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Conceptual knowledge about objects is essential for humans, as well as for animals, to

interact with their environment. On this basis, the objects can be understood as tools,

a selection process can be implemented and their usage can be planned in order to

achieve a specific goal. The conceptual knowledge, in this case, is primarily concerned

about the physical properties and functional properties observed in the objects. Similarly

tool-use applications in robotics require such conceptual knowledge about objects

for substitute selection among other purposes. State-of-the-art methods employ a

top-down approach where hand-crafted symbolic knowledge, which is defined from a

human perspective, is grounded into sensory data afterwards. However, due to different

sensing and acting capabilities of robots, a robot’s conceptual understanding of objects

(e.g., light/heavy) will vary and therefore should be generated from the robot’s perspective

entirely, which entails robot-centric conceptual knowledge about objects. A similar

bottom-up argument has been put forth in cognitive science that humans and animals

alike develop conceptual understanding of objects based on their own perceptual

experiences with objects. With this goal in mind, we propose an extensible property

estimation framework which consists of estimations methods to obtain the quantitative

measurements of physical properties (rigidity, weight, etc.) and functional properties

(containment, support, etc.) from household objects. This property estimation forms the

basis for our second contribution: Generation of robot-centric conceptual knowledge.

Our approach employs unsupervised clusteringmethods to transform numerical property

data into symbols, and Bivariate Joint Frequency Distributions and Sample Proportion

to generate conceptual knowledge about objects using the robot-centric symbols. A

preliminary implementation of the proposed framework is employed to acquire a dataset

comprising six physical and four functional properties of 110 household objects. This
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Robot-Centric dataSet (RoCS) is used to evaluate the framework regarding the property

estimation methods and the semantics of the considered properties within the dataset.

Furthermore, the dataset includes the derived robot-centric conceptual knowledge using

the proposed framework. The application of the conceptual knowledge about objects is

then evaluated by examining its usefulness in a tool substitution scenario.

Keywords: conceptual knowledge, robot-centric knowledge, multi-modal dataset, knowledge acquisition,

substitute selection

1. INTRODUCTION

Humans have become extremely sophisticated in their use of
tools compare to their animal counterparts. The sophistication

pertaining to tool-use in humans involves not just the dexterity
in manipulating a tool, but also the diversity in tool exploitation

(Gavin et al. , 2013). The ability to exploit the tools has enabled

humans to adapt and thus exert control over an uncertain
environment, especially when they are faced with unfavorable

situations. Given how vital the tool-use ability is, robotics
researchers have been developing approaches to enable a robot to
use tools in various tasks (Stoytchev, 2007; Brown and Sammut,
2012; Stückler and Behnke, 2014; Takahashi et al., 2014; Li and
Fritz, 2015; Tikhanoff et al., 2015; Wicaksono and Sammut, 2018;
Toussaint et al., 2019). While these approaches focus on learning
tool-use behavior, our primary interest is in a question: what if
the required tool is missing, given that robot has prior knowledge
about what tool is required in the task (see Figure 1)?

Consider a scenario where a robot is performing a task and
has to select between a stone and a plastic bottle for a hammering
purpose. One way to reach a decision is to interact with each
object, perform the action and determine its suitability on the
basis of a desired outcome. However, in the real world there are
many objects to select from, such (individual) interactions may
not be desirable for completing the task in a reasonable amount
of time as it will be time consuming to determine a suitability
of individual objects. If the hands-on substitute selection is
undesirable, then what is the alternative selection strategy?

In order to select a plausible substitute for a missing tool,
the substitute needs to be similar to the missing tool in some
way without having to interact with it. The question is what
is needed to determine the similarity. In the literature on
substitute selection, typically a substitute for a missing tool
is determined by means of knowledge about object, and the
knowledge-driven similarity between a missing tool prototype
and a potential substitute. Such knowledge about objects varies
in its contents and form across the literature: metric data about
position, orientation, size, and symbolic knowledge about hand-
picked relations such as similar-to and capable-of extracted
from ConceptNet (Bansal et al., 2020); visual and physical
understanding of multi-object interactions demonstrated by
humans (Xie et al., 2019); matching similarity of shapes of
point clouds and materials based on the spectrometer data
using dual neural network (Shrivatsav et al., 2019); metric data
about size, shape and grasp, as well as a human estimate of an
affordance score for task + mass (Abelha and Guerin, 2017);

attributes and affordances of objects are hand-coded using a
logic-based notation, and amultidimensional conceptual space of
features such as shape and color intensity (Mustafa et al., 2016);
hand-coded models of known tools in terms of superquadrics
and relationships among them (Abelha et al., 2016); potential
candidates extracted from WordNet and ConceptNet if they
share the same parent with a missing tool for predetermined
relations: has-property, capable-of, and used-for (Boteanu et al.,
2016); hand-coded object-action relations (Agostini et al.,
2015); as well as hand-coded knowledge about inheritance and
equivalence relations among objects and affordances (Awaad
et al., 2014). While for tool selection, metric data of certain
properties are primarily considered, for substitute selection,
symbolic knowledge about the object category or class is
considered. In such cases, either the proposed approaches use
existing common sense knowledge bases such as WordNet,
ConceptNet or knowledge is hand-coded. Regardless of the use
of existing knowledge bases or hand-coded relational knowledge,
the required knowledge is generally carefully selected for a
given task.

It is postulated in the literature on tool-use in animals
(Baber, 2003, Chapter 1) that “a non-invasive tool selection
in humans or animals alike is facilitated by conceptual
knowledge about objects, especially, knowledge about their physical
and functional properties and relationship between them.”
For instance, knowledge about what physical properties of
a hammer enable the hammering action can facilitate the
decision between a stone and a plastic bottle as a substitute.
Conceptual knowledge about objects, in this case, is considered
as a representation of objects in terms of its physical and
functional properties generalized over our observations and
daily interactions with them (Baber, 2003). Therefore, based
on our observations and interactions with various instances
of a cup, a conceptual knowledge of a cup may for example
consist of an object that has a handle, is hollow and can
contain liquid.

Like humans, such conceptual knowledge about objects is
desired in robot systems (from household to industrial robotics)
in order to efficiently perform tasks such as tool selection and
substitute selection, where selection is driven by the knowledge
about various (physical and functional) properties observed in
the objects (Stoytchev, 2007; Brown and Sammut, 2013).

In this article, we present an approach to acquire relevant
sensory data, estimate metrics of object (physical and functional)
properties based on the data, and generate conceptual knowledge
about objects in a bottom-up data-driven manner.
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FIGURE 1 | The figure shows our primary area of interest within the domain of tool-use. Conceptual knowledge is desirable in tool use, however our focus is on

generating conceptual knowledge required for substitute selection. The figure also illustrates the positioning of substitute selection within tool-use. While tool-use also

consists of areas such as grasping, planning, manipulation, validation etc. we have left them out for the sake of clarity. Besides our primary area of interest, our intent

is to distinguish it from tool-use or tool selection. Note that in tool selection a robot does not have any prior knowledge of what is tool is appropriate in a given task

whereas in substitute selection, the robot does have such prior knowledge.

1.1. Building Blocks for Robot-Centric
Conceptual Knowledge
In order to acquire the proposed conceptual knowledge about
objects (e.g., in a household environment), the following
questions need to be answered:

• What kind of knowledge constitutes conceptual knowledge
about objects?

• How can conceptual knowledge about objects be acquired?
• How can the acquired knowledge be represented?

These questions forms the primary building blocks of our work,
namely: Conceptual Knowledge, Knowledge Representation, and
Robot-Centric Knowledge. In this section, we address how the
building blocks are realized in this work.

1.1.1. Conceptual Knowledge
Humans tend to express an object in linguistic form by giving
it a label such as a mug (Rand, 1990). However, for humans, a
mug is not merely a label, but rather it represents a concept that
has properties such as rigid, hollow, cylindrical, ability to contain
liquids, made up of ceramic material and also has a primary
function, for instance, holds liquid (Hodges et al., 1999).

But is knowing merely “whether a cup is rigid or not” enough?
Consider, for instance, a choice between a cup and a stone as
a substitute for a hammer. While both the objects are rigid, we
have general knowledge that a stone is usually more rigid than a
cup and quite possibly as rigid as a hammer. As a result, we will
choose the stone over the cup for hammering. Another example
is the choice between a mobile phone and a plate as a substitute
for a tray to carry a drink. Since both the objects are flat, they

should be viable substitutes. However, since we know that a plate
is usually larger in size than a mobile phone, and a plate is closer
to a tray in size than a mobile phone is, we will vote for the
plate. There are two pieces of information worth noticing: Firstly,
our knowledge about properties of objects is generalized, relative,
subjective, and qualitative, and secondly, the selected substitutes
are not necessarily visually similar to the missing tools but are
rather qualitatively similar.

We have based our approach toward conceptual knowledge
about objects, which consists of qualitative knowledge about
their properties, on the way humans form a concept around
objects and its properties The properties are divided into physical
(see section 2.2) and functional properties (see section 2.3). The
physical properties describe the physicality of objects (rigidity,
weight, hollowness, roughness, flatness, size) while the functional
properties ascribe the (functional) abilities or affordances to
the objects (containment, blockage, support, movability). The
functional properties are derived from the theory of image
schema (Gärdenfors, 1987) proposed in cognitive linguistics
(see section 2.3).

1.1.2. Robot-Centric Knowledge
The primary motivation for pursuing a robot-centric aspect
stems from the research on cognitive aspects of tool use in
humans and animals. Especially the theory that tool selection is a
first-person-perspective activity which is driven by a relationship
between the user’s own conceptual knowledge about a tool and
their ability to use that tool (Baber, 2003). We noted earlier
that one of the aspects of conceptual knowledge that needs to
be expressed is subjective knowledge. It has been argued in the
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cognitive science studies on concept formation that conceptual
knowledge of an object is grounded in an individual’s multi-
modal perceptual experiences with various objects (Feldman
and Narayanan, 2004; Gallese and Lakoff, 2005; Louwerse and
Jeuniaux, 2010). This suggests that a conceptual understanding
of any object may differ from person to person. This also
holds true for robots as in general, as robots come in a
multitude of perception and manipulation configurations. As a
consequence, the individual perception and manipulation of the
world similarly varies from robot to robot. Therefore, knowledge
acquired about an object by a KUKA KR1000 Titan (maximum
payload of 1,300 kg, 3.6 m reach), for example, will not be
the same as knowledge acquired by a Universal Robot UR3
(maximum payload of 3 kg, 0.5 m reach).

We propose that such robot-centric conceptual knowledge
should be generated in a bottom-up fashion: First, we
capture the sensory data about various properties of objects.
The sensory data is then processed to estimate quantitative
measurements of properties observed in objects which are then
used to generate property specific qualitative measurements. A
conceptual knowledge about objects is then generated for given
objects on the basis of the qualitative measurements of various
properties (see Figure 2B).

1.1.3. Knowledge Representation
For representing conceptual knowledge about objects for
substitute selection, we need a formalism that represents the four
aspects of conceptual knowledge as stated above: generalized,
relative, subjective, and qualitative. Let us see them one by
one. A representation of generalized knowledge should express
knowledge about an object category in terms its properties.
The generalized knowledge about the object category should be
relative to a robot’s experience with different instances of the
respective category and other categories too. The relativeness
of the knowledge also entails that the conceptual knowledge
about objects should be updated as the robot acquires experiences
with new instances of the known object category or a new
object category. As a result a formalism for representing relative
knowledge should manifest such experiences.

