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Research on Human-Robot Interaction (HRI) requires the substantial consideration of an
experimental design, as well as a significant amount of time to practice the subject
experiment. Recent technology in virtual reality (VR) can potentially address these time and
effort challenges. The significant advantages of VR systems for HRI are: 1) cost reduction,
as experimental facilities are not required in a real environment; 2) provision of the same
environmental and embodied interaction conditions to test subjects; 3) visualization of
arbitrary information and situations that cannot occur in reality, such as playback of past
experiences, and 4) ease of access to an immersive and natural interface for robot/avatar
teleoperations. Although VR tools with their features have been applied and developed in
previous HRI research, all-encompassing tools or frameworks remain unavailable. In
particular, the benefits of integration with cloud computing have not been
comprehensively considered. Hence, the purpose of this study is to propose a
research platform that can comprehensively provide the elements required for HRI
research by integrating VR and cloud technologies. To realize a flexible and reusable
system, we developed a real-time bridging mechanism between the robot operating system
(ROS) and Unity. To confirm the feasibility of the system in a practical HRI scenario, we
applied the proposed system to three case studies, including a robot competition named
RoboCup@Home. via these case studies, we validated the system’s usefulness and its
potential for the development and evaluation of social intelligence via multimodal HRI.

Keywords: virtual reality, software platform, social and embodied intelligence, dataset of interaction, robot
competition

1 INTRODUCTION

Human-robot interaction (HRI) is one of the most active research interest in robotics and intelligent
systems. Owing to the complexity of the HRI system, there are several challenges facing its research
activities. One of such challenges is the collection of a dataset for machine learning in HRI (Amershi
et al., 2014), which is required to learn and model human activities. A conventional strategy for
assessing human activity in their interaction with robots is via video surveillance systems, such as
motion capture systems. For example, Kanda (Kanda et al., 2010) developed a massive sensor
network system to observe human activity in a shopping mall environment, over a period of 25 days.
Another application of the interaction between a robot and children in an elementary school
required approximately two months to collect the interaction dataset (Kanda et al., 2007). The
significant cost of such an observation is a limitation of HRI research.
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Consequently, experimental investigations involving virtual
reality (VR) and simulations are garnering significant attention as
potential methodologies for reducing the cost of data collection.
Accordingly, various researchers have proposed the application
of VR and simulation systems in the context of HRI. In addition
to the desirable reduction in the cost of data collection that can be
achieved, other significant advantages of this approach are: 1) cost
reduction, as experimental facilities are not required in a real
environment. 2) provision of similar environmental and
embodied interaction conditions to test subjects (participants).
3) visualization of arbitrary information and situations that
cannot occur in reality, such as playback of past experiences,
and 4) easy access to an immersive and natural interface for
robot/avatar teleoperation systems.

Although some systems and tools realize each of these functions,
no system or framework can comprehensively consider all of them. In
particular, crowdsourcing is a robust tool in recent HRI research,
which is realized by linking VR systems with cloud computation;
however, no platform can efficiently realize this function. The lack of
such a system limits the promotion of HRI research. Accordingly, a
middleware-like platform for HRI + VR systems, which is equivalent
to the robot operating system (ROS) middleware, is required for the
intelligent robot community. In this study, we propose SIGVerse, a
system that can comprehensively realize all of the already mentioned
functions.

The proposed system allows participants to participate in HRI
experiments, which are set up in the VR environment via the
Internet, without actually inviting them to the real laboratory or
experimental field, as illustrated in Figure 1. Because the
participants can log in to an avatar with the VR device and
interact face-to-face with the virtual robot from the first-person’s

view, most HRI experiments conducted so far can be realized in a
VR environment. The time burden on the participants can also be
distributed via crowdsourcing, based on the invitation of more
participants.

The contributions of this study are as follows: 1) The proposed
SIGVerse, which is an open software platform with high
reusability, addresses four significant challenges: cost reduction
of experimental environment construction, provision of the same
experimental conditions to participants, reproduction of past
experiences, and development of a base system for the natural
interface of robot/avatar teleoperations. 2) It validates the
effectiveness of these functions via case study implementation
and verification. 3) It establishes a foundation for an objective and
fair evaluation of HRI, primarily by deploying the proposed
system in actual robot competitions.

In Chapter 2, we discuss related works from various
perspectives on the advantages of VR in HRI. In Chapter 3, we
comprehensively describe the system configuration and
implementation method for realizing these functions. In Chapter 4,
we present case studies using the significant functions, and in Chapter
5, we discuss the effectiveness of the proposed SIGVerse system,
including the challenges that are difficult to address. Finally, Chapter 6
summarizes the findings and contributions of this study.

2 RELATED WORKS

2.1 Cost Reduction of Experimental
Environment
Various physical functions of intelligent robots, such as learning
strategies for grasping objects (Levine et al., 2018), manipulating

FIGURE 1 | SIGVerse system concept. Arbitrary client users can participate in the HRI experiment via the Internet using VR devices.
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flexible objects (e.g. cloth) (Yang et al., 2017), and automatic
driving (Grigorescu et al., 2019), have been significantly improved
by the recent development of machine learning technology. The
common principle of these robot learning techniques is that they
prepare a sample of bodymovements and decisions in the form of
datasets. Some methods, such as Yang’s system (Yang et al.,
2017), require only a few tens of data. However, the more
complex the problem, the larger the amount of data required,
and the required data in such cases are in the range of thousands
to tens of thousands (Osentoski et al., 2010). This quantity of data
is impractical to obtain in real environments. Although we can
achieve autonomous learning by creating an environment in
which robots can repeat object manipulation tasks, the
situation differs if the learning target changes to interaction
behavior with humans.

VR is also beneficial in collecting data on rare or dangerous
situations. It has been adopted for training in disaster and
accident evacuation scenarios (Sharma and Otunba, 2012) and
driving simulators (Wiederhold and Wiederhold, 2010), which
are too dangerous to reproduce in real environments. It does not
only aid trainings and simulations, but also enables the data
collation and analysis of human interaction behavior with robots
in dangerous and rare situations (Robinette et al., 2019).

Based on these datasets, various multimodal behavioral
datasets have been proposed for HRI datasets. The KIT
motion dataset (Plappert et al., 2016) provides a combination
of the modalities for motion pattern and natural language
description. Movie datasets (Regneri et al., 2013; Sigurdsson
et al., 2016) of human activities in daily life environments
have been proposed. Regarding conversations, the collection of
utterances and evaluation of communication in navigation tasks
have been introduced (MacMahon et al., 2006; Vries et al., 2018;
Mei et al., 2016). Owing to the research on natural language
processing, the range of modality combinations is effective in the
evaluation of behavior recognition and expansion in
collaboration; however, it is limited. Because it also requires
dedicated experimental environments and equipment to
introduce more data, developing the open dataset in the
research community is challenging.

