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The current pandemic has highlighted the need for rapid construction of structures to treat
patients and ensure manufacturing of health care products such as vaccines. In order to
achieve this, rapid transportation of construction materials from staging area to deposition
is needed. In the future, this could be achieved through automated construction sites that
make use of robots. Toward this, in this paper a cable driven parallel manipulator (CDPM) is
designed and built to balance a highly unstable load, a ball plate system. The system
consists of eight cables attached to the end effector plate that can be extended or
retracted to actuate movement of the plate. The hardware for the system was designed
and built utilizing modern manufacturing processes. A camera system was designed using
image recognition to identify the ball pose on the plate. The hardware was used to inform
the development of a control system consisting of a reinforcement-learning trained neural
network controller that outputs the desired platform response. A nested PID controller for
each motor attached to each cable was used to realize the desired response. For the
neural network controller, three different model structures were compared to assess the
impact of varying model complexity. It was seen that less complex structures resulted in a
slower response that was less flexible and more complex structures output a high
frequency oscillation of the actuation signal resulting in an unresponsive system. It was
concluded that the system showed promise for future development with the potential to
improve on the state of the art.

Keywords: deep reinforcement learning, manufacture, pandemic, construction, cable robotics, q-learning, load,
CDPR

INTRODUCTION

The current pandemic has highlighted the need for rapid construction of structures to treat patients
and ensure manufacturing of health care products such as vaccines. To achieve this, currently, a large
manpower is needed to achieve this. Nevertheless, this exposes the workers to the danger of catching a
virus or acting as a carrier to future patients. In this work, we propose the use of a robotic platform
called a cable driven parallel manipulator (CDPM) to rapidly build structures. Toward this, a control
strategy is required to control the end effector of the robotic platform. Having been utilized since the
1950’s, reinforcement learning is one of the oldest fields of machine learning and artificial intelligence,
yet in recent years it has been experiencing a resurgence as a framework for learning sequential decision
tasks (Garychl, 2018). At the same time, cable driven parallel manipulators (CDPMs)—where flexible
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cables replace rigid links as robot actuators—are becoming
increasingly popular for their numerous benefits (Saber, 2015).
This project aims to introduce reinforcement learning into a
CDPM to balance an object on a platform as it is moved from
one location to another, with the hope of improving upon the state
of the art. Specifically, a ball is to be balanced on a flat plate,
controlled by eight cables spaced in pairs at equidistant intervals in
a workspace that are driven by motors.

The developments of this project have the potential to improve
the performance of cable balancing systems in areas such as
warehouse swarm robot optimization, shipyard container
movement management, drone auto-balancing and general
robotic balancing (Gullapalli et al., 1994; NIST, 1994; Lachevre
et al., 2017) by reducing operational times and failure rates. In
this work, our contributions is as follows: We make use of
reinforcement learning to enable the transport of a continuous
moving load, a ball in this case, which could be highly unstable
at large speeds during transport. This is important especially when
CDPM are to be used in rapid construction of emergency structures.

BACKGROUND AND LITERATURE REVIEW

Cable Driven Parallel Manipulators
As defined by Gallardo-Alvarado (2016), a Parallel Manipulator
(PM) is a mechanical system formed by two linked platforms,
namely, the fixed platform and the moving platform. The moving
platform is connected to the fixed platform by at least two
independent computer-controlled serial chains or limbs working
in parallel. Cable Driven Parallel Manipulators (CDPM) are a
subsidiary of the standard parallel manipulator where rigid limbs
are replaced with retractable cables allowing for varying limb length.

The properties of PMs and CDPMs provides unique advantages
when applied in robotics. Patel and George (2012) discussed in
their 2012 paper how parallel manipulators offer a greater load
carrying capacity, low inertia, higher structural stiffness, and a
reduced sensitivity to certain errors. Generally, parallel
manipulators provide a clear advantage over most serial
manipulation robots in that they control end effector position
with a high degree of precision (Tannous et al., 2014), whichmakes
them excellent for use in invasive surgical procedures where a high
degree of precision is mandated (Beira et al., 2011). However,
parallel manipulators have smaller and less dextrous workspaces
due to link interference, where coupling of link actuation is
resistive due to counteractive movement. When compared to
PMs, CDPMs offer additional advantages due to the properties
of the cables. These include a higher payload to weight ratio, larger
workspace, higher end-effector speed and acceleration, and being
easy to reconfigure and implement (Tang, 2014; Qian et al., 2018).
Replacing rigid links with cables does introduce new challenges in
their design, particularly in the precise control of the end-effector
position (Tang, 2014; Qian et al., 2018), which becomes difficult to
ensure due the need for cables to be constantly under tension
(Bosscher and Ebert-Uphoff, 2004; Qian et al., 2018) and the elastic
nature of cables. This problem can be partly mitigated through
more complex controller design and specific material design
choices.

The need for ever increasing load capacities and workspaces is
motivating further research on CDPMs which has led to
implementation in interesting and challenging industrial and
research scenarios. Perhaps the most recognisable application is
the SkyCam (Brown, 2019), a camera mount system used in large
sports venues and stadiums for live broadcasting (Figure 1A). The
system consists of four motorised reels fixed to the corners of the
venue that retract or extend the four cables attached to the camera.
This allows for three-dimensional control with camera translation
speeds of up to 44.8 km/h (Qian et al., 2018) whilst maintaining
constant orientation. More recent developments have focused on
industrial applications, such as cooperative cable driven crane
systems (Qian et al., 2018) (Figure 1), which utilise the large
tensile strength of the cable actuators to move heavy payloads. In
academia, research at the National Institute of Standards and
Technology (NIST) has led to development of the NIST
Robocrane, a novel three cable system that has seen many uses
including shipping container management on large vessels, load
stabilization during transport, and even as a potential modification
to lunar rovers for exploration of the moon (NIST, 1994).