In order to capture such subjectivity, it is necessary that the
knowledge is grounded in the robot’s own sensory perception of
the properties of objects. A symbol grounding process bridges
the gap between symbolic knowledge and sensory perception by
creating a correspondence between them. This correspondence
either refers to a physical entity in the real-world a.k.a. perceptual
anchoring (Coradeschi and Saffiotti, 2003) or assigns a meaning
to a symbol by means of a respective sensory-motor process
(Harnad, 1990) (what I sense is what I know) (see Figure 2A). We
noted in section 1.1.1 that we require a formalism to represent
qualitative knowledge about objects’ properties which can be
used by a robot in substitute selection. A similar observation has
been made in Rand (1990) which states that when representing
an object as a concept, humans usually omit quantitative
measurements, but assign what we have termed as qualitative
measurements to the properties of the object to reflect to what
degree that property is present in that object category relative to

one’s own experience. For instance, a cup is generally light weight,
medium rigid, and can fully contain solid or liquid.

1.2. Related Work
Since the demand for conceptual knowledge has been increasing
in robotic applications, the development of knowledge bases has
been undertaken by many researchers around the world (cf.
Thosar et al., 2018b).While there exists a multitude of knowledge
bases, the question is how many existing knowledge bases
about objects conform to the above mentioned requirements:
conceptual knowledge base containing knowledge about the
objects’ properties that is general, relative, subjective (robot-
centric), and qualitative. In Thosar et al. (2018b), we reviewed
existing knowledge bases primarily containing knowledge about
household objects and their underlying acquisition system
developed for service robotics to address this question. For the
review article, we selected 20 papers covering 9 knowledge bases
about household objects on the basis of the contents of the paper
with respect to the above mentioned requirements and overall
impact of the paper on the basis of the number of citations (refer
Table 1). Our review resulted in the following conclusions with
respect to each building block discussed in the previous section:
Conceptual Knowledge: As our desired conceptual knowledge
about an object consists of qualitative knowledge about its
physical and functional properties, we reviewed the existing
knowledge bases to examine whether such conceptual knowledge
was considered. We noted that the majority of the knowledge
bases relied on the external human-centric commonsense
(universal) knowledge bases such as ConceptNet (Liu and
Singh, 2004), WordNet (Fellbaum, 1998) (KnowRob, MLN-KB,
OMICS, RoboBrain), Cyc (Lenat, 1995) (PEIS-KB), OpenCyc
(Lenat, 1995) (KnowRob, ORO, RoboBrain) and the rest either
relied on the hand-coded knowledge (OMRKF, OUR-K) or on
knowledge acquired by human-robot interaction (NMKB), for
the symbolic conceptual knowledge about objects. Our review
concluded that while the existing knowledge bases do contain
general knowledge about objects, they do not contain qualitative
knowledge about their properties as discussed in section 1.1.1.
For instance, a cup is described in WordNet as a small open
container usually used for drinking; usually has a handle. The
description does not contain qualitative knowledge about various
properties such as size, shape, weight, roughness, or rigidity
observed in a cup. Moreover, it is worth noting that the
knowledge about objects in the existing knowledge bases is
universal in nature and thus lacks subjectivity and relativity
aspects of knowledge. While having common sense, universal
knowledge has its merits, in section 4.4.1, we have discussed an
experiment which illustrates the inadequacy of using WordNet
in substitute selection without pre-selecting knowledge.
Knowledge Representation: Logic based representation
formalisms were overwhelmingly used by a majority of the
knowledge bases to represent knowledge: OWL-RDF (KnowRob,
OMRKF, ORO, OUR-K), Markov Logic Network (MLN-KB),
Prolog - Horn Clause (NMKB), Second Order Predicate Logic
(PEIS), while database inspired formalisms were used by
RoboBrain (Graph Database) and OMICS (Relational Database).
Besides representing knowledge about objects, the knowledge
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FIGURE 2 | (A) represents our symbol grounding approach while figure (B) illustrates the process layers for our bottom-up robot-centric knowledge generation.

bases also focus on representing various uncertainty factors such
as noisy sensor information, incomplete knowledge, unknown
objects or environment, and inconsistent knowledge. While all
the above uncertainty factors are significant, the desired factors
such as relativity, and qualitative measures were not formalized
while representing knowledge about object properties. For
instance, when we think of a cup, although at the abstract level,
it is a type of container, the degree of containment is different
in a cup for espresso coffee and a cup for tea. Such variation in
the containment is not reflected in the representations in the
knowledge bases.
Robot-Centric: Almost all of the knowledge bases (except for
OMICS) addressed the problem of symbol grounding. While the
object labels, appearance related properties (shape, size, etc.),
and functional properties (KnowRob, MLN-KB, NMKB, PEIS)
were grounded in the robot’s perception, the reliance on human-
centric symbolic knowledge did pose a disadvantage. Since the
commonsense knowledge bases are fully human-made, the depth
and breadth of the knowledge is not perceivable by a robot due
to its limited perception and manipulation capabilities. While a
low portion of human-centric knowledge is grounded into robot’s
limited perception, the majority of the knowledge base remains
non-grounded. We believe that such non-grounded knowledge
may not be adequate for a robot in a substitute selection task.

It should be noted that the knowledge bases existed
independent of the sensory perception. The symbol grounding
processes were introduced in the knowledge bases to correspond
the sensory perception with relevant symbolic knowledge.

TABLE 1 | List of selected knowledge bases and their names originally appeared

in Thosar et al. (2018b).

Knowledge base Acronym

Knowledge processing system for Robots KNOWROB (Tenorth and

Beetz, 2009)

Knowledge Base using Markov Logic

Network

MLN-KB (Zhu et al., 2014)

Non-Monotonic Knowledge-Base NMKB (Pineda et al., 2017)

Open Mind Indoor Common Sense OMICS(Gupta and

Kochenderfer, 2004)

Ontology-based Multi-layered Robot

Knowledge Framework

OMRKF (Suh et al., 2007)

OpenRobots Ontology ORO (Lemaignan et al., 2010)

Ontology-based Unified Robot Knowledge OUR-K (Lim et al., 2011)

Physically Embedded Intelligent Systems PEIS (Daoutis et al., 2009)

Knowledge Engine for Robots RoboBrain (Saxena et al.,

2014)

In contrast, our proposed approach generates knowledge
from the quantitative measurements computed from the
sensory data and as a consequence, the knowledge generated
from the sensory data for a robot A may differ from the
knowledge generated for robot B. This is due to the different
sensory capabilities of both the robots, thus reflecting the
notion of robot-centricity: object understanding from a first-
person perspective.
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1.3. Contribution
The research work discussed in this article offers a framework
for generating robot-centric knowledge about physical and
functional properties of objects. Our contribution is 2-fold:
we propose

• an approach to extract the sensory data and estimate
quantitative measurements related to physical properties
of objects;

• an approach to generate robot-centric qualitative conceptual
knowledge about objects from the quantitative measurements.

1.3.1. Multi-Modal Physical Property Estimation
Our primary objective is to generate robot-centric conceptual
knowledge about objects from object properties based on robot
sensory data. In order to realize such a bottom-up approach
to generate symbolic knowledge, the first step is to extract the
sensory data about an objects’ physical and functional properties.
In this research work, we primarily focus on extracting sensory
data about physical properties from objects. The contribution for
physical property extraction from objects is 2-fold:

Physical properties estimation: We saw earlier that the
methods from the literature on tool selection and substitute
selection do estimate one or more physical properties of
objects. Besides these two applications, approaches for estimating
various physical properties of objects such as rigidity, shape,
texture, size, etc. have been proposed for applications such as
object recognition/categorization, grasping, and manipulation
(Takamuku et al., 2007; Kraft et al., 2009; Sinapov et al., 2009;
Spiers et al., 2016; Wu et al., 2016; Kaboli et al., 2017; Kim et al.,
2018). In this work, we propose light-weight estimation methods
for rigidity, hollowness, size, flatness and roughness, requiring
a minimal experimental set-up. Our proposed methods estimate
the properties from a single instance at a time and do not require
any prior training data for estimation, in contrast to the methods
proposed in Wu et al. (2016), Sinapov et al. (2009), Spiers et al.
(2016), and Kim et al. (2018).

Property estimation framework: In this article, we propose
an extensible property estimation framework called Robot-
Centric Dataset Framework (RoCS) wherein multiple property
estimation methods can be used to measure various physical
properties and functional properties. Currently, the framework
consists of six physical properties and four functional properties
where the measurements of functional properties are estimated
on the basis of metrics of the physical properties. Our proposed
framework is flexible in that it separates the sensory data
acquisition from the actual property estimation methods. Such
separation allows for redefining the estimation methods with a
different set of sensory data than the existing one. Additionally,
the proposed framework is also used to create a multi-layered
dataset about household objects where the layers denote the
different levels of abstraction (Figure 2).

1.3.2. Generation of Robot-Centric Conceptual

Knowledge:
Our second contribution focuses on the generation of
robot-centric conceptual knowledge from the quantitative

measurements of object properties. Besides quantitative
measurements, a set of symbols representing property labels and
object labels are provided a priori for generating knowledge. The
proposed knowledge generation method generates knowledge
about individual instances which is then used to generate general
knowledge about object classes as illustrated in Figures 2B, 3 -
Layer 4 and Layer 5.

For estimating qualitativemeasurements, a clustering method
is used on the quantitative measurements for each property. Each
cluster in this case represents a qualitative measurement for the
property. As a consequence, the knowledge about an individual
instance consists of the respective qualitative measurements of
each property. In this manner, each qualitative measure of an
instance is grounded into its corresponding quantitative measure
of the property while each property symbol is grounded into its
estimation method.

In order to generate knowledge about an object class, we
propose using the statistical methods Bivariate Joint Frequency
Distribution followed by Sample Proportion on the instance
knowledge base. We use these statistical methods to model the
intra-class variations in an object class. In other words, these
methods provide insights into which qualitative measures of
a property were observed the most and the least across the
various instances of an object class. At the end, anAttribute-Value
Pair based formalism is used to represent a qualitative measure
and its corresponding sample proportion of an object class.
The collection of corresponding attribute-value pairs represent
knowledge about an object class. We would like to point out here
that the proposed bottom-up knowledge generation approach is
attributed to the fact that in the absence of any sensory data, the
conceptual knowledge base can not be created (Figure 2).

2. PROPERTY ESTIMATION FRAMEWORK

The underlying principle behind the proposed framework is
to estimate physical and functional properties from a single
instance. We have proposed expert-based models for estimating
five physical properties namely rigidity, roughness, hollowness,
flatness, and size, requiring minimal experimental set-up. In
contrast, data-driven models would typically need many training
examples for each property which may not be feasible as more
properties are added in the framework. Our ultimate vision for
the framework is to develop an online platformwhere researchers
from around the world can plug-in estimation methods for the
same or new properties, physical and functional, including the
documentation on the required experimental set-up. The idea
is to allow users to select the estimation methods based on the
available hardware at their end in order to acquire robot-centric
measurements of object properties.

The Figure 3A illustrates the modular structure of the
estimation framework. It primarily consists of two modules:
online data acquisition and property estimation. The online
data acquisition module is responsible for extracting sensory
data about objects. In Figure 3B, the property estimation
modules consists of three primary phases as depicted in the
figure. In the feature extraction phase, the desired features
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FIGURE 3 | (A) RoCS property extraction framework for extracting sensory data related to various properties and generating robot-centric conceptual knowledge

about objects; (B) Proposed property hierarchy and their dependencies (arrow colors chosen to visually distinguish dependencies).

are extracted from the sensory data (see Figure 3B–feature
extraction). The extracted features are integrated in the feature
integration phase to form the primary parameters required for
estimating the measurements of the properties (see Figure 3B–
feature integration). The last phase consists of computing the
quantitative measurements using the proposed expert-based
models (see Figure 3B - physical and functional property
estimation). The quantitative measurements of the properties
are then forwarded to the knowledge generation module for
generating conceptual knowledge about objects.

