior is to learn
from data. In Wang andWang (2020), the pressure information of a
soft gripper was used to learn the external force. In Fang et al. (2019),
local Gaussian regression was used to control and compensate for the
external disturbance. However, the difficulty of using learning
methods is a dependency on large data sets. Another limitation is
that this method is specific to the design and structure of the soft arm,
which makes it difficult for purposes of extension.

Another way is to establish models of the soft arm that involves
external forces. However, it is not easy to achieve an accuratemodel
for soft arms due to the softness of materials and complex
description of the compliant body curves. Previously, most
research has focused on kinematic models for controlling the
soft arm statically based on the Constant Curvature assumption
Jones and Walker (2006); Webster and Jones (2010); Bajo et al.
(2011). Recently, there has been much improvement to the
evolution of developing dynamic models for the soft arm. In
Santina et al. (2019); Della Santina et al. (2020); Katzschmann
et al. (2019); Wang et al. (2020), a dynamically-equivalent rigid
robot is used to develop the dynamic model of the soft arm.
Traditional rigid robot control methods could be well suited to this
method. However, the difficulty of using this method is building an
equivalent rigid robot in three-dimensional space faithfully. The
resultant rigid counterpart is a hyper-redundant robot, and it is
difficult to tackle. In Falkenhahn et al. (2015); Falkenhahn et al.
(2017), the Euler-Lagrange method was used to derive the full
dynamics. However, this method is quite complex and demands
the accurate modeling of every part of the arm. In neither of these
cases have these methods tackled the problem of estimating the
external payload using their models.

In this paper, we have proposed a simplified analytical model
and show how it could be used to control the arm and to extract
loading information from compliant behavior. Our model
captures the essential relationship between the pressure and
the posture, establishing a preliminary relationship between
the actuation space and the configuration space and providing
a feed-forward control part. Based on this model, a state-change
model is also derived by eliminating common modeling errors,
and it is capable of estimating the external load from the change
of bending angle. Furthermore, an improved method is given,
accounting for the realistic pressure control deadzone and
achieving a better estimation result with reduced error.

This paper does the following:

• We demonstrate the effectiveness of using a simplified
model to control the soft arm in open loop.

• We propose a state-change model that avoids the negative
mass problem.

• We are the first to consider the pressure deadzone effect, and
we propose an improved method for the compensation,
greatly improving the estimation result.

• We experimentally shown the performance of the state
change model and the improved method.

The paper is organized as follows. First, the model and control
of the soft robotic arm are given in Section 2. In Section 3, the

state-change model and the improved method is derived and
discussed. The experiments are analyzed in Section 4.

2 EXTENSIBLE SOFT ARM

2.1 Design of the Soft Arm
The soft robotic arm used in this paper is made up of six long
bellows that have been installed in parallel. The relative positions
of the bellows are constrained by two thin carbon-fiber plates,
which avoids the potential buckling problem. Two acrylic plates
are used as the connecting plates that force the bellows to share
common starting and ending planes, as seen in Figure 1A.

The soft arm is actuated by inflating and vacuuming
through on-off valves. The pressure distribution inside the six
bellows controls the posture of the arm. When the pressures of
the bellows was not equal, the arm would bend toward the
direction of the smaller pressure sum. The greater the
difference, the greater the degree of the bend, as seen in
Figure 1B. The rotation around the vertical axis is achieved
based on adjusting the direction of the pressure difference, and a
full circle range of 360+ could be achieved, as seen in Figure 1C.
As a backbone-less arm, this extensible soft arm has a very large
elongation ratio. In the free state, the soft arm has a length of
400 mm. When the six bellows are pressurized equally, the arm
would elongate to a maximum length of more than 500 mm;
when depressurized equally, the arm would contract to a minimal
length of around 100 mm, as shown in Figure 1D.

A possible application for this soft arm is to lift heavy weights
for people or act as a piece of massage equipment due to its large
force and great compliance.

2.2 Modeling the Soft Arm
A simplified static model of the soft arm is given here to provide a
feed-forward control part for preliminary control. The method
considers the force balance equations of the three general
coordinates, which are the elongation, the bending, and the
rotations. The bellow actuators are modeled as cylinders with
internal spring terms. The damping term is not considered due to
the quasi-static motion assumption, and the mass terms are
neglected because of the relatively small value in this soft arm.
A detailed derivation process can be seen in our previous paper
Chen et al. (2019). Here, we give a brief description of the
modeling result since this will be the basis of the following
external load estimation method.