Control Systems for CDPM
Asmentioned, replacing rigid links with cables leads to challenges
that complicate the design of control systems for CDPMs.
Perhaps the most commonly implemented control method is
PID control. Khosravi and Taghirad proposed a robust PID
controller for a CDPM that controlled the length of each cable,
with a corrective term to account for cable elasticity (Khosravi and
Taghirad, 2016). The generated controller could stabilize the end
effector and showed good orientation control, although desired
positional control was not achieved and displayed erratic
behaviour. Taking a different approach, Alp and Agrawal
proposed a nested closed loop controller based on Lyapunov
design and feedback linearization that would output the desired
tension in each cable for a given end effector position and
orientation (Alp and Agrawal, 2002). This control design
allowed for adept positional control with a fast response time
and minimal error, but the end effector failed to maintain accurate
orientational control. In addition, the controller was complex in
design and was hindered by large cable friction during operation.
Both of the PID control methods discussed utilised indirect
sensing, suffering from a need to estimate the end effector
Cartesian pose (position and orientation) from complete
knowledge of the inverse kinematics of the cable system, which
is highly complex and missing in parts (e.g., Alp and Agrawal did
not consider the cable friction in the kinematic model). Newer
approaches now consider visual servoing techniques, utilizing
computer vision to identify the end effector pose. This
simplifies the kinematic model by removing the need to model
complex dynamics and instead using simple closed loop feedback
techniques to minimize end effector pose error. Dallej et al.
reviewed current visual servoing techniques and developed and
proposed a vision based PID control system for a ReelAx8 CDPM
that was simpler to design and showed good results when assessing
the pose errors over time (Dallej et al., 2011).

Previous research was performed on the specific cable rig used
in this project by Hong (2019), who was able to design a real time
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auto tuning PID controller for control of end effector position
within the workspace. Here, a Simulink PID auto tuner model
was implemented to tune and return optimal gain values for four
motors simultaneously in real time. His research showed that a
controller was able to able to control the speed the motors
attached to each cable with good rise and settling times and
minimal steady state error when tested on hardware.

Ball Balancing Skill Acquisition
The problem of balancing a ball on a plate is an extension of the
2D traditional nonlinear ball on beam balancing problem that is
often used as a benchmark in control design theory (Kostamo et al.,
2005). The task consists of providing rotational actuation to a
beam, where the ball is only free to travel in one axis. For a plate
system the ball is free to travel in two axes. With both systems, the
goal is to move the ball to a specific location and then maintain its
position. As proven by derivation in Awtar et al. (2002) and further
documented by Ali and Aphiratsakun (2015), the ball on plate
system can be viewed as two independent ball on beam systems
provided the plate has mass symmetry about its x-z and y-z axis. As
such, both ball on plate and ball on beam systems and control
schemes are discussed in this section (Supplementary Figure S1).

Classical Control Methods
Multiple attempts have been made to implement PID controllers
on both balancing systems with varying degrees of success (Ali and
Aphiratsakun, 2015) implemented a basic PID controller onto a ball-
plate system that balanced a ball on the center of a plate from a random
initial location, and then attempted to recover positional control of the
ball after an external disturbance to the plate. The controller performed
acceptably and was able to balance the ball in reasonable time for both
cases, however the response was extremely oscillatory and took over
30 s to recover positional control from the disturbance. This is likely
due to the controller design taking a model free approach and instead
tuning the PID controller parameters on the hardware.

Taking a slightly different approach (Shih et al., 2017) developed
an embedded PID/PD controller for a ball-beam system. The

control structure consisted of a PD controller to choose the
desired platform response and then a series of individual PID
controllers on each motor to realize the idealized platform
response by actuation of the motors. The ball-beam PD
controller was tuned on a model of the ball dynamics that was
estimated by collecting data on the positional response of the ball to
varying inputs. The controller was then tested by placing the ball at
one end and having the controller attempt to balance the ball at
various locations. It was seen that whilst the controller performed
worse when the desired ball location is further from the start point,
generally the controller performed well and was able to balance the
ball in less than 10 s for all scenarios. The controller did however
show consistent initial overshoot in the range 10–20%, indicating
the potential for improvement to the control system.

Other attempts have also been made using conventional
control theory. In Ryu and Oh (2011), they discuss how
estimation of the ball velocity is often a large source of error
in ball-beam control systems as it is often estimated as the
derivative of the measured ball position. He proposes a state
space Linear Quadratic Regulator (LQR) controller as a potential
solution to these problems and as a general improvement over
standard PID control. The designed controller utilised state
estimation of the ball position and velocity to optimize the
feedback control system and was then tested by disturbing the
balanced system and viewing the ball state reaction. It could be
seen that the state estimation for the velocity of the ball was
significantly less noisy that than when estimated via
differentiation. This allowed for a much quicker response, with
the ball returning to its balanced position in less than 5 s each
time. The results do show small amounts of constant oscillation of
the ball position around the set point, but the author suggests this
is likely due to friction on the system that has not been modeled.

By studying the above literature, it was discovered that the ball
position, its velocity as well as the position of the plate system were
crucial when building the above mentioned controllers for balancing
the ball. This information served as a bootstrap in defining the
reward functions for our reinforcement learning approach.

