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Robots that physically interact with their surroundings, in order to accomplish some

tasks or assist humans in their activities, require to exploit contact forces in a safe and

proficient manner. Impedance control is considered as a prominent approach in robotics

to avoid large impact forces while operating in unstructured environments. In such

environments, the conditions under which the interaction occurs may significantly vary

during the task execution. This demands robots to be endowed with online adaptation

capabilities to cope with sudden and unexpected changes in the environment. In this

context, variable impedance control arises as a powerful tool to modulate the robot’s

behavior in response to variations in its surroundings. In this survey, we present the

state-of-the-art of approaches devoted to variable impedance control from control and

learning perspectives (separately and jointly). Moreover, we propose a new taxonomy

for mechanical impedance based on variability, learning, and control. The objective of

this survey is to put together the concepts and efforts that have been done so far in

this field, and to describe advantages and disadvantages of each approach. The survey

concludes with open issues in the field and an envisioned framework that may potentially

solve them.

Keywords: impedance control, variable impedance control, variable impedance learning, variable impedance

learning control, variable stiffness

1. INTRODUCTION

Day by day realistic applications (e.g., disaster response, services, and logistics applications, etc.)
are bringing robots into unstructured environments (e.g., houses, hospitals, museums, and so on)
where they are expected to perform complex manipulation tasks. This growth in robot applications
and technologies is changing the classical view of robots as caged manipulators in industrial
settings. Indeed, robots are now required to directly interact with unstructured environments,
which are dynamic, uncertain, and possibly inhabited by humans. This demands to use advanced
interaction methodologies based on impedance control.

Classical robotics, mostly characterized by high gain negative error feedback control, is not
suitable for tasks that involve interaction with the environment (possibly humans) because
of possible high impact forces. The use of impedance control provides a feasible solution
to overcome position uncertainties and subsequently avoid large impact forces, since robots
are controlled to modulate their motion or compliance according to force perceptions.
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Note that compliance control (Salisbury, 1980) is only a subset
of impedance control to produce compliant motion (Park, 2019)
and its tradition definition is “any robot motion during which the
end-effector trajectory is modified, or even generated, based on
online sensor information” (De Schutter, 1987). Noteworthy, in
cases where a robotic system is not providing access to low-level
control (e.g., commanding joints torque or motor current), then
we model interaction between the robot and the environment
using admittance control (Villani and De Schutter, 2016) by
translating the contact forces into velocity commands1.

Impedance controller resembles a virtual spring-damper
system between the environment and robot end-effector (Hogan,
1985), which allows robots to interact with the environment
or humans more safely and in an energy-efficient way. In
learning applications, a standard impedance interaction model is
defined as

Mẍt = KP(x̂− xt)−DVẋt + fet , (translational) (1)

Iω̇t = KO(log(R̂Rt
⊤))−DWωt + τ et , (rotational) (2)

where t = 1, 2, · · · ,T is the time-step, x̂ represents the goal
position (or desired trajectory2), and xt is the actual trajectory

of the end-effector. M,KP, andDV are the mass, stiffness, and
damping matrices, respectively, for translational motion, while

I,KO, andDW are the moment of inertia, stiffness, and damping
matrices, respectively, for rotational motion. ωt is the angular
velocity of the end-effector. R̂,Rt ∈ SO(3) are rotation matrices
and correspond to desired rotation goal and actual orientation
profile of the end-effector, respectively. The rotation of Rt into
R̂ is defined as log(R̂Rt

⊤). fet and τ et represent the external force
and torque applied to the robot end-effector. Figure 1 shows the
block scheme of the impedance control for the translational part.

1Admittance control maps, in a physically consistent manner, sensed external

forces into desired robot velocities. Therefore, it can be considered as the opposite,

or the dual, of the impedance control. Unlike impedance control, admittance

control performs more accurate execution in non-contact tasks or even in contact

with nonstiff (viscous) environments. In practice, the choice between impedance

and admittance control often depends on the available robot. It is known that, to

realize an impedance controller, one has to directly control the joint torques (or the

motor current). However, most of the available robotic platforms are controlled

in position or velocity and the roboticists has no access to the force/torque level.

This is especially true for industrial robots. In this cases, admittance control is an

effective strategy to realize a desired impedance behavior on a position (velocity)

controlled robots. The user has to equip the robot with additional sensors, like

a force/torque sensor at the end-effector, and convert the measured forces into

desired position (velocity) commands.

Ott et al. (2010) proposed a hybrid system that incorporates both controllers in

order to achieve: (i) accuracy in free motion and (ii) robust interaction while in

contact and free of impacts. Recently, Bitz et al. (2020) investigated the trade-off

between agility and stability by proposing a variable damping controller based on

user intent. Admittance control is out of the scope of this review and will be

partially mentioned. The interested reader is referred to Keemink et al. (2018)

for a review on admittance control-based techniques applied to human-robot

interaction.
2The reader with a control background will recall that, in impedance control,

the interaction model is defined in terms of the error et (e.g., for the position,

et = x̂ − xt) and its derivatives ėt and ët . The impedance model in Equations

(1) and (2) is obtained by assuming ˙̂xt = ¨̂xt = 0, i.e., we aim at reaching the fixed

goal defined by x̂ and R̂.

Impedance control can be used in Cartesian space to control
the end-effector interaction with the environment (Siciliano and
Villani, 2001; Albu-Schaffer and Hirzinger, 2002; Lippiello et al.,
2007; Caccavale et al., 2008), like in haptic exploration (Eiband
et al., 2019), as well as in joint space (Tsetserukou et al., 2009;
Li et al., 2011a,b, 2012) to enhance safety. Albu-Schaffer et al.
studied Cartesian impedance control with null-space stiffness
based on singular perturbation (Albu-Schaffer et al., 2003) and
passive approach (Albu-Schäffer et al., 2007). Few years later,
research tackled null-space impedance control in multi-priority
controllers (Sadeghian et al., 2011; Hoffman et al., 2018) and to
ensure the convergence of task-space error. Ott (2008) described
Cartesian impedance control and its pros and cons for torque
controlled redundant robots.

Impedance control is not only of importance when robots
interact with a stiff environment. As mentioned previously, new
robot applications are bringing robots to share human spaces that
make the contact between them inevitable. In such situations, it
is important to ensure the human safety (Goodrich and Schultz,
2008; Haddadin, 2013). Impedance control plays an important
role in human-robot interaction. These robots are not supposed
to just be in human spaces to do some specific tasks, but also
to assist human in many other tasks like lifting heavy objects
(e.g., table, box) (Ikeura and Inooka, 1995; Ikeura et al., 2002),
objects handover (Bohren et al., 2011; Medina et al., 2016), etc.,
in human–robot collaboration framework (Bauer et al., 2008).

However, in many tasks robots need to vary their impedance
along the execution of the task. As an illustrative example, robots
in unstructured environments (homes, industrial floors, or other
similar scenarios) may require to turn valves or open doors, etc.
Such tasks demand the application of different control forces
according to different mass, friction forces, etc. In that sense,
sensed forces convey relevant information regarding the control
forces needed to perform such manipulation tasks, which can be
governed through stiffness variations (Abu-Dakka et al., 2018).
Another example, from human–robot cooperative scenario, a
robot needs to adapt its stiffness based on its interaction
with a human in a cooperative assembly task (Rozo et al.,
2013).

From now on the main focus of this survey will be on Variable
Impedance Control (VIC) from both control and learning
perspectives. To the best of our knowledge, this is the first survey
that focuses on control and learning approaches for variable
impedance. A thorough search of the relevant literature yielded
to the list presented in Table 1.

