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The incorporation of robots in the social fabric of our society has taken giant leaps, enabled
by advances in artificial intelligence and big data. As these robots become increasingly
adept at parsing through enormous datasets and making decisions where humans fall
short, a significant challenge lies in the analysis of robot behavior. Capturing interactions
between robots, humans and IoT devices in traditional structures such as graphs poses
challenges in the storage and analysis of large data sets in dense graphs generated by
frequent activities. This paper proposes a framework that uses the blockchain for the
storage of robotic interactions, and the use of sheaf theory for analysis of these
interactions. Applications of our framework for social robots and swarm robots
incorporating imperfect information and irrationality on the blockchain sheaf are
proposed. This work shows the application of such a framework for various
blockchain applications on the spectrum of human-robot interaction, and identifies key
challenges that arise as a result of using the blockchain for robotic applications.
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INTRODUCTION

A common problem in decision-making is that of imperfect information. Imperfect information
limits the size of the potential action space for players, and the consequences of a player’s actions sets
off a domino effect when confronted by the actions of other players who are also operating under
imperfect information. Imperfect information is one of several factors that propel human actors to
the use of biases in decision-making. Biases simplify decision making, since an actor needs only to
revert to the previously used set of actions or decision processes when dealing with the current
problem. The impact of these biases is felt as shortcuts in decision-making in our everyday lives
influencing our choices in areas such as purchasing, diets, friendships and social network formation
(Hilbert, 2012). Pioneered by Daniel Kahneman and Amos Tversky (Kahneman and Tversky, 1986),
the role of biases in decision-making exposed a puzzling trait of the human actor in the form of the
“irrational man”. The irrational actor makes sub-optimal choices, supported by perceptions of a
greater utility from the outcome of her actions. In the presence of imperfect information, the
irrational actor resorts to biases and in the company of like actors, these biases have the potential to
be amplified through collective herding or swarming behavior (Beni, 2004). This collective behavior
of irrational actors has defied traditional theories of utility derivation, which hitherto assumed
rational actors making optimal choices.

While technology has ushered in the era of artificial intelligence, machine learning and massive
datasets, these advances have also tilted the scale of rationality in favor of machines that can parse
through large action spaces which are far beyond the reach of human cognition. The robotic versions
of Jeopardy (Ferrucci et al., 2010), chess (Knight, 2017) and AlphaGo (Silver et al., 2017) have
demonstrated the power of modern computational machines that evaluate all possible outcomes of
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an action undertaken by the machine and the opposing player. In
doing this, these robots incorporate past, current and future
action spaces, thereby exercising a superior breadth of
decision-making over the human player. Compared to the
robot, the human actor typically has a limited recall of the
past, is short-sighted in the current and is usually myopic
about the future. In essence, these games comprise of two
unevenly-skilled players. On the one hand is a robot with
perfect information in a niche application (the AlphaGo robot
would not be expected to skillfully pick up a block). On the other
hand, is a human with imperfect information in a range of
applications, and is ill-suited to match the prowess of the
machine with perfect information. In all of the three games
(AlphaGo, Jeopardy and chess), the speed at which the
machines dominated the game continues to improve.
Simultaneously, the chasm of informational asymmetry widens
as ethicists and engineers simultaneously marvel at the feats of the
machine and groan at the rate at which the human succumbed to
the machine. Human heuristics, although not limitations, are
inadequate at matching the niche-specific abilities of the robots.

The algorithms that power these robots tend to reduce or
eliminate two crucial factors in decision-making: imperfect
information and irrationality. While it is tempting to think
that imperfect information and irrationality are two sides of
the same coin, observations tend to suggest otherwise. For
example, in the case of a traffic crossing, perfect information
offers a pedestrian complete view of traffic and tells a pedestrian
to cross at the appropriate prompts. However, an irrational
pedestrian may choose to defy this perfect information and
choose to walk into oncoming traffic with disastrous
consequences. The algorithms that comb through massive
datasets of demographic information, voting polls, SAT results,
credit histories and retail transactions (O’Neil, 2016) have a
common two-fold objective: reducing imperfect information
by detecting patterns and choosing rational decisions tailored
for each pattern of behavior in the data. This serves us well when
the machines help us detect cancer faster, correlate income to
majors and in general, predict the future when our limited
purview of what lies ahead is hindered by our inability to
remember everything and find patterns fast. However, what
happens when these machines are no longer used to help us
but are finding their spot in our society as co-equals?