In the elongation direction, the output force is simply the sum
of all the six pressure-generated forces and the spring forces
written as

F � ∑N
i�1
[PiA − k(li − l0)], (1)

where F is the net output force, Pi is the bellow’s internal gauge
pressure, A is the cross section area of the bellow, k is the spring
coefficient, l0 is the original free length of the bellow, and li is the
actual length of each bellow.
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In the bending and rotation direction, the torque generated by
a certain bellow is given by its output force multiplied by its
effective radius, given as

Tβ
ext � ∑N

i�1
[FiR sin(θi − β)], (2)

Tα
ext � ∑N

i�1
[FiR cos(θi − β)], (3)

where T is the torque, with the subscript α and β to represents the
bending and rotation respectively. R is the distance between the
bellows’ center axis and the soft arm’s axis, θi is the installation
angle of the bellow in the X-Y plane, with the value of[0, π3, 2π3 , π, 4π3 , 5π3 ] for the six bellows.

Combining Eqs. 1, 2, 3, we could express the configuration
state of the soft arm by pressure information, which is given by

⎡⎢⎢⎢⎢⎢⎣ αβ
L

⎤⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tα
ext

AR
+

����������������
Φ2

c + Φ2
s − (Tβ

ext

AR
)2

√√
C1

a tan 2(Φs ,Φc) − a tan 2(Tβ
ext

AR
,
Tα
ext

AR
− C1α)

AΦp − F
Nk

+ l0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

On the right side of Eq. 4, α represents the bending angle, β
represents the rotation angle, and L represents the length of the
central line of the soft arm. On the left side, Φc, Φs, and Φp are
three weighted pressure sums related to the installation positions,
and C1 is a constant, given by

Φc �def ∑N
i�1
[Pi cos θi],Φs �def ∑N

i�1
[Pi sin θi],Φp �def ∑N

i�1
Pi,C1 � NkR

2A
.

In the case of no external load at the plate, the expression could
be further simplified into

⎡⎢⎢⎢⎢⎢⎣ αβ
L

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
�������
Φ2

c + Φ2
s

√
C1

a tan 2(Φs,Φc) − π

RΦp

2C1
+ l0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

One important usage of the above model is to control the soft
arm. The right side of the equation is pressure-related information,
representing the actuation space of the soft arm, while the left side
of the equation is the bending, rotation, and elongation of the soft
arm, representing the configuration space. Therefore, this model
relates the actuation space to the configuration space of the soft
arm, providing feed-forward terms to the control algorithms.

FIGURE 1 | (A) The Design concept of ExtenSA. (B) The bending motion of ExtenSA α � [0, 90°]. (C) The Rotation Motion β � [0, 360°]. (D) The Elongation and
contraction of ExtenSA l � [100mm,500mm].
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However, as this model could predict the soft arm’s movement
to a certain degree, it is dangerous to use this model directly to
estimate the external loads. This is because the unknown
modeling error would be directly involved in the calculation,
amplifying the estimation error, and, even worse, may cause the
estimated mass to be negative.

We will therefore develop a state-change model based on this
static model in Section 3, which would reduce the effect of the
modeling error in the load estimation process.

2.3 Control of the Over-Actuated Soft Arm
The model could help to control the soft arm to the desired
posture given commands like α, β, and L. However, for the
ExtenSA with six actuation units, we currently only have three
equations with elongation, bending, and rotation. Although we
could add more constraints, such as adjusting the bending and
rotating stiffness, the related equations would introduce
unnecessary complexities. It is therefore meaningful to use
only three input commands, that is, the length of the
centerline L, bending angle α, and rotating angle β, to derive
all the necessary pressure commands that we need.

Elongation movement is related to the pressure sums, and the
bending and rotation are related to weighted pressure differences;
given these constraints, we would like all the pressure commands
to be as near the atmosphere as possible, without causing too
much inflation or deflation.