FIGURE 1 | Examples of CDPM systems in use. (A) The SkyCam in use at theWashington Huskies Stadium. Image reprinted from Brown (2019). (B) A cooperative
crane system being used to move an heavy object.
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Intelligent Methods
More modern approaches to controller design have focused on
producing an “intelligent’” controller that is better suited to the
unstable nonlinear system. Rahmat et al. (2010) designed a neural
network-based controller and then compared its performance to
both PID and LQR controllers on a ball-beam system. The
approach consisted of designing a neural network to model the
ball dynamics that took inputs of the current ball and beam states
and output the future ball states. The model was trained via
backpropagation. This had the benefit of a model free approach
where the dynamics of the ball did not have to be derived, which
can often be difficult to quantify. A separate neural network was
also designed to control the actuation of the beam orientation
based upon the expected output of the model network that was
trained using the quasi-Newton backpropagation optimization
method. The PID, LQR, and neural network controllers were
then all tested and compared. It was seen that whilst all three
controllers could successfully balance the ball in less than 5 s with
minimal steady state error, the PID controller performance was
superior to both other controller types, and the LQR controller was
able to achieve a faster response while sacrificing some positional
overshoot. This suggested that neural network approaches have the
potential to be a valid control solution to this problem but require
more work before its performance can be superior to conventional
methods. Alternatively, Keshmiri et al. (2012) attempted to
combine both traditional control strategies with newer
intelligent optimization techniques to develop a superior LQR
controller that’s parameters were trained using genetic
algorithms. As discussed in the paper, genetic algorithms are a
class of stochastic search optimization methods based on random
number generation, in this case the search algorithm attempts to
find the optimal LQR parameters that minimize the error in
position of the ball. The genetic LQR controller was then
compared to a PID controller trained using the Ziegler-Nichols
method and a normal LQR controller that was trained through trial
and error. It was seen in testing that the application of the genetic
algorithms allowed for a superior controller that responded faster
than PID and LQR controllers with a lower steady state error.

At the forefront of current research is the design of end-to-end
neural network controllers. Research on the topic is sparse,
showing a clear opportunity to develop a novel solution to this
traditional problem. In 2013, a publication by Bigharaz et al. (2013)
discussed a neural network-based controller for application to a
ball-plate system. It received the ball and plate states as inputs as
well as motor control signals as outputs. The paper suggested the
neural network controller performs almost as well as a generic PID
or fuzzy controller, but the research is limited in its testing and does
not discuss the method with which the neural network is trained.

When considering training neural networks, there are
predominantly two main methods: optimization and machine
learning. Examples of optimization methods are discussed
previously, however there is minimal research on the
application of machine learning. Machine learning methods
consist of training the neural network based upon large sets of
data related to the system. In the scenario of the ball-plate system
this raises an issue as any dataset is unique to the system it is
collected from, and this lack of available data leads to

reinforcement learning being a promising method for training
neural networks for ball-plate systems.

Publications are sparse on implementation of reinforcement
learning to ball-beam or ball-plate systems. This sparsity is
surprising due to the current popularity of reinforcement
learning which has led to it being applied to a plethora of
systems, from goal scoring football robots (Asada et al., 1996)
to synthetic human speech bots that are indistinguishable from
real voices (Arik et al., 2017).

Its potential benefits in CDPMs are obvious and build upon
the benefits of visual servoing, by reducing the need to model and
understand the kinematics of the system. Instead, a black box type
approach can be taken. By simply monitoring the input and related
output (and having an understanding of what the desired output is) a
controller can be developed through repeated training that can
perform the desired task. Of the limited research performed into
the topic, some results show promise for its application. For example,
Gullapalli et al. used an unsupervised, direct reinforcement learning
algorithm to balance a ball on a one Degree of Freedom (DOF)
platform (Gullapalli et al., 1994). Here the system reads the ball
position from a series of pressure plates and uses it (alongwith historic
data) to estimate the ball velocity. This, along with the current
platform orientation and rate of change of orientation is fed into a
neural network trained by a reinforcement learning algorithm that
outputs the recommended new orientation, with the goal of returning
the ball to the center of the platform. After 700 attempts, the controller
learns to balance the ball with no further failures and can run for an
indefinite amount of time. No comparison ismade to alternate control
techniques. Here no modeling has been performed on the ball or
platform dynamics, allowing for a much simpler design process.

There is a noticeable gap in research into the application of
reinforcement learning to control ball-beam and ball-plate systems,
which this paper aims to explore. Developments in this topic could
result in improved performance of balancing tasks and control of
CDPMs which have many applications in the real world, as discussed
throughout this section. This research will also aim to encourage future
work on the topic that can further build on the developments made.

METHODOLOGY

System Overview
The idealized system that meets the aims and objectives set out in
Introduction section would operate following the system diagram set
out in Figure 2. The Agent is the reinforcement learning trained
neural network that outputs the desired platform response at the start
of each action phase (0.5 s). This is passed to a nested PID controller
that realizes the desired platform response for each action phase by
controlling the speed of each motor. The nest PID controllers were
implemented as a black box with the boxes taking commands from
our RL framework. The plant is the physical ball-plate-cable rig.

In Figure 2, the agent receives the platform and ball states.
These are used to define reward functions that are then used by
the Deep Q learning algorithms to derive a policy that balances
the ball (Géron, 2017; Lachevre et al., 2017). In order to balance
the ball, the desired direction and rotational speeds are derived by
the Q learning algorithm in the form of an optimal policy for use
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by the Nested PID controller. The Nested PID controller converts
these values into motor velocities for use on the cable robot plant.
The cable robot plant responds by adapting the length of each
cable. Hardware Design, Ball State Sensing Design, Platform
Control Design, and Nested PID Cable Controller Design
sections details the work carried out to realize this system.