This question is no longer in the realm of a sci-fi future.
Machines powered by artificial intelligence are our talking
assistants, entertaining our children and keeping the company
of elders. Drones have their own social media pages, and it is not
far-fetched to think of a society that is inhabited by humans,
robots, software bots and IoT devices collocated in both physical
and virtual spaces. For example, it might be that we meet a robot
for coffee in a restaurant, to which our self-driving car takes us. In
such a scenario, it is hardly comforting to think that certain
entities, such as robots are far more superior to humans in every
instance of an application. Thus, who would want to play with a
robot that always wins? Or to socialize with a robot that knows
everything and has an answer to every question? Much of human
interaction is bound by the glue of empathy, where like-minded
and likely-abled individuals bond over common interests and

challenges. As more and more robots are employed for social
interaction, singular dominance and expertise on the part of the
robot are not only downright undesirable, but also detrimental to
the adoptability and applicability of robots in social situations.

The use of blockchain technology has inspired the
development of frameworks in diverse disciplines, including
social robotics. In Marsal-Llacuna (2018), the author proposes
a framework called the Future Living Framework concerning
blockchain for cities of the future. Another blockchain framework
was proposed in Cebe et al. (2018). Here, the authors propose the
use of a blockchain framework to resolve potential disputes
related to vehicle accidents that might arise from the use of
driverless cars. Blockchain’s immutable ledgers can be used as an
authoritative source of information for vehicular forensics. The
addition of smart contracts to the blockchain is especially
appealing to an ecosystem inhabited by robots. Smart
contracts are digital contracts that are added in code to the
blockchain. Work in (Strobel, Ferrer, and Dorigo, 2020)
presents the findings of a swarm robotics application, where
the robots used blockchain-based smart contracts to estimate the
number of black tiles in an environment covered with black and
white tiles. These codified contracts are executed only after the
fulfilment of certain clauses, thereby eliminating the need for
intermediate entities to provide oversight and regulatory
compliance. Creating robotic applications with smart contracts
that reside on the blockchain can enable the inclusion of tuning
parameters such as varying degrees of imperfect information and
irrationality. For example, a robot that interacts with a child in a
gamified form of learning might behave differently than in a
corporate environment where it is training employees on job
functions. In this scenario, the parameters of imperfect
information and irrationality might be differently tuned to
adhere to each of the learning environments.

From a graph-theoretic perspective, smart contracts facilitate
the creation of additional edges on a graph upon fulfilment of
underlying clauses. Again, this creates dense graphs and has the
potential of launching a cascading effect of creating more edges as
the underlying conditions are satisfied. The analysis of such
graphs with dense structures poses a distinct computational
challenge, where increasing size of the network with
heterogeneous data collection and processing needs creates
dense graphs that cannot be efficiently analyzed for patterns.
This scenario is further complicated by the potential for smart
contracts to bind with billions of IoT devices, robots, humans and
software bots that will create large amounts of graph data.

In this paper, we propose a robot-learning framework for
social robotics that is built upon two important qualities that
make human actors “human”. Specifically, our framework utilizes
imperfect information and irrationality as foundational aspects of
the robot-learning mechanism. The imperfect information and
irrationality can be tuned to different levels depending on the
application, thus resulting in dynamic action spaces. Since
dynamic state spaces impose a significant computational
burden with current graph-theoretic tools, we propose the use
of topology theory in the analysis of these dynamic spaces.
Specifically, we propose the use of sheaf theory to derive
important features about the shape of the action spaces
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created by human-robot and robot-robot interaction. Finally,
these features are stored on the blockchain, thus harnessing the
blockchain’s ability to store data in a distributed, trusted
immutable manner.