Figure 2 shows the proposed taxonomy that categorize
existing approaches in the field. Starting from the root
we find the physical concept of mechanical impedance.
Mechanical impedance inspired preliminary work on impedance
control (Hogan, 1985) where the key idea is to control the
impedance behavior of a robotic manipulator to ensure physical
compatibility with the environment. In impedance control, we
identify two macro groups of approaches, namely those based on
constant impedance gains and those based on variable impedance
gains. Standard impedance control is a way to actively impose
a predefined impedance behavior on a mechanical system. It
can be realized both with constant and variable impedance.
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FIGURE 1 | Block scheme of impedance control, obtained assuming that ˙̂x = ¨̂x = 0.

TABLE 1 | Comparison between our review and the current reviews in the literature.

Topic Description

Vanderborght et al. (2013) and Wolf et al.

(2016)

Variable impedance actuators Realize Variable Impedance Control (VIC) in hardware with dedicated elastic

elementsa. They reviewed all possibilities to create variable stiffness

actuators and all main factors that influence the most common approaches.

Calanca et al. (2015) Compliance control Reviewed impedance and admittance controllers for both stiff and soft joint

robots.

Keemink et al. (2018) Admittance control Reviewed admittance controllers with a specific focus on human–robot

interaction.

Song et al. (2019) All above This review compared hardware- and software-based approaches, and

main technical developments about impedance control including hybrid

impedance, force-tracking, and adaptive methods. However, learning

algorithms and VIC methods are mentioned in two small subsections.

Our review VIC, VIL, and VILC This review departs from impedance control approaches to focus on

learning and learning control approaches used to implement variable

impedance behaviors. We analyze the advantages and disadvantages of

traditional approaches based on control and recent frameworks that

integrate learning techniques. Therefore, our review has a potential impact

on both the control and the learning communities.

aSEA are implemented by introducing intentional elasticity between the motor actuator and the load for robust force control, which subsequently improves safety during the interaction

of the robot with the environment (Pratt and Williamson, 1995).

SEA are out of the scope of this paper, however, interested readers can refer to Calanca et al. (2017), which summarizes the common controller architectures for SEA. SEA framework

has been used in many applications, mainly in human–robot interaction scenarios. For instance, Yu et al. (2013, 2015) designed compliant actuators for gait rehabilitation robot and

validated its controller in order to provide safety and stability during the interaction. Li et al. (2017) proposed a multi-modal controller for exoskeleton rehabilitation robots, driven by SEA,

that guarantee the stability of the system. For more recent approaches, please refer to Haninger et al. (2020) and Kim et al. (2020).

On the other hand, for recent achievements in VIC in soft robots, please refer to (Ataka et al., 2020; Gandarias et al., 2020; Li et al., 2020; Sozer et al., 2020; Zhong et al., 2020).

Standard impedance control3 has been applied to control robots
with rigid or elastic joints, both in joint and Cartesian spaces.
The stability of a VIC scheme depends on how the impedance
gains vary. Therefore, several approaches have been developed
to investigate the stability of the controller eventually with a
human-in-the-loop. The possibility of varying the impedance
has been also investigated from the learning community.
Approaches for Variable Impedance Learning (VIL) treat the
problem of finding variable impedance gains as a supervised
learning problem and exploit human demonstrations as training
data (imitation learning). Typically, VIL approaches rely on
existing controller to reproduce the learned impedance behavior.
On the contrary, Variable Impedance Learning Control (VILC)

3Constant impedance is out of the scope of this paper, however, interested readers

are advised to consult (Calanca et al., 2015; Song et al., 2019).

approaches attempt to directly learn a variable impedance
control law. This is typically achieved via imitation, iterative, or
reinforcement learning.

2. VARIABLE IMPEDANCE CONTROL (VIC)

The increasing demand for robotic systems to assist human
in industry, homes, hospitals, museums, etc., has encouraged
roboticists to investigate advanced interaction methods based
on impedance control. In tasks that require a robot to interact
physically with the environment (possibly human), impedance
control provides a dynamic relationship between position and
force in order to overcome any position uncertainties and
subsequently avoid large impact forces. In the past decades,
scholars have been investigated impedance control for a wide
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FIGURE 2 | A taxonomy of existing approaches for (variable) impedance learning and control.

FIGURE 3 | Block scheme of VIC, obtained assuming that ˙̂x = ¨̂x = 0.

range of robot applications, e.g., industry (Jung et al., 2004),
agricolture (Balatti et al., 2019), human–robot interaction
(Magrini et al., 2015), and rehabilitation (Jamwal et al., 2016).
However, since 1995 when Ikeura and Inooka (1995) proposed
for the first time the concept of variable impedance control as
a method for cooperative systems, researchers started massively
to investigate VIC, in many robot applications, due to efficiency,
flexibility, and safety that can add to the systems controllers.

In order to write the standard formula for VIC, we need to
slightly modify Equations (1) and (2) into

Mt ẍt = KPt (x̂− xt)−DV
t ẋt + fet , (translational) (3)

Itω̇t = KOt (log(R̂Rt
⊤))−DW

t ωt + τ et , (rotational) (4)

where KPt , DV
t , K

O
t , and DW

t are the same quantities defined
in section 1. The only difference is the subscript t used to
indicate that quantities are varying over time. A block scheme
that implements VIC is shown in Figure 3.

VIC plays an important role in human–robot cooperation.
One of the earliest works was introduced by Ikeura and Inooka
(1995) to show the advantages of variable damping control
schemes for a master-slave system to perform lifting tasks, which
was then extended by introducing variable stiffness (Rahman
et al., 1999). In Ikeura and Inooka’s system, the damping
variation was estimated a priori (through experimental data),
either using least-squares (Ikeura and Inooka, 1995) or later by
optimizing a suitable cost function (Ikeura et al., 2002). Later,
VIC was used to provide a coordination mechanism between
robot and human (Al-Jarrah and Zheng, 1997). Tsumugiwa et al.
(2002) introduced a variable impedance control based on the
human arm stiffness estimation. They varied the virtual damping
coefficient of the robot as a function of the estimated stiffness of a
human arm, and differential changes in position and force. They
used recursive least-squares method to estimate for the stiffness
coefficient. They applied signal processing with a digital filtering
in order to overcome the influence of the measurement noise and
subsequently improve the accuracy. In redundant manipulators,
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where robots are endowed with the ability to behave naturally
as close as possible the desired impedance profile, VIC was used
in a cooperative paining task (Ficuciello et al., 2015). Recently,
a minimally model-based trajectory tracking VIC controller was
proposed (Spyrakos-Papastavridis and Dai, 2020).

When two persons are collaborating or cooperating4 to
perform some task (e.g., lift and transport a table), both
can sense the intentions of the other partner by sensing the
forces transmitted through the object and they act accordingly.
However, when a robot is cooperating with a human, it is not
obvious for the robot to understand human intention. VIC
along with the estimation of human intentions have stimulated
researchers efforts in the past couple of decades. Duchaine
and Gosselin (2007) estimated human intention by exploiting
the time derivative of the applied forces in order to adjust
damping parameter in the robot’s controller. Recently, Muratore
et al. (2019) proposed a multimodal interaction framework
that exploits force, motion, and verbal cues for human–robot
cooperation. VIC is used to control the physical interaction
and the joint stiffness is updated online using the simple
adaptation rule

kt = k0 + α e2t , (5)

where kt = diag(KPt ) = [k1,t , . . . , kj,t , . . . , kJ,t]
⊤ is

the joint stiffness and J is the number of joints. k0 =

[k1,0, . . . , kj,0, . . . , kJ,0]
⊤ is a small stiffness used to prevent unsafe

interaction, et is the joint trajectory tracking error, and α is
a positive gain. In practice, the update rule (5) increases the
stiffness of the joints with high error letting the robot to track
more accurately the desired trajectory.