2.2 Provision of a Uniform Experimental
Condition for Participants
In cognitive psychological HRI research, the physical and social
conditions of the participants in an experiment are strongly
required to be uniform across participants and designed to be
statistically analyzable (Coolican, 2017; Hoffman and Zhao,
2021). It is also important to solely control the experimental
conditions to be compared, instead of other factors. However, it is
challenging to completely unify such experimental conditions in a
real environment. As a prerequisite for the design of experiments
in real environments, substantial efforts are required to optimally
unify lighting conditions and acoustic conditions, as well as the
human behavior, other than the other participants in the
experiment.

This unification challenge and control of conditions can be
addressed using VR, which will be beneficial in ensuring the

quality of the cognitive psychological research, and also in
determining a clear baseline for evaluating the performance of
interactive social robots.

For example, in the RoboCup@Home competition (Iocchi
et al., 2015), which evaluates the quality of human-robot
interaction, it is difficult to address this limitation. In the real
competition field, it is difficult to completely unify the physical
environmental conditions, such as the presence or absence of
environmental noise during voice recognition and changes in
lighting conditions during image recognition. The social and
embodied behaviors of the participants participating in the
experiment also varies from trial to trial (Scholtz et al., 2004).
Therefore, evaluating quality with statistical reliability is a
challenge.

Because human perception differs in many aspects between
actual reality and VR, we cannot simply replace the experimental
environment with VR (Wijnen et al., 2020). Therefore, it is
necessary to consider several conditions, such as differences in
distance perception (Li et al., 2019), gaze control (Duchowski
et al., 2014; Sidenmark and Gellersen, 2019), and visual
perception owing to a narrow field of view (Willemsen et al.,
2009; Mizuchi and Inamura, 2018).

2.3 Multimodal user Interface for HRI in VR
Fang et al. developed a simple wearable motion measurement
device (Fang et al., 2019) that can be worn on the human arm and
hand, thereby enabling robot teleoperation with detailed
accuracy. However, head-mounted displays (HMDs) have not
been adopted to provide images from the robots’ perspective. In
addition, because it is not a general-purpose consumer device, the
participation of participants in a cloud environment is limited.

Lemaignan et al. proposed the application of SPARK, which
enables social robots to assess the human-robot interaction
condition and plan an appropriate behavioral response based
on a spatiotemporal representation using three-dimensional (3D)
geometric reconstructions from robot sensors (Lemaignan et al.,
2017). They also expanded the system to share the representation
among a group of service robots, such as UNDERWORLDS
(Lemaignan et al., 2018). Because the main contribution of
both systems is to establish an internal representation of the
world for social robots, the systems do not support a user
interface that shares this representation with humans.
Simulation of the social interaction behavior between robot
systems and real humans is an important function of service
robots; however, these systems require actual robots for the
assessment and planning of social interactions. Hence, real-
time human participation in a virtual HRI scenario is the
objective of our study.

Another related work is the digital twin (El Saddik, 2018),
which creates a digital replica of the real world, including
humans, robot agents, and environments. An application of
the digital twin in HRI is the investigation and optimization of
the interaction/interface system and the design of robot systems
The manufacturing engineering field has recently focused on this
technology; consequently, several software systems have been
proposed (Bilberg and Malik, 2019; Kuts et al., 2019). However,
the main focus of these attempts is the real-time reproduction of
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the physical world. In addition, the real-time participation of
humans in the virtual world has not been thoroughly discussed
and developed.

In conventional VR systems, focus has often been placed on
the user interface to render the audiovisual and tactile
information perceived by humans more realistic. In the case of
application of VR systems in robot teleoperation, the presence of
a human being in the VR space is not necessary because users
control the robots directly. However, in the case of HRI in VR, it is
important to note that users log in to the system and assume an
avatar (virtual human) that interacts in real time with the virtual
robot with spatial and embodied cognition. It is also critical to
ensure that the virtual robot can observe the avatar to understand
its behavior.

2.4 Base for Teleoperation Systems
In recent years, VR systems (Lipton et al., 2018; Whitney et al.,
2020) and skill learning based on teleoperation demonstrations
(Mandlekar et al., 2018; Zhang et al., 2018) have been adopted to
actively perform robot teleoperations with the aim of cost
reduction.

VR and simulations are often used to compensate for the lack
of information when operating robots in extreme environments
such as space robotics (Yoon et al., 2004) and nuclear power plant
maintenance (Pruks et al., 2018), as delays and communication
breakdowns are expected to occur. In this case, it is necessary to
predict and visualize the future via simulations (Clarke et al.,
2007). Therefore, it is necessary to cooperate with prediction
systems that differ from the VR user interfaces and visualization
subsystems.

In cognitive psychological HRI research, the Wizard of Oz
(WoZ) method is often adopted to operate a robot (Komatsubara
et al., 2018; Riek, 2012). In this case, the goal is to control the
robot’s behavior, such that it appears natural to the participants,
rather than controlling the robot for motor learning remotely. To
achieve this, the operator must control the robot by grasping the
images observed from the robot’s viewpoint and the participants’
behavior in real time. In addition, the robot must be able to
interact with the participants without delays, as the robot may
interact with the participants by voice or physical means,
depending on the situation.

The problem common to these applications is the challenge in
grasping the situation from the robot’s viewpoint, depending on
the type of task. Therefore, it would be beneficial to apply VR to
reproduce images from other viewpoints (Okura et al., 2014),
such as images from a camera installed on the ceiling or images
from an omnidirectional camera.

2.5 System Versatility and Scalability
Bazzano et al. developed a VR system for service robots (Bazzano
et al., 2016). This system provides a virtual office environment
and an immersive VR interface to test the interaction between
virtual robots and real humans. Because the software of a service
robot should be developed in the C# script on the Unity system,
the compatibility among real robots is low.

From the perspective of platforms, several open source
platforms for artificial intelligence (AI) agents in indoor

environments, such as Malmo (Johnson et al., 2016), MINOS
(Savva et al., 2017), AI2THOR (Kolve et al., 2017), have been
proposed. These projects provide free and open software
platforms that enable general users to participate in the
research and development of intelligent agent systems, in
which the difficulty in building robot agents and 3D
environment models is eliminated. Because the concept of the
systems involves the easy development of an autonomous agent
system, the control of AI agents is limited to sending simple
commands by script, without using an ROS. Furthermore, the
systems do not support real-time interaction between real users
and AI agents because the primary target is the interaction
between AI agents and the environment.