RELATED WORK

Algebraic topology is finding applications in various domains
such as robotics (Farber, 2006), information theory (Robinson,
2013), circuit design (Robinson, 2012) and network science
(Mansourbeigi, 2017). In (Sizemore et al., 2019), the authors
explored topological data analysis to study the shape of genomes
and synapses. They showed how algebraic topology was able to
visualize cavities in neural structures. These cavities might arise
due to the presence of correlations in certain regions of the brain
and could be indicative of disease. Topological data analysis has
also been used to study social dynamics (Maletic and Milan,
2014). Here, the authors study the formation of consensus
through the evolution of opinion maps in social networks.
Using a topological feature known as simplicial complex, this
work studied the evolution of the opinion spaces as a function of
number of agents, number of opinions and the dynamics
underlying the emergence of the most popular opinion. The
literature most closely related to our work is in (Meldman-
Floch, 2018), where the author models a block as a sheaf and
develops a theory for distributed consensus protocols. Human-
robot interactions captured on a blockchain with smart contracts
have been studied in (Cardenas and Kim, 2018) where the authors
propose a case study for a traveling robot that can enter into
financial agreements stored on the blockchain in exchange for
assistance in traveling the world. Work in Robinson (2012) has
proposed a sheaf-based framework for understanding the
behavioral properties of a logic circuits, and emphasized the
role of a sheaf-based analytical framework in uncovering
hazardous conditions such as timing-related race behavior
between elements in a combinational circuit. The ability of
sheaf-theoretic frameworks to decipher global information
from local information have led to a diversity of application
such as those that have been further proposed to model
concurrent processes in distributed systems (Malcolm, 2009),
semantics for object-oriented programming languages (Cirstea,
1995) and representations of information systems (Sagar and
Kishore, 2019).

The applications of sheaf theory to modeling of robotic
systems is an emerging domain. Modeling the interactions of
system components using sheaf theory has been studied in
Sofronie (1996). Here the author showed that interacting
system components can be modeled using geometric logic,
with states, parallel actions, transitions and behaviors being
represented as topos of sheaves. A specific application of sheaf
theory to robotics has been described in Pfalzgraf and
Stokkermans (1995), where the notion of fibered bundles or
sheaves is applied to cooperating agents or robots. The local-
global properties inherent to sheaves were shown to be useful in
modeling the communication and interaction between
cooperating robots. The study of event-based systems using

sheaves is described in Zardini et al. (2020), where events
belonging to a system denoted by time stamps and the
transition between these events can be depicted in a
topological space. Examples of event-based systems that are
analyzed in this paper include the representation of
background on event cameras and robotic system description.
Work in Chemello and Sossai (2006) applied sheaf theoretic
approaches to the problem of uncertainty in data fusion. The
mechanism of “gluing” in sheaves has been applied to combining
data from different sources with different semantics, where the
authors showed that the higher-level abstractions offered in sheaf
theory can be useful in applications such as data fusion modeling.
Another application of sheaf theory for modeling robot control
interaction is in Nakamura (2015), where the author studies the
stabilization and control of two-wheeled mobile robots using
sheaves.

A BRIEF OVERVIEW OF SOCIAL ROBOTS

The notion of employing machines for social interaction with a
fusion of human, animal or machine-like capabilities is not
new–earliest mentions of social robots extend back to roughly
a century ago with the development of the Elektro robot, the
proposition of Asimov’s three laws of robotics and the bold vision
of the Turing test. In Bartneck and Forlizzi (2004), the authors
define social robots as “autonomous or semi-autonomous robot
that interacts and communicates with humans by following the
behavioral norms expected by the people with whom the robot is
intended to interact”. Thus, social robots are distinguished by
their ability to communicate and interact with humans, and not
just with other robots. The authors propose a five-pronged
framework for studying social robots–form (shape, behavior
and behavior), modality (number of communication channels),
display of social norms, autonomy and interactivity. Further, the
authors provide a set of guidelines for the design of social robots.
These guidelines for human-robot interaction (HRI) suggest that
the robot’s design that matches its abilities, possess the ability to
engage in human-robot communication, and the ability to mimic
human social norms.