In our framework, the decoupling of data acquisition, feature
extraction and feature integration allows the flexibility for

redefining the existing property estimation models or proposing
estimation models for new properties. For instance, in the
current system, hollowness is defined on the basis of depth.
However, it can be redefined on the basis of size and depth
as well. Such flexibility, in our opinion, is necessary for robot-
centric measurement acquisition since sensory and manipulation
capabilities vary from robot to robot. As a result, based on
the available sensor and manipulation capabilities, a user may
re-purpose the features for redefining the properties or design
estimation methods for new properties. The desire for flexibility
is driven by one of the pressing issues which is interpreting the
meaning of the properties. The meaning can be complex where
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various facets of a property and their relationship to the various
parts of an object are perceived and interpreted accordingly or
it can be primitive or simplistic. In either case, the meaning or
definition of a property forms a basis for designing a hardware
set-up and a subsequent estimation method.

In the following section, we will discuss in detail our proposed
property estimation methods to acquire the quantitative
measurements of objects properties. An approach to the
generation of robot-centric conceptual knowledge from the
acquired quantitative measurements is discussed in section 3.
Section 4 discusses the extraction of the dataset from 110
household objects using the proposed framework and the
estimation methods (section 4.1) followed by an evaluation of
the quality of the acquired dataset (section 4.2), the semantics
of property measurements (section 4.3), as well as knowledge
base generation and its application in a tool substitution
scenario (section 4.4).

2.1. Property Estimation
In this section, we will discuss the selection of properties, their
definitions, and proposed estimation methods for acquiring their
quantitative measurements for a robotic platform. Currently
the framework supports six physical properties namely rigidity,
roughness, flatness, size, hollowness and weight, and four
functional properties namely containment, blockage, movability,
and support. In this work, when interpreting the properties,
simplistic definitions of the properties were formed which
allowed for a minimal set-up and light-weight estimation
methods. The intend behind a simplistic approach is that it allows
the use of a simple mobile manipulator whose limited capabilities
can be exploited. Additionally, such a minimal experimental-set
up can easily be reproduced as they do not require high-end
robotic platforms. The notion of the physical properties is based
on the physical properties in solid-state physics, where they are
considered as properties which can be observed, measured, and
quantified. We have extended the notion of functional properties
in the similar fashion where they are measured and quantified.
The selection of these properties are inspired by literature on the
tool use in humans and animals (Vauclair and Anderson, 1994;
Baber, 2003; Susi and Ziemke, 2005; Hernik and Csibra, 2009;
Vaesen, 2012; Biro et al., 2013; Sanz et al., 2013).

In the following, each property is described in a 2-fold
manner. First, for each property a general definition is provided
where we aim for a simplistic and intuitive characterization for
each property. The property definitions considered in this work
are not unique. The proposed framework can be extended by
plugging in separate estimation methods for the same property
based on more complex and/or different characterizations.
Second, for each property an estimation method is proposed.
Note that, although the property definitions are formulated
from a human perspective, our ultimate aim is toward enabling
a robot to assemble its own understanding about objects,
given its own perceptual capabilities in form of vision and
manipulation feedback.

Hence, we have derived estimation methods allowing a robot
to interpret its sensory feedback (Figure 3B) of objects for
generating numeric representations of physical and functional

properties. While the presented methods consider features
acquired from our robotic platform (Kuka youBot; Bischoff
et al. (2011), see Figure 5) and an RGB-D sensor (Asus Xtion
Pro; Swoboda, 2014), we aim to propose a light-weight setup
(Figure 4) and methods that are transferable and adoptable
to other robotic platforms by considering common hardware
interfaces and data representations such as images, point clouds,
or joint states of robotic manipulators.

We may summarize, that the following proposed estimation
methods represent a possible mechanism to express these
properties to achieve a continuous-valued property feedback.
Depending on the robot capabilities, various estimation methods
can be introduced based on different modalities such as vision,
tactile, or auditory feedback. Therefore, first and foremost, the
following methods serve as a possible basis to receive feedback of
the targeted properties from a robotic perspective.

2.2. Physical Properties
In this work, we have selected flatness, hollowness, size,
roughness, rigidity, and heaviness as physical properties given
their significance reported in the literature on tool use in humans
and animals (Vauclair and Anderson, 1994; Baber, 2003; Biro
et al., 2013; Emery, 2013). The main inspiration behind selecting
these properties was the prominent roles these properties played
in various tool use scenarios in humans and animals alike, as
widely reported in the literature. For instance, human infants
begin exploring their abilities to use any object by studying
and interacting with it to understand its weight, texture, and
shape (Vauclair and Anderson, 1994). While designing and
manufacturing a tool, humans and animals alike pay closer
attention to the properties such as shape, size, rigidity, roughness,
and heaviness (Baber, 2003, Chapter 6). It has been observed
that wild animals select the tools based on the size, shape or
mechanical properties such as strength, hardness (Biro et al.,
2013). For example, otters have been observed carrying flat rock
on their chest which they use to break the shellfish (Emery, 2013).
On the other hand, researchers found that the monkeys are able
to select the hardness of the stone with respect to the hardness of
the nut they want to cut open (Boesch, 2013).

In the following, we provide a definition for each physical
property and subsequently an estimation method is proposed
for each property. Note that, across all estimation methods, we
assume that an object is placed in its most natural position,
for instance, a cup is most commonly placed in such a way
that its opening points upwards. Furthermore, we aim at a
bounded property value, i.e., an estimated property value that
is mapped into a [0, 1] interval in order to enable a subsequent
unbiased property analysis which is not affected by object-
specific characteristics or scales. Note that, as a prerequisite,
each object is segmented a priori through a table-top object
segmentation procedure, particularly for the size, flatness, and
hollowness property. As a result, estimated property values of each
object are captured through the given capabilities of the robot
in form of vision-based (e.g., featuring particular image, point
cloud resolution, or viewpoint) as well as manipulation-based
(e.g., featuring particular joint-states, limits, or force-feedback)
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FIGURE 4 | Light-weight experimental setup consisting of two cameras and fiducial markers (Garrido-Jurado et al., 2014), for acquiring physical properties.

input. Consequently, these property values are originated from a
robot-centric perspective on the perceived objects.

2.2.1. Size Property
Definition: Size of an object is defined intuitively by the object’s
spatial dimensionality in form of length, width, and height.
Estimation: The size of an object is defined by the length, width,
and height. As it therefore can be estimated by determining
an object’s bounding box, we use an RGB-D sensor to obtain
point clouds of the object from a lateral perspective. Using
marker detection to define a region of interest (ROI), we
segment the object and transform its point cloud to an axis-
normal representation, i.e., the z-axis is aligned with the
object’s height. Subsequently, an axis-aligned bounding box
is approximated given the extracted object point cloud. The
size=[length, width, height] of an object is directly derived from
the object point cloud as distances between the minimal and
maximal value in each spatial dimension of the bounding
box. In order to retrieve a bounded property value range
[0, 1] for the property size (si), each spatial dimension of
size [length, width, height] is normalized by the largest dimension
of the object (see Equation 1). As a result, si is defined as a three
dimensional property.

si =

[

l =
length

max(size)
,w =

width

max(size)
, h =

height

max(size)

]

(1)

Note that, max(size) merely abbreviates
max(length,width, height).

2.2.2. Flatness Property
Definition: As flatness describes a particular aspect of an object’s
shape, we define it as the ratio between the area of an object’s
greatest horizontal plane and its overall surface area. For instance,
a sheet of paper features an upper bound of flatnesswhereas a ball
features a lower bound of flatness.
Estimation: The flatness value of an object is estimated similarly
to its size: We firstly observe the object from above (Figure 4)
and extract its greatest plane using RANSAC [RAndom SAmple
Consensus; Fischler and Bolles, 1981]. In order to increase the
confidence, a candidate plane is only selected if at least 95% of
the surface normal vectors of the plane points are directed in the
same direction, up to a threshold. In this manner, round surfaces

(as they may be observed in balls) are rejected and subsequently
a flatness value of zero is assigned to the considered object.
Furthermore, if the candidate plane p is accepted, the plane size
|p|, i.e., the number of object points corresponding to p, is divided
by the total number of points |o| representing the observed object
o in order to obtain a bounded numeric measure of its flatness
fl (Equation 2). Consequently, the retrieved flatness property is
bounded within a value range of [0, 1].

fl =
|p|

|o|
(2)

2.2.3. Hollowness Property
Definition: Hollowness is the amount of visible cavity or empty
space within an object’s enclosed volume. It contrasts flatness as
it focuses on a further particular aspect of an object’s shape.
Estimation: Hollowness contributes to the characterization of
object shape. According to its definition, an object may enclose a
volume which is not filled. For the sake of simplicity, we measure
the internal depth d, which resembles the enclosed volume,
and height h of an object o: the ratio defines the hollowness
value. In order to retrieve a reasonable measure of object’s
depth and height, a two camera and fiducial marker (Garrido-
Jurado et al., 2014) setup is introduced as illustrated in Figure 4.
Given the side camera view, the height h of an object can
be obtained by estimating the respective bounding box (see
section 2.2.1). In order to retrieve depth, two fiducial markers
{mr ,mh} are introduced (see samples in Figure 4): mr serves as
global reference and is placed next to the object; mh is placed
inside the hollow volume of the object. Exploiting the top camera
height ct perpendicularly pointed to the object, the distances
dr = ‖mr − ct‖ and dh = ‖mh − ct‖ can be obtained.
Given object height h and the distances dr and dh, hollowness
ho can be approximated as shown in Equation (3b), where b
(Equation 3a) is introduced to consider the base height of the
object, i.e., distance between the table (global reference plane)
and the bottom inside the object’s hollow volume.

b = dr − dh (3a)

ho =
h− b

h
(3b)
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Note that, ho is inherently bounded within the interval [0, 1].
Furthermore, the proposed method may be susceptible to noise
originated in the point clouds from which the bounding box
was approximated to infer the object’s height h. Hence, if the
difference between an object’s height h and distance dh (fiducial
marker inside the object) is smaller than 1cm it is cumbersome
to differentiate between sensor noise and the actual hollowness
due to the low signal-to-noise ratio. To sanitize the property in
such situations (particularly in case of flat objects), default value
of zero is assigned.

2.2.4. Heaviness Property
Definition: Following our basic premise of using straight forward
definitions, we borrow the definition of heaviness from physics:
the object’s heaviness is the force acting on its mass within a
gravitational field.
Estimation: Heaviness he of an object o can be directly derived
by weighing an object with a scale (Equation 4); a scale with a
resolution of 1g provides an adequate precision for our scenario.
Note that, he is normalized by the carrying capabilities of the
robotic arm.

he = scale(o) (4)

While it may require additional hardware, a robot may lift
an object and calculate the heaviness by converting the efforts
observed during the process in each of its joints.