In rehabilitation, Blaya and Herr (2004) implemented a VIC
for an ankle-foot orthosis. However, they did not perform
any stability analysis for their system. A VIC controller to
provide a continuum of equilibria along the gait cycle has been
implemented (Mohammadi and Gregg, 2019). Stability analysis
of their controller has been provided based on Lyapunov matrix
inequality. Finally, Arnold et al. (2019) proposed to control
the ankle joint of a wearable exoskeleton robot to improve the
trade-off between performance and stability.

In grasping, Ajoudani et al. (2016) proposed a VIC controller
to vary the stiffness based on the friction coefficient, estimated
via exploratory action prior grasping, in order to avoid slippage
of the grasped object. In manipulation, Johannsmeier et al.
(2019) propose a framework that combines skills definition,
stiffness adaptation, and adaptive force control. Similarly to
Muratore et al. (2019), the stiffness is updated considering the
trajectory tracking error. The framework is evaluated on a series
of peg-in-hole tasks with low tolerance (< 0.1mm) showing
promising results.

4In literature, authors are using collaboration and cooperation as synonymous.

However, by consulting Merriam-Webster, Cooperation means the actions of

someone who is being helpful by doing what is wanted or asked, while

Collaboration means to work jointly with others or together especially in an

intellectual endeavor. Based on this definition, we will distinguish the use of the

two words based on the intentions of the tasks. Normally robots are cooperating

with human to help him to achieve something but not collaborating with him for

a common goal.

2.1. VIC Stability and Passivity
Stability issues of impedance control has been studied from
the beginning by Hogan (1985) and later by Colgate and
Hogan (1988) where the passivity concept had been introduced.
However, stability in VIC is not a trivial problem and has been
recently considered in literature. One of the earliest stability
analysis of VIC was for a force tracking impedance controller
(Lee and Buss, 2008). In their controller, the target stiffness was
adapted according to the previous force tracking error resulting
in a second-order linear time varying system. Ganesh et al.
(2012) implemented a versatile bio-mimetic controller capable
of automatic adjustment of the stiffness over a fixed reference
trajectory while maintaining stability.

Analyze the stability of an interaction with Lyapunov-based
tools becomes hard when the dynamics of the environment
are unknown. This is clearly the case of a robot physically
interacting with a human operator. In this respect, passivity arises
as an intuitive way to investigate stability5. Loosely speaking,
the passivity theory introduces a mathematical framework to
describe and verify the property of a dynamical system of not
producing more energy than it receives.

A passivity-based approach is presented to ensure stability
of a time-varying impedance controller (Ferraguti et al., 2013).
They ensure the passivity by ensuring that the dissipated energy
added to a virtual energy tank is greater than the energy pumped
into the system. Their approach depends on the initial and
threshold energy levels and on the robot state. Later, Ferraguti et
al. extended their approach to time-varying admittance controller
in order to adapt the human movements where the passivity
analysis took place using port-Hamiltonian representation
(Ferraguti et al., 2015). In contrast, Kronander and Billard
(2016) proposed state independent stability conditions for VIC
scheme for varying stiffness and damping. They used a modified
Lyapunov function for the derivation of the stability constraints
for both damping and stiffness profiles. This idea of constraining
variable impedance matrices to guarantee the stability on variable
impedance dynamics before the execution has been expanded
later by Sun et al. (2019). Sun et al. (2019) proposed new
constraints to on variable impedance matrices that guarantee the
exponential stability of the desired impedance dynamics while
ensuring the boundedness of the robot’s position, velocity, and
acceleration in the desired impedance dynamics.

Recently, Spyrakos-Papastavridis et al. (2020) proposed
a Passivity-Preservation Control (PPC) that enables the
implementation of stable VIC. They also provided joint and
Cartesian space versions of the PPC controller to permit intuitive
definition of interaction tasks.

2.2. VIC With Human-in-the-Loop
Previous works have been devoted to understand how impedance
is modulated when humans interact with the environment
(Burdet et al., 2001) or to transfer human’s impedance-based
skills to robots (Ajoudani, 2016). The presence of the human,
or human-in-the-loop, introduces a certain level of uncertainty

5Describe the passivity framework is out of the scope of this review. The interested

user is referred to Van der Schaft (2000) for a thorough discussion on passivity

theory.
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in the system and poses several technical problems for the
underlying controller that should guarantee stability of the
interaction while effectively supporting the human during the
task. In this section, we are covering potential research on
VIC approaches from control perspective while having the
human in the control loop. However, robot learning capabilities
to automatically vary impedance controller parameters to
satisfactorily adapt in face of unseen situations while having
human-in-the-loop will be covered in section 4.1.

In Ajoudani et al. (2012) introduced the concept of tele-
impedance through a technique capable of transferring human
skills in impedance (stiffness) regulation to robots (slave)
interacting with uncertain environment. Human impedance
where estimated in real-time using Electromyography (EMG)
to measure signals of eight muscles of human’s arm (master).
They applied this method to peg-in-hole application based on
visual information and without any haptic feedback. Few years
later, the authors updated their result in Laghi et al. (2020) by
overcoming the loss of transparency by integrating two-channel
bilateral architecture with the tele-impedance paradigm.

In control interfaces that include human-in-the-loop, EMG
signals have been successfully used to estimate human impedance
and subsequently use it as an input “intention estimate”
for controlling robots in different tasks, e.g., cooperative
manipulation task (Peternel et al., 2016, 2017; DelPreto and
Rus, 2019). Peternel et al. (2016, 2017) proposed a multi-modal
interface, using EMG and force manipulability measurements
of the human arm, to extract human’s intention (stiffness
behavior) through muscles activities during cooperative tasks.
Subsequently, a hybrid force/impedance controller uses the
stiffness behavior to perform the task cooperatively with
the human.

Rahimi et al. (2018) propose a framework for human–robot
collaboration composed of two nested control loops. The outer
loop defines a target variable impedance behavior using a feed-
forward neural network to adapt the desired impedance in order
to minimize the human effort. The inner loop generates an
adaptive torque command for the robot such that the unknown
robot dynamics follows the target impedance behavior generated
in the outer loop. An additive control term, approximated with a
neural network whose weights are updated during the execution,
is used to cope with the unknown dynamics deriving from
the interaction.

3. VARIABLE IMPEDANCE LEARNING (VIL)

Traditionally, robot learning has been concerned about trajectory
following tasks (Ouyang et al., 2006). However, the new
generation of torque-controlled robots has made it possible
to extend learning capabilities to tasks that require variable
impedance skills (Abu-Dakka et al., 2018; Abu-Dakka and
Kyrki, 2020). Recently, robot learning algorithms have gained
great interest for learning, reproducing, and adapting variable
impedance parameters and treating them as skill to be learned.
The focus in this section is on learning algorithms used to
encode variable impedance gains for learning, reproduction,

and adaptation, regardless of the effect of these gains on the
robot behavior. The latter will be discussed in Section 4. In our
taxonomy (see Figure 2), the approaches reviewed in this section
belong to the VIL category.