In this study, we focus on the realization of an open platform
to collect and leverage multimodal-interaction-experience data
that were collected in daily life environments and require
embodied social interaction.

3 SIGVERSE: A CLOUD-BASED VR
PLATFORM

In this section, we introduce the concept of a could-based VR
system to accelerate research on HRI.

For example, collaborative cooking tasks and dialogue-
management systems dealing with vague utterances and
gestures, as well as gazing behaviors are assumed to be target
situations that involve HRI scenarios. In these situations, a robot
must observe and learn the social behaviors of the humans with
which it interacts and solves ambiguities based on past interaction
experiences. In these complex environments, the robot collects
the following multimodal data:

1. Physical motion/gestures during interaction (including gaze
information)

2. Visual information (i.e., image viewed by the agents)
3. Spatial information (i.e., positions of agents and objects)
4. Voice interaction (i.e., utterance of agents)

Furthermore, the following functions must be provided:

i). Users are able to login to avatars in the VR environment
from anywhere

ii). Multiple users can simultaneously login to the same VR
scene via the Internet

iii). Time-series multimodal interaction data can be recorded
and replayed

iv). Control programs of real robots can be attached to virtual
robots

Functions (i) to (iii) are based on the real-time participation of
humans in the virtual environment, which is yet to be discussed in
conventional robot simulators. Function (iv) is required for the
efficient development of robot software, which can be used in
both real and virtual environments. Therefore, the support of
robotic middleware is essential. Function (iii) requires high
quality graphics function and computational power for the
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physical simulation. The reusability of the ready-made 3D robot
model and the daily life environment is also essential in constructing a
variety of virtual environments for HRI experiments. Because we have
several types of data formats for the robot model, compatibility is
another important function that ensures efficient development.
Table 1 presents the performance of existing related systems from
the perspective of these required functions.

Our previous system (SIGVerse ver.2) (Inamura, 2010) has
been applied in studies such as the analysis of human behavior
(Ramirez-Amaro et al., 2014), learning of spatial concepts
(Taniguchi et al., 2016), and VR-based rehabilitation (Inamura
et al., 2017). These studies employed multimodal data (1)–(4) and
functions (i)–(iii); however, the reusability of the conventional
SIGVerse is restricted because it does not adopt ROS as its
application programming interface (API). Therefore, we
updated the system to maintain functions (i)–(iii) and realize
function (iv). The following subsections present the software
architecture that realizes these functions.

3.1 Architecture of the SIGVerse
The detailed architecture of SIGVerse (Version. 3), which
includes a participant and a robot, is illustrated in Figure 2.

SIGVerse is a server/client system that is based on a third-party
networking technology (i.e., Photon Realtime). The server and
clients share the same scene, which is composed of 3D object
models such as avatars, robots, and furniture. By transferring the
information of registered objects via the Internet, the events in
each scene can be synchronized.

The participant can login to an avatar via VR devices, such as
HMDs, hand-tracking controllers, audio devices, and motion
capture devices. According to the input from these VR
devices, the behavior of the participant is reflected on the
avatar by Unity scripts. Perceptual information, such as
perspective visual feedback, is provided to the participant.
Therefore, the participant can interact with the virtual
environment in a manner similar to a real environment.

The proposed VR simulation system has a bridging mechanism
between the ROS and Unity. Software for virtual robot control can be
reused in real robots without modification, and vice versa.

The information required for reproducing multimodal
interaction experiences is stored on a cloud server as a large-
scale dataset of embodied and social information. By sharing this
information, users can reproduce and analyze multimodal
interactions after the experiment.

TABLE 1 | Functions and limitations of related systems.

Platform Graphics Physics/dynamics 3D model
format

Ready-made
model/environment

Robotic
middleware

Immersion of
human

Gazebo (Koenig and
Howard (2004))

OGRE ODE, bullet,
simbody, DART

SDF/URDF, STL,
OBJ, collada

40 + robot models, 7
competitions

ROS Not supported

USARSim (Lewis et al.
(2007))

Unreal engine 2, unreal engine 3, unreal
development kit

ut2, ut3, udk 5 + robot modes, RoboCup
rescue, RoboCup soccer

Player, ROS Not supported

V-REP (Rohmer et al.
(2013))

OpenGL Bullet,ODE, vortex,
Newton

OBJ, STL, DXF, 3DS,
collada, URDF

30 + robot models ROS Not supported

Choreonoid (Nakaoka
(2012))

OpenGL AIST engine, ODE,
bullet, PhysX

Body, VRML A few robot models OpenRTM Not supported

Open-HRP (Kanehiro
et al. (2004))

Java3D ODE, bullet VRML A few robot models OpenRTM Not supported

Webots (Michel (2004)) WREN (OpenGL) ODE WBT, VRML, X3D 50 + robot models, 500 +
objects, 6 environments

ROS, NaoQI Not supported

OpenRAVE (Diankov
and Kuffner (2008))

Coin3D,
OpenSceneGraph

ODE, bullet XML, VRML, OBJ,
collada

10 + robot models ROS, YARP Not supported

MINOS (Savva et al.
(2017))

WebGL N/A Unknown SUNCG, Matterport3D N/A Not supported

Project Malmo (Johnson
et al. (2016))

Minecraft Unknown MARLÖ competition N/A Not supported

AI2THOR (Kolve et al.
(2017))

Unity FBX, collada, 3DS,
DXF, OBJ, ...

200 + environments, 2,600 +
objects

N/A Not supported

VirtualHome (Puig et al.
(2018))

Unity FBX, collada, 3DS,
DXF, OBJ, ...

6 environments, 350 + object
models, knowledge base

N/A Not supported

DeepMind lab (Beattie
et al. (2016))

Quake III arena Unknown Several games N/A Not supported

OpenAI gym (Brockman
et al. (2016))

MuJoCo, atari, Box2D, 15 + simulation
environments

Unknowna Unknowna N/Ab Not supported

iCub-HRI (Fischer et al.
(2018))

N/A N/A 1 robot model YARP Not supported

SIGVerse (Ver.2)
(Inamura (2010))

OGRE ODE X3D, VRML A few robot model N/A Supported

SIGVerse (Ver.3) Unity FBX, collada, 3DS,
DXF, OBJ...