2.2.5. Rigidity Property
Definition: Rigidity of an object is defined as the degree of
deformation caused by an external force vertically operating on it.
Estimation: Rigidity of an object is estimated using a robotic
arm. The arm is equipped with a planar end-effector that is
used to vertically exert a force onto an object until predefined
efforts in the arm’s joints are exceeded, see Figure 5; by setting
the predefined efforts to the limits of the robotic arm, the final
rigidity value is specific to the robot executing the estimation
method. During this process we record the trajectory tr(t) of
the arm as well as the efforts in all of its joints. By analyzing
them using an adaptive threshold-checking, we detect the first
contact of the end-effector with the object o at time t0. Using
the final position of the arm when the efforts are exceeded at t1,
we can calculate the deformation def of an object as the vertical
movement of the end-effector, that is, its movement along the
z-axis between t0 and t1:

def (o) = trz(t0)− trz(t1) (5a)

ri =
def (o)

h
(5b)

In that way, the deformation def (o) is nothing but the distance
the arm pushed into the considered object. For rigid objects, this
deformation is zero while it is increased continuously for non-
rigid objects. Finally, we normalize the deformation by the height
h of the object to obtain its rigidity value ri. As we use a distance
as a measure of an object’s deformation, def (o) will always be
positive. Furthermore, as an object may not be deformed more

than its own height, the value of ri is naturally bound to the
interval of [0, 1].

2.2.6. Roughness Property
Definition: Roughness provides information about an object’s
surface. Therefore, we simplify the physical idea of friction and
define roughness as an object’s resistance to sliding.
Estimation: Roughness ro requires interaction as well to measure
an object’s resistance to sliding. The robotic arm is exploited to act
as a ramp on which the considered object is placed, see Figure 5.
Starting horizontally, with an initial angle of ai = 0◦, the ramp’s
angle is increased and thereby causes an increasing gravitational
force pulling the object down the ramp. When the object begins
sliding, a fiducial marker that is a priori placed underneath the
object, is unveiled and subsequently detected. As this means that
the object’s sliding resistance is exceeded, the ramps’ angle ar is
observed and exploited as a measure of roughness as shown in
Equation (6). In this setup, a 90◦ (π

2 ) ramp angle represents the
upper bound that induces an object to slide. Hence, it is used to
normalize roughness value ro within [0, 1].

ro =
|ai − ar|

π
2

(6)

2.3. Functional Properties
In contrast to physical properties, functional properties describe
the functional capabilities or affordances (Gibson, 1986) of
objects. It is proposed that functional properties do not exist
in isolation, rather certain physical properties are required to
enable them (Baber, 2003, Chapter 5). In tool use, functional
properties play an important role especially when perceiving an
object as a possible tool since humans in general characterize
an object in terms of its functional properties rather than its
physicality (Gibson, 1986; Hartson, 2003). The question is how
does a functional property or affordance emerge? In other terms,
what are the required qualifications for an ability to be recognized
as a functional property or an affordance? Various theories have
been proposed to address this question (Gibson, 1986; Hartson,
2003; Osiurak et al., 2017) and among them is a theory proposed
by Kuhn (2007). Kuhn (2007) suggests that image schema (such
as LINK, CONTAINER, SUPPORT, and PATH) capture the
necessary abstractions to model affordances. Image schema is a
theory proposed in psychology and cognitive linguistics and it
concerns with a recurring pattern abstracted from the perceptual
and motor processes. Some of the examples of image schema
are containment, support, path, and blockage. These form the
basis for functional abilities to contain, support, move, and block
(Figure 3B).

It is suggested by Baber (2003) that a certain assemblage
of physical properties are essential prerequisites to enable a
functional property and such knowledge is used by humans and
animals alike in tool selection. We have exploited this notion and
have designed our substitute selection approach (Thosar et al.,
2020) around it. Therefore, our proposed knowledge generation
approach follows the same suit, where each functional property
is defined in terms of its associated enabling physical properties.
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FIGURE 5 | Light-weight experimental setup consisting of a camera-manipulator combination, for acquiring physical property rigidity (top row) and roughness (bottom

row).

In the following, we provide the definitions of the functional
properties and their corresponding estimation methodology.

2.3.1. Support Property
Definition: Support describes an object’s capability to support,
i.e., to carry another object. Therefore, an object is attributed
with support, if other objects can be stably placed on top of
the supporting object. Consequently, the physical properties size,
flatness, and rigidity are enabler of support.
Estimation: Support requires to consider three aspects of an
object. Firstly, the considered object needs to be rigid. Secondly,
for carrying another object, the sizes of both may feature similar
spatial proportions. Thirdly, the object’s shape needs to be
sufficiently flat in order to enable the placing of another object on
top of it. Consequently, size, flatness, and rigidity are considered
as core elements of the support property, Equation (7).

su = [si, fl, ri] (7)

2.3.2. Containment Property
Definition: An object is attributed with containment if it is
capable to enclose another object to a certain degree. This
property is enabled by size and hollowness.
Estimation: Containment property requires to consider two
aspects. In order to contain something, an object needs to be
hollow. On the other hand, it’s size itself needs to be respected
when considering whether it can contain another object. Thus,
the value of the object’s containment co property is formed by
combining its size and hollowness property values, Equation (8).

co = [si, ho] (8)

2.3.3. Movability Property
Definition: Movability describes the required effort to move an
object. The physical properties roughness and heaviness affect
the movability of an object. As a result, we may interpret that
movability is affected by these physical properties.
Estimation: Movability is based on a robot’s primary ways of
moving objects: either by lifting or pushing. In both cases,
heaviness of an object is affects the movability of an object.
Additionally, when pushing an object, its sliding resistance
expressed in form of roughness (see Figure 5), needs to be
considered as well. Thereforemovability propertymo constitutes
of heaviness and roughness, Equation (9).

mo = [he, ro] (9)

2.3.4. Blockage Property
Definition: Blockage describes the capability of an object of being
impenetrable, i.e., the object cannot be moved by other objects,
therefore it stops the movement of other encountered objects.
Note that, given the set of physical properties, we can interpret
that the blockage property is related to roughness and heaviness of
an object as these properties affect the intensity of being capable
to block another object. According to the property hierarchy
(Figure 3B), blockage is directly related to its counterpart, i.e., the
movability property.
Estimation: Blockage of an object can be derived from its
movability. According to its definition, blockage property bl
states to which degree an object is able to stop another object’s
movement. Thus, the object itself needs to be not movable by the
other object, which is the inverse of itsmovability, Equation (10).

bl = −mo = [−he,−ro] (10)
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3. GENERATION OF ROBOT-CENTRIC
CONCEPTUAL KNOWLEDGE

We propose an unsupervised approach to generate symbols
required to represent conceptual knowledge about objects from
the perception data estimated using the framework described in
the previous section. In this section, we discuss the proposed
bottom-up knowledge generation process to obtain robot-centric
knowledge about object instances and object classes (see.,
Figure 2B, layer 4 and 5).

For generating robot-centric conceptual knowledge, the data
about the objects’ physical and functional properties is processed
in two stages: sub-categorization and conceptualization. In the
sub-categorization process, the non-symbolic continuous data
of each property is transformed into symbolic data using a
clustering algorithm such as k-means. The cluster representation
of the numerical values of the property data can also be seen
as a symbolic qualitative measure representing each cluster.
Consequently, the number of clusters describes the granularity
with which each property can qualitatively be represented. In
case of a high number of clusters, an object is described in finer
detail. In contrast, a lower number of clusters suggest a coarse
description of an object. For instance, the numerical data about
the rigidity of the object instances of ceramic cup, when clustered
into three clusters, can be represented as rigidity={ soft,medium,
rigid}. Note, however, that through the clustering process, the
symbols are usually not ordinal but rather categorical. At the
end of the sub-categorization process, each object is represented
in terms of the qualitative measures for each property. The
conceptualization process gathers the knowledge about all the
instances of an object class and represents the knowledge
about an object class. Initially, the knowledge about objects is
represented using bivariate joint frequency distribution of the
qualitative measures of the properties in the object instances.
Next, conceptual knowledge about objects is calculated as a
sample proportion of the frequency of the properties across the
instances of a class. In the following, we have provided the formal
description of the knowledge generation process described above.

Consider O as a given set of object classes where (by abuse
of notation) each object class is identified with its label. Let each
object class O ∈ O be a given set of its instances. Let

⋃

O be
a union of all object classes. Let P and F be the given sets of
physical properties’ labels and a set of functional properties’ labels
respectively. By abuse of notation, each physical and functional
property is identified with its label. For each physical property
P ∈ P as well as for a functional property F ∈ F, sensory data
is acquired from each object instance o ∈

⋃

O. Let ϒP and
ϒF represent functions which maps each object instance to its
measured sensory value of a physical property P and a functional
property F respectively. Let Pn and Fn represent sets such that Pn
and Fn are the images of ϒP and ϒF , respectively.

3.1. Sub-categorization – From Continuous
to Discrete
The sub-categorization process is performed to form (more
intuitive) qualitative measures to represent the degree with which
a property is reflected by an object instance. It is the first step

in creating symbolic knowledge about object classes where the
symbols representing the qualitative measures of a physical or a
functional property reflected in an object instance are generated
unsupervisedly by a clusteringmechanism. A qualitative measure
of a physical property is referred to as a physical quality and that
of a functional property as a functional quality.

In this process, Pn and Fn representing measurements of
a physical property P ∈ P and a functional property F ∈

F, respectively extracted from n number of object instances is
categorized into a given number of discrete clusters η using
a clustering algorithm. Let ∇P and ∇F be partitions of the
sets Pn and Fn after performing clustering on them. Let Pη

and Fη be the sets of labels, expressing physical qualities and
functional qualities, generated for a physical property P ∈ P

and a functional property F ∈ F respectively. Given the label
for a property, the quality labels are generated by combining a
property label P and a cluster label (created by the clustering
algorithm). For example, in size = {small, medium, big, bigger},
size is a physical property and small, medium, big, bigger are
its physical qualities. Note that, these given physical quality
labels are only provided for illustration purposes of the property
qualitative measures; however, the quality labels for a property
size are internally represented as {size_1, size_2, size_3, size_4}. At
the end of the sub-categorization process, the clusters aremapped
to the generated symbolic labels for qualitative measures. Note
that the number of clusters essentially describes the granularity
with which each property can qualitatively be represented. A
higher number of clusters suggest that an object is described in a
finer detail, which may obstruct the selection of a substitute since
it may not be possible to find a substitute which is similar to a
missing tool down to the finer details.

3.2. Attribution – Object Instance
Knowledge
The attribution process generates knowledge about each object
instance by aggregating all the physical and functional qualities
assigned to the object instance by the sub-categorization step.
In other terms, the knowledge about an instance consists of the
physical as well as functional qualities reflected in the instance.
Let Pη and Fη be the families (sets) of sets containing the physical
quality labels Pη and the functional quality labels Fη for each
physical property P ∈ P and functional property F ∈ F,
respectively. Thus, each object instance o ∈

⋃

O is represented
as a set of all the physical as well as functional qualities attributed
to it which are expressed by a symbol holds as: holds ⊂
⋃

O ×
⋃

(Pη ∪ Fη). For example, knowledge about the instance
plate1 of a plate class can be given as, holds(plate1,medium),
holds(plate1, harder), holds(plate1, can_support) wheremedium is
a physical quality of size property, harder is a physical quality
of rigidity property and can_support is a functional quality of
support property.