A block scheme that implements VIL is shown in Figure 4.
Here, the learning algorithm uses N demonstrations in the
form {{xt,n, ẋt,n, f

e
t,n}

T
t=1}

N
n=1 to learn parameterized—with a set of

parameters θ—impedance gains. In other words, VIL approaches
learn a (nonlinear) mapping φ(·) in the form6

K̂
P

t = φK(xt , ẋt , f
e
t , θ

K) (6)

D̂
V

t = φD(xt , ẋt , f
e
t , θ

D) (7)

where K̂
P

t and D̂
V

t represent the desired variable stiffness
and damping, respectively. At run time, the desired variable
impedance gains are retrieved from the current measurements
(position, velocity, and force) using the learned model in
Equations (6) and (7). As shown in Figure 4, the desired
impedance gains are online processes—the gains are saturated
or their rate of change is slowed down—to ensure desired
closed-loop properties like stable interactions (Ficuciello et al.,
2015). Depending on the application, the learned parameters for

stiffness θK and damping θD may differ or not. The technique

used to approximate the nonlinear mappings φK(·) and φD(·)
distinguishes the different VIL approaches.

Training data are typically provided by an expert user, e.g.,
via kinesthetic teaching as in Kronander and Billard (2014),
and are independent from the underlying controller. At run
time, the desired variable impedance gains are retrieved from
the learned model and a VIC (see section 2) is used to obtain
the desired impedance behavior. Note that, in the VIC block
in Figure 4, there is no connection between the impedance
adaptation strategy and the inertia matrix Mt . This is because
most of the approaches for VIL learn only variably stiffness and
damping matrices, as described by Equations (6) and (7). On the
contrary, several VIC approaches also perform inertia shaping as
indicated in Figure 3.

VIL via Imitation Learning
Imitation Learning (IL) or Learning from Demonstration (LfD)
methods are tools to give machines the ability to mimic human
behavior to perform a task (Hussein et al., 2017; Ravichandar
et al., 2020). In this vein, LfD is a userfriendly and intuitive
methodology for non-roboticists to teach a new task to a
robot. In this case, task-relevant information is extracted from
several demonstrations. Standard LfD approaches have focused
on trajectory-following tasks, however, recent developments have
extended robot learning capabilities to impedance domain (Abu-
Dakka et al., 2015, 2018; Abu-Dakka and Kyrki, 2020).

Kormushev et al. (2011) encoded position and force data into
a time-driven Gaussian Mixture Model (GMM) to later retrieve
a set of attractors in Cartesian space through least-squares
regression. Stiffness matrices were estimated using the residuals

6The mapping for the rotational impedance parameters can be expressed in a

similar way.
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FIGURE 4 | Block scheme of VIL, obtained assuming that ˙̂x = ¨̂x = 0.

terms of the regression process. Kronander and Billard (2014)
used kinesthetic demonstrations to teach haptic-based stiffness
variations to a robot. They estimated full stiffness matrices
for given positions using Gaussian Mixture Regression (GMR),
which used a GMR that encoded robot Cartesian positions and
the Cholesky vector of the stiffness matrix. Saveriano and Lee
(2014) follow a similar approach, but exploit the constraints
derived by Khansari-Zadeh and Billard (2011) to guarantee the
convergence of the trajectory retrieved via GMR. Li et al. (2014)
omitted the damping term from the interaction model and
used GMM to encode the pose of the end-effector. Then they
found the impedance parameters and reference trajectory using
optimization techniques. Suomalainen et al. (2019) exploit LfD
to learn motion and impedance parameters of two manipulators
performing a dual-arm assembly. In their evaluation, they show
that adapting the impedance of both robots in both rotation and
translation is beneficial since it allows to fulfill the assembly task
faster and with less joint motions.

Rozo et al. (2013) proposed a framework to learn stiffness
in a cooperative assembly task based on visual and haptic
information. They used Task-Parameterized GMM (TP-GMM)
to estimate stiffness via weighted least-squares (WLS) and
the Frobenius norm, where each Gaussian component of the
GMM was assigned an independent stiffness matrix. Later, they
reformulated their stiffness estimation method as a convex
optimization problem, so that optimal stiffness matrices are
guaranteed (Rozo et al., 2016).

Although traditional LfD approaches tend to teach
manipulation skills to robots from human expert, Peternel
and Ajoudani (2017) proposed a learning method based on
Dynamic Movement Primitive (DMP) where a novice robot
could learn variable impedance behavior from an expert robot
through online collaborative task execution.

In IL, multidimensional data are typically stacked into vectors,
de facto neglecting the underlying structure of the data. Novel
LfD approaches explicitly take into account that training data
are possibly generated by certain Riemannian manifolds with
associated metrics. Recall that full stiffness and damping matrices

are Symmetric Positive Definite (SPD) (Equations 1–7) so that

KPt ,DV
t ,K

O
t ,DW

t ∈ S
m
+, where S

m
+ is the space of m ×

m SPD matrices. This implies that impedance gains have
specific geometric constraints which need special treatment in
the learning algorithms. All aforementioned approaches needed
to process impedance matrices before and after the learning
takes place. Thus, we need to learn directly variable impedance
matrices without any reparameterization.

Abu-Dakka et al. (2018) proposed an LfD framework
to learn force-based variable stiffness skills. Both forces
and stiffness profiles were probabilistically encoded using
tensor-based GMM/GMR (Jaquier and Calinon, 2017) without
any prior reparameterization. They compared their results
with the traditional Euclidean-based GMM/GMR (Calinon,
2016) after reparameterizing stiffness matrices using Cholesky
decomposition. Their results showed that direct learning of
SPD data using tensor-based GMM/GMR provides more
accurate reproduction than reparameterizing the data and using
traditional GMM/GMR. Two years later, Abu-Dakka and Kyrki
(2020) reformulated DMPs based on Riemannian metrics, such
that the resulting formulation can operate with SPD data in the
SPD manifold. Their formulation is capable to adapt to a new
goal-SPD-point.

4. VARIABLE IMPEDANCE LEARNING
CONTROL (VILC)

VIL often depends on the underlying control strategy up to
the point where defining a clear boundary between the learning
algorithm and the controller design becomes impossible. Such
approaches belong to the VILC category in Figure 2 and are
reviewed in this section.

A block scheme that implements VILC is shown in Figure 5.
As for VIL, the learning algorithm uses training data in
the form {{xt,n, ẋt,n, f

e
t,n}

T
t=1}

N
n=1 to learn parameterized—with

a set of parameters θ—impedance gains. The key difference
between VIL and VILC is that in VILC the data collection
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process itself depends on the underlying control structure.
Therefore, the learning and control block are merged in
Figure 5, while they are separated in Figure 4. Compared
to standard VIC, VILC approaches adopt more complex
impedance learning strategies requiring iterative updates and/or
robot self-exploration. Moreover, VILC updates also the target
pose (or reference trajectory) while typically rely on constant
inertia matrices.

4.1. VILC via Imitation Learning
Some of the imitation learning approaches focus on fitting
variable impedance gains from training data independently of
the way the resulting behavior is executed on real robots.
In our taxonomy, shown in Figure 2, we have categorized
these work as methods for impedance learning and reviewed
prominent ones in section 3. Nevertheless, approaches for
imitation learning exist where learning and control tightly
integrate and cannot be decoupled. Prominent approaches are
reviewed in this section.

Calinon et al. (2010) propose an active learning control
strategy to estimate variable stiffness from the inverse of the
observed position covariance encapsulated in a GMM. Their
approach is limited to tasks displaying variability in position
trajectories across demonstrations, which does not arise in
scenarios where the end-effector is constrained to follow a single
Cartesian path (e.g., valve-turning tasks). The IntegratedMOtion
Generator and Impedance Controller (i-MOGIC) proposed by
Khansari-Zadeh et al. (2014) derives the robot trajectory and
variable impedance gains from a GMM and use them to compute
the control input

ut =

G
∑

g=1

hg(xt , ẋt)
[

KPg (x̂g − xt)+DV
g (

˙̂xg − ẋt)+ ûg

]

. (8)

where G is the number of Gaussian components, hg(xt , ẋt) are G

state dependent mixing coefficients, x̂g and are ˙̂xg local position

and velocity targets, KPg and DV
g are full stiffness and damping

matrices, and ûg are eventual force (spring) preloads. In this
formulation, both the trajectory and the impedance gains depend
on the robot’s state (position and velocity) and are retrieved at run
time using sensed information. The stability of the overall closed-
loop system composed of the robot and the i-MOGIC is proved
using Lyapunov arguments.