5 + robot models, 200 +
objects, 40 + environments

ROS Supported

aDepends on the adopted simulation environment.
bROS is solely supported in a third-party environment gym-gazebo.
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3.2 Mechanism for Connecting ROS and
Unity

To control a robot in a VR environment, sensory feedback and
robot commands should be transferred between Unity scripts and
ROS nodes. The most important factor in realizing the
integration of ROS and unity is the communication protocol
between them. Software systems for bridging ROS and Unity have
been proposed by Hu et al. (Hu and Meng, 2016) and Downey
et al. (Codd-Downey et al., 2014). For these systems, the motor
commands and sensor information are transferred using a
rosbridge. However, if users attempt to transfer a massive
amount of sensor information from Unity, such as camera
images, transfer speed is inhibited. Previous works (Codd-
Downey et al., 2014; Hu and Meng, 2016) did not consider
how to transfer camera images in real time; accordingly, a
novel technique for realizing real-time transfer based on the
binary JavaScript object notation (BSON) format, using a
TCP/IP connection, is proposed in the following section.

As a ROS functionality, the rosbridge framework provides a
JavaScript object notation (JSON) API and a WebSocket server to
ensure communication between an ROS program and an external
non-ROS program. JSON is a text-based data exchange format that
represents pairs of keywords and values. Although the rosbridge
protocol ensures sending and receiving ROS messages, its
performance in transferring large JSON data, such as images, is
insufficient and cannot satisfy real-time sensor feedback.
Accordingly, a specific server (sigverse_rosbridge_server) is
implemented to communicate large data volumes. To speed up
communication, the BSON format was employed instead of JSON.

BSON is a binary-encoded serialization with a JSON-like format. The
use of BSON offers the following advantages: reduction in
communication data size to less than that of text-based data,
independence of the conversion process between text and binary,
and representation of data as key-value pairs that are compatible with
ROS messages. When ROS messages are advertised by Unity scripts,
the main thread of the sigverse_rosbridge_server generates a new
thread for each topic as an ROS node. Each thread receives ROS
messages from theUnity scripts and publishes them in the ROS nodes
of the robot controller as ROS topic messages.

Siemens and the ROS community have proposed the software
module, ROS#, to support communication between ROS and
Unity1. ROS# employs the rosbridge to send and receive control
commands, including the status of the robot. Recently, rosbridge
has provided optional functionality for transferring data using the
BSON format. However, the data exchange format, as well as the
efficient and fast emulation of sensor data, is important for real-
time transfer of sensor data. As another unique feature, SIGVerse
can generate the uncompressed binary data of image data
(i.e., raw data with the exact memory structure as actual
camera devices installed on real robots) at high speeds using
Unity’s functionalities. Detailed descriptions of the sensor
emulation process are provided in the Supplementary Appendix.

We evaluated the data transfer performance (Mizuchi and
Inamura, 2017) to compare the proposed method with the
conventional JSON-based method. The experimental
conditions presented in Figure 3 were adopted for the

FIGURE 2 | Software architecture of the SIGVerse system.

1https://github.com/siemens/ros-sharp.
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investigation, where a mobile robot tracked a walking person
using an RGB-D sensor. A PC with a Xeon E5-2687W CPU and
GeForce GTX TITAN X GPU were used in this evaluation. The
size of the raw RGB-D frame was 1.5 MB. The average frequencies
of RGB-D data are presented in Table 2. The JSON
communication was insufficient in satisfying the real-time
requirement for HRI, even when a high-end computer was
employed.

3.3 User Interface for HRI in VR
The Oculus Rift is available as the default VR device when a
human logs into an avatar. The user wears the HMD on the head
and controls the avatar in VR by grasping the hand controllers,
called Oculus Touch, with both hands. The position and posture
of the HMD and hand controllers are measured in real time, and
reflected in the avatar’s head and hands. Because there is a
difference in body structure between the user and the avatar,
only the avatar’s head and end-effector are visualized. If an
application requires the visualization of the posture of the
entire body, the joint angles of the upper body are calculated
via inverse kinematics based on the position and orientation of

the Oculus Touch sensors, or a Kinect sensor used in
combination with the Oculus Touch sensors.

To grasp objects in VR, we adopted a Unity asset called
NewtonVR2. The script NVR Interactable Item was attached
to the graspable object, and the script NVR Hand was
attached to the human avatar’s hand. We also attached a mesh
structure for collision detection, called a Mesh Collider, as
illustrated in Figure 4. A mesh structure based on the shape
of the object was attached to each object. A simple sphere mesh
was then attached to the hands of the avatar with a radius of 7 cm.
When the user pushed the trigger button, the system investigated
the overlap of these meshes. If the meshes overlap, the grasp is
considered successful, and the object is connected to the end-
effector. Although the Newton VR function controls the object’s
grasping status, it is not affected by the physics simulation, such
as gravity.

To realize object manipulation with constraint conditions,
such as drawers and hinge joint doors in VR, we attached
Configurable Joint and Hinge Joint asset scripts to the object
and set the constraint conditions. By setting the range of motion
with the linear limit option for the configurable joint and the limit
option for the hinge joint, we achieved natural object
manipulation. Attaching the NVR Interactable Item script to
the door handle allowed the object to be grasped in the same way
as general objects.

The time delay was approximately 40–60 ms, which is
required to render the 3D images of the robot/avatar/
environment states in the VR space, and project the image
onto the HMD. Because this delay time may trigger VR
sickness, it is necessary to consider reducing the
computational load when an HRI experiment is performed.
Major factors that increase the computational load are the
type and amount of data to be recorded. The data recording

FIGURE 3 | Virtual RGB image and depth data transferred from Unity to
ROS. The top image illustrates a VR scene, which includes a robot with an
RGB-D sensor, while the bottom figure illustrates an RGB image and depth
data received in the ROS.

TABLE 2 | Frequencies of virtual RGB-D data depending on protocols.

WebSocket with JSON TCP/IP with BSON

(Conventional rosbridge) (sigverse_rosbridge)
0.55 [fps] 57.60 [fps]

FIGURE 4 |Mesh Collider configuration to realize simple object grasping
function by human avatar.

2https://assetstore.unity.com/packages/tools/newtonvr-75712.
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settings described in Section 3.5 need to be varied according to
the robot task and application objective.