Reorganize Eq. 5, we express the pressure related terms
[Φc,Φs,Φp] in terms of the configuration states α, β, L, given by

⎡⎢⎢⎢⎢⎢⎣Φp

Φc

Φs

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2C1(L − l0)

R

−C1a cos β

−C1α sin β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

We formulated the procedure of solving the pressure
commands from configuration commands as a quadratic
optimization problem:

minimize
X

XTX

subject to AX � b
(7)

where X � [P1, P2, P3, P4, P5, P6]T represent the pressure inside
the bellows, and

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 1 1 1 1 1

cos θ1 cos θ2 cos θ3 cos θ4 cos θ5 cos θ6

sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 sin θ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

b �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2C1(L − l0)

R

−C1α cos β

−C1α sin β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
This quadratic programming problem with linear constraints

could be solved with a closed form result, which is given by

X � A−1(AA−1)− 1
b. (8)

According to Eq. 8, given desired commands of the
configuration space of the soft arm with L, α and β, the
corresponding pressure commands in the actuation space
could be obtained. By regulating the pressure commands, the
soft arm could be controlled to the target position.

3 EXTERNAL LOAD ESTIMATION

When external loads are exerted, the posture of ExtenSA would
be changing passively to a balanced new state, as shown in
From Figure 2. The alpha and L would be changed and β
unchanged.

The torque Tα
ext generated by the mass in the bending direction

is written as

Tα
ext � −mgLL(1 − cos αL)

αL
. (9)

Assume the arm is unloaded at a certain configuration and
that a massm is then attached at the end of the ending plate. The
mass exerts a bending torque and a pulling force affecting both α
and L. In the following context, we will denote the modeling
values as α0, β0, L0 in unloaded situation and αL, βL, LL in the
loaded situation, respectively. We will also denote the true
configuration states as αT0 , β

T
0 , L

T
0 in the unloaded situation and

αTL , β
T
L , L

T
L in the loaded situation, respectively, from measured

values.

3.1 External Load Estimation with
Original Model
Although the model Eq. 4 provides a preliminary relation
between the actuation and configuration space, it is
unacceptable to estimate the external payload directly using
the model because the modeling error may render the
estimated mass to be negative.

Together with Eq. 9, to get the mass estimation we need to
solve the equation

− mgLL(1 − cos αL)
αL

� AR(C1αL −
�������
Φ2

c +Φ2
s

√ ). (10)

Giving the estimation as

m �
ARαL( �������

Φ2
c + Φ2

s

√
− C1αL)

gLL(1 − cos αL) (11)

As modeling errors exist, it is possible that the term
�������
Φ2

c +Φ2
s

√
from pressure feedback may be greater than the bending angle
term C1αL, and, if so, the resulting estimated mass may be a
negative value. This method is highly sensitive to the sign and
magnitude of the modeling error, which are both unknown in real
cases. It is therefore dangerous to directly use the model to
estimate the external payload.
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3.2 External Load Estimation with
State-Change Model
Although we could not predict the exact model errors during
every task, they all had the same model error in common, either
from the friction or the characteristics of the materials. This
means it would be more accurate to predict the state change
rather than to directly predict the state. In other words, a model
predicting the state change instead of predicting the state may
lead to more trustworthy results through reducing the effect of
common errors, as shown in Figure 3.

Based on this assumption that the mean modeling error of the
model is constant during a periodic task, we would like to derive a
state-change model to estimate the external load, that is, to use the
change of bending angle ΔαT to estimate the payload, where

ΔαT � αT
L − αT0 �defΔA.

Here, we define the value of ΔαT obtained from this method as
ΔA to distinguish it from the following improved method.

Looking into the process of loading, while the bending angle and
length are changing, the pressures inside the bellows would not

change due to low-level pressure feedback control if all the pressure
commands are well controlled within a relatively small error region.
Then, the three quantities, Φc, Φs, and Φp, could be considered
unchanged during the process. Then we get the following equation:

−mgLL(1 − cos αL)
ARαL

− c1αL � −c1α0. (12)

To simplify the calculation, the approximation of 1 −
cos αL ≈ (α2L/2) and LL ≈ L0 were applied to obtain αL, leading to

αL � 2ARC1

2ARC1 +mgL0
α0. (13)

On the other hand, the approximation of α0 ≈ αL was used to
obtain the LL, leading to

LL � mg cos α0

Nk
+ L0 (14)

These two equations describe the state change of the ExtenSA,
which could be used to compensate for the change of α and L due
to external loads.