Mathew et al. (2019) implemented an IL-based forward model
approach with incremental adaptation capability of a state-
dependent, time-independent impedance parameters. Moreover,
their approach includes a hybrid force-motion controller that
provides compliance in particular directions while adapting the
impedance in other directions. Recently, Parent et al. (2020)
proposed an approach that takes the advantage of the variability
that comes from human demonstrations to adapt the stiffness
profile according to the precision required in each phase of
motion. Their results show a suitable trade-off between precision
and compliance.

Human-in-the-Loop
Kinesthetic teaching is a well-known approach for imitation
learning where the human teacher physically guides the robot
to demonstrate the task. Kinesthetic teaching is typically applied
“off-line” to collect motion trajectories by compensating the
gravitational torque acting on the robot joints that allows for
physical guidance. However, some work extend the kinesthetic
teaching framework to provide “online” demonstrations that are
used to adjust the task execution (Lee and Ott, 2011; Saveriano
et al., 2015; Kastritsi et al., 2018; Dimeas et al., 2020).

In this respect, Lee and Ott (2011) exploited a variable stiffness
profile to generate different impedance behavior in different parts
of the state-space. Close to the reference trajectory the stiffness
is high to allow accurate tracking. As the difference between
reference and executed trajectories increases, for example
because an external force is applied to provide a corrective
demonstration, the stiffness smoothly decreases to ease the
teaching. Finally, if the tracking error exceeds a certain bound,
the stiffness grows again. Overall, the approach allows for a local
refinement around a nominal trajectory.

Saveriano et al. (2015) proposed a unified framework for
online kinesthetic teaching of motion trajectories for both the
end-effector and the null-space. External forces arising from
kinesthetic teaching are converted into velocity commands with
a standard admittance control. This velocity is added to a
stack of tasks with variable priority order and executed using
the prioritized inverse kinematics approach by An and Lee
(2015). The variable priority order is needed to select the task
to execute in case of conflicts, for example when the user
tries to distract the end-effector from the nominal trajectory.
Kastritsi et al. (2018) used variable stiffness control to allow
a human operator to safely interact with the robot during
the operation and provide corrective demonstrations, while
guaranteeing the overall passivity. They named this incremental
learning with human-in-the-loop progressive automation since
the robot “progressively” becomes autonomous as the number of
iterations grows and the tracking error decreases. The framework
has been further extended to adapt periodic movements via
human–robot interaction (Dimeas et al., 2020).

An impedance behavior, defined as in Equations (3) and
(4), has an intrinsic multi-modal nature since it consists of a
reference trajectory and (variable) impedance gains. Peternel
et al. (2014, 2018a), Yang et al. (2018), and Wu et al. (2019)
designed multi-modal interfaces to let the human to explicitly
teach an impedance behavior to the robot. More in details,
Peternel et al. (2014) used a marker attached to the hand to
measure the position and EMG sensors to capture the muscular
activation of the arm, where high values of the EMG signal are
mapped into high robot stiffness. Information captured via this
multi-modal interface are used in an online learning loop and
used to update the parameters of two DMPs, one used to generate
the desired trajectory and one the desired stiffness.

Similarly, Yang et al. (2018) used EMG and a master
robotic arm to demonstrate variable impedance behaviors to a
slave robotic arm. Wu et al. (2019), instead, combined EMG
measurements and the forces sensed during kinesthetic teaching
into an admittance controller with variable impedance gains. A
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FIGURE 5 | Block scheme of VILC, obtained assuming that ˙̂x = ¨̂x = 0.

limitation of these work is that they require a complex setup
and a long calibration procedure to achieve good performance.
Peternel et al. (2018a) designed a multi-modal interface
consisting of a haptic device that measures the arm trajectory and
return a force feedback and a potentiometer that the user press
to modulate the stiffness. As in their previous work (Peternel
et al., 2014), sensed information are used to online estimate the
DMPs parameters. The calibration procedure to make the multi-
modal interface (Peternel et al., 2014) has been simplified later
for easier use (Peternel et al., 2016, 2017). Finally, Peternel et al.
(2018b) further extended their control approach for multi-modal
interface (Peternel et al., 2016, 2017) by using position and force
feedback as well as muscular activity measurements. The latter is
used to estimate the human physical fatigue and then teach the
robot (based on DMP) to reduce human’s fatigue by increasing
its contribution to the execution of the cooperative task. As a
result, the robot gradually takes overmore effort when the human
gets tired.

4.2. VILC via Iterative Learning
Tuning variable impedance gains can be seen as a repeated
learning process where the robot improves its performance at
each iteration. The idea of a repeated learning results in two
category of approaches, namely those based on iterative learning
and those based on Reinforcement Learning (RL). Iterative
learning approaches are reviewed in this section, while RL is
covered in section 4.3.

A bunch of work (Cheah and Wang, 1998; Gams et al.,
2014; Uemura et al., 2014; Abu-Dakka et al., 2015; Kramberger
et al., 2018) that propose to iteratively adjust the impedance
rely on the Iterative learning control (ILC) framework (Bristow
et al., 2006). ILC assumes that the performance of an agent that
repeatedly performs the same task can be improved by learning
from past executions. In the conventional ILC formulation, the
objective is to reduce the trajectory tacking error while rejecting
periodic disturbances. This is obtained by adjusting the pre-
defined control input with a corrective term that linearly depends

on the tracking error, i.e.,

ur+1,t = ur,t + γrer,t . (9)

where the subscript r indicates the iteration number, while t
a time dependency, ur,t is the control input to adjust, and er,t
the trajectory tracking error. The gain γr in Equation (9) is
iteratively updated in a way that ensures asymptotic convergence
of the tracking error at least if the system to control has a linear
dynamic. The conventional ILC described by Equation (9) relies
on the trajectory tracking error and it is not directly applicable
to VILC. The easiest way to use ILC to reproduce impedance
behaviors is to combine it with a properly designed VIC.
However, this approach does not allow the robot to learn suitable
impedance gains. In order to learn variable impedance gains, the
error term in Equation (9) needs to be modified to describe
the discrepancy between the desired and the real impedance
behavior. Common strategies exploited in VILC to modify the
conventional ILC formulation are described as follows.

Recall that the goal of impedance control is to let the robot
behave as the second order dynamics specified in Equations (3)
and (4). By specifying the desired trajectory and impedance gains,
the desired dynamics in Equations (3) and (4) becomes a target
impedance behavior and ILC (9) can be used to enforce the
convergence of the robot behavior to this target. Cheah andWang
(1998) combined a standard, PD-like controller with a learned
feedforward term and a dynamic compensation term. The
feedforward term is update with an iterative rule and a proper
selection of the compensator gains ensures the convergence of the
iterative control scheme to the target behavior. The ILC scheme
in Cheah and Wang (1998) relies on a standard impedance
controller and requires measurement of interaction forces and
a fixed target impedance behavior, i.e., constant gains and a
predefined desired trajectory. As a consequence, the interaction
may become unstable if the environment changes significantly.
This undesirable effect is overcome by the biomimetic controller
(Yang et al., 2011) and inspired by experimental observation that
humans optimize the arm stiffness to stabilize point-to-point
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motions (Burdet et al., 2001). In this case, the iterative update
rule, not derived from ILC but from human observation, involves
both feedforward force and impedance gains. Notably, no force
measure is required to implement this iterative control scheme
that guarantee stable interactions and error cancellation with a
well-defined margin.