3.4 Configuration of the Cloud-Based VR
Space for HRI
To enable general users to participate in an HRI experiment from
an arbitrary location, we developed a cloud-based VR function on
SIGVerse. Each user logs into an avatar via a client computer,
which has a Unity process for VR devices. To control the behavior
of the target robot, the user’s computer connects to another
computer, which has another Unity process. The internal states of
all VR scenes are synchronized via the Internet based on Photon
Realtime, which is a universal software module for integrating
different game engines. For the simple use case, each computer
(Unity process) was connected to a cloud server provided by
Photon Inc.

Figure 2 also illustrates the cloud configuration employed in
SIGVerse. One computer (Unity process) was assigned to each
user/robot to realize the complex interaction between multiple
robots and users.

We measured the latency between a local avatar and other
avatars, whose motions were synchronized using a local Photon
server. The configuration of the latency evaluation is presented in
Figure 5. The broadcasted motion player software (Axis Neuron)
pre-recorded motion data via a TCP/IP connection. Because all
the clients were located in the same place, the motion difference
between local avatars was negligible. The postures of the non-
local avatars were synchronized with those of the corresponding
avatars in each client. The position and rotation of 56 joints,
including the fingers, were synchronized for each avatar. Latency
was evaluated in 2-client, 4-client, and 8-client cases.

The z-position of the right-hand side in each case is shown in
Figure 6. Although the motions of the non-local avatars were
slightly disturbed and delayed, their motions were synchronized.
Regardless of the number of clients, the latency of synchronized
motions was approximately 70 ms. This latency is sufficiently low

to allow multimodal interaction and cooperative tasks among
multiple robots and avatars in a cloud-based VR space.

3.5 Database Subsystem for Recording
Human-Robot Interaction
The SIGVerse system has a database subsystem that records
multimodal HRI behavior, and the targets of the recording
consist of physical and cognitive interactions. As the physical
interaction, the system records the actions of the robot and avatar
(time-series data of joint angles and positions of the robot and
avatar), and time-series data of the status of objects that are
manipulated by the robot and the avatar. As the cognitive
interaction, the system records verbal conversations between
the robot and avatar. Because the recorded data can be stored
in the MySQL server, a client can reproduce the physical and
cognitive interactions in the VR environment from anywhere via
the Internet.

Although the sensor signals measured by the robot are useful
information as HRI records, the database subsystem does not
record sensor signals because the computational load for
simulating and recording the sensors is high. For example,
HSR has five cameras of four types: an RGBD camera, a
camera attached to the end-effector, a wide-angle camera on
the head, and a stereo camera. If all of these camera images were
recorded at the specified frame rate, the amount of data would be
approximately 500 Mbps. Because it is impractical to record all of
the camera data, we implemented a playback mode. The playback
mode provides a function to reproduce the sensor signals from
the recorded behavior of the robot, avatar, and objects, instead of
recording the sensor signals directly. For example, in the case of
learning by demonstration, when a robot learns a behavior by
observing a human body movement and referring to the camera
image obtained at that time, only the user’s body movement was
recorded. After observing and recording the body movement, the
robot used the playback mode to emulate the camera image and
referred to the relationship between the camera image and body
motions during learning. Therefore, SIGVerse is both a VR
interface for humans and an experience reproduction
simulator for robots.

4 CASE STUDIES

4.1 Robot Competition
A better and more effective method for evaluating the
performance of HRI is via robot competitions, such as
RoboCup@Home (Iocchi et al., 2015). Because the
organization of a robot competition requires a considerable
amount of time and human resources, simulation technologies
are often employed to reduce costs. Although RoboCup Soccer
and RoboCup Rescue have simulation leagues, RoboCup@Home
does not have a simulation league. One of the reasons for realizing
the RoboCup@Home simulation is the need for interactions
between real and virtual robots. This problem can be solved
using SIGVerse. Although the competition participants do not
need to learn about the VR system, they should concentrate on

FIGURE 5 | Configuration of latency evaluation.
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software development on the ROS framework. The product of the
developed robot software can be easily applied to a real robot
system.

Because it is difficult to change the rulebook and competition
design of RoboCup, we organized a VR-based HRI competition in
the World Robot Summit, Service Category, Partner Robot
Challenge3, which was held in Tokyo, in October 2018 (Okada
et al., 2019). The following subsections present two representative
tasks in the competition based on the proposed system.

4.1.1 Task 1: Interactive Cleanup
Figure 7 In this task, the robot is required to clean up the room as
instructed by a human using pointing gestures. The human points
to a target object anywhere in the room and then gestures to a
trash can, a cupboard, or any other location to be cleaned up.
Because the competition field is a large room, humans have to
walk around and make pointing gestures. Therefore, it is not
enough for the robot to recognize the gestures’ video, but the
robot also needs to track the moving human and observe gestures.

Gesture recognition is a basic function for understanding
human behavior. The image dataset (Wan et al., 2016) and
competition (Escalera et al., 2013) have played an important
role in this area over the past several decades. The gesture
recognition functions required for intelligent robots that work

FIGURE 6 | Movements of local and synchronized avatars (A) movements in 2-client case (B) movements in 4-client case, and (C) movements in 8-client case.

FIGURE 7 | Screenshot of the Interactive CleanUp task.

3World Robot Summit, Service Category, Partner Robot Challenge http://
worldrobotsummit.org/en/wrc2018/service/.
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with people include both label recognition, and it also follows a
moving human and observation of the gesture from an easy-to-
view perspective. Furthermore, the pointing target object is
recognized from the spatial relationship between the object
that exists in the environment and the human.

It was impossible to provide precisely the same conditions to
multiple competing teams when we performed the competition in
an actual field. Although similar competition tasks existed in
RoboCup@Home, only one robot could interact with a human at
a time. Therefore, the human had to repeat similar pointing
gestures severally. However, because it is impossible to precisely
reproduce the same posture and movements, it is not easy to

evaluate the performance with strict fairness. In addition,
increasing the number of trials would cost too much time;
hence, it was sometimes necessary to evaluate the performance
with only one trial in the worst case.

4.1.2 Task 2: Human Navigation
Here, we focus on a task namedHumanNavigation (Inamura and
Mizuchi, 2017), in which the robot has to generate friendly and
simple natural language expressions to guide people to perform
several tasks in a daily environment, for the evaluation of HRI in
the VR environment. The roles of the robot and the user are
opposite to those in the conventional task, such as the roles of

FIGURE 8 | Sequence of events in the Human Navigation task.