FIGURE 2 | Loading Geometry of ExtenSA. The external load would exert a bending torque around the center fixing point of the arm as well as a pulling force along
the center line of the arm, affecting the bending angle α and the length lm.

FIGURE 3 | Payload Estimation Illustration of ExtenSA. With the information of angle measurement, the loaded model could be used to approximate the
external loads.
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According to Eq. 13, the equation could be rewritten as

αL

α0
� 2ARC1

2ARC1 +mgL0
. (15)

Giving m as

m � 2ARC1

gL0
(α0 − αL

αL
) � −2ARC1

gL0αL
ΔαT . (16)

This equation avoids the involvement of pressure information,
guaranteeing the acquisition of a positive estimation of the
payload because the ΔαT is always smaller than zero in real
cases due to the external load. Therefore, using this equation, we
are able to obtain an approximation of the external loads with a
more trustworthy result.

Moreover, this equation not only applies to the situation where
the soft arm is in a steady state. For a soft arm in a cyclic motion,
such as when following a sinusoidal trajectory, this equation also
works, with the value of alpha referring to the moving mean value
within at least one motion period.

3.3 External Load Estimation with Improved
Method
However, in reality, previous payload estimationmethodsmay suffer
from the ExtenSA’s pressure changing during the loading process,
which is due to the pressure control deadzone, rendering decreased
accuracy of the payload estimation. In this section, a modified
method for payload estimation is proposed to improve the accuracy.

3.3.1 Control Dilemma of Pressure Deadzone
The previous payload estimation method is based on the ideal
assumption that pressures could be accurately regulated by the
controllers. However, in real applications, most pressure feedback
control has a control deadzone to avoid oscillation within which
the pressure is regarded as unchanged. If the deadzone is set too
large, the tracking performance would deteriorate, and the steady
error would be large. If the deadzone is set too small, the system
would go oscillating because of the limitation of the actuation
valves’ switching frequency. Therefore, the width of the pressure
deadzone is commonly set according to the application
requirement and the platform capability. Typically, for most
soft robotic applications, the pressure deadzone is set to be
between 1KPa and 2KPa. This is mainly due to the valve’s
limited switching frequency, pneumatic control delay from
tube transmission, the sensor’s precision capability, and the
pressure’s sensitivity to small volumes or temperature changes.

In ExtenSA, the pressure deadzone is set to 2KPa to get a
steady pneumatic control without oscillation by comparing many
experimental results. This is mainly due to the thin tubes used for
each bellow; they cause pneumatic control delay and limited
sensor precision of around 1KPa.

3.3.2 Estimation Error from Pressure Deadzone
The existence of a pressure deadzone would influence the soft
arm’s behavior when an external payload is exerted, inducing an
error in the estimation result.

For example, in a certain working scenario, such as keeping the
ExtenSA at a particular bending angle, when external loads are
exerted, the pressure inside the actuators tends to change due to
the deformation of bellows. However, if the pressure change is
within the pressure deadzone, then the pressure controllers will
not be triggered. The valves will not open, resulting in closed
chambers and causing the actual pressure to either rise or fall, as
shown in Figure 4B.

Only when the pressure change is out of the pressure deadzone
will the pressure controller take action, but it will do so only to
regulate the pressure to one boundary of the deadzone.

In either case, a repelling pressure change is observed, which
would result in two consequences. First, the actual change of α
due to external loads would be smaller than the ideal change when
pressures are perfectly regulated. This is because of the repelling
pressure behavior, which provides an opposing bending torque.
Second, the modeled α from measured pressures is to increase.
This procedure is depicted in the third column in Figures 4A, 5.
Due to the pressure deadzone, the measured αTLR is larger than
expected, and the modeled α0R is also larger than expected. If the
previous state-change payload estimation method is used in 16,
there will be an error induced by the deadzone.

3.3.3 Improved Method by Using Change of Error
The state-change model could be regarded as using the change-
of-truth ΔαT � ΔA to estimate the payload. But due to the
pressure deadzone, in reality, the change of the truth may not
be solely from the exerting of payload but also from the deadzone
effect. Therefore, the real change ΔαTR is not equal to ΔαT .