Hardware Design
A preassembled rig was provided at the start of the project that
had been used for other CDPM projects. The rig consisted of a
fixed frame with a XYZ workspace of 1 m × 1 m × 0.6 m. Fixed
above the rig sat a Lego Ev3 Mindstorm microcomputer
connected to four Ev3 Large Servo Motors (Supplementary
Figure S2). Spools of cable were attached to the motors that
extended to the top four corners of the frame. The cables then
extended into the workspace where they were connected to
another Lego Ev3 Mindstorm. Significant work was carried
out on this rig to outfit it for the desired application.

Cable Design
As discussed in Control Systems for CDPM section one difficult
aspect of control for CDPMs is the elasticity of the cables. To
avoid the need to model cable elasticity, the first change made was
to replace the 0.3 mm diameter string cables with 1 mm nylon
cables to significantly reduce cable deformation. The original
string material was unknown.

Cable Spool Design
The spools used to hold the cables had a diameter of 31.83 mm to
achieve 100 mm of cable release per revolution. To achieve a
faster system response, the spools were redesigned using CAD
software, with roughly twice the diameter of 60 mm to achieve
188.5 mm of cable release per revolution. The designed spools
were then 3D printed in polylactide (PLA) plastic
(Supplementary Figure S3). In addition, to obtain complete
six Degree of Freedom (DoF) control the system needs cable
redundancy, as discussed by Enrico Sammarchi. Six DoF is
necessary to achieve orientational and positional control of the
platform. As such, the number of cables needs to be increased to
more than six (since six DoF control is required). Therefore, four
additional cables (eight total) were added at the bottom four
corners of the workspace that are attached to four additional Lego
Large Ev3 motors, making the CDPM a Redundantly Restrained
Positioning Mechanism (RRPM) system (Sammarchi, 2019).

Platform Design
The current end-effector attached to the cables was an additional
Lego Ev3 Mindstorm, which needed to be replaced with a flat
plate (Supplemetary Figure S4). The plate was designed in CAD
software and laser cut from a 5 mm acrylic sheet. Acrylic was used
as it provides a smooth surface and would not flex or crack under
usage. The plate was then painted matt black to reduce its
reflectiveness to aid ball state extraction via image processing
by providing a greater contrast with the white ball.

Camera Mount Design
Next, to enable identification of ball states, a webcam was
obtained with a large field of view (FOV). A large FOV was
necessary to reduce the height of the camera mount above the
plate and hence reduce its obtrusiveness in the workspace. The
mount was designed for the camera in CAD software, and fixes
to the underside of the platform. It was designed symmetrically
to minimize impact on platform center of gravity and hence bias
any motor. The mount fixes to the corners of the plate underside
to reduce the likelihood of collision with the ball. The
components were then 3D printed in PLA (Supplementary
Figures S5, S6).

Completed Hardware Model
The final modified hardware system was assembled. The
kinematic model of the system and variable definitions can be
seen in Figure 3. Tables 1, 2 show the variable associated with the
workspace and the platform references. Figure 4 shows a diagram
of the ball-plate system for reference.

Ball State Sensing Design
For closed loop feedback control of the ball position, its states
need to be identified at the end of every action phase. For state
sensing, options such as pressure pads where considered, as used
by Gullapalli in his one DOF ball balancing robot (Gullapalli
et al., 1994). However, this idea was disregarded due to concerns
with compatibility with the Ev3 Brick and the impact it would
have on platform design. Instead, a webcam is used alongside an
image recognition system.

As Ev3 motor control is being performed in MATLAB, it was
decided to also develop the image recognition system using
MATLAB and using the Image Processing Toolbox a program
was written that takes a still image from the webcam and
computes the ball states. The ball position is found by

FIGURE 2 | Deep reinforcement learning system diagram for the ball balancing cable robot plant.
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converting the image to a binary image (dependant on pixel
luminosity) and examining the binary value of adjacent pixels to
identify the “edge” of the ball. Then, using the “regionprops”
function the center position of the ball is located. A
demonstration of this process can be seen in Supplementary
Figure S7. The ball velocity is identified by assessing the change
in ball position since the last action phase.

Platform Control Design
In this section, we design a reinforcement learning trained deep
neural network controller that output the desired positional and
rotational response to changing ball states at the start of each action
phase. This neural network controller is referred to as “the agent.”

Neural Network Structure
The structure of the neural network agent is shown in Figure 5.
The input layer of the network contains the twelve input states to
the system: the ball and plate states and the target end platform
location. Two hidden layers are used to make it a deep neural
network. Finally, the five node output layer outputs the desired
platform response. Note that there is no output function for
angular velocity in the Z axis as Z orientation is kept constant at
the origin, as this offers no benefit in the balancing task. Rectified
Linear Units (ReLU) were used as the activation functions. To
assess the impact of model complexity on performance, three
different model structures were assessed. Each model structure
had a varying number of activation functions on each hidden
layer: 10, 100, and 500, with an increasing number of activation
functions resulting in an increase in model complexity. The
weights on each input to each activation function were trained
using reinforcement learning.

Policy Training Method—Q-Learning and Policy
Gradients
Asmention in Ball Balancing Skill Acquisition section, the process
of training a neural network to perform a ball balancing task lends
itself naturally to reinforcement learning due to the lack of

FIGURE3 |Kinematic model of systemwith workspace reference frame.
Camera mount excluded for ease of viewing.

TABLE 1 | Showing workspace reference frame variables.

