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This paper presents a novel approach to implement hierarchical, dense and dynamic
reconstruction of 3D objects based on the VDB (Variational Dynamic B + Trees) data
structure for robotic applications. The scene reconstruction is done by the integration of
depth-images using the Truncated Signed Distance Field (TSDF). The proposed
reconstruction method is based on dynamic trees in order to provide similar
reconstruction results to the current state-of-the-art methods (i.e., complete volumes,
hashing voxels and hierarchical volumes) in terms of execution time but with a direct multi-
level representation that remains real-time. This representation provides two major
advantages: it is a hierarchical and unbounded space representation. The proposed
method is optimally implemented to be used on a GPU architecture, exploiting the
parallelism skills of this hardware. A series of experiments will be presented to prove
the performance of this approach in a robot arm platform.
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1 INTRODUCTION

Industrial robotic research has been extremely prolific in the last decades, with a special interest in
applications such as welding, painting and pick-and-place of objects. However, the performance of
most of them relies on the precise visual perception of the workplace so that the robot can react in
real-time to changes on it. An interesting tool for implementing this perception capability is 3D
dense reconstruction. Although 3D dense reconstruction is a well-established field in computer
vision and graphics, most of the newly proposed methods are not adapted to the constraints
imposed by complex industrial robotic tasks. For instance, when robots need to manipulate
deformable objects, current reconstruction methods fail since they are based on the assumption of
the presence of rigid objects in static scenarios (Zeng et al. (2013), Whelan et al. (2016) and Puri
et al. (2017)). Another well-known problem is drifting in textureless scenarios during the camera
pose estimation, which implies erroneous reconstructions. Thus, most of the proposed industrial
methods decide to use high-precision and expensive visual sensing setups (Son et al. (2015),
Rohrbach et al. (2016) and Zhang et al. (2017)), reducing their applicability in all types of
industries. Therefore, we propose to use a new generation consumer depth camera (such as the
Intel RealSense D435) installed on the robot so that they can output live half-HD depth maps at
high-frequency rates with a low price to implement a precise reconstruction of the objects to be
manipulated (Figure 1).
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Real-time dense reconstruction presents important challenges
when non-delay performance and fine-quality results are
required. In particular, the incremental integration of
overlapping depth maps into dense volumetric grids is not
affordable for sequential methods. This problem has thus been
addressed by many works employing different types of data
structures accelerated by General Purpose Graphic Processor
Units (GPGPU). The most successful methods in the context
of hierarchical volumetric grid surface representation are based
on Octree data structures, such as the work proposed by Hornung
et al. (2013) for robotic collision avoidance tasks. Nevertheless,
the main problem with this space representation is its low
branching-rate that makes trees considerable deep at low-
quality reconstructions. Other approaches more popular in
computer graphics are based on N-trees (Chen et al. (2013))
or B-trees (Johnson and Sasha (2002)). Less-known data
structures in computer graphics, but one that is quite popular
in data science, are the B+ trees. These trees split the topology

representation from the stored data (Museth (2013)). The works
presented by Hoetzlein (2016) and Wu et al. (2018) are not mere
implementations of the VDB (Variational Dynamic B+ trees)
data structure for graphics hardware, but they include a major
change: data consistency is maintained by using an apron voxels
wrap with the neighbor voxels in contrast to use a neighbor index
list. In fact, the use of bitmask is not necessary anymore for
discovering child nodes.

Implicit volumetric approaches in active sensing have
demonstrated fine-quality results, starting with the method by
Curless and Levoy (1996), which presents, for the first time, the
use of a truncated signed distance field (TSDF). TSDF can also be
used at real-time rates (Izadi et al. (2011) and Newcombe et al.
(2011)), but a well-known problem of these methods is the lack of
memory management. This approach is therefore used just in
reduced spaces with modest resolution. To overcome this
problem, moving volume variants have been developed (Roth and
Marsette (2012)). However, the problemhas shifted to streaming out-
of-core the data while the sensor moves. A more attractive approach
is presented by Nießner et al. (2013), which uses a Hash table to
compact the volume grid. However, careful consideration reveals
several performance issues according toMuseth (2013). Finally, Chen
et al. (2013) presents hierarchical data structures that subdivide space
more effectively, but they cannot be parallelized efficiently due to
their additional computational complexity.