FIGURE 9 | Screenshot of theHuman Navigation task. Written informed consent was obtained from the test subject for the publication of any potentially identifiable
images or data included in this article.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 54936010

Inamura and Mizuchi SIGVerse: Cloud-based VR Platform

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


understanding and achieving a request given by users. The
robot has to provide natural language instructions to inform a
person to carry a certain target object to a certain
destination, for instance, “Please take the cup on the
table in front of you to the second drawer in the
kitchen.” In this task, the human operator (test subject)
logged into an avatar in a VR space and followed the
instructions. The test subject then attempted to pick up
the target object and take it to the destination using virtual
reality devices by following the instructions from the robot,
as illustrated in Figures 8, 9. The time required to complete
this transportation was measured and applied to calculate
the points. The team that generated the easiest and most
natural instructions for a person to follow received more
points.

According to the rulebook4 of this competition, we evaluated
the reaction of the test subjects based on approach to addressing
the utterance of the robot. A basic analysis of the interaction’s
effectiveness was performed by the required time. If the
instruction from the robot is unfriendly, the test subjects tend
to be confused and exhaust a substantial amount of time in
completing the task.

The significant features of SIGVerse that support this task
are its abilities to record all human and robot actions in real
time and switch between various environments. In this task,

the intelligent robot’s performance is evaluated not only by
the robot’s behavior, but also by the human’s reaction. The
measurement and evaluation targets are the number of
questions asked by the human, number of human failures,
and time required for success. Although it is possible to
perform the same task in a real environment, it would
require attaching markers to the test subjects and
introducing a motion capture system that covers the entire
playing field, which is expensive. Otherwise, a human referee
would have to constantly monitor the subject’s behavior to
score the behavior. One of the advantages of VR is that the
reactions can be measured and analyzed using a simple VR
interface device.

In addition, similar to the interactive cleanup task
described above, the advantage of using SIGVerse is that
we can statistically evaluate human behaviors in a wide
variety of environments. When performing a similar task in
a real environment, it is not easy to change the layout of the
room owing to time limitations. Therefore, the subject
remembers the layout of the environment as the number of
trials increases. The ease of interpreting verbal explanations
fluctuates between cases where the subject has prior
knowledge of the environment and cases where the subject
does not. In VR, however, the subject can be introduced into a
completely unknown environment, whereby the learning
effect can be eliminated and fair competition conditions
can be ensured. We prepared 28 room layouts for the
competition held in 2018; a part of the layout is illustrated
in Figure 10.

FIGURE 10 | Part of the room layouts used in the Human Navigation task.

4http://worldrobotsummit.org/download/rulebook-en/rulebook-simulation_
league_partner_robot_challnege.pdf.
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4.1.3 Competition on a Cloud System
The COVID-19 pandemic has made it difficult to conduct
research on the HRI. Consequently, many robot competitions
have been canceled in the past year. To address this challenge, we
organized an online and virtual robot competition5 based on the
SIGVerse system in 2020 (Inamura et al., 2021).

In the conventional competition described in Sections 4.1.1,
Sections 4.1.2, we brought the server to the competition venue
and built a local network at the venue. In this study, because all
participants and subjects needed to participate in the competition
from home, we set up a SIGVerse competition field on the Amazon
Elastic Compute Cloud (Amazon EC2)6, which is a subsidiary of the
Amazon Web Service (AWS)7. The competitor teams submitted the
robot software to the AWS, and the human navigation participants
wore VR devices at home to participate in the experiment. The
software configuration is illustrated in Figure 11.

The VR environment in which the robot’s control software
was connected a) ran on the cloud server. Another VR
environment in which the VR interface was provided for test
subjects b) ran sin each user’s local environment. The events
executed in each VR environment, such as the avatar’s body
movements, robot movements, speech interaction, and object
grasping, were synchronized via the Internet using Photon8,
which enabled real-time physical interaction between the
subject and the virtual robot. We imported the ready-made
Photon Unity Networking (PUN) asset9 to the Unity project,

which was used to build VR scenes. Although using Photon
Cloud10 helps to connect VR scenes easily, we set up a photon
server on the virtual Windows server to minimize delays in data
communication.

Because it is difficult to establish the same experimental
conditions in light of varying Internet connection quality at
the subject’s residence, human navigation was conducted as an
exhibition. Intearctive Cleanup and other competition tasks can
be conducted online.

4.2Modeling of Subjective Evaluation of HRI
Quality
The interaction ability of mobile robots in the human navigation
task was primarily evaluated by the time required to achieve the
task. However, other factors were adopted as the evaluation
target, such as the number of used words, frequency of the
pointing gesture, and length of the trajectory of the avatar’s
behavior. Designing an objective criteria for evaluation is
difficult because a substantial number of factors are evaluated
subjectively in a daily life environment. Although the best
evaluation method involves asking several referees to score the
performance in several trials, human navigation was evaluated by
a certain regulation, such as a positive point for “desirable
behavior” and a negative point for “unfriendly behavior,”
which is described in the rulebook from a subjective
viewpoint. We have addressed this challenge to determine the
dominant factor for the evaluation of the interaction behavior in
the HRI dataset (Mizuchi and Inamura, 2020).

FIGURE 11 | Overview of the cloud-based VR platform to perform HRI experiments.

5https://sites.google.com/view/robocup-athome-sim/home.
6https://aws.amazon.com/ec2/.
7https://aws.amazon.com/.
8https://www.photonengine.com/en-US/Photon.
9https://www.photonengine.com/PUN.

10https://doc.photonengine.com/en-us/realtime/current/getting-started/
onpremises-or-saas.
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The approach is to have a third party evaluate the quality of
human-robot interaction, andmodel the relationship between the
subjective evaluation points and the physical and social
behaviors of humans and robots. Regarding the behavior of
humans and robots, various factors and parameters need to be
examined. For example, candidate targets for recording and
analyzing include the direction of human/robot pointing
gestures, information on objects in that pointing direction,
physical movements during walking and object manipulation
by human/robot, changes in object states owing to object
manipulation, movement trajectories of human/robot, gaze
direction of human/robot, information on objects beyond the
gaze, and the number and frequency of speech. If we attempt to
record all of these data in real time while the competition is in
progress, the VR computer load will be too high, and it will be
difficult to ensure real-time performance.

In addition, a situation may arise in which one wants to
investigate a new parameter to be evaluated after the
competition is over. In such a case, it would be necessary to
repeat the competition if the data are not recorded, which is
inefficient. Therefore, only the minimum necessary data,
i.e., physical motions of humans and robots, including those
of objects, should be recorded. As described in Chapter 3, we did
not record the sensor signals of the robot, but reproduced the
sensor signals in the playback mode by revisiting it if necessary.
For example, the camera image data acquired by the robot at the
moment of human speech were reproduced in the
playback mode.