There is an intrinsic advantage in adapting the reference
trajectory during the motion that is not exploited by Cheah and
Wang (1998) and Yang et al. (2011). Indeed, by modulating the
desired trajectory, one can let the robot anticipate contacts before
they occur. This potentially leads to stable transitions between
interaction and free motion phases and allows for adaptation to
changing environments. This possibility is investigated by Gams
et al. (2014). Gams et al. (2014) proposed to couple two DMPs
with an extra force term. The approach is relatively general since
the coupling term may represent different reference behaviors
including desired contact forces or relative distance between the
robot hands. The forcing term is updated from sensory data using
an ILC scheme with guaranteed convergence. Varying the joint
trajectory as well as the gains of a diagonal stiffnessmatrix with an
ILC rule is exploited by Uemura et al. (2014) to generate energy-
efficient motions for multi-joint robots with adjustable elastic
elements. The approach has guaranteed convergence properties
and can effectively handle boundary conditions like desired initial
and goal joint position and velocity.

Abu-Dakka et al. (2015) iteratively modified the desired
positions and orientations to match forces and torques acquired
from human demonstrations. While Gams et al. (2014)
considered only positions, Abu-Dakka et al. (2015) combined
unit quaternions, a singularity-free orientation representation,
and DMP to represent the full Cartesian trajectory. Moreover,
their ILC scheme learns how to slow down the DMP execution
such that the force/torque error is minimized. The approach is
experimentally validated on challenging manipulation tasks like
assembly with low relative tolerances.

As discussed in section 4.1 and Van der Schaft (2000), passivity
is a powerful tool to analyze the stability of the interaction with
a changing and potentially unknown environment. Kramberger
et al. (2018) propose an admittance-based coupling of DMP
that allows both trajectory and force tracking in changing
environments. The paper introduces the concept of reference
power trajectory to describe the target behavior of the
system under control—consisting of DMP, robot, and passive
environment. Using a power observer, the reference power error
is computed and used in an ILC scheme to learn a varying goal
of the DMP. As a result, the varying goal reduces the trajectory
and force tracking errors while maintaining the passivity of the
overall system.

4.3. VILC via Reinforcement Learning
RL is a widely studied topic in the learning and control
communities, and it is beyond the scope of this survey to
provide an exhaustive description of the topic. For the interested
reader, Sutton and Barto (2018) is a good reference to start
with RL. Kober et al. (2013), Kormushev et al. (2013), and
Deisenroth et al. (2013) described robotic specific problems of
RL. Chatzilygeroudis et al. (2020) reviews recent advancement in

the field with a particular focus on data-efficient algorithms, while
Arulkumaran et al. (2017) focuses on deep learning solutions.
Instead, we assume that the reader is already familiar with RL
and focus on presenting existing approaches for RL of variable
impedance control.

In interaction tasks, variable impedance (or admittance)
control can be adopted as a parameterized policy in the form7

πθ ,t = KPθ ,t(x̂θ ,t − xt)+DV
θ ,t(

˙̂xθ ,t − ẋt)+ fet , (10)

where πθ ,t is a control policy depending on a set of learnable
parameters θ . The parameters θ define the desired trajectory
(x̂θ ,t and ˙̂xθ ,t) as well as the desired impedance (or admittance)

behavior (KPθ ,t and DV
θ ,t). These parameters can be optimally

tuned using approaches from RL (Kim et al., 2010; Buchli et al.,
2011; Dimeas and Aspragathos, 2015; Rey et al., 2018; Martín-
Martín et al., 2019). Experiments show that adopting such a
specialized policy results in increased sample efficiency and
overall performance in complex interaction tasks like contact-
rich manipulation.

More in details, Kim et al. (2010) used an episodic version of
the Natural Actor-Critic algorithm (Peters and Schaal, 2008) to
learn a variable stiffness matrix. Their algorithm targets planar
2-link manipulators since the 2 × 2 SPD stiffness matrix is
completely represented by 3 scalar values, namely the magnitude,
the shape, and the orientation. This keeps the parameter space
small and allows for a quick convergence to the optimal stiffness.
However, the effectiveness of the approach in realistic cases, e.g.,
a spatial manipulator with 6 or 7 links, is not demonstrated.

Buchli et al. (2011) used the Policy Improvement with Path
Integrals (PI2) algorithm (Theodorou et al., 2010) to search
for the optimal policy parameters. A key assumption of PI2

is that the policy representation is linear with respect to the
learning parameters. Therefore, Buchli et al. (2011) proposed to
represent the desired position and velocity as a DMP (Ijspeert
et al., 2013), a policy parameterization that is linear with respect
to the learning parameters. For the stiffness, authors exploited
a diagonal stiffness matrix and express the variation (time
derivative) of each diagonal entry as

k̇θj ,t = αj

(

gj
⊤(θj + ǫj,t)− kθj ,t

)

, j = 1, . . . , J, (11)

where j indicates the jth joint, kθj ,t is the stiffness of joint j,
ǫj,t is a time-dependant exploration noise, gj is a sum of G
Gaussian basis functions, and θj are the learnable parameters
for joint j. The stiffness parameterization in Equation (11) is
also linear in the parameters and PI2 can be applied to find
the optimal policy. It is worth noticing that Buchli et al. (2011)
used a diagonal stiffness matrix and one DMP for each motion
direction (or joint), allowing the PI2 to optimize the behavior in
each direction independently. This has the advantage of reducing
the parameter space and, possibly, the training time. However,
a diagonal stiffness neglects the mutual dependencies between

7The parameterization (10) can be applied in joint or Cartesian spaces and

extended to consider the orientation.

Frontiers in Robotics and AI | www.frontiersin.org 10 December 2020 | Volume 7 | Article 590681

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Abu-Dakka and Saveriano VI Control & Learning – A Review

different motion directions, which may be important depending
on the task. Following a similar idea of Buchli et al. (2011)
and Rey et al. (2018) parameterized the policy as a nonlinear,
time invariant dynamical system using the Stable Estimator of
Dynamical Systems (SEDS) (Khansari-Zadeh and Billard, 2011).
This is a key difference with the work by Buchli et al. (2011), since
DMP introduces an explicit time dependency. The idea of SEDS
is to encode a first order dynamics into a GMM

ξ̇t =

G
∑

g=1

hg(ξt)A
P
g (ξ̂ − ξt), (12)

where ξt is a generic state variable, ξ̂ the goal state, 0 <

hg(xt) ≤ 1 are G state-dependent mixing coefficients, and

the matrices APg depend on the learned covariance. Using
Lyapunov theory (Slotine et al., 1991), authors conclude that the

system (12) globally converges to ξ̂ if all the APg are positive

definite8. The PI2 algorithm is modified accordingly to fulfill the
SEDS stability requirements during the exploration. Authors also
propose to augment the state vector ξ to include position and
stiffness, and to encode a variable stiffness profile using Equation
(12). A variable impedance controller is then used to perform
interaction tasks where the variable, diagonal stiffness matrix and
the reference trajectory are retrieved at each time step from the
learned dynamical system.

Dimeas and Aspragathos (2015) adopted an admittance
control scheme with a constant inertia matrix and null stiffness,
and exploits fuzzy Q-learning (Berenji, 1994; Jouffe, 1998) to
discover optimal variable damping gains (one for each motion
direction). The goal of the learning agent is to minimize the robot
jerk (third time derivative of the position) in human–robot co-
manipulation tasks. Authors conduct a user study with 7 subjects
performing co-manipulation task with a real robot, showing that
their approach converges in about 30 episodes to a sub-optimal
policy that reduces both time and the energy required to complete
the task.