A real-time dense and dynamic 3D reconstruction method
implementation, typically used in data science and computer
graphics, is proposed to be used in robotics tasks to provide fine-
quality results in a hierarchical topology. This new approach has the
benefits of dense volumetric grid methods and the multi-level
topology representation of hierarchical data structures, but it does
not require a memory-constrained voxel grid. This method is based
on VDB trees that compress space and allow a real-time integration
of new depth images. Additionally, this data structure isolates the
implicit surface topology from the data, which is stored densely in
cells (called bricks). Although this kind of high-performance
hierarchical technique has been proposed for a variety of image
rendering, simulations, collision detection tasks (Yang et al. (2017))
and semantic segmentation (Dai et al. (2018) and Hou et al. (2019)),
a new extension based on the continuous update of the underlying
data is proposed for surface reconstruction in robotics manipulation
tasks (Figure 1). All parts of the proposed pipeline (sensor pose
acquisition, depth map integration and surface rendering) are
performed on GPU hardware, and they are validated by
interactive robotic reconstructions of several scenes.

2 TERMINOLOGY OF VDB TREES

The proposed method is based on the VDB tree structure to
represent a reconstructed scenario in a volumetric grid. VDB
exploits spatial coherency of time-varying data to separately
encode data values and grid topology (Figure 2). There are no
topology restrictions on the sparsity of the volumetric grid and it
has a fast random access pattern O(1). In fact, VDB models a
virtually infinite 3D index space that allows for cache-coherent
and fast data access into sparse volumes of high resolution. The

FIGURE 1 | Robot platform used to evaluate our approach. Top: Franka
Panda robot equipped with a D435 sensor during the reconstruction of a
backpack. Bottom-left: voxelized reconstruction. Bottom-right: topology of
the reconstruction.
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VDB data structure is fundamentally hierarchical, facilitating
adaptive grid sampling.

VDB dynamically arranges nodes in a hierarchical data
structure, normally a tree (being the grid topology, Figure 2
left), where bricks are leaf nodes at the same fixed depth of an
acyclic and connected graph with large but variable branching
factors. This makes the tree height-balanced but shallow and
wide. This reduces the tree depth and the number of operations to
traverse it from the root node to the brick level. The B+ tree is the
type used by VDB, which has a variable number of children per
node and it can be seen like a traditional B-tree where each leaf
contains data keys (index).

The proposed implementation of VDB in Museth (2013) uses
a direct access bitmask to guarantee fast and compact direct
access to a binary representation of the local topology of a
particular node. In contrast, we use the approach presented by
Wu et al. (2018), where a pre-reserved and unsorted memory
scheme bit masking is not necessary. This unmasked node access
provides better computational performance since the resorting of
the node list is avoided.

As mentioned before, data values (or voxels) are stored
separately from the topology (Figure 2, center and right). The
proposed storage scheme presented by Hoetzlein (2016) is used in
order to stack the voxels in a 3D heap (atlas), packing them inside
bricks. The atlas is allocated in a GPU 3D texture to efficiently
access the data. The atlas is resized in the z-axis if there is no more
empty space in the current atlas. Each brick in the atlas keeps an
apron of the nearest neighbor voxels wrapping them. The vicinity
consistence in the data layout is thus kept.

Although this scheme of reconstruction is theoretically
unbounded in the 3D index space x ≡ (x, y, z), this is naturally
limited to bit-precision and memory constraints. The data
encoded in each node consist of (Figure 2): an index x to
address the node in a discrete pose inside the volumetric grid
V ; an index y to map the node with its correspondent brick B in
atlas space A; two flags α and β, which provide information about
its activation and visibility; and a list pointing to its children
nodes N at the next level. The data value contained inside each
voxel {d,w} ∈ B represents the truncated signed distance field
TSDF and the weight. These values are computed by the
integration of consecutive depth images D. Since the proposed
method is formulated for robotic manipulation, every new D is
transformed into the robot base frame by bMc.