The modified method reduces the influence of deadzone by
using the change of the error between the truth and the modeled
unloaded value, instead of ΔA, as the input to the state-change
model. The error E is defined as the difference between the
measured angle with the modeled angle(unloaded). At first, in
free state, the error is. After loading, the error becomes
EαLR � αTL − αLR. We then get the improved estimation of ΔαT :

ΔαT � EαL − Eα0 �defΔE.
We define the result of ΔαT derived using the improved

method as ΔE to distinguish it from the previous state-change
model where ΔαT � ΔA. Therefore, using ΔαT � ΔE as the input
to Eq. 16 can decrease the influence of the deadzone-induced
error and improve the accuracy of payload estimation results.

4 EXPERIMENTS

In this section, the experimental results of the model-based
control, external load estimation, and improved version are
demonstrated. A dedicated embedded pneumatic control
platform was built for these experiments. The control board
is a STM32F767ZI NUCLEO board from STMicroelectronics
with a core frequency of 216 MHz. It could generate 12-
channel individual PWM to control 12 solenoid valves
SX12F-DG that could operate at a maximum of 350 Hz.
Two pumps are used as sources of pressurized air and
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vacuum. The overall embedded pneumatic control platform
could regulate the pressure from range −100KPa to 200KPa
with a deadzone set to 2 KPa. A remote PC communicates
with the embedded platform through the serial interface at an
updating frequency of 1KHz, on which a dedicated GUI
written in Python was used to display the soft arm’s status
and accept input commands. The soft arm has an IMU at the
ending plate and a wire sensor through the central axis, which
is used to gain the feedback information of L, α, and β. A six-
axis force sensor from ATI was installed at the mounting
point where the external weight is attached as a reference. The
platform is shown in Figure 6A.

4.1 Model-Based Control
In this section, we show that the model could be used to op-loop
control the soft arm by providing the feedback part.

A joystick was used as the command input device, which
gives commands to the soft arm to elongate, bend, and rotate.
These commands of the configuration space are used to get
pressure commands by Eq. 8. The generated pressure
commands are shown in Figure 6B. The soft arm tracks
these desired α, β, and L simultaneously.

The result is shown in Figure 6C. The pure open-loop control
has achieved a moderate tracking performance. This would help
to control soft arms to maintain high active compliance by
allowing for smaller feedback gains.

4.2 Estimation Result Using State-Change
Model
The first experiment is based on tracking sinusoidal signals of bending
angle as shown in Figure 7A. Since this is not a static situation, we
need to use themovingmean instead. Themovingmean of αT within
a time window of onemotion period (100 s) was plotted in Figure 7B.
αT0 represents the mean value of the first 100 s representing the free
state. Therefore, the value ΔαT � αTL − αT0 could be obtained.

The result of external loads approximation was shown in
Figure 7C. The result was capable of being stabilized after one
motion period, which is just the time for the stabilization of themean
of αTL . With a smaller motion period, this stabilization time would be
reduced. The error of load approximation was plotted in Figure 7D.
The error is large during the transition period, and, after around one
period, the error is around 8% in the case of 0.5Kg and 37% in the
case of 0.9Kg.

FIGURE 4 | The pressure deadzone results in increased bending angle and modeled value in loaded situation.

FIGURE 5 | Improved Payload Esitmation Method of ExtenSA. The existence of pressure control deadzone would cause the true value αTL and modeled value α0 to
change slightly, inducing an estimation error. The improved method is to use ΔαT � Eα0 − EαLR , i.e., the change of error between the truth and modeled value instead of
just using the change of truth, as the input to the state-change model. This would help reduce the influence of the deadzone induced state change.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5864907

Chen et al. Model-Based Control and Load Estimation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4.3 Estimation Result with ImprovedMethods
In this section, we use the improved method to estimate the external
load and compare it with the result from the state-change model.

In the following experiments, the ExtenSA was set to a
constant bending angle of α � 57° at the beginning. The length

was set to be a constant L � 0.35m. Then external loads were
added to the endplate of the ExtenSA at the time t � 68 s and
t � 103 s. The change of α was plotted in Figure 8A.