Platform X displacement: (DW
X ) Platform X rotation: (RW

X )
Platform Y displacement: (DW

Y ) Platform Y rotation: (RW
Y )

Platform Z displacement: (DW
Z )

Platform displacement vector: Platform rotation vector:
D
W � [DW

X DW
Y DW

Z ]T R
W � [RW

X RW
Y 0 T ]

Platform X velocity: (VW
X ) Platform X angular velocity: ( _R

W
X )

Platform Y velocity: (VW
Y ) Platform Y angular velocity: ( _R

W
Y )

Platform Z velocity: (VW
Z )

Platform velocity vector: Platform angular velocity vector:

V
W � [VW

X VW
Y VW

Z ]T _R
W � [ _R

W
X

_R
W
Y 0 T ]

Cable workspace origins matrix:

A
w � ⎡⎢⎢⎢⎢⎢⎣ 00

0

1000
0
0

1000
1000
0

0
1000
0

0
0

600

1000
0

600

1000
1000
600

0
1000
600

⎤⎥⎥⎥⎥⎥⎦
� [AW

1 . . . . . .AW
8 ]

Cable lengths matrix:

L
w � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ L

W
1,X

LW1,Y
LW1,Z

LW2,X
LW2,Y
LW2,Z

. . .

LW8,X
LW8,Y
LW8,Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� [LW1 . . . . LW8 ]

TABLE 2 | Showing platform reference frame variables.

Ball X displacement: (DP
X ) Ball X velocity: (VP

X )
Ball Y displacement: (DP

Y ) Ball Y velocity: (VP
Y )

Ball displacement vector: Platform velocity vector:
D
P � [DP

X DP
Y DP

Z ]T V
P � [VP

X Vp
Y 0 ]T

Plate � 200 mm × 200 mm with 10 mm extensions on each edge for connecting
cables. Each connection point is 110 mm from the plate center and is rotated 45°

from workspace reference frame. Two cables are connected to each connection
point
Cable plate connection points:

B
P � ⎡⎢⎢⎢⎢⎢⎣ 0

−110
0

110
0
0

0
110
0

−110
0
0

0
−110
0

110
0
0

0
110
0

−110
0
0

⎤⎥⎥⎥⎥⎥⎦
� [BP

1 . . . B
P
4 BP

1 . . . B
P
4 ]

FIGURE 4 | Diagram of ball-plate system with platform reference frame.
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availability of an appropriate dataset of system responses. It is
generally accepted that the two leading approaches for model free
reinforcement learning are Q-learning and policy gradients (PG)
(DeepMind Technologies, 2014; Lillicrap et al., 2016; Cornell
University, 2018).

Q-learning is a reinforcement learning method first
introduced in 1989 by Watkins and Dayan (1992) that aims to
approximate the Q function of each state-action pair through
interacting with the environment. The Q function is the expected
sum of future rewards if the policy is followed. Each time the
agent interacts with the environment a data point is collected:

< s, a, r, s′ >

s � the current state of the environment. a � the action taken by
the agent. r � the reward from the environment. s′ � the new state
of the environment.

The Q function can be iteratively approximated using the
Bellman equation through temporal difference learning (Yu, 2017).
Once theQ function has been approximated for all state-action pairs,
the optimal policy that the agent should take for any given current
state can be decided by finding the action that provides the
maximum Q function value. It was a deep Q-learning Network
(DQN) that famously learned to play a wide range of ATARI games
(Mnih et al., 2015) and helped re-popularize the field of
reinforcement learning. One of the key drawbacks of Q-Learning
is that the Q function needs to be learnt for discrete state-action pair.
This means that environments with continuous action spaces
require discretization of the states and actions, resulting in a loss
of precision of the data (Hodge and Austin, 2012).

Alternatively, PG methods can operate in continuous or
discrete action spaces (DeepMind Technologies, 2014) and are
becoming the preferred choice for reinforcement learning tasks
(Karpathy, 2016). Karpathy suggested that the reason PG methods
are becoming favoured is because it is an end-to-end method: there’s an
explicit policy and a principled approach that directly optimizes the
expected reward (Karpathy, 2016). Instead of estimating the future
reward for every state-action pair based upon the data points

collected, we estimate the future reward of the policy based on the
policy parameters. This then becomes a gradient ascent task where the
parameters are tuned to maximize the policy reward (Pseudocode 1).
This, alongside the fact that the system operates in a continuous domain
(e.g., platformXvelocity can be any continuous value in the range of−50
to 50mm/s) is why a policy gradient method was used for this project.

Simulated Environment Design
Whilst this project takes a model free approach to RL agent operation,
the ball-plate environment needs to bemodeled to allow for training of
the agent on simulation. Simulated environment training offers
benefits over a purely hardware-based training program in that
simulations run drastically faster, can run training exercises
simultaneously and require no supervision once initiated.

As discussed in Background and Literature Review section, the
XYZ ball-plate system can be viewed as two independent ball-
beam systems operating in the X-Z and Y-Z planes. This ball-
beam system is shown in Figure 6. The assumptions which
formulate the ball-beam system model are as follows:

(1) The ball is always in contact with the plate and does not
bounce.

(2) There is no slipping motion between the ball and plate
(3) Resistive forces on the ball including air resistance and rolling

friction are negligible
(4) The only force acting on the ball is its weight and the

associated reaction force
(5) At the start of each action phase, the beam is assumed to

undergo an instantaneous change in translational and
rotational velocity to the exact desired position. (i.e., the
motor response ins assumed to be perfect)

(6) The beam maintains its exact desired velocity for the entirety
of the action phase

(7) Complete knowledge of the ball states is known at all points

Through assumptions 5 and 6, the plate is modeled to have
constant velocity and no acceleration, therefore inertial forces

FIGURE 5 | Agent neural network structure for 10 node system.
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from the plate movement on the ball are ignored. Whilst these
assumptions are not strictly correct, they are appropriate as
the physical plate is limited to small changes in velocities
between action phases, and the motors used have high
rotational speed so changes in velocity can be assumed
close to instantaneous.