As already mentioned, approaches in Buchli et al. (2011)
and Rey et al. (2018) rely on a diagonal stiffness matrix to
reduce the parameter space and the corresponding search time.
The drawback is that a diagonal stiffness neglects the inter-
dependencies between different motion directions. This problem
is faced by Kormushev et al. (2010). Kormushev et al. (2010)
proposed to learn an acceleration (force) command as a mixture
of G proportional-derivative systems

ut =

G
∑

g=1

hg,t

[

KPg (x̂g − xt)− dVẋt

]

, (13)

where x̂g are G local target, hg,t are time varying mixing

coefficients, dV is a constant damping, and KPg are full

8In the original formulation, the matrices APg are assumed negative

definite (Khansari-Zadeh and Billard, 2011). We have slightly modified the

system (12) to use positive definite matrices and be consistent with other

equations in this survey.

stiffness matrices (that authors call coordination matrices since
they describe the local dependency across different motion
directions). Clearly, the control input ut in (13) realizes a
variable impedance control law. The method is applied to the
highly dynamic task of flipping a pancake. The work by Luo
et al. (2019) follows a different strategy to search for a force
control policy. The iterative linear-quadratic-Gaussian approach
(Todorov and Li, 2005) is used to find a time-varying linear-
Gaussian controller representing the end-effector force. In this
case, injecting a Gaussian noise in the control input is beneficial
since it helps to reduce the model bias of the RL algorithm
(Deisenroth et al., 2015). The generated force is inserted into
an hybrid position/force controller that implicitly realize an
adaptive impedance behavior, i.e., the robot has high (low)
impedance in free (contact) motion. A neural network is trained
in a supervised manner to represent and generalize the linear-
Gaussian controller, as experimentally demonstrated in four
assembly tasks.

In principle, most of (probably all) the approaches developed
for robot control can be used to map a learned policy into robot
commands. Martín-Martín et al. (2019) presented an interesting
comparison between well-known controllers used to map a
policy into robot commands. Clearly, the output of the policy
depends on the chosen controller. For example, the policy of a
joint torque controller outputs the desired torque. In case of a
Cartesian variable impedance controller, the policy output are the
desired pose, velocity, damping, and stiffness. They compared 5
popular controllers, namely, joint position, velocity, and torque,
and Cartesian pose and variable impedance, on 3 tasks (path
following, door opening, and surface wiping). The comparison
considers the following metrics: (i) sample efficiency and task
completion, (ii) energy efficiency, (iii) physical effort (wrenches
applied by the robot), (iv) transferability to different robots, and
(v) sim-to-real mapping. Their findings show that the Cartesian
variable impedance control performs well for all the metrics.
Interestingly, a variable impedance control policy is easier to port
to another robot and can be almost seamlessly transfer from a
simulator to a real robot.

RL methods have great potential and are effective in
discovering sophisticated control policy. However, especially
for model-free approaches, the policy search can potentially be
extremely data inefficient. One possibility is to alleviate this issue
is to use a “good” initial policy and locally refine it. Imitating
the human impedance behavior is a possibility to initialize the
control policy and standard RL techniques or, more effectively,
inverse RL approaches can be used to refine the initial policy
(Howard et al., 2013). Alternatively, there exists a class of model-
based RL approaches that is intrinsically data-efficient (Sutton
and Barto, 2018). Loosely speaking a model-free learner uses
an approximate dynamic model, learned from collected data, to
speed up the policy search.

In the context of VIC, Li et al. (2018, 2019) used Gaussian
processes (Williams and Rasmussen, 2006) to learn a probabilistic
representation of the interaction dynamics. In order to overcome
the measurement noise of the force/torque sensor, Li et al. (2018)
designed a Kalman filter to estimate the actual interaction forces.
The learned model is used to make long-term reward prediction
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and optimize the policy using gradient-based optimization as
originally proposed by Deisenroth et al. (2015). Gaussian process
are extremely sample efficient. However, they do not scale with
large datasets and tend to smooth out discontinuities that are
typical in interaction tasks. In order to realize sample and
computationally efficiency, Roveda et al. (2020) proposed a
mode-based RL framework that combines VIC, an ensemble of
neural networks to model human–robot interaction dynamics,
and an online optimizer of the impedance gains. The ensemble of
networks, trained off-line and periodically updated, is exploited
to generate a distribution over the predicted interaction that
reduces the overfitting and captures uncertainties in the model.

Stability in VIC Exploration
Realizing a safe exploration that avoids undesirable effects
during the learning process is a key problem in modern
Artificial Intelligent (AI) (Amodei et al., 2016). For RL, this is
particularly important in the first stages of the learning when
the agent has limited knowledge of the environment dynamics
and applies control policies that are potentially far from the
optimal one. The aforementioned approaches are promising
and they can potentially discover complex variable impedance
policies. However, none of them is designed to guarantee a safe
exploration. A possible way to guarantee a safe exploration is
to identify a set of safe states where the robot is stable (in the
sense of Lyapunov) and to prevent the robot to visit unsafe
states (Berkenkamp et al., 2017; Chow et al., 2018; Cheng et al.,
2019). With the goal of guaranteeing Lyapunov stability during
the exploration, Khader et al. (2021) proposed an all-the-time-
stability exploration strategy that exploits the i-MOGIC policy
parameterization in Equation (8). As detailed in Section 4.1,
i-MOGIC allows to learn a VIC with guaranteed Lyapunov
stability. As a difference with the SEDS-based approach by Rey
et al. (2018), the i-MOGIC parameterization allows to learn full
stiffness and dampingmatrices that encode the synergies between
different motion directions. The stability constraints derived by
Khansari-Zadeh et al. (2014) are exploited by Khader et al.
(2021) to constraint the parameters during the policy updates,
guaranteeing a stable exploration.

The idea of using stable dynamical systems to parameterize
a control policy is promising, since it allows for a stable
exploration. However, it is not clear if an optimal policy can be
found in the constrained parameter spaces. At this point, further
investigation is required to quantify the limitations introduced
by the specific policy parameterizations. A possible solution
could be to simultaneously update the policy parameters and
the Lyapunov function. This would allow to relax the stability
constraints by increasing both the safe set and, as a consequence,
the probability of finding an optimal policy.

5. DISCUSSION

In this paper, we presented a review for the main learning
and control approaches used in variable impedance controllers.
Table 2 summarizes the general advantages and disadvantages of
these approaches.

As stated in Table 2, we envision a framework that inherits
features from all the different approaches. The ideal framework
is to be accurate and robust like a properly designed controller,
and, at the same time, flexible, and easy to generalize like a
learning approach. However, there are several theoretical and
practical difficulties that need to be overcome to realize the
envisioned framework.

Theoretical guarantees like stability and robustness become
difficult to prove in complex systems like a robot manipulator
physically interacting with an unstructured environment.
Existing approaches make several simplification assumptions,
e.g., interactions with a passive environment, to derive theoretical
guarantees. These assumptions significantly restrict the domain
of application of developed VIC approaches. In this respect,
passivity theory arises as a promising approach given the
relatively general working assumptions (see section 2.1).
However, the passivity framework, as most control approaches,
is model based and sometimes it is hard to come up with a
suitable analytical solution without simplification assumptions.
It is evident that control alone cannot solve the problem.

Learning-based approaches are designed to work in complex
scenarios under minimal assumptions. For instance, many
model-free RL approaches only require a reward on the robot’s
performance to discover a sophisticated and generalizable control
policy. This comes at the cost of long training time and possible
unsafe robot behaviors. In general, training time and safety
are not always an issue for the learning community, but they
represent a clear limitation in robotics. Described work on safe
and model-based RL (see section 4.3) started to address these
issues, but results are still preliminary.