3.3. Conceptualization – Knowledge About
Objects
The conceptualization process aggregates the knowledge about
all the instances of an object class. The aggregated knowledge
is regarded as conceptual knowledge about an object class. Let
OKB be a knowledge base about object classes where each object
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class O ∈ O. Given the knowledge about all the instances of an
object class O, in the conceptualization process, the knowledge
about the object class OK ∈ OKB is expressed as a set of tuples
consisting of a physical or a functional quality and its proportion
(membership) value in the object class. A tuple is expressed
as 〈O, t,m〉 where t ∈

⋃

Pη or t ∈
⋃

Fη and a proportion
value m is calculated using the following membership function
expressed by a conditional probability:m = P(holds(o, t)|o ∈ O).
The proportion value allows to model the intra-class variations
in the objects. For example, knowledge about object class table
{〈plate, harder, 0.6〉, 〈plate, light_weight, 0.75〉, 〈plate, less_hollow,
0.67〉, 〈plate, hollow, 0.33〉, 〈plate, more_support, 0.71〉}, where
the numbers indicate that, for instance, physical quality harder
was observed in 60% instances of object class plate. At the
end of the conceptualization process, conceptual knowledge
about an object class is created which is represented in a
symbolic fuzzy form and grounded into the human-generated
or machine-generated data about the properties of objects. The
knowledge about objects is then used to determine a substitute
from the existing objects in the environment. The Figure 6

illustrates graphically the main processes of Sub-categorization
and Conceptualization.

4. EXPERIMENTAL EVALUATION

In the following evaluation, multiple experiments are conducted
to evaluate the proposed approach on different semantic levels:
From the property estimation of real world objects to an eventual
application scenario in the context of tool substitution.

For this purpose, we introduce the RoCS dataset containing
estimated physical and functional properties of objects in
section 4.1. With the dataset, we conduct an evaluation on
the physical object properties investigating the stability of
the estimation methods, the coverage w.r.t. the range of
characteristics captured by selected dataset, and the correlation
among properties in section 4.2. Using k-means clustering (Lloyd,
1982) on functional object properties in sections 4.3 and 3,
we show that the chosen properties may allow to discriminate
instances of different object classes and identify the inter-class
similarities. Finally, section 4.4 shows the applicability of the
dataset by learning a model from the generated conceptual object
knowledge given the estimated properties and applying it to a tool
substitution scenario under real world conditions.

4.1. RoCS Dataset
For the sake of a thorough evaluation of our conceptual
framework the Robot-Centric dataSet (RoCS) is introduced. Note
that we propose a Robot Operating System (ROS) (Koubâa,
2017) based implementation to acquire object data used in the
following evaluation. In the following, we briefly introduce the
hardware setup and procedures for acquiring raw object data,
describe its parameters (e.g., thresholds) and the contents of the
final dataset.

4.1.1. Hardware Setup
Figure 3 illustrates the required sensors as data sources. For
visual and non-invasive estimation methods, RGB-D sensors

are required. More specifically, the size property requires a
lateral view on objects while the hollowness property relies on
a birds-eye view. Hence, we employ two Asus Xtion Pro depth
sensors (Swoboda, 2014) (see Figure 4). To estimate the physical
properties rigidity and roughness, a robotic arm is required to
interact with objects. In this interaction the proposed property
estimation methods require arm joint state values which are
generally provided by manipulators, such the one we use, a Kuka
youBot (Bischoff et al., 2011) manipulator. Finally, a common
kitchen scale with a resolution of 1g is used to estimate the weight
and heaviness of objects.

4.1.2. Object Property Acquisition Procedure
Using the described hardware, we implemented a ROS-based
framework to estimate the physical and functional properties
of objects. A schematic overview on the framework is given by
Figure 7.

The interface for operating sensors and actuators is provided
to our framework by ROS. This interface is used by different
experiments for observing and interacting with objects to
acquire the necessary sensory data. Together, both blocks (ROS
Abstracted Sensors & Actuators and Experiment Control) form a
control loop enabling to generate feature data (see Figure 3B).
According to the selected properties four control loops are
implemented as separate experiments. The first experiment is
non-invasive and gathers the visual feature data required for
hollowness, flatness, and size; Figure 4 illustrates the camera
setup. Initially a table-top object detection is introduced that
uses a RAndom SAmple Consensus (RANSAC) based plane
fitting approach in order to detect object candidates on the
table. The RANSAC algorithm is parameterized with a leaf
size of 0.0025 m, a maximum of 104 iterations and a 0.02
m distance threshold between points and the estimate plane
model. Note that, RANSAC is also used in this experiment
for segmenting planes for the property flatness. Furthermore,
fiducial markers (ArUco Library; Garrido-Jurado et al., 2014)
with sizes of 14 and 3 cm are used for the hollowness property.
The second experiment uses the robotic arm to deform objects
to facilitate the estimation of rigidity (see section 2.2.5). We
set the efforts to exceed in each joint to ±8 Nm. Within
the third experiment, the robotic arm is used as a ramp to
estimate an object’s roughness (see section 2.2.6). To achieve
an appropriate resolution, the angular speed of the joint lifting
the ramp is set to 0.05 rad/s. Finally, the last experiment
employs a kitchen scale with a resolution of 1g to estimate
the objects’ weight. Following the Experiment Control, the
individual estimation methods process the generated feature data
as described in section 2.1 to produce physical and functional
property values of the considered object. Finally, this data can be
accumulated for a set of objects and further processed to generate
conceptual knowledge.

4.1.3. Dataset Structure
For the RoCS dataset we consider 11 different object classes (ball,
book, bowl, cup,metal_box, paper_box, plastic_box, plate, sponge,
to_go_cup, and tray) featuring various object characteristics –
from appearance to functional purpose. Each class consists of
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FIGURE 6 | The robot-centric conceptual knowledge generation process is illustrated where acquired continuous property data of objects {o1,o2...} is

sub-categorized into multiple clusters. Using Bi-variate joint frequency distribution and sample proportions conceptual knowledge about object classes (e.g.,

plasti_box) is generated.

FIGURE 7 | Data flow within the dataset creation framework.

FIGURE 8 | RoCS dataset samples: Point cloud and RGB images of a ball, bowl, paper box, and cup (for visualization purposes, images are scaled and 3D points are

magnified).

10 unique object instances that leads to a total number of 110
object instances; Figure 8 illustrates sample object instance of
RoCS dataset.

In order to evaluate the performance of the proposed property
estimation methods, such as stability, for each object instance we
capture 10 repetitions without modifying the setup. As a result
we captured 1,100 object observations for which physical and
functional property values are generated. The dataset is publicly
available at https://gitlab.com/rocs_data/rocs-dataset.

4.2. Property Estimation
The objective of the first part of the evaluation is to investigate
the property estimation methods as described in section 2.1. At

this level, we only focus on physical properties as functional
properties are built on the basis of an object’s physical properties.
First, we analyze the stability of the estimation methods
to determine how deterministic and reproducible the data
acquisition is for each property and object. Furthermore, we
explore the coverage of our data set to determine the variance and
range of objects reflected in the different classes and properties.
Lastly, we inspect the correlation among different properties in
our data.

4.2.1. Estimation Stability
The abstraction process from raw sensor data to symbolic object
property knowledge requires a stable processing. However, noise

Frontiers in Robotics and AI | www.frontiersin.org 14 April 2021 | Volume 8 | Article 476084

https://gitlab.com/rocs_data/rocs-dataset
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Thosar et al. Robot-Centric Object Knowledge Acquisition

is naturally affecting data when working with sensors and real
world objects.

To compensate for the caused uncertainty, each RoCS object
instance consists of 10 repetitions. We use these in the following
to analyze the stability of the proposed property estimation
methods. For that, the variance of each physical property of
each object instance is analyzed. More specifically, given the 10
repetitions of a particular object instance for each of its physical
properties, we calculate the variance of the property values of
its 10 repetitions. As the measurements of 6 physical properties
are based on 8 features, we obtain 8 values per object instance
and therefore 880 values in total. We further reduce the data,
by calculating the mean of the object variances for a particular
object class and property as shown in Table 2, whereas Figure 9
illustrates the variances of all object instances within one object
class as box plots; the colored middle box represents 50% of the
data points and the median of the class is indicated by the line
that divides the box.

The results of the (Table 2; Figure 9) reveal that the
class variances are overall low, which implies stable property
estimation methods in general. The highest variances can be
found for the flatness property. The estimation of the flatness
property for small and flat object instances is particularly affected
by noise due to the low signal-to-noise ratio. Furthermore, it
can be observed that for ball, bowl, and to_go_cup the variance
of the flatness property is zero due to the fact that no top-level
plane can be extracted for instances of these classes as they
feature either round or negligible small top-level surfaces (see
section 2.2.2). Similarly, a higher variance can be observed for
the rigidity property which is caused by smaller object instances,
such as book, plate, sponge, and tray. Here the detection of the
first contact with the object causes false positives and therefore
introduces varying deformation values.

In contrast, for the hollowness property the variance
for metal_box and sponge are zero. Such object instances
predominantly feature flat surfaces and negligible degree
of hollowness. Considering sensor quantization effects,
such negligible degree for hollowness cannot be confidently
distinguished from sensor noise under such conditions (see
section 2.2.3). As a consequence a default hollowness value
of zero is set for instances that fall in a negligible range
of hollowness, i.e., below 1 cm distance between marker.
Concerning the heaviness property, a zero variance is observed
due to the accurate measurement by a scale—considering a
resolution of 1 g which is a sufficient resolution for our scenario.

4.2.2. Property Coverage of RoCS
The objective of this experiment is to evaluate the intra-class
variance for each property in order to determine the range of
data covered in each object class for one particular property. For
this experiment, the mean estimated property value over the 10
repetitions is used. The result for each of the physical properties
is shown in Figure 10 in form of a box plot in which all object
instances of a particular class are considered.

Several observations can be made. For instance, hollowness
and flatness are complementary in our dataset. Objects with
flatness values close to zero are commonly exhibiting increased

hollowness values (above 0.5) and vice versa. Only balls form an
exception as they are neither flat nor hollow. While this means
that we cover a wide range of values for the flatness property, we
miss such coverage for hollowness values in the interval [0, 0.5].
Moreover, for roughnessmost object classes are in a similar range
– except sponge and ball instances. As we place the objects in
their most natural position we can conclude that the sponges’
ground surfaces have a higher roughness due to their open-pored
surfaces. Due to their roundish surfaces, ball instances feature
obviously a low roughness value. Furthermore, it is unlikely to
observe objects featuring roughness values close to one as none of
the considered object classes has the ability to stick to the ramp.

For the rigidity values an interval of [0, 0.9] is covered, ranging
from rigid objects such asmetal_box to non-rigid objects such as
sponge. Suspiciously, only a limited number of objects has a value
of zero which indicates that sensor noise has its greatest effect on
these objects.

Analyzing the size values, it becomes apparent that width
commonly is the greatest dimension among the considered
objects while the objects’ height varies along the range of
possible values.

4.2.3. Property Correlation
In this experiment, we investigate the correlation in the physical
properties of our data. Given estimated values of a particular
property, we compute the mean property value ox (Equation 11a)
over the 10 repetitions for each object instance o. Based on these
mean variances, the pearson correlation ρXY is obtained between
two sets of mean variances X and Y corresponding to respective
properties, see Equation (11b), where cov is the covariance and
σx the standard deviation of X, respectively.

X = {ox1 , ox2 , ox3 , ...} (11a)

ρXY =
cov(X,Y)

σxσy
(11b)

Table 3 shows the pearson correlation among all physical
properties with a color scale.

It can be observed that the correlation of our data is low in
general. However, a strong negative correlation between flatness
and hollowness is found which may indicate that in our data
objects with high flatness are likely to have low hollowness. This
matches our observation in section 4.2.2, where we noted the
complementary nature of these properties in our dataset. The
object instances of our dataset may also show some negative
correlation between size-height and flatness as well as size-height
and rigidity.

4.3. Property Semantics
Given a stable property estimation (section 4.2) from noisy
real world data, the following experiment focuses on the
semantic interpretation of the estimated object property values.
We propose an experiment that groups object instances of
our RoCS dataset in an unsupervised manner by considering
a particular property or a set of properties. In order to
conduct a preferably unbiased (machine-driven) grouping, k-
means clustering is applied with a gradually increasing value
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TABLE 2 | Mean variance for each physical property.