From assumption 4, the acceleration of the ball is defined:

_V
P

X,Y(t) � g p sin[RW
X,Y(t)] for t ∈ {0, 0.5} (1)

Hence the velocity of the ball is found as the Euler integration
of Eq. 1

VP
X,Y(t) � VP

X,Y(0) + _V
P

X,Y(t) p t for t ∈ {0, 0.5} (2)

And finally, the ball position is found by the Euler integration
of Eq. 2:

DP
X,Y(t) � DP

X,Y(0) + VP
X,Y(t) p t for t ∈ {0, 0.5} (3)

From assumptions 6 and 7 the plate dynamical model is
seen as:

DW
X,Y ,Z(t) � DW

X,Y ,Z(0) + VW
X,Y ,Z p t for t ∈ {0, 0.5} (4)

RW
X,Y(t) � RW

X,Y(0) + _R
W

X,Y pt for t ∈ {0, 0.5} (5)

Substituting Eq. 5 into Eq. 1 and subsequently Eqs. 2 and 3 gives:

_V
P

X,Y(t) � g p sin[RW
X,Y(0) + _R

W

X,Y p t] for t ∈ {0, 0.5} (6)

VP
X,Y(t) � VP

X,Y(0) + {g p sin[RW
X,Y(0) + _R

W

X,Y p t]} p t
for t ∈ {0, 0.5}

(7)

DP
X,Y(t) � DP

X,Y(0) + [VP
X,Y(0) + {g p sin[RW

X,Y(0) + _R
W

X,Y p t]}
p t] p t for t ∈ {0, 0.5} (8)

Hence the ball states for any given plate action are given in
Eqs. 7 and 8.

This was modeled in a MATLAB environment that was
simulated for training.

Training Episode Reward
To promote positive actions by the agent, the training process
must reward “good” actions and penalise “bad” actions. Toward
this, reward functions were defined by taking into consideration
the various parameters involved in ensuring the balancing of an
unstable load. This included the position of the load, the speed of
the load and how the platform positon and orientation affect the
load. This resulted in defining three reward components: Ball
Position Reward, Ball Speed Reward and Platform Position
Reward. For this system, the reward structure was designed to
promote balancing of the ball as the platform moves to the target
location. As a result, for each action taken in the system, the agent
receives a reward consisting of three components:

• Ball Position Reward: a reward in the range of (0–1) based
upon the Euclidian distance of the ball from the center of the
platform, that exponentially decays as the ball moves further
from the center

• Ball Speed Reward: a reward in the range of (0–1) based on
the Euclidian speed of the ball that exponentially decays as
the ball speed increases

• Platform Position Reward: a reward in the range of (0–1)
based on the Euclidian distance of the platform from its
desired location that linearly decays

Hence the ball position and speed rewards promote balancing
the ball as quickly as possible and the platform position reward
promotes transportation of the load as quickly as possible.

The total reward for each action is then the weighted sum of the
three components: Action Reward � 6 × Ball Position Reward + 2 ×
Ball Speed Reward + 2 × Platform Distance RewardAs such each
action receives a score between (0–10). If the ball falls off the platform
the episode receives a −3,000 reward and the episode is ended.

The reward is weighted to place a larger emphasis on
preventing the ball from being dropped as in real world

PSEUDOCODE 1 |
Input: Policy parameterisation π(a|s, θ)
Input: Reward function definitions R[s, π(s)]
Parameters: Step size ∝ > 0
Loop until number of max episodes:
Generate state-action pairs s0 a01 r01 , s0 a02 r02 . . . . . . . . . s0 a0n r0n

For each state-action pair calculate the expected reward:

Vπ � R[s, π(s)] + c∑
s′

P[s′|s, π(s)]Vπ(s′)

Vπp � max
a

⎡⎢⎢⎣R(s, a) + c∑
s′

P(s′|s, a)Vπp(s′)⎤⎥⎥⎦
θ← θ + ∝∇πp(a|s, θ)
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applications dropping the load would cause a larger problem than
the speed at which it is delivered. The ball rewards exponentially
decay to prioritize keeping the ball away from the platform edge
over balancing at the center to prevent episode failure.

Agent Training
The 10, 100, and 500 node networks were then trained over
20,000 simulated episodes each, with each episode attempting to
balance the ball and transport it for 3 min. To accelerate training,
four pool parallel processing was used along with GPU
acceleration where appropriate. The training progress of each
network is shown in Figures 7–9 (The “AverageReward” is a 50-
episode rolling average). As each action phase lasts 0.5 s, there are
360 action phases per episode, with a max reward of 3,600 per
episode. During training, any agent with an episode reward
greater than 2,000 was saved.

All three networks structures can be seen to be erratic between
episodes, often identifying strategies that increased episode
reward before altering the policy that results in a decrease in
performance. The erratic nature of the training suggests the agent
struggles to encapsulate the complexity of the system in its policy,
with the randomly changing initial conditions of the episode
being sufficient variation to cause failure of the controller. Whilst
the 100 and 500 node networks also have periodic peaks in
performance, the 10 node networks show larger periods between
peaks. This suggests increasing model complexity results in an
increase in frequency of optimal policy discovery. Overall, all
three structures show an inability to consistently converge given
an infinite number of training episodes.

Nested PID Cable Controller Design
As described in the system overview (System Overview section),
every 0.5 s the agent will output a new desired platform response.
This response is actuated through control of the eight motors

connected to each of the eight cables, therefore the desired
platform response needs to be converted into a desired
motor speed.