It is evident, from the previous discussion on the limitations
of learning and control approaches, that VILC is the route to
realize an omni-comprehensive variable impedance framework.
However, this poses further challenges to overcome:

• IL is a paradigm for teaching robots how to perform new tasks
even by a nonprogrammer teachers/users. In this context, IL
approaches extract task-task relevant information (constraints
and requirements) from single/several demonstration(s),
which can enable adaptive behavior. The approaches presented
in section 3 show successful examples of how diverse
impedance tasks—e.g., peg-in-the-hole, assembly, etc.—can be
learned via human imitation. However, the simple imitation
of the task demonstration(s) is prone to failures, especially
when physical interaction is required. Possible reasons to
fail include9: (i) poor demonstrations provided by inexpert
teachers, (ii) inaccurate mapping between human and robot
dynamics, and (iii) insufficient demonstrations to generalize a
learned task.

To overcome these limitations, one needs to endow
robots with the ability to generalize to unseen situations
of the task. This generalization can be done by combining

9An exhaustive discussion about pros and cons of IL is beyond the scope of this

survey. Therefore, we focus on limitations of IL that particularly affect impedance

learning. The interested reader is referred to Ravichandar et al. (2020) for a general

discussion about strengths and limitations of IL.
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TABLE 2 | A comparison of the main approaches for variable impedance learning and control.

Approach Advantages Disadvantages

Existing Stability and passivity of VIC Model-based solutions, where the models are

often simplified computational representations,

are efficient, and accurate. Guarantee the

stability (or passivity) is of importance for safe

interactions.

Rely on accurate models of the system under control to

work well. Derive accurate models is, in some cases,

nontrivial that complicates the overall design and makes

the solution less general.

Human-in-the-loop During the execution, human can react where

the AI algorithms are not confident about the

next reaction. Human impedance, estimated

via EMG sensors, postural markers, and/or

haptic devices, often represents a good target

impedance for the robotic arm.

Require prior knowledge on the human anatomy, a

complex setup with multiple sensors, and a long

calibration time. Moreover, the system can be influenced

by possible human error, in addition to lack of

repeatability.

Imitation learning User-friendly and easy learning framework to

teach robots. Humans use variable impedance

strategies in many of their daily activities and

can naturally demonstrate a proper impedance

behavior to solve a specific task.

The quality of learning can be influenced by the teacher

performance. Some tasks are complex enough to be

demonstrated. Directly transfer the impedance policy

from a human to a robot is not always possible and may

require sophisticated strategies or hand tuning.

Iterative learning These approaches are computationally and

data efficient. Convergence to the optimal

parameters can be analytically proved.

The target impedance behavior has to be manually

defined, which makes hard to generalize the approach to

dissimilar tasks. Moreover, standard ILC assumes that

the system is already stable or stabilized with a suitable

controller. Moreover, it needs multiple task repetitions

with the same duration and initial conditions, which is

hard to guarantee in real scenarios.

RL The robot may potentially discover control

policies to solve complex, hard to model tasks.

The usage of a specialized policy

paramaterization increases the data efficiency

and the policy transferability.

Specialized policies, like the ones based on VIC, as well

as safety requirements limit the exploration capability of

the learning agent increasing the risk to get stuck into a

policy far from the optimal one.

Envisioned • The ideal impedance behavior should be:

– stable, accurate, and robust like a control approach, without requiring an accurate model or domain-specific knowledge like in

reinforcement learning.

– computational and data efficient, as well as easy to setup.

• Enhanced generalization capabilities are also required to adapt the robot behavior to different situations. None of the reviewed approaches

has all these features. However, some approaches have great potential and deserve to be further investigation.

• Manifold learning has shown interesting performance in learning variable impedance behaviors (Abu-Dakka et al., 2018). In many

applications, not only in impedance learning, the training data below to a certain manifold, but the underlying structure of the data is typically

not properly exploited by the learning algorithm. Manifold learning remains a widely unexplored and rather promising topic.

• Stability guarantees are a need when the robot interacts with the environment and the safe reinforcement learning formalism seems the route

to learn effective impedance policies. The most powerful reinforcement learning are extremely data greedy that poses several limitations on

their applicability. In this context, model-based approaches with stability guarantee seem better suited but their effectiveness has not be fully

investigated.

demonstration-driven approaches like IL with trial-and-error,
reward-driven learning (e.g., RL).

• Policy parameterization is needed to cope with the continuous
nature of state and action space in robotics. Moreover, a proper
policy representation, like the i-MOGIC used by Rey et al.
(2018) and Khader et al. (2021), may lead to desired properties
like the all-the-time-stability described in section 4.3, but
further investigations are needed to understand if and how a
specific policy parameterization limits the learning capabilities
of the adopted algorithm.

• Safety of a system is typically ensured by constraining the
state-space to a safe (sub-)set. When applied to RL, this limits
the robot exploration to a certain safe set that maybe be too
conservative to discover interesting policies. Moreover, the
safe set is typically hand designed by an expert. A possibility
to address this issue is to use a very basic safe set (e.g.,

a ball around the initial state of the robot), and improve
the estimation of the safe set during the learning. Recently,
Wabersich and Zeilinger (2018) have proposed a data-driven
approach to iteratively increase the safe set. The approach
work only for linear systems and the extension to nonlinear
ones is, as usual, nontrivial.

• We seek for policies that generalize well and are applicable
in a wide range of situations. The generalization capabilities
of a learning algorithm often depends on the adopted feature
representation. Most of the approaches either use diagonal
stiffness and damping matrices or simply vectorize the full
matrices to form a training set. However, as discussed in
section 3, impedance parameters are SPD matrices and the
vectorization simply discards this information. Therefore,
a Riemannian manifold represents the natural space from
which training data are sampled, and taking the underlying
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manifold structure often lead to better extracted features
that increase the discriminative power and the generalization
capabilities of the learning algorithm. Recent work Abu-
Dakka et al. (2018) and Abu-Dakka and Kyrki (2020)
reformulated the learning problem by taking into account
the underlying Riemannian manifold structure and show
improved performance compared to standard approaches
based on vectorization. Results are promising but too
preliminary to definitely assess the generalization capabilities
of manifold-based approaches.

Building a safe RL algorithm on top of a manifold representation,
like SPD, is, at least in theory, possible. However, at the best of
our knowledge, this is still an ongoing research topic and there is
no available approach.

6. CONCLUDING REMARKS

Varying the robot impedance during the task execution is a
popular and effective strategy to cope with the unknown nature
of everyday environments. In this survey, we have analyzed
several approaches to adjust impedance parameters considering
the task at end. Traditionally, variable impedance behavior were
achieved by means of control approaches, namely the variable
impedance control. More recently, the learning community has
also focused on the problem attempting to learn impedance gains
from training data (VIL) or a nonlinear controller with varying
impedance (VILC). Each approach has its own advantages and
disadvantages that we have summarized in Table 2.

At the current stage, none of the approaches has
all the features that a variably impedance behavior
requires. Control approaches have solid mathematical

foundations that make them robust and efficient, but
require a significant amount of prior knowledge. Learning
approaches may require less amount of prior information,
but they are often data and computationally inefficient.
These limitations, as discussed in section 5, reduce the
applicability of variable impedance approaches and have
heavily burden the spread of robotic solutions in dynamic and
unstructured environments.

We believe that manifold and reinforcement learning are
the most promising approaches to overcome existing limitations
of VILC approaches and have the potential to learn variable
impedance behaviors that are effective both in industrial and
service scenarios.
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