3 PROPOSED METHOD

As previously stated, the developed method (Figure 3) is devoted to
resolving the reconstruction of dense and dynamic scenarios for robot
manipulation tasks. Therefore, a constant and accurate camera pose
information retrieval is assumed by the robot direct kinematic solver.
This fact makes the method independent of camera pose estimation
strategies like in Zeng et al. (2013), Puri et al. (2017), Newcombe et al.
(2011),Nießner et al. (2013) andNguyen et al. (2012). Themain reason
not to use camera pose estimation is to avoid drifting problems in
textureless scenes due to bad errorminimization in the Iterative Closest
Point (ICP) algorithm (Besl and McKay (1992) and Zhang (1994)).

Therefore, The current global camera pose is therefore obtained by
transforming the local camera pose eMc with respect to the current
robot end-effector pose: bMe � bMe × eMc. The local pose eMc is
estimated using virtual visual servoing (VVS), as in Marchand and
Chaumette (2002).

FIGURE 2 | Representation of Variational Dynamics B+ trees adapted to GPU architecture. Left image represents a tree which defines the implicit topology of VDB
(for simplification in 2D space), with the following configuration: 22, 22 and 22. Therefore, each node of the internal l1 and root l2 levels has a child listN of size 16. Nodes in
the leaf level l0 have an index pointing to the atlas space y in addition to volumetric index x. Atlas is represented at the center of the image as a heap. The right image
shows one slice of the atlas space. Apron voxels are used to keep vicinity consistence. Only pool0 is shown in this figure.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 7 | Article 6003873

Mateo et al. HDD3D Reconstruction for Robotic Manipulation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


3.1 Update of Topology and Atlas Spaces
The volumetric grid topology is updated before the integration of
each new depth image. Thereby, new nodes are added to those
space quanta that fall inside the footprint of a depth sample z ∈ D
of the truncated region. The z are processed in parallel, activating
new nodes in the topology and allocating bricks, in atlas space,
within the truncation region around the observed surface.
Similarly to Nießner et al. (2013), the truncation region is
adapted based on the variance of the depth measurements in
order to compensate for large uncertainties.

To update the topology, an indexes list of new nodes is created
by ray-tracing scanning of V at all tree levels. Note (algorithm 1)
that the topology T and nodes set N is an empty structure at the
initialization. This scan is also used to update the visibility of
those nodes which are already active (α � 1) in the topology.
Secondly, those nodes belonging to the indexes list created by the
ray-tracing are allocated. Thirdly, every new node is linked with
its parent in a top-down direction.

A commonly chosen method to implement the ray-tracer is
the Digital Differential Analyzer algorithm (DDA, by Amanatides
and Woo (1987)) because it interpolates values over an interval
between the start and end points. This work defines this interval
(i.e the ray bounding region) according to the root node range, in
contrast to Nießner et al. (2013) where rays were bounded to the
truncation region. This strategy is used to update all visibility
information in the current frustum region (Figure 4). The
gradient value ∇x used to traverse each ray at level l is equal
to the resolution at level l − 1. This is exemplified in the algorithm
1, from line eight to line 15. This is executed for each instruction
in parallel to compute the nodes that hold the depth values Dt(k)
measured by the sensor eMc at time t. These nodes are computed
for each level l used to represent the tree.

3.2 Depth Image Integration
Depth images are integrated inside of the current volumetric grid:
within the bricks whose node position falls inside the camera view

FIGURE 3 | Overview of the proposed 3D dense reconstruction pipeline.

FIGURE 4 | A 2D representation of how nodes are labeled according to the DDA algorithm. In this representation, a hierarchy with 22 nodes for levels l1 and l2 is
defined. Leaf nodes are not explored. Camera frustum is defined by near and far clips. Nodes at l0 with gray color are outside of the view frustum, purple nodes are active
but not visible and the blue ones are visible and active nodes. Neither gray nor purple nodes will be integrated.
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frustum and are not occluded (Figure 4). The camera view
frustum is defined by the near and far clipping distances. This
option keeps a constant computational cost of TSDF integration.
Thus, the method performance depends just on the size of the
view range and not the density of the reconstruction. In contrast
to other works like Nießner et al. (2013), a brick selection strategy
is not required since α and β variables are directly consulted.
Thus, all atlas bricks whose node positions are inside the camera
range and are visible β � 1 are evaluated to implicitly update the
volumetric grid.