The first step was to calculate the cable states from the
platform states; therefore, the inverse kinematics of the
platform were calculated. A reminder of the kinematic model
of the system can be seen in Figure 3. It can be seen from
literature (Gallardo-Alvarado, 2016; Sammarchi, 2019) that the
inverse kinematics for an over defined CDPM is defined as:

L
w � A

w − D
W − R

W
B
P

(9)

Where L
w
is a 3 × 8 array of vector lengths of each cable (each row

is X/Y/Z and each column is a specific cable). The desired length
of each cable can then be calculated as the Euclidian distance:∣∣∣∣LWi ∣∣∣∣ � ��������������������(LW

i,X)2 + (LW
i,Y)2 + (LWi,Z)2√

(10)

To convert between desired platform and motor response the
desired platform location at the start and end of each action phase
is calculated and Eqs. 9 and 10 are used to identify the desired
initial and final cable lengths. From this the desired motor speed
is calculated as:

ω � Lw
final − Lw

initial

0.5 p r
(11)

Where r denotes the radius of the cable spool.
The system was initially designed to utilise the Ev3 inbuilt

Tacho feedback that Lego claims performs closed loop control of
the motor speed to ensure optimal performance. However,
previous research by Hong (2019) on the system revealed
consistent steady state error with a poor transient
performance. Instead Wei designed and tested a real-time PID
controller for motor speed control. This controller was utilized in
this project and extended to all eight motors.

FIGURE 6 | Model of the ball dynamics for the system.

FIGURE 7 | 10 node network training progress.
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IMPLEMENTATION, TESTING AND
RESULTS

Image Recognition System Testing
The image recognition system was implemented on the system
once the hardware had been constructed. The image recognition
system was tested and it was seen that light reflected on the plate
resulting in low accuracy for ball position identification. The
camera image brightness was reduced, and contrast was increased
to mitigate this. In addition, the required gray level for conversion
to binary image was increased until the system worked ideally,
and was able to identify the ball position in 10 different images.

It is notable that changing the location of the rig would likely
result in readjustment of the above parameters which limits the
applicability of the system.

Platform Response Controller Testing
For each network structure, all saved agents were assessed over
500 simulated episodes to identify the agent with the highest
average reward for each network structure.

Each simulation started by placing the platform at the center of
the workspace with no deviation in orientation. The ball was then
placed on the platform at a random position with no initial
velocity. The target platform location was randomized within the
workspace. The simulation lasted 3 min, or until the ball leaves
the platform.

The best performing agent for each network structure was
then simulated over a further 10,000 episodes to analyze their
performance. The rewards of this testing can be seen in Table 3.

From these results it can be seen that the 100-node structure
achieved a higher average reward than both other network
structures. This indicates a superior performance and ability to
balance the ball while moving to the desired location. The 10 node
and 500 node networks achieved similar average rewards, but the
500-node network failed to balance the ball for the duration of the
episode 0.56% of the time. Whilst this is a relatively small failure
chance, the consequence of a dropped payload is significant when
utilized in industry, and can result in increased costs and risk to
personal safety. As such, the 10-node network is superior to the
500-node network. To help understand the actions of each
network structure and the systems response the best and worst
performing episodes of each structure were further analyzed.

10-Node Agent
As can be seen in Figures 10–12, the 10-node network is capable
of balancing the ball, however there is a constant steady state error
from the origin, which increases with the balls starting
displacement. This error is likely caused by the exponential
nature of the reward prescribed based on the balls distance
from the origin, described in Training Episode Reward section.
This in itself is not necessarily a problem, as the ball is balanced
somewhere on the platform for the duration of the journey.
However, the controller is extremely slow in its ability to reach a
steady state ball position and is damped and oscillatory. This is a
significant problem as the controller would struggle to respond
quickly to any disturbances or knocks it receives during
operation. The most notable problem with the controller is
that it actively moves the platform away from the target
location. As such the controller fails to achieve its key goal of
balancing the load as it is transported from one location to
another.

100-Node Agent
It can immediately be seen in Figures 13–15 that the ball
response to the 100-node network is much more oscillatory
when compared to the 10-node network. Here, the ball fails to
reach a stable position and instead continuously oscillates around
the origin. Interestingly, the network can control the Y axis ball
position better than the X axis position, with smaller oscillations
and a damped response to larger displacements. This highlights a
flaw in the design choice to have a single complex network to
control x-z and y-z states codependently instead of two identical
simpler networks controlling x-z and y-z states independently.

FIGURE 8 | 100 node network training progress.

FIGURE 9 | 500 node network training progress.
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The higher frequency of platform oscillation suggests a system
more capable of adapting to disturbances, however it also suggests
a more unstable controller that may fail under more fringe

circumstances. When considering the system’s ability to move
the platform between two locations, the 100-node network
controller does show slight improvements as can be seen by
the best episode showing an initial reduction in platform distance.
However over time the platform moves further away from the
target, so still fails to transfer the load from one location to
another.

500-Node Agent
For the 500-node network, the worst response recorded was when
the ball fell off the platform from the positive X axis edge. The ball
states are noticeably less oscillatory when compared to the 100-
node network, however the platform response is extremely
responsive with high frequency, low amplitude oscillations
dominating the orientation response. This platform response
results in a slow responding low frequency oscillatory response
from the ball as it does not have time between samples to achieve

TABLE 3 | Results of agent training and best episode testing.

Network hidden layer
node count

10 100 500

Number of agents with reward > 2,000 31 877 604
Training time 15 h

0 min
66 h
29 min

63 h
55 mina

Best performing agent average reward over
10,000 tests

2,681.1 2,812.6 2,670.3

Number of tests where the best performing
agent dropped the ball

0 0 56

aFive-hundred node network trained utilizing four pool parallel processing and GPU
acceleration for accelerated training.

FIGURE 10 | Ball response and change in platform orientation in the x axis for the 10 node network.

FIGURE 11 | Ball response and change in platform orientation in the y axis for the 10 node network.
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FIGURE 12 | Ball and platform Euclidian distance response for the 10 node network.