In the beginning, the measured angle αMeasured (αT0 ) (red line)
was around 60°, slightly larger than the command, and the model

FIGURE 6 | (A) The experimental platform set-up consists of a remote PC host to display and give commands, an embedded pneumatic control platform to
regulate 12-channel pressure and the soft arm equipped with an IMU, a length sensor, and a force sensor. (B) The optimization generated commands.(C) The
simultaneous control of α, β, and L based on the model.

FIGURE 7 | (A) Sinusoidal movement of the bending angle with increasing loads. (B)Themoving mean of the bending angle αTL is calculated within a time window of
one motion period. (C) The external loads could be successfully approximated after one motion period. (D) The approximation error in steady state.
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predicted angle αModeled_without_Text α0 (green line) was around 52°.
The difference between them is the free state model error Eα0.

After the first loading of a mass of 0.92Kg at t � 68 s, α was
dropped to a new value of around 56° (αLR) under the effect of
pressure deadzone. In the meantime, the deadzone causes α0 to
increase to around 55° (α0R). The same happened when a
succeeding load was exerted at t � 103 s.

The comparison between ΔE and ΔA was plotted in
Figure 8B. It could be seen that, ΔE shows a more

significant change than ΔA under loading change,
suggesting that they could be used as a better signal to
calculate ΔαT .

The estimation result using the ΔE and ΔA is given in
Figure 9A. Since this is a static posture, the related values are
the real-time values without taking means. The result showed that
using ΔE would produce a more accurate approximation of
external load than using ΔA. Furthermore, the stabilization
time for the estimation procedure is only around several

FIGURE 8 | Loading Test at Constant Position of ExtenSA. (A) The α change during a loading test where the initial command was given at αcommand � 57° and the
length was at lm � 0.35m. Different external loads were added to the end of the ExtenSA, resulting in a change of α. (B) The relative value of A and Ewith respect to their
initial state shows that ΔE displays a more significant change.

FIGURE 9 | Improved Payload Estimation Results of ExtenSA. (A) The payload estimation method using ΔE shows a better estimation performance than using ΔA.
(B) The estimation error was decreased from around 60% to around 20%by using ΔE instead ofΔA. (C) The estimation error would be smaller for larger weights because
the resulting compliant behavior would have a larger signal-noise ratio.
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seconds, much smaller than previous experiments where a whole
motion period time is needed.

The estimation errors was plotted in Figures 9B,C. As seen,
the overall estimation error is undergoing a slowly reducing
process as the external mass is increasing. The estimation
error was reduced from around 60% by directly using the
state-change model to around 20% by using the improved
method, testifying to the effectiveness of the improved method.

4.4 Discussion
The state-change model uses the change of bending angle
ΔαT � αTL − αT0 �defΔA to estimate the mass. This method
avoids the potential negative estimation outcome by directly
using the model Eq. 4. This method is based on the idea that the
modeling error is nearly constant in the free and loaded situation, and
thus the difference would reduce the effect of the common modeling
error. This method also assumes that the low-level pressure control is
ideal, keeping the weighted pressure quantities Φc,Φs unchanged
during the process. Yet, in reality, this assumption could only be
loosely met because of the existence of pressure control deadzone.
Nevertheless, this method still gives a moderate approximation of the
external load. In applications where the pressure deadzone is smaller,
the approximation result would be better.

The improved method uses the change of error ΔαT � EαL −
Eα0 �defΔE as a better indicator of ΔαT in the existence of pressure
control deadzone. This method compensated for the change of the
modeled value and the inadequate change of the actual angle, both
caused by the pressure deadzone. Therefore, this method would give a
better approximation than the state-change model when the pressure
deadzone is affecting the loading behavior. In cases of small pressure
deadzone effects, this method would be reduced to the state-change
model naturally. Therefore, it is always a better choice to use this
method to estimate the external payload.

5 CONCLUSION

In this paper, the possibility and effectiveness of using a simplified
analytical model to retrieve external load information are studied. The

main idea is to use the state-change model to eliminate the common
errors of the modeling part and improve the estimation accuracy by
considering practical pressure control deadzones. The promising
aspect of utilizing this kind of method is in situations where only
limited sensor information is provided or could be economically got.
As the soft robotics lack proper sensors and rely on their
intrinsic compliance to deal with uncertainty, our state-
model-based method, which tries to extract information
from this masked behavior, would provide economic
guidance for high-level planning.
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