Integrating a new depth image involves updating the bricks by
re-computing the associated TSDFs and weights (Curless and
Levoy (1996)). The calculation of the TSDF is presented in
Figure 5 for the special case of 1D. The sensor is positioned
at the origin looking down the z-axis direction and takes two
measurements z1 and z2 in two different time stamps. The signed
distance field d1(x) and d2(x) may extend indefinitely in either
direction, but the weight functions w1(x) and w2(x) bound them
behind the range points. Concretely, the weight functionw shown
in (line 9) of algorithm two represents the similarity function
based on angular differences between the current normal and the
integrated one. ⊕ is thus defined as the dot product of nt · nt+1.

This implies weighting integration of new depth measurements
according to the embedded shape. The weighted combination of
the two profiles (Eq. 2) is illustrated in Figure 5 in purple. The
integral combination rules are as follows:

dt+1(x) � wt(x)dt(x) + wt+1(x)dt+1(x)
wt(x) + wt+1(x) , (1)

wt+1(x) � wt(x) + wt+1(x), (2)

where, dt(x) andwt(x) are the signed distance andweight functions
from the tth range image. dt(x) and dt(x) are the cumulative signed
distance and weight functions after integrating the tth range image.

Note the importance of updating all bricks that fall into the
current frustum, irrespective of whether they reside in the current
truncation region. This is done to prevent the integration of
bricks, which have been added due to surface changes or outliers
in the depth map and are no longer observed.

3.3 Node Rejection and Surface Generation
This step removes voxel blocks allocated due to noisy outliers
and moved surfaces. Node rejection operates on the updated
atlas layout to mark a node as rejected and topology layout to
remove the nodes. For each brick, a summarization step is
performed to obtain both the minimum absolute d value and
the maximum w. If the maximum w of a brick is zero or the
minimum d is bigger than a threshold, the associated brick is
flagged for deletion. In a second pass, in parallel, all flagged leaves
are deleted from the topology. When all deletion operations are
successfully done, all nodes in the rest of the tree levels l ≠ 0 are
unlinked following a bottom-up pattern. Once both layouts
(topology and atlas) have been updated, all nodes are set as
non-visible.

Most previous works on dense volumetric reconstruction (such as
Nguyen et al. (2012)) extract the implicit iso-surface before rendering
the underlying surface. In contrast, the proposed method generates
the rendered image of the reconstructed surface directly from the
volumetric grid, like in Chen et al. (2013). In order to compute the
normal surface, needed for shading, the gradient of the TSDF at the
zero-crossing is estimated by using first-order finite differences and
trilinear interpolation. The vast majority of samples lie in the same
leaf grid due to the use of a shallow tree with relatively large
branching factors.

4 RESULTS

All the experiments are executed using a laptop PC equippedwith an
Intel Core i7-6820HQ CPU at 2.70GHz, 32 GB of RAM and an
embedded Quadro M2000MGPU. The robot platform is composed
of a Robot Franka Panda equipped with an RGBD camera Intel
RealSense D435. Four sequences are captured with this set up in
order to evaluate the proposedmethod: a shoe, adhesive tape, a small
aluminum piece and a backpack (Figure 6). All the experiments are
performed on top of a table situated in z � 0 with respect to the
robot base. The shoe experiment is the middle size one,
0.3 × 0.12 × 0.8m, of brown leather. The tap experiment is the

FIGURE 5 |Computation of the TSDF (truncated signed distance field) in
one-dimensional space. This figure shows two different measures z1 and z2 of
the same surface spot at different times along z-axis in the camera frame. Solid
lines show distance fields d1 and d2 and dash lines represent weightsw1

and w2. Purple lines represent integral distance d and weight w. The surface
position z is obtained from this integral distance.
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thin hoop of size 0.1 × 0.1 × 0.08m. The small aluminum piece
experiment is used to show how this method can deal with noisy
information (measurements corrupted because of the material of the
object), the size of the object is 0.07 × 0.07 × 0.06m. The backpack
experiment is composed of two objects: an apple and a backpack of

0.47 × 0.33 × 0.18m. The fourth experiment is extended by adding
a non-static object (e.g., a human hand) in the scene. The topology
configuration for all experiments is the same and it includes for each
axis direction: 23 nodes at the root level; 23 nodes at the internal level;
and 24 nodes at the leaf level. The voxel resolution is set to 1mm3.