Class Flatness Rigidity Roughness Size_length Size_width Size_height Heaviness Hollowness Class_mean

Ball 0 0.00053 0.00032 0.00538 0.00001 0.00083 0 0.00023 0.00091

Book 0.02554 0.00583 0.00015 0.00001 0.00001 0.00002 0 0.002 0.00419

Bowl 0 0.00037 0.00025 0.00038 0.00006 0.00012 0 0.00003 0.00015

Cup 0.00026 0.00015 0.00017 0.00098 0.0003 0.00079 0 0.00001 0.00033

Metal_box 0.01939 0.00074 0.0039 0.00028 0.00002 0.00007 0 0 0.00305

Paper_box 0.00747 0.00115 0.00021 0.00011 0.00002 0.00017 0 0.0035 0.00158

Plastic_box 0.00015 0.00071 0.00016 0.00056 0.00021 0.0003 0 0.00013 0.00028

Plate 0.00971 0.00481 0.00022 0.0003 0.00003 0.00017 0 0.0005 0.00197

Sponge 0.02503 0.00705 0.00313 0.0001 0.00001 0.00008 0 0 0.00443

to_go_cup 0 0.00016 0.00031 0.00061 0.00044 0.00013 0 0.00001 0.00021

Tray 0.03486 0.00569 0.00024 0.00005 0.00001 0.00004 0 0.00206 0.00537

prop_mean 0.01113 0.00247 0.00082 0.0008 0.0001 0.00025 0 0.00077 0.00204

Each value represents the mean variance of estimated property values of an particular object class consisting of 10 instances and their respective repetitions. Variances are scaled by

color in ascending order from transparent (0) to red (highest variance).

FIGURE 9 | Mean variance for physical properties [fl, ri, ro, si, he, ho] illustrated in form of a Box plot (in log-scale to provide insights of respective intra property

variances compared to linear-scale shown in Table 2). Note that, in order to be able to display all variances (including zero) in log-scale, we add an epsilon on each

value before computing log. Heaviness is excluded as all variance values are zero for this property due to the resolution of the scale.

of k={2, ..., 11}. Here, 11 is selected as upper bound as it
represents the number of object classes considered in the
RoCS dataset.

Figure 11 consists of pyramid charts that shows the gradual
partitioning process for the respective property. A group or a
cluster is depicted as a pie-chart illustrating the distribution
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FIGURE 10 | Category-wise coverage for each physical property [fl, ri, ro, si, he, ho].

TABLE 3 | Pearson Correlation on the mean values of physical properties.

Flatness Rigidity Roughness s_length s_width s_height Heaviness

Flatness –

Rigidity 0.45 –

Roughness 0.45 0.35 –

size_length 0.03 0.12 0.15 –

size_width 0.16 0.34 0.02 0.21 –

size_height -0.65 -0.59 -0.38 -0.26 -0.45 –

Heaviness 0.09 -0.04 -0.13 0.19 0.02 -0.37 –

Hollowness -0.71 -0.36 -0.08 0.24 -0.1 0.24 0.13

of assigned object instances with their labeled class. Therefore,
each row of the pyramid-like structure shows the results of one
application of the k-means clustering. The number of pie-charts
in each row equals to number of clusters (k value).

Furthermore, since each group partitions the property
space, assigned instances within the group share similar
attributes. Therefore, a group can be interpreted as a concept
representing a qualitative measurement of the respective

property Generally on higher levels in the pyramids (lower
k), the distribution of the instances and the classes in each
concept is higher compared to lower levels (higher k). As
a consequence, concepts in the higher levels appear more
generic as opposed to the lower levels where concepts appear
more specific.

Moreover, a pattern in the distribution of classes can be
observed which is carried forward in the subsequent levels.
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FIGURE 11 | Gradual partitioning of instances to particular concepts given a particular set of properties describing each instance. Each concept is illustrated as a pie

chart showing the object class label distribution of instances assigned to the respective concept. Sample concepts are annotated ( ) which illustrate object classes

featuring similar quality regarding the property, such as plate, bowl, cup, to_go_cup regarding the containment property. One may observe, that given the assigned

classes, object instances are not separable by the generated concepts. This is intended as it enables a quantitative analysis of similarity among instances and across

classes based on the property.

This pattern hints toward semantic relations between class
labels and observed concepts. For example, instances of
plate, bowl, cup, to_go_cup share similar concepts regarding
the containment property (see concept annotated with

in Figure 11A) which is also reflected over multiple
levels. Such patterns can also be observed and tracked over

multiple levels for other functional properties in Figure 11.

Furthermore, Figure 11E illustrates the gradual grouping

process considering all physical properties of the object
instances. Also here such patterns can be observed, e.g., on

the right side where concepts have emerged that feature
common properties related to instances such as plastic_box,
metal_box, paper_box (see concept annotated with in
Figure 11E).

As a result, the proposed property hierarchy (refer
Figures 2B, 3B) allows to discriminate the object instances
by associating them to meaningful groups featuring
similar object concepts. In the figure, property generality
can be observed across object classes, i.e., concepts
on different granularity levels may feature dedications
to instances of different object classes as they feature
similar characteristics or trends regarding the property.
This interrelation of object classes is reflected by the
heterogeneity of the distribution of instances within a
concept—even in case of k=11 when considering 11 object
classes. These observations made in the proposed property
acquisition procedure (Figure 7) provides a basis for the
generation of conceptual knowledge about objects as shown
in section 4.4.

4.4. Conceptual Knowledge for Substitute
Selection
In this experiment, we demonstrate how the robot-centric
conceptual knowledge grounded in the robot’s sensory data
can be successfully used to determine a substitute in a
tool substitution scenario. While operating in a dynamic
environment, a robot can not assume that a particular tool
required in a task will always be available. In such scenarios, an
ideal solution for a robot would be to improvise by finding a
substitute for the missing tool as humans do.

To deal with such situation, we have developed an approach,
called as ERSATZ (German word for a substitute) detailed in
Thosar et al. (2018a), which is inspired by the way in which
humans select a substitute in a non-invasive manner. In this
approach, the robot-centric conceptual knowledge about objects
is used to select a plausible substitute for a missing tool from the
available objects. A tool, in this work, is defined as an artifact
that is designed, manufactured, and maneuvered in accordance
with its designated purpose in the task, such as hammer for
hammering, tray for carrying, etc., and a substitute is seen as an
alternate to a missing tool.

For the experiments, we generated knowledge about 11
object classes using the approached discussed in the section
3. The dataset generated by RoCS was utilized for creating
robot-centric conceptual knowledge about 11 object classes. The
Figures 12A,B illustrates graphically the qualitative knowledge
about physical and functional properties of 11 object classes
as a heat map. The heat cells in the map represents the
sample proportion of each qualitative measure in each object
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class. For instance, a single cell can be read as “the qualitative
measure Flatness 0 of the property class Flatness is observed in
60% instances of class Plastic box”. Accordingly, in the figure,
the conceptual knowledge suggests that all the instances of
Plastic Box, Paper Box, Metal Box, Tray, Sponge, Ball, and
Book are qualitatively similar with respect to the physical
property Hollowness (i.e., none of them are hollow). The
similar observation can be made for Tray, Sponge and Book
with respect to the functional property Support (i.e., all of
them may be stacked). Note that the indices assigned to each
qualitative measure are not ordinal, but they are categorical. For
instance, index 2 does not mean it is more valued than index
1. While comparative relationships exist in all four qualitative
measurements of any property, they are not indicated by the
given indices.

For the tool-substitution experiment, we generated 11 queries
based on the 11 object classes, where each query consisted of
a missing tool description and 5 randomly selected objects as
available choices for a substitute. The queries were given to
21 human experts who were asked to select a substitute in
each query. The expert selections were aggregated and selection
proportion was calculated for each expert-selected substitute.
ERSATZ used the knowledge generated in the previous section
and computed substitute/s for each given query using the
approach discussed in Thosar et al. (2020).

In order to validate a substitutability, the number of selected
substitutes by human experts was then compared with the
number of selected substitutes by ERSATZ. Similarly, the
substitute selection by the 21 experts and ERSATZ in 11 scenarios
are plotted as a heat map in Figure 12C. The grayed cells in
the plots mean the corresponding object categories were not
included in the available objects in the respective query. We
used the conventional classification evaluation metrics: True
Positives, True Negatives, False Positives, and False Negatives
to evaluate the performance of ERSATZ. Our results showed
that ERSATZ selected true positives in all 11 scenarios while
true negatives in 8 scenarios. The results indicate that the
proposed conceptual knowledge based substitute selection is
meaningful and valid as confirmed by human selected substitutes.
The experiment also demonstrates the successful application
of the proposed conceptual knowledge, generated from the
property data estimated from the proposed framework, in the
tool substitution scenario.

4.4.1. Robot-Centric Conceptual Knowledge vs

WordNet
In this experiment, we have pitted our conceptual knowledge
against WordNet in the substitute selection scenario. Our
objective is to demonstrate that common sense knowledge bases
such as WordNet are not adequate for substitute selection
without selecting suitable knowledge a priori as done in Boteanu
et al. (2016).

In this experiment, we compare the similarity among
different objects determined by the similarity measures used in
WordNet (Pedersen and Michelizzi, 2004) and Jaccard Index-
based similarity proposed in Thosar et al. (2020). For the
experiment, the path-length based measures Path Similarity and
Wu-Palmer Similarity while information content based measures

Lin Similarity, Jiang-Conrath Similarity were considered. We
used the object labels from the multi-modal perception dataset,
however some labels were adapted while using WordNet to
compute the similarity. For instance, in the multi-modal data set
we have a to-go-cup and a cup, however in WordNet there is no
to-go-cup. Similarly, as WordNet does not differentiate between
a plastic, a metal and a cardboard box, we considered only box
for the WordNet comparison.

In Figures 12E–H, the resulting heat plot of the similarity
between different objects using above mentioned similarity
measures in WordNet is symmetric in nature while the relevant
property driven Jaccard’s Index based heat plot is asymmetric (see
Figure 12D). This discrepancy is caused by the way objects are
treated by WordNet and ERSATZ. While ERSATZ distinguishes
between a tool and a substitute, WordNet does not make such a
distinction. Therefore when the similarities between, say objects
A and B, and between B and A are computed, the contents
(path-length or information content) considered during the
computation remain unchanged. Within the context of a specific
designated purpose, the substitutability relationship between a
tool and a substitute is symmetric, for instance, for hammering,
a hammer can be replaced by a heeled shoe and vice versa.
However, it is not the case once the context is shifted, for instance,
a hammer can not be used as a heeled shoe for walking. Such
an asymmetric relation is a necessity in tool substitution since it
can not be assumed that if A is a substitute of a tool B, then B
is a substitute of a tool A. Such assumption due to the symmetric
relationmay lead to an inadequate selection of a substitute as seen
in the figure.

What the experiment shows us is that in order to use large
knowledge bases such as WordNet or ConceptNet in substitute
selection, simply applying similarity measures is not enough.
Additionally these knowledge bases do not contain the exclusive
information about physical and functional properties about
objects. In contrast, our proposed knowledge generated from the
quantitative measurements of physical and functional properties
is desirable in substitute selection process as demonstrated in the
above two experiments.