Next, we profile some of the widely known modern social
robots. The goal of this section is two-fold. First, this section
draws attention to the prolific field of social robots and their
evolving capabilities. Secondly, it highlights the nature of
interactions between social robots and humans that warrant
the need for novel, efficient frameworks to store, process and
analyze the interaction data between humans and social robots.

PARO is a social robot which is a baby harp seal robot
designed as play therapy for older adults with dementia (Hung
et al. (2019), (Wada et al., 2010). In Hung et al. (2019), the authors
describe the use of a social robot called PARO in a geriatric
dementia unit. Here, the authors address how psychosocial
approaches employing social robots like PARO can contribute
to personhood-centered care. Kitwood (1997) defined
personhood as being linked to the five fundamental human
psychosocial needs (comfort, attachment, occupation, identity
and inclusion), with love being at the core. The study in this paper
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described how PARO was used in diverse settings such as
assisting patients during medical procedure to ease discomfort,
and providing companionship as with a buddy. In particular,
patients interacted with PARO via smiling, kissing, hugging and
talking. Each of the emotional bonding moments with PARO was
recorded, and patients treated PARO with respect and
reciprocated social norms as one would with a friend. It is
important to note that patients were informed that PARO was
a robot, still the patients were able to establish social connection
with PARO by caring for it and treating it as a buddy. The
introduction of PARO to the geriatric dementia unit was shown
to improve relational care and provide support for each of the five
elements of personhood.

In Bharatharaj et al. (2017), the authors develop a parrot-
inspired robot, KiliRo, for teaching children with autism
spectrum disorder and to improve their social interaction
abilities. Researchers would teach KiliRo letters, numbers and
human recognition in the presence of children, who would then
be motivated to participate in the learning process upon watching
KiliRo interact with the researcher. The acceptance, likability and
interaction interest of the children toward KiliRo, in addition to
their progress in learning and social interactions were measured
throughout the study. Further, the responses of parents to the use
of KiliRo as a therapy for their children’s behavior were recorded
through questionnaires and interviews. It was found that KiliRo
was well-received by the children, parents and physicians. Facial
recognition software employed in the study showed that the
children were not afraid of Kiliro and were happy to interact
with it.

Another application of a social robot for robot-assisted
therapy (RAT) with children is in Saldien et al. (2010), where
the authors describe a robotic user interface application for a
social robot called Probo that interacts with hospitalized children.
Designed to look like an anthropomorphic elephant, the
researchers provided the children an elaborate story of Probo’s
family tree starting in the Ice Age and drifting around the earth to
provide joy to children. Probo is designed to have a fully actuated
head with a variety of motions, and was able to use vision, touch
and audio stimuli to interact with children. Probo is also capable
of displaying multiple facial expressions and emotional cues. The
goal of this study was to evaluate the effectiveness of Probo in
displaying emotions through facial expressions in its interactions
with children and adults. The study showed that certain emotions
(e.g. happy) were recognized more easily than others (e.g. fear).

Sony’s robotic dog, Aibo, is one of the widely known social
robots. Work in Friedman et al. (2003) studies human
perceptions of Aibo through analyses of established online
forums dedicated to Aibo. Their analysis showed that
approximately half of the discussions mentioned in these
forums ascribed life-like abilities to Aibo. These discussions
contained language that referred to Aibo as having feelings
and emotions, which in turn elicited behavior from the
participants akin to interacting with a pet. Aibo, in turn, is
capable of reciprocating with a wide range of pet-like
behaviors that range from mimicking the actions of its
human companions, playing with a ball, walking, sitting
and emoting.