After recording the human-robot interaction behavior, we
asked the third person, who was not involved in the
competition, to evaluate the quality of the interaction. Because
the HRI behavior was played back in the VR system, the
evaluators could check the detailed behavior by changing
the viewpoint, rewinding the past behavior, and repeating the
important scene, which is similar to the recent video assistant

referee technology that is used in soccer games. This is another
advantage of the playback mode both for robot sensor
reproduction, and also for a flexible user interface in the
subjective evaluation of HRI quality. Figure 12 shows a
screenshot of the interface provided to the evaluator that
graded the interaction quality. The “Playback” sub-window
shown in the upper right area of Figure 12 represents the
interface via which prior scenes could be chosen. The evaluator
could also use this interface to adjust the viewpoint position
and direction via mouse operation. This evaluation was
conducted through crowdsourcing. Evaluators were asked to
download software based on SIGVerse to observe the
interaction log, which contained the recorded interactions
between the participants and virtual robot. The observation
could be carried out through a 2D screen, following which the
evaluators had to enter their evaluation values. The only
equipment that the evaluators had to arrange for was a
standard Windows PC to download and execute the
software. The evaluators were paid 1000 JPY per hour of
work. The evaluator required approximately the same
amount of time as the length of the history to observe the
interaction log, and a few additional minutes to evaluate each
session.

A 5-point Likert scale questionnaire was adopted for the
evaluation. We use the following phrase for the
questionnaire: “Interaction between the robot and test subject
was efficient (Good: 5–Bad: 1).” We collected evaluation data
from 196 sessions using 16 evaluators. To estimate the
evaluation results as the objective variable, we selected 10
explanatory variables shown in Table 3. These parameters
were designed after robot competition. Accordingly we
developed a software to extract these parameters using the
playback mode of SIGVerse. We also conducted multiple
regression analysis to estimate the 5-point Likert scale
evaluation using the following equation.

FIGURE 12 | Screenshot of the playback system for subjective evaluation by third-parties.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 54936013

Inamura and Mizuchi SIGVerse: Cloud-based VR Platform

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


r � α +∑
n

i�1
βi · xi, (1)

where r is the grade of the questionnaire, α is the intercept value,
βi is coefficient of i-th explainable variable, i is the index of the
explainable variance, and xi is the measurement value of i-th
explainable variable. The obtained coefficients for each
explanatory variable are shown in Table 3.

The results obtained indicate that the subjective evaluation
result was significantly influenced by the distance traveled by the
test subjects and the changes in the gaze directions of the test
subjects (Mizuchi and Inamura, 2020). The coefficient for the
explanatory variable any_inst has a large value, which is a variable
indicating whether or not the robot generated instructions,
corresponding to the software bug that interrupted the robot
behavior. Therefore, the two aforementioned factors are the
significant variables. The importance of these two parameters
was not anticipated before competition. Therefore, it was
impossible to prepare a software to measure these data.

We compared the quality of the evaluation criterion between
the results of the regression analysis and those of the rulebook
that was used in the robot competition. The ranking determined
by the evaluation criterion, which was calculated by the proposed
method, differed from the ranking determined by the rulebook
and was similar to the ranking determined by a third party.
Because the parameters are easily measured in the VR
environment, an automatic evaluation of the HRI behavior in
the robot competition is easier without a subjective assessment by
the referee. Owing to the high-cost of recording the behavior in
the real robot competition, the proposed VR system would be one
of the key technologies for evaluating the performance of a social
robot in a real environment.

4.3 Motion Learning by Demonstration
Another advantage of the proposed system is the ease of
behavior collection for robot learning. Motion learning by
demonstration is one of the major applications in robot
learning that requires human motion, as well as

an interaction process between humans and the
environment.

Figure 13 Bates et al. proposed a virtual experimental
environment for learning the dish washing behavior (Bates et al.,
2017) based on the SIGVerse system. The participants logged into the
VR environment and operated dishes and a sponge by hand devices,
such asOculusTouch. Themotion patterns and state transition history
of the related objects were recorded, and a semantic representationwas
learned from the collected data. Finally, a robot imitates the dish
washing behavior in the real world with reference to the semantic
representation, although the robot has never observed humanbehavior
in the real world.

Vasco et al. proposed a motion learning method based on our
system (Vasco et al., 2019). They attempted to make the robot
system learn the motion concept, which includes motion patterns
and also related information, such as tools and objects operated
by the motion and location information where the motion is
performed. Our system was used to collect motion data in various
situations within a short time.

In both applications, the target of the learning is not only the
motion pattern, but also the interaction process between the
environments and objects. In addition, the focus is the effect of
performance on the environment. The virtual environment
provides an easy recording function for motion patterns and
the state transition processes of virtual environments and objects.
Although motion capture systems and object tracking functions
are available in the real world, the cost of building a real field
environment is still expensive for researchers.

5 DISCUSSION

5.1 Implications from the Case Studies
5.1.1 HRI Competition
The robotics competition conducted not only ensured an
objective, fair, and statistically reliable HRI environment, but
also indicated that cloud-based VR can potentially address the
COVID-19 challenge through exhibitions. We evaluated

TABLE 3 | Regression coefficients obtained for each objective factors (Mizuchi and Inamura, 2020).

Explanatory variable Notation of coefficient Coefficient value

Time_task_comp: Time taken to complete the task βtime task comp −0.0145a
Time_grasp: Time taken to complete grasping of the target object βtime grasp −0.0022a
Num_incorr_grasp: Number of incorrect object-grasps βnum incorr grasp −0.0017
Any_inst: Whether the robot was able to generate any instructions βany inst 0.8518a

Num_inst: Number of instructions given by the robot βnum inst 0.0207b

Num_word_sec: Number of words per second used in the instructions βnum word sec 0.0266
Num_request: Number of instruction-requests given by the test subject βnum request −0.0026
Num_gesture: Number of pointing gestures given by the robot βnum gesture 0.1071b

Nist_sec: Distance traveled by the test subject βdist sec 0.2882d

Face_dir_sec: Changes of face directions by the test subject βface dir sec 0.4470d

Adjusted R2 0.9500

Where significance codes.
ap < 0.001.
bp < 0.01.
cp < 0.05.
dp < 0.1.
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cognitive aspects of human behavior. By introducing bio-signal
measurement technology, it is possible to construct HRI datasets
that include psychological evaluation and mental load. Because
psychological analysis in this HRI research is supported almost
entirely by experiments in real environments, the proposed
system could have significant ripple effects.