FIGURE 6 | Snapshots of reconstructions experiments for four different objects: a shoe (1st row), tape (2nd row), a small aluminum piece (3rd row) and a backpack
(4th and 5th rows).

FIGURE 7 | Trajectory of the camera used during the experiments. We sample pose in order to take one of each of the 10 poses.
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The camera pose in all sequences follows the same trajectory
(Figure 7) performed by the robot.

Figure 6 presents the reconstruction evolution of all four scenes
used in the evaluation. Note that for the surface visualization, the
rendering voxels strategy is shown because this representation fits
better in reconstructions aimed to measure tasks. Otherwise, the
visualization would be misleading. To enrich the voxel
representation, internal voxels are also visualized. Since the scene
is static with regard to the robot base, the reconstruction is done just
in those measures with positive z values.

It is remarkable that the final results in all four scenes have
finished without drifting problems. Concretely, in experiment one
(shoe), the model evolves from a rough-quality to a fine-quality. The
second experiment (tape) is similar to the first one but with an
additional difficulty: it is a tiny object, with just a 60mm2 diameter
and a 3mm height. The third experiment (small aluminum piece) is
also a tiny object, but it is made of aluminum, which is a reflective
material. The last experiment is split into two rows because it presents
a more complex scenario. The sequence has two main parts: firstly,
the backpack is reconstructed (fourth row) in a first robot trajectory
execution (i.e., pass), but later a non-static object (e.g., a human hand)
appears in the scenario (fifth row). Even with this occlusion, the
previous reconstruction is not affected and it continues to be done
successfully in the next robot pass. The shadowing method is used to
illustrate occlusion.When the camera is situated for the next pass, the
hand goes away from the scene.While the camera does not pass over
the region where the hand was, the hand voxels stay. When the
camera records once again that scene region, the hand voxels vanish
without affecting the backpack reconstruction. More precisely, after
the hand is removed from the scene for the first time, the leaf nodes
used to code it inside the volumetric grid stay a while. The observed
voxels vanish before the nodes because TSDF values inside the voxels
become positive, breaking the zero-crossing condition. Afterward, all
TSDF reach maximum distance, marking bricks to be rejected.

Unlike other reconstruction methods, this work presents a study of
the feasibility of a reconstruction method based on the VDB data
structure in robotic tasks (especially manipulation). Because the
constraints in this kind of task are mainly knowing the topology of
the objects and real-time response, in the following we carry out the
following study of computational times. Table 1 presents the time
taken by four of the most relevant parts of this method: normal
estimation, depth integration, surface generation and the topology
update. Time is the average taken for processing a frame. It is
interesting to observe that the normal estimation, integration and

surface generation are quite constant. This ismainly because these steps
are processed in parallel, while normal estimation is computed in image
space, the integration and surface generation is computed in atlas space.
As a drawback, this method keeps updating the topology in a non-
parallel fashion; fortunately, this time tends to decrease linearly as the
surface is captured. Once the surface is captured, the time consumption
is negligible nomatter themotion of the object. This indicates thatmost
of the time is expended when the topology needs to branch.

5 CONCLUSION

A novel dense and dynamic 3D reconstruction method has been
implemented based on a hierarchical database structure (GPU
oriented) for integrating depth images by truncated signed
distance field theory. A qualitative validation of the reconstruction
of four different scenes with different properties (materials, size,
occlusions, etc.) is performed to show the performance of this
method. Current results show that this method provides a stable
reconstruction in most situations. But, the method offers a rapid
recovery of reconstruction in the case of a failure scenario. Future
directions in our research explore the use of this method to simulate
material dynamics in situ, taking advantage of the GPU-optimized
VDB data structure. This will allow us to keep track of non-rigid
surfaceswhile they are beingmanipulated.Moreover, wewill work on
the design of active perception using as source data the volumetric
grid instead of using directly depth images or point clouds.
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TABLE 1 | Algorithm’s profile during experimentation. The table shows the
average (per frame) time in milliseconds taken by the most relevant stages
during the reconstruction.

Normal
est

Integration Surface
generation

Topology
update

Shoe 4.3 15.8 19.5 48.1
Tape 4.1 14.9 18.1 46.0
Alum piece 4.9 13.5 15.4 49.8
Backpack 5.2 18.4 21.6 54.3
Non-static obj 5.7 19.1 23.7 62.8
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