Work in Kuchenbrandt et al. (2011) analyzed human
perceptions of the social robot called Nao. Here, the authors
sought to discover how humans treated robots who were part of
their group versus robots who were external to their group.
Human participants were asked about their willingness to
interact with Nao by talking to it, getting to know it more
closely, liking it and eventually buying it. Their findings
showed that humans were more likely to engage with Nao and
anthropomorphize it if they perceived the robot to be a part of
their group. Work in (Scheef et al., 2002) describes the design of
Sparky, a social robot that can display various facial expressions
and up to nine different emotional states. The goal of this work
was to understand the kinds of responses that Sparky’s emotional
reactions elicited among humans. Unlike Aibo which is an
autonomous social robot, Sparky is teleoperated by a human
controller. Here, the authors found that Sparky elicited the most
response when it was presented with opportunities for eye-eye
contact with humans. Another application of social robots is
described in Garrell and Sanfeliu (2012) for social-navigation
assistants, Tibi and Dabo, in crowded urban environments. These
twin mobile service robots were designed to accompany humans
on their walks in urban environments, thus requiring them to be
“aware” and react appropriately to the presence of other humans
and obstacles in their environments. Other applications of social
robots have been studied in Peter et al. (2019), where the authors
analyze social robots that interact with children in an Internet of
Toys paradigm (Mascheroni and Holloway, 2019).

While there has been considerable research done in separate
domains of ethical robot behavior, robot learning and robot
interaction, the disparate nature of work done in machine
learning, graph theory and robot ethics poses distinct
challenges in developing robotic applications that enable
efficient robot integration in human societies. Research in
Tatsukawa et al. (2019), Chatila et al. (2019) has pointed to
the need for robots to be self-aware and environment-aware, thus
implying the need for robots to develop human-like abilities for
more meaningful interaction with humans. Our work proposes a
framework for robotics applications on a blockchain that is
represented using a sheaf-theoretical framework. Incorporating
smart contracts into the sheaf-theoretic representation of the
blockchain allows for tunable robots–ones that can be attuned to
the dynamics of the environments that the robots inhabit. Our
work emphasizes two key parameters for the socialization of
robots–imperfect information and irrationality that have
implications in ethics, learning, accountability and social
interactions. This paper seeks to develop a foundational
framework that incorporates robotics applications on a
blockchain with provisions for incorporating a variety of
learning models, rewards, ethical constructs and social
integration incentives. The use of a blockchain enables
utilization of its distributed, secure, immutable ledger
properties for storing attributes pertinent to robot learning,
interaction and socialization. Visualizing the blockchain as a
sheaf using tools from algebraic topology allows for faster
computational models, analysis of hidden structures and
patterns in the interaction data as well as integration with
cross-domain applications. The rest of this paper develops our
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model, presents examples of applications and discusses challenges
and limitations.

A UNIFYING FRAMEWORK FOR
BLOCKCHAIN, ROBOTICS AND SHEAVES

In this section, we describe our approach to incorporating
robotics applications on the blockchain that will focus on
modeling the blockchain as a topological structure of sheaves.
We build upon work in Zardini et al. (2020) for a quick overview
of underlying topics in category theory, and refer the reader to
Riehl (2017) for a detailed exposition of category theory.

Blockchains in Algebraic Topology
Consider blockchain from the viewpoint of combinatorial
algebraic topology (Goldblatt, 2014). This viewpoint offers a
suitable framework for studying blockchain with the set of all
nodes as the node set and the set of all transactions as the
transaction set. In conventional graph theory, nodes are
vertices and an edge represents a transaction between two
nodes. However, combinatorial algebraic topology lets us
represent many different aspects of transactions. Transactions
may originate from multiple nodes and may be destined toward
multiple nodes. Transactions may also possess certain domain-
specific properties such as recurring bill payments, duplications
of key aspects of records, and device information of IoT devices
and may be bound by smart contracts.

Combinatorial algebraic topology allows such interactions to
be captured through the construction of simplices. An n-simplex
is the convex hull of its n + 1 vertices. Thus, a 1-simplex is an
edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and so
on. A simplex is further characterized by the presence of faces. If
A is a 1-simplex, its faces are the edgesA0 andA1.On a graph, a 1-
simplex represents an edge which is a transaction on the
blockchain involving two nodes.