5.1.2 Modeling of Subjective Evaluation of HRI Quality
Sixteen evaluators participated in the subjective evaluation, which
is not a large number; however, the evaluation was conducted by
crowdsourcing. Because it is easy to scale up the number of
evaluators via a cloud-based VR system, the proposed system is
useful for subjective evaluation from a broader range of
viewpoints. In addition, because the interaction quality is
frequently evaluated in HRI research, the ability to perform
such evaluations in VR can accelerate HRI research.

The discussion on domestic robots with applications in daily
life has recently focused on the intelligence of service robots, such
as the generating-instructions-in-virtual-environments (GIVE)
challenge (Striegnitz et al., 2011) and visual questioning and
answering (VQA) tasks (Das et al., 2018). These studies address
the history of natural language interaction, the physical behavior
of the robot/agent, and the 3D environment. However, they are
limited by the restricted embodiment of the user’s avatar. In
addition to the physical action of robots, the gestures and
cognitive reactions of the human avatar to the robot’s
behavior are significant factors in determining robot intelligence.

Whether the evaluation via the 2D interface is the same as that
via the 3D immersive interface is an important and interesting
research question. Because we could not distribute HMDs to all
the evaluators as crowdworkers this time due to the time
limitation, this will be explored as part of future work.

5.1.3 Motion Learning by Demonstration
Demonstration by teleoperation is one of the most conventional
ways of transferring human skills to robots. In fact, in the

ROBOTURK system (Mandlekar et al., 2018), the robot
teleoperation system is implemented by a simple mobile
application, and human skills are collected and learned by a
robot via crowdsourcing. In contrast, the advantages of SIGVerse
are: 1) it allows the user to control any avatar based on the
position and orientation of hand devices and HMDs, and 2) it
allows the operator log in to both humanoid avatars and virtual
robots. Therefore, SIGVerse can be used as a pre-learning tool for
an actual robot to perform imitation learning by observing
human behavior with a camera. In addition, the system can
also be used to learn the behavior of another robot by observing
the behavior of the operated robot (Ramirez-Amaro et al., 2014).
This versatility is another advantage of the SIGVerse system.

5.2 Limitation
Because a physics simulation is performed in the Unity system, its
complex simulations, such as friction force, manipulation of soft
materials, and fluid dynamics, are limitations. Additionally, a
standard 3D shape model of the robot, such as the URDF utilized
in Gazebo, is not easily imported to the SIGVerse system owing to
the format of the mechanism description. Currently, we need to
modify the URDF format for manual use in SIGVerse.

The design of software modules to control virtual robots is
another limitation. The controller modules in robot simulators,
such as Gazebo, are often provided by the manufacturer of the
robot and are executed as a process on Ubuntu. However, we have
to port the robot controller into C#, which should be executed on
Unity. The cost of porting should be discussed when general users
employ the SIGVerse system. Four types of robots, HSR
(Yamamoto et al., 2018), Turtlebot2, Turtlebot3, PR2
(Wyrobek et al., 2008), and TIAGo (Pages et al., 2016), are
currently provided by the developer team.

Another advantage of the proposed SIGVerse system is that
the participants can easily participate in experiments in a VR
environment. However, an autonomous agent module that acts in
a VR environment without real participants/users is not realized.

FIGURE 13 | Behavior learning for washing dish task in a virtual environment (Bates et al., 2017).
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A future research direction is to construct an autonomous agent
module based on the analysis of an HRI dataset. The original
dataset captured in the HRI experiments and augmented datasets,
which could be generated in the VR environment, should be
employed in the construction process based on machine learning
techniques (Gotsu and Inamura, 2019).

The disparity between the real world and the virtual
environment often becomes a discussion focus. Robot
motion controlled in a virtual simulator is a reoccurring
critical argument in robotics research. Furthermore, the
cognitive behavior of the participants is the basis for
another discourse. We investigated the difference in human
behavior derived from the condition of the HMD’s field of view
(FOV) (Mizuchi and Inamura, 2018). Distance perception in
the VR environment (Phillips et al., 2010) is another challenge
faced when evaluating the HRI in VR. Hence, the appropriate
design of the VR environment should be considered, in which
participants can behave in a similar way as they would in the
real world.

5.3 Future Direction of the VR Platform
The current SIGVerse platform operates only in a VR
environment; however, via the AR function, the applications
of virtual robot agents could expand to situations in which
they interact with humans in the real world. The human
navigation task described in Section 4.1.2 is an example where
the AR system can be applied to improve the intelligence of
service robots in the real world. This function will be addressed as
a future task, as an extensive range of applications can be expected
by adjusting the boundary between the virtual environment and
the real-world environment according to various situations
and tasks.

In the image processing fields, such as in MNIST and
ImageNet, many datasets exist for object recognition using
machine learning, and a platform that can objectively evaluate
the performance of the algorithm proposed by each researcher is
provided. Several datasets related to human activity can be
adopted. Video clips (Patron-Perez et al., 2012) and motion
capture data (Xia et al., 2017) for human movements, natural
language sentences for describing movements (Plappert et al.,
2016), and conversational data for guiding the user to the
destination (Vries et al., 2018) can be employed. However, no
dataset in the HRI field contains conversations to manipulate and
navigate the object in a complex daily life environment. These
datasets are indispensable for promoting the research on
interactive intelligent robots in the future, and the VR
platform described in this paper is a potential foundation.

6 CONCLUSION

We developed an open software platform to accelerate HRI
research based on the integration of the ROS and Unity
framework with cloud computing. One of the contributions of
this study is the design of SIGVerse as the cloud-based VR
platform with high reusability, addressing four significant
challenges: cost reduction of experimental environment

construction, provision of the same experimental conditions to
participants, reproduction of past experiences, and development
of a base system for the natural interface of robot/avatar
teleoperations. We also demonstrated the feasibility of the
platform in three case studies: robot competition, evaluation of
the subjective quality of HRI, and motion learning by
demonstration, which is the second contribution. In particular,
the establishment of a foundation for an objective and fair
evaluation of HRI, primarily via deployment in robot
competitions, demonstrates the future direction and potential
for the advancement of the HRI research community. This is the
third contribution of this study.

Future intelligent robots will be required to exhibit deep social
behaviors in a complex real world. Accordingly, a dataset for
learning social behavior and evaluating performance should be
established. A simulation environment that allows autonomous
robots and real humans to interact with each other in real time is
essential for both the preparation of these datasets and the
establishment of an objective HRI evaluation. The proposed
system, which combines a VR system and a robot simulation
via cloud computing, is a significant approach to accelerating HRI
research.
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