5. CONCLUSION

Retrieving conceptual knowledge about objects in the
environment, in form of physical and functional properties,
fundamentally contributes to an awareness about affordances
provided by the environment to a robot. Such conceptual
object knowledge is desired in various robotic scenarios
(from household to industrial robotics) in order to efficiently
perform tasks when dealing with objects in dynamic and
uncertain environments. In scenarios where it is uncertain
that a required tool is present, an efficient substitute selection
is particularly required to successfully accomplish tasks.
Besides substitute selection, conceptual object knowledge
facilitates inferences about circumstances in situations in which
the robot is applied to, e.g., if object rigidity is expected to
be low, manipulation, including grasping strategies of the
object, can be accordingly adapted to increase a successful
object handling.
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FIGURE 12 | (A) Qualitative knowledge about physical properties; (B) Qualitative knowledge about functional properties;(C) The distribution of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN) in each substitution scenario; (D) Similarity between a tool and a substitute using Jaccard’s Index; (E)

Wu-Palmer similarity; (F) Lin Similarity; (G) Path similarity; (H) Jiang-Conrath Similarity.

However, state-of-the-art conceptual knowledge approaches
are generally hand-crafted and generated from a human
perspective in form of natural language concepts and may
not be suitable for substitute selection as demonstrated in
the experiment in section 4.4.1. Consequently, the discrepancy
between human and robotic capabilities (e.g., visual, auditory,
haptic perception, prior knowledge, etc.) is also reflected in the
knowledge generation process conducted by humans and the
then necessarily complex interpretation for it by robotic systems.
In order tomitigate this discrepancy, we proposed a robot-centric
approach as we believe that conceptual knowledge has to be
generated considering the individual robotic capabilities, so to
say in form of robotic language concepts.

A multi-modal approach for object property estimation and
generation of robot-centric knowledge has been proposed to
acquire conceptual knowledge from a robotic perspective. We
introduced a bottom-up knowledge acquisition process, from
capturing sensory data over a numeric estimation of object
properties, to a symbolic conceptualization of objects’ properties.
Experiments have revealed the stability as well as the inter-
class generality of the proposed object property acquisition
procedure. This outcome provides a basis for the subsequent
conceptual knowledge generation in the context of the substitute
selection scenario. Tool substitution results have demonstrated
the applicability of the generated conceptual knowledge.

We conclude, that the proposed robot-centric and multi-
modal conceptualization approach may contribute to equip a
robot with the capability to reason about objects on a conceptual

level compared to general approaches which are only based
on e.g., visual (image pixels) or haptic (resistance feedback)
sensory data. Moreover, such robot-centric and multi-modal
knowledge can be applied to a variety of scenarios beyond
substitute selection. To facilitate further use, we established the
RoCS dataset and made it publicly available.

As the goal of this work was a robot-centric conceptual
knowledge generation, our future work is directed, toward
the transfer of such knowledge among heterogeneous robotic
systems. To facilitate the development and collaborative progress
in this framework, we aim to develop an online system
where developers can plug-in their estimation methods (simple
or more complex) for the same property or new property
to the framework requiring minimal or more sophisticated
experimental set-ups. This way, we wish to create a community of
users who can select the estimation methods based on the sensor
and robot availability at their end.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: https://gitlab.com/rocs_
data/rocs-dataset.

AUTHOR CONTRIBUTIONS

MT primarily contributed to the conception and preliminary
design of the robot-centric knowledge acquisition framework.

Frontiers in Robotics and AI | www.frontiersin.org 20 April 2021 | Volume 8 | Article 476084

https://gitlab.com/rocs_data/rocs-dataset
https://gitlab.com/rocs_data/rocs-dataset
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Thosar et al. Robot-Centric Object Knowledge Acquisition

MT, CM, and GJ contributed to the property selections and
definitions of RoCS framework. CM and GJ contributed to
the implementation of the framework and extraction methods.
NP, RM, and SJ contributed to the dataset generation of 110
objects. CM, GJ, and JS contributed in the integration and the
evaluation of the dataset. MT, CM, GJ, and MP contributed
to evaluation of the property semantics. MT contributed to
the conceptual knowledge generation and application of the
conceptual knowledge in tool substitution scenario. AB, MP,
and SZ contributed to the critical evaluation of the work. All

authors contributed to manuscript revision, read, and approved
the submitted version.

ACKNOWLEDGMENTS

We would like to thank our colleagues and students
Florian Sommer, David Döring, and Saagar Gaikwad
from Otto-von-Guericke University Magdeburg, Germany
for providing assistance in the dataset evaluation
and visualization.

REFERENCES

Abelha, P., and Guerin, F. (2017). “Learning how a tool affords by simulating 3D

models from the web,” in IEEE International Conference on Intelligent Robots

and Systems (Vancouver), 4923–4929.

Abelha, P., Guerin, F., and Schoeler, M. (2016). “A model-based approach to

finding substitute tools in 3D vision data,” in Proceedings - IEEE International

Conference on Robotics and Automation (Stockholm).

Agostini, A., Aein, M. J., Szedmak, S., Aksoy, E. E., Piater, J., and Worgotter,

F. (2015). “Using structural bootstrapping for object substitution in

robotic executions of human-like manipulation tasks,” in IEEE International

Conference on Intelligent Robots and Systems (Hamburg), 6479–6486.

Awaad, I., Kraetzschmar, G. K., and Hertzberg, J. (2014). “Challenges in finding

ways to get the job done,” in Planning and Robotics (PlanRob)Workshop at 24th

International Conference on Automated Planning and Scheduling (Portsmouth).

Baber, C. (2003). Cognition and Tool Use London: Taylor and Francis.

Bansal, R., Tuli, S., Paul, R., and Mausam (2020). TOOLNET: using commonsense

generalization for predicting tool use for robot plan synthesis. arXiv preprint

arXiv:2006.05478.

Biro, D., Haslam, M., and Rutz, C. (2013). Tool use as adaptation. Philos. Trans. R.

Soc. Lond. B. Biol. Sci. 368:20120408. doi: 10.1098/rstb.2012.0408

Bischoff, R., Huggenberger, U., and Prassler, E. (2011). “Kuka youbot - a mobile

manipulator for research and education,” in 2011 IEEE International Conference

on Robotics and Automation (Shanghai), 1–4.

Boesch, C. (2013). “Chap. 2: Ecology and cognition of tool use in chimpanzees,” in

Tool Use in Animals: Cognition and Ecology, eds J. B. C. Sanz and C. M. Call

(Cambridge: Cambridge University Press), 21–47.

Boteanu, A., St. Clair, A.,Mohseni-Kabir, A., Saldanha, C., and Chernova, S. (2016).

Leveraging large-scale semantic networks for adaptive robot task learning and

execution. Big Data 4, 217–235. doi: 10.1089/big.2016.0038

Brown, S., and Sammut, C. (2012). “A relational approach to tool-use learning

in robots,” Inductive Logic Programming - 22nd International Conference

(Dubrovnik), 1–15.

Brown, S. and Sammut, C. (2013). “A relational approach to tool-use learning in

robots,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) Berlin: Springer 7842

LNAI, 1–15.

Coradeschi, S., and Saffiotti, A. (2003). An introduction to the anchoring problem.

Robot. Auton. Syst. 43, 85–96. doi: 10.1016/S0921-8890(03)00021-6

Daoutis, M., Coradeshi, S., and Loutfi, A. (2009). Grounding commonsense

knowledge in intelligent systems. J. Ambient Intell. Smart Environ. 1, 311–321.

doi: 10.3233/AIS-2009-0040

Emery, N. J. (2013). “Chap. 4: Insight, imagination and invention: tool

understanding in a non-tool-using corvid,” in Tool Use in Animals: Cognition

and Ecology, eds C. M. Sanz, J. Call, and C. Boesch (Cambridge: Cambridge

University Press), 67–88.

Feldman, J., and Narayanan, S. (2004). Embodied meaning in a neural theory of

language. Brain Lang. 89, 385–392. doi: 10.1016/S0093-934X(03)00355-9

Fellbaum, C. (ed.). (1998). WordNet: An Electronic Lexical Database. Cambridge,

MA ; London: The MIT Press.

Fischler, M. A., and Bolles, R. C. (1981). Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 24, 381–395. doi: 10.1145/358669.

358692

Gallese, V., and Lakoff, G. (2005). The brain’s concepts: the role of the sensory-

motor system in conceptual knowledge. Cogn. Neuropsychol. 22, 455–479.

doi: 10.1080/02643290442000310

Gärdenfors, P. (2007). “Cognitive semantics and image schemas with embodied

forces,” in Embodiment in Cognition and Culture, eds J. M. Krois, M. Rosengren,

A. Stedele, and D. Westerkamp (John Benjamins Publishing Company), 57–

76. Available online at: https://portal.research.lu.se/portal/en/publications/

cognitive-semantics-and-image-schemas-with-embodied-forces(336b0bea-

162b-4acb-8f8e-62cfb006f05a).html#Overview

Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F., and Marin-

Jimenez, M. (2014). Automatic generation and detection of highly

reliable fiducial markers under occlusion. Pattern Recogn. 47, 2280–2292.

doi: 10.1016/j.patcog.2014.01.005

Gavin R., Hunt, A. T., and Gray R. (2013). “ Chap. 5: Why is tool use rare in

animals?,” in Tool Use in Animals: Cognition and Ecology, eds J. B. C. Sanz and

C. M. Call (Cambridge: Cambridge University Press), 89–118.

Gibson, J. J. (1986). “Chap. 8: The theory of affordances,” in The Ecological

Approach to Visual Perception (New York, NY: Psychology Press; Taylor &

Francis Group), 127–143.

Gupta, R., and Kochenderfer, M. J. (2004). “Common sense data acquisition for

indoor mobile robots,” in Proceedings of the Nineteenth National Conference

on Artificial Intelligence, Sixteenth Conference on Innovative Applications of

Artificial Intelligence (San Jose, CA), 605–610.

Harnad, S. (1990). The symbol grounding problem. Physica D 42, 335–346.

doi: 10.1016/0167-2789(90)90087-6

Hartson, R. (2003). Cognitive, physical, sensory, and functional

affordances in interaction design. Behav. Inform. Technol. 22, 315–338.

doi: 10.1080/01449290310001592587

Hernik, M., and Csibra, G. (2009). Functional understanding facilitates

learning about tools in human children. Curr. Opin. Neurobiol. 19, 34–38.

doi: 10.1016/j.conb.2009.05.003

Hodges, J. R., Spatt, J., and Patterson, K. (1999). “What” and “how”: evidence

for the dissociation of object knowledge and mechanical problem-solving

skills in the human brain. Proc. Natl. Acad. Sci. U.S.A. 96, 9444–9448.

doi: 10.1073/pnas.96.16.9444

Kaboli, M., Feng, D., and Cheng, G. (2017). Active tactile transfer

learning for object discrimination in an unstructured environment

using multimodal robotic skin. Int. J. Humanoid Robot. 15:1850001.

doi: 10.1142/S0219843618500019

Kim, J., Lim, H., Ahn, S. C., and Lee, S. (2018). “RGBD camera based material

recognition via surface roughness estimation,” in Proceedings - 2018 IEEE

Winter Conference on Applications of Computer Vision, WACV 2018, Stateline.

Koubâa, A. (2017). Robot Operating System (ros): The Complete Reference, Vol. 2.

Cham: Springer.

Kraft, D., Pugeault, N., Baseski, E., Popovic, M., Kragic, D., Kalkan, S., et al.

(2009). Erratum: “Birth of the object: detection of objectness and extraction of

object shape through object–action complexes”. Int. J. Humanoid Robot. 6:561.

doi: 10.1142/S0219843609001772

Kuhn, W. (2007). “An image-schematic account of spatial categories,” in Spatial

Information Theory (Berlin: Springer), 152–168.