A simplicial complex represents a mechanism to visualize
complex data sets with multiple dimensions and is formed by

attaching individual simplices. While traditional graph theory
uses the foundational model of nodes and edges to represent
unidimensional bidimensional connections between data points,
data sets that contain multidimensional connections need
modeling mechanisms that are capable of representing these
complex interactions. Constructs from topological theory such
as simplicial complexes provide tools to represent combinatorial
representations of data points. For example, consider an
interaction between four sensors of a single social robot
SR1, SR2, SR3, and SR4 as shown in Figure 1. Each edge
represents an interaction between the sensors at the endpoints
of the edge, denoting collaboration between two sensors on a
given task. Thus, SR1 − SR4 denotes collaboration between
sensors SR1 and SR4 on task T1. Simultaneously, the simplicial
complex depicted in Figure 1 offers the capability to represent
collaboration between three nodes on task T3, as demoted by the
shaded face SR2, SR3, and. SR4.

Presenting blockchain transactions in the context of
combinatorial algebraic topology offers many advantages. The
scale of blockchain and robotics is poised to increase, as more and
more applications are envisioned to use blockchain for its
distributed, immutable foundational properties. Scalability in
blockchain has been addressed in Bano et al. (2017), where
the authors describe the patterns of collective leadership and
sharding in blockchain as mechanisms to delegate consensus and
distribute accountability in favor of speed and scalability. Storing
all these application-specific data points on the blockchain poses
a significant challenge for blockchain analysis. For example,
consider the problem of fraud detection. Fraud detection relies
heavily on spatiotemporal patterns to reveal information about
(Abdallah et al., 2016) fraud. By using conventional graph theory
to extract this information from the blockchain, the analyst will
have to sift through graph representations of transactions on the
network. Parsing through graph-data is computationally
expensive and may not readily reveal hidden properties of the
transactions. Specifically, as transactions become complex, it
becomes challenging to visualize higher-dimensional data. For
example, social network data stored on the blockchain has the
potential to resemble dense point clouds due to the structure,
scope and frequency of user activities on the network. Dense
point clouds can hide valuable topological features such as
clusters, voids, cuts, tunnels, pieces and presence of curved
surfaces (manifolds). While one might argue that approaches
such as principal component analysis (PCA) might reveal
topological features (Jolliffe and Cadima, 2016) and thus
expose interrelationship between data points, this method fails
to accurately detect curved surfaces in the data.

Representation of a complex structure such as blockchain
from a topological perspective enables us to create simplicial
complexes that approximate the graph of the blockchain. Since
blockchain transactions depend on peer effort to mine and verify
transactions, this activity along with the original transaction can
be represented as simplices that overlap through their shared
vertices. The overlap of shared vertices in simplicial complexes
can be used to determine the structure of the blockchain with
respect to features such as eccentricity and vertex significance
(Maletic and Milan, 2014). Here, the authors measure the

FIGURE 1 | A representation of task collaboration among sensors of a
robot using simplicial complexes.
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eccentricity as the integrity or individuality of the simplex. An
eccentricity of zero indicates complete integration of the simplex,
i.e. the simplex is the face of another simplex. Conversely, an
eccentricity of one indicates a completely disintegrated simplex
that does not share faces with other simplexes. Vertex significance
extends this concept by measuring the scope of integration of a
simplex. Vertex significance measures how many other simplexes
the vertex is a part of; thus, a high value of vertex significance
indicates a vertex that is a part of many simplexes. These features
in n-dimensions can be readily captured by a topological
approach to studying the blockchain thus revealing
information about clusters, hubs, influencers, anomalies and
fraud. Techniques such as the Vietoris-Rips complex for
simplicial complexes can further aid in analysis by providing
means to de-noise data using thresholding. For a detailed
treatment of Vietoris-Rips complex, the reader is referred to
Curry (2014).