FIGURE 13 | Ball response and change in platform orientation in the x axis for the 100 node network.

FIGURE 14 | Ball response and change in platform orientation in the y axis for the 100 node network.
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any noticeable velocity. Disregarding the failure cases, the 500-
node networks appears to achieve a relatively minimal steady
state error in ball position, as can be seen in Figures 16–18. In
addition, it shows promise when analyzing its ability to move the
platform to the desired location, but the platform’s failure to
always balance the load suggests it is an inferior controller to the
10 and 100-node networks.

DISCUSSION

The results of the performed testing suggest that whilst the
reinforcement learning controller showed promise for
balancing a load on a CDPM, in its current state it is not an
improvement on the state of the art. The controller failed to
outperform in key performance metrics including rise time and
steady state error.

Alex Irpan, a software engineer on the robotics team at
Google Brain, explained how important having a well-
designed reward criteria is for RL (Irpan, 2018), describing
how it has a tendency to overfit to your reward. In post-
review of this project, one area of fault may be the reward
structure. Since RL aims to achieve the highest reward
possible, the reward function should capture the exact
desired outcome. This was not the case in this project, as
too high a priority was placed upon the system’s ability to
balance the ball instead of transporting the load. In addition,
the velocity-based reward was unnecessary and
counterproductive as it discouraged the system from
attempting to move the ball closer to the center of the
platform quickly. With the overfitting nature of RL to the
reward in mind, a simpler reward function may improve
training, where the velocity reward is removed, and the ball
and plate displacement rewards are weighted equally. The
complexity of the reward structure can be seen in the training
progress described in Figures 7–9 in Hardware Design

section, where the reward was erratic and unsustainable,
suggesting the existence of multiple local optima for the
problem.

This project was a great exercise in the impact of model
complexity on performance. It could be seen how less complex
models produced less complex actions (i.e., smaller changes in
output), whereas more complex models were erratic and
responsive, sometime to their own detriment. Nevertheless,
overly simple models also lead to underfitted controllers whose
response are not adequate. Whilst no testing was performed on
hardware, we suspect that the more complex controllers would see
the greatest drop in performance from the simulated testing as the
varied environment would likely expose instability within the
controller. The controller would likely be overfitted to the
reward structure and modeled environment, which was not
absolutely true to the real world. On the flipside, the simpler
agent structures struggled to wholly capture the simulated
environment which led to a worse performing system as it was
slower to respond.

Agent performance on the actual rig will vary due to
assumptions made during environment modeling. As
discussed, the model assumed no inertial forces on the ball
due to platform displacement. These assumptions where
justified in Platform Control Design section, and we maintain
the belief that these assumptions are valid, however it is worth
noting that as the system response increases in magnitude then
the assumptions become less valid, limiting the applicability of
this work.

The design process for this system was laboured and
highlighted how implementation of intelligent systems on
custom build hardware can often be the most time-
consuming task in prototype-based research projects. The
use of CAD and 3D printing is highlighted throughout this
project and made a noticeable difference on our ability to
complete the design and build tasks in a reasonable
timeframe.

FIGURE 15 | Ball and platform Euclidian distance response for the 100 node network.
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FIGURE 16 | Ball response and change in platform orientation in the x axis for the 500 node network.

FIGURE 17 | Ball response and change in platform orientation in the y axis for the 500 node network.

FIGURE 18 | Ball and platform Euclidian distance response for the 500 node network.
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CONCLUSION

In the future, structures might need to be constructed rapidly in
response to emergencies such as Pandemics. In order to reduce
infection rates, worker’s exposure to dangerous environments
and build rapidly, robotic devices such as Cable Driven Parallel
Manipulators could be deployed. These devices would need to deal
with a variety of challenges including transporting highly unstable
loads. In this work, we have designed and built a CDPM controlled
by a neural network reference controller with a nested PID
controller, to balance a load on a platform as it is transferred
from one location to another. The neural network controller was a
two-layer deep network with varying model complexity that was
trained using a Deep Deterministic Policy Gradient (DDPG)
reinforcement learning algorithm. The neural network controller
was trained and assessed over a simulated environment. The
system utilized image recognition techniques to identify the
states of the loads for feedback and platform states were
identified by calculating the cable inverse kinematics.

The image recognition system was able to accurately identify
the ball states, however the system was vulnerable to calibration
problems due to changing lighting conditions. This may affect the
applicability of the system, but would not cause an issue if used in
environment with a consistent light source, such as an enclosed
warehouse.

Assessments of network complexity showed how precise
choosing of model parameters is needed to ensure adequate
capturing of the real system, and how overfitting and
underfitting are likely when training is performed entirely on
simulation. In the future, we plan to investigate how neural
network complexity contributes to controller efficiency.

In this work, it was seen that the neural network controller was
capable of balancing a load, however the performance did not
show any significant improvements on the state of the art. In
addition, the controller failed to transport the load, which was a

key requirement. The attempt showed how there was still promise
for the utilization of RL in ball balancing tasks but highlighted
how design of RL systems is difficult and often leads to ineffective
solutions, especially for complex systems.

Future work on the system should firstly prioritize testing and
implementation of the system on the real rig. Additional work
may wish to look at redesigning the reward structure and network
for simpler performance. Furthermore, identification of the
forward kinematics (i.e., calculating the platform pose from
the cable lengths) could lead to the removal of the nested PID
controller and introduce an end-to-end neural network controller
that would output direct motor control signals. Also,
investigating and comparing the combination of RL with other
heuristics in the policy search, such as the bacterial foraging
algorithm (Oyekan and Hu, 2010; Oyekan et al. 2013), will be
carried out in the future.
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