Frontiers in Robotics and AI | www.frontiersin.org 21 April 2021 | Volume 8 | Article 476084

https://doi.org/10.1098/rstb.2012.0408
https://doi.org/10.1089/big.2016.0038
https://doi.org/10.1016/S0921-8890(03)00021-6
https://doi.org/10.3233/AIS-2009-0040
https://doi.org/10.1016/S0093-934X(03)00355-9
https://doi.org/10.1145/358669.358692
https://doi.org/10.1080/02643290442000310
https://portal.research.lu.se/portal/en/publications/cognitive-semantics-and-image-schemas-with-embodied-forces(336b0bea-162b-4acb-8f8e-62cfb006f05a).html#Overview
https://portal.research.lu.se/portal/en/publications/cognitive-semantics-and-image-schemas-with-embodied-forces(336b0bea-162b-4acb-8f8e-62cfb006f05a).html#Overview
https://portal.research.lu.se/portal/en/publications/cognitive-semantics-and-image-schemas-with-embodied-forces(336b0bea-162b-4acb-8f8e-62cfb006f05a).html#Overview
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/0167-2789(90)90087-6
https://doi.org/10.1080/01449290310001592587
https://doi.org/10.1016/j.conb.2009.05.003
https://doi.org/10.1073/pnas.96.16.9444
https://doi.org/10.1142/S0219843618500019
https://doi.org/10.1142/S0219843609001772
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Thosar et al. Robot-Centric Object Knowledge Acquisition

Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., and Beetz, M. (2010). “ORO,

a knowledge management platform for cognitive architectures in robotics,” in

IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS

2010 - Conference Proceedings (Taipei), 3548–3553.

Lenat, D. B. (1995). Cyc: a large-scale investment in knowledge

infrastructure. Commun. ACM 38, 33–38. doi: 10.1145/219717.2

19745

Li, W., and Fritz, M. (2015). “Teaching robots the use of human tools from

demonstration with non-dexterous end-effectors,” in IEEE-RAS International

Conference on Humanoid Robots (Seoul), 547–553.

Lim, G. H., Suh, I. H., and Suh, H. (2011). Ontology-based unified robot

knowledge for service robots in indoor environments. IEEE Trans. Syst. Man

and Cybern. Part A Syst. Hum. 41, 492–509. doi: 10.1109/TSMCA.2010.2

076404

Liu, H., and Singh, P. (2004). ConceptNet – A practical commonsense reasoning

tool-kit. BT Technol. J. 22, 211–226. doi: 10.1023/B:BTTJ.0000047600.45421.6d

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Trans. Inform. Theor. 28,

129–137. doi: 10.1109/TIT.1982.1056489

Louwerse, M. M., and Jeuniaux, P. (2010). The linguistic and

embodied nature of conceptual processing. Cognition 114, 96–104.

doi: 10.1016/j.cognition.2009.09.002

Mustafa, W., Wächter, M., Szedmak, S., Agostini, A., Kraft, D., Asfour, T.,

et al. (2016). “Affordance estimation for vision-based object replacement on

a humanoid robot,” in 47th International Symposium on RoboticsMunich. Vol.

2016, 164–172.

Osiurak, F., Rossetti, Y., and Badets, A. (2017). What is an

affordance? 40 years later. Neurosci. Biobehav. Rev. 77, 403–417.

doi: 10.1016/j.neubiorev.2017.04.014

Pedersen, T., and Michelizzi, J. (2004). “WordNet :: similarity - measuring

the relatedness of concepts measures of relatedness,” in Nineteenth National

Conference on Artificial Intelligence (AAAI-04) (San Jose, CA), 1024–1025.

Pineda, L. A., Rodríguez, A., Fuentes, G., Rascón, C., and Meza, I. (2017). A

light non-monotonic knowledge-base for service robots. Intell. Serv. Robot. 10,

159–171. doi: 10.1007/s11370-017-0216-y

Rand, A. (1990). “Chap. 2: Concept-formation,” in Introduction to Objectivist

Epistemology, eds H. Binswanger and L. Peikoff (New York, NY: Plume Books)

25–43.

Sanz, C. M., Call, J., and Boesch, C. (eds.). (2013). Tool Use in Animals: Cognition

and Ecology. Cambridge: Cambridge University Press.

Saxena, A., Jain, A., Sener, O., Jami, A., Misra, D. K., and Koppula, H. S.

(2014). RoboBrain: large-scale knowledge engine for robots. arXiv preprint

arXiv:1412.0691.

Shrivatsav, N., Nair, L., and Chernova, S. (2019). Tool substitution with

shape and material reasoning using dual neural networks. arXiv preprint

arXiv:1911.04521.

Sinapov, J., Wiemer, M., and Stoytchev, A. (2009). Interactive learning of the

acoustic properties of household objects. in IEEE International Conference on

Robotics and Automation Kobe.

Spiers, A. J., Liarokapis, M. V., Calli, B., and Dollar, A. M. (2016). Single-

grasp object classification and feature extraction with simple robot hands and

tactile sensors. IEEE Trans. Haptics 9, 207–220. doi: 10.1109/TOH.2016.25

21378

Stoytchev, A. (2007). Robot tool behavior: a developmental approach to autonomous

tool use (Ph.D. dissertation), College of Computing, Georgia Institute of

Technology, 1–277.

Stückler, J., and Behnke, S. (2014). “Adaptive tool-use strategies for

anthropomorphic service robots,” in 14th IEEE-RAS International Conference

on Humanoid Robots (Humanoids)Madrid.

Suh, I. H., Lim, G. H., Hwang, W., Suh, H., Choi, J. H., and Park, Y. T. (2007).

“Ontology-based multi-layered robot knowledge framework (OMRKF) for

robot intelligence,” in IEEE International Conference on Intelligent Robots and

Systems (San Diego, CA), 429–436.

Susi, T., and Ziemke, T. (2005). “On the subject of objects: four views

on object perception and tool use,” Cogn. Commun. Cooperat. 3, 6–19.

doi: 10.31269/triplec.v3i2.19

Swoboda, D. M.(2014). A comprehensive characterization of the asus xtion pro

depth sensor. Jr. J. Sci. Technol. 1, 16–20.

Takahashi, K., Ogata, T., and Tjandra, H. (2014). “Tool – body assimilation

model based on body babbling and neuro-dynamical system,” in International

Conference on Artificial Neural Networks (Hamburg).

Takamuku, S., Gómez, G., Hosoda, K., and Pfeifer, R. (2007).

“Haptic discrimination of material properties by a robotic hand,”

in 2007 IEEE 6th International Conference on Development and

Learning, ICDL (London).

Tenorth, M., and Beetz, M. (2009). “KNOWROB- Knowledge processing for

autonomous personal robots,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (Missouri), 4261–4266.

Thosar, M., Mueller, C., and Zug, S. (2018a). “What stands-in for a missing tool?: A

prototypical grounded knowledge-based approach to tool substitution,” in 11th

International Workshop on Cognitive Robotics in 16th International Conference

on Principles of Knowledge Representation and Reasoning (Tempe, AZ).

Thosar, M., Mueller, C. A., Jäger, G., Pfingsthorn, M., Beetz, M., Zug, S., et al.

(2020). “Substitute selection for a missing tool using robot-centric conceptual

knowledge of objects,” in Knowledge Representation and Reasoning Track in

35th ACM/SIGAPP Symposium On Applied Computing (Brno).

Thosar, M., Zug, S., Skaria, A. M., and Jain, A. (2018b). “A review of knowledge

bases for service robots in household environments,” in 6th International

Workshop on Artificial Intelligence and Cognition (Palermo).

Tikhanoff, V., Pattacini, U., Natale, L., and Metta, G. (2015). “Exploring

affordances and tool use on the iCub,” in IEEE-RAS International Conference

on Humanoid Robots (Seoul), 130–137.

Toussaint, M., Allen, K. R., Smith, K. A., and Tenenbaum, J. B. (2019).

“Differentiable physics and stable modes for tool-use and manipulation

planning - Extended abstract,” in IJCAI International Joint Conference on

Artificial Intelligence (Macao), 6231–6235.

Vaesen, K. (2012). The cognitive bases of human tool use. Behav. Brain Sci. 35,

203–218. doi: 10.1017/S0140525X11001452

Vauclair, J., and Anderson, J. A. (1994). Object manipulation, tool use, and the

social context in human and non-human primates. Techniq. Cult. 23–24,

121–136. doi: 10.4000/tc.556

Wicaksono, H., and Sammut, C. (2018). Tool use learning for a real robot. Int. J.

Electr. Comput. Eng. 8, 1230–1237. doi: 10.11591/ijece.v8i2.pp1230-1237

Wu, J., Lim, J. J., Zhang, H., Tenenbaum, J. B., and Freeman, W. T. (2016).

“Learning physical object properties from unlabeled videos,” in British Machine

Vision Conference (York).

Xie, A., Ebert, F., Levine, S., and Finn, C. (2019). Improvisation through physical

understanding: using novel objects as tools with visual foresight. arXiv preprint

arXiv:1904.05538.

Zhu, Y., Fathi, A., and Fei-Fei, L. (2014). “Reasoning about object affordance in

a knowledge based representation,” European Conference on Computer Vision

(Amsterdam), 408–424.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Thosar, Mueller, Jäger, Schleiss, Pulugu, Mallikarjun

Chennaboina, Rao Jeevangekar, Birk, Pfingsthorn and Zug. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 22 April 2021 | Volume 8 | Article 476084

https://doi.org/10.1145/219717.219745
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.cognition.2009.09.002
https://doi.org/10.1016/j.neubiorev.2017.04.014
https://doi.org/10.1007/s11370-017-0216-y
https://doi.org/10.1109/TOH.2016.2521378
https://doi.org/10.31269/triplec.v3i2.19
https://doi.org/10.1017/S0140525X11001452
https://doi.org/10.4000/tc.556
https://doi.org/10.11591/ijece.v8i2.pp1230-1237
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	From Multi-Modal Property Dataset to Robot-Centric Conceptual Knowledge About Household Objects
	1. Introduction
	1.1. Building Blocks for Robot-Centric Conceptual Knowledge
	1.1.1. Conceptual Knowledge
	1.1.2. Robot-Centric Knowledge
	1.1.3. Knowledge Representation

	1.2. Related Work
	1.3. Contribution
	1.3.1. Multi-Modal Physical Property Estimation
	1.3.2. Generation of Robot-Centric Conceptual Knowledge:


	2. Property Estimation Framework
	2.1. Property Estimation
	2.2. Physical Properties
	2.2.1. Size Property
	2.2.2. Flatness Property
	2.2.3. Hollowness Property
	2.2.4. Heaviness Property
	2.2.5. Rigidity Property
	2.2.6. Roughness Property

	2.3. Functional Properties
	2.3.1. Support Property
	2.3.2. Containment Property
	2.3.3. Movability Property
	2.3.4. Blockage Property


	3. Generation of Robot-centric Conceptual Knowledge
	3.1. Sub-categorization – From Continuous to Discrete
	3.2. Attribution – Object Instance Knowledge
	3.3. Conceptualization – Knowledge About Objects

	4. Experimental Evaluation
	4.1. RoCS Dataset
	4.1.1. Hardware Setup
	4.1.2. Object Property Acquisition Procedure
	4.1.3. Dataset Structure

	4.2. Property Estimation
	4.2.1. Estimation Stability
	4.2.2. Property Coverage of RoCS
	4.2.3. Property Correlation

	4.3. Property Semantics
	4.4. Conceptual Knowledge for Substitute Selection
	4.4.1. Robot-Centric Conceptual Knowledge vs WordNet


	5. Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