Construction of the Blockchain Sheaf
Consider the graph G of nodes and edges. A sheaf F on G consists
of a vector space of vertices F(v) for each v, a vector space of edges
F(e) for each e, and a linear transformation map F(v)→ F(e) for
each incident vertex-edge pair. The vector spaces F(v) and F(e)
are stalks of F over v or e, bound together by linear
transformation maps, also known as restriction maps. The
restriction maps provide tools for local consistency
verification. For example, the Proof-of-Work (PoW) required
to verify a transaction on the blockchain can be viewed as the local
consistency checking function that verifies a link between the
current transaction and previous transaction. This sequence of
PoW consistency functions can be pieced along all the way to the

first transaction, thus providing a central spine or stalk pieced
together by individual transactions, or germs of the stalk as in
sheaf theory. This same analogy can be applied to a higher scale
for depicting relationships between blocks. Depicting the
blockchain as sheaves allows for generalizations across scales
from individual transactions to blocks. As we shall see later in this
section, sheaves enable depiction of higher dimensional data on
the blockchain.

Figure 2 shows an abstract representation of the
blockchain. Figure 3 shows a graph representation of the
blockchain in Figure 2. We see that the graph
representation adequately captures the nodes, transactions
(edges) and transaction amounts (edge weights).
Additionally, directionality can be incorporated to identify
the sender and receiver of a transaction. However, as we add
additional attributes to the vertices or the edges, the graph
tends to offer an inadequate representation of the richness of
features on the blockchain. Figure 4 shows the blockchain as a
stalk, where individual transactions in a block represent germs
in the stalk. This representation can be abstracted to include
multiple stalks in a sheaf. Increasing the dimensions of the
vertex and edge stalks can be used to represent additional
dimensions of the blockchain. For example, Figure 4 shows a
blockchain sheaf of three stalks. The smart contracts are
executed only upon fulfilment of underlying conditions that
bind entities with information on the blockchain sheaf. Thus,
entities with limited information and high irrationality are able
to co-exist with other entities possessing high information and
limited rationality. These entities might represent software
applications, autonomous robots, or humans and their
interactions are stored as blockchain sheaves.

FIGURE 2 | Abstract representation of the blockchain. Each block contains transactions, and a block’s hash is included in the header of the successive block.

FIGURE 3 |Graph representation of the blockchain. IP addresses, represented as nodes n1 − n7 engage in transactions t1 − t6 . Transactions attributes are shown.
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Higher dimensional attributes of the blockchain graph can be
represented as shown in Figure 5. Figure 5 shows the blockchain
from Figure 2 along with its higher dimensional attributes
represented as multiple connections emerging from a single
nod. Such representations are useful in finding similarities in
the topology to identify like nodes, clusters and network
partitions.

Another example of blockchain sheaves is shown in Figure 6
for a social robotics application. The two sheaves represent the
imperfect information and irrationality constraints on the

blockchain. The blockchain hosts a social robotics application,
where multiple robots with limited functionality cooperate to
complete a higher-level complex task such as a pursuit-evasion
game. The sheaf on the left depicting a dominant robot belongs to
a controller robot which possesses almost perfect information
and rationality. The sheaf on the right represents a lesser-abled
robot that possesses higher levels of imperfect information and
irrationality than the controller robot. Thus, the sheaves S1 and S2
might represent robot consensus over target locations. The
consensus could be arrived at using information gathered by

FIGURE 4 | An analogy describing stalks and blocks. Left: Blockchain as a stalk. The shaded portion represents the hash functions that link blocks to their
successors and predecessors, thus forming a central spine around which transactions are linked. Middle: An individual stalk with seeds. Right: A sheaf of blockchain
stalks bound by a smart contract tuned with imperfect information (p) and irrationality (r).

FIGURE 5 | Left: A block of transactions represented as a stalk. Individual transactions contain varying attributes. Right: A blockchain of n blocks represented as a
stalk. Block-level and transaction-level attributes can be adequately represented in the sheaf-theoretic model.
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individual robots about the target’s location. Smart contracts for
blockchain sheaves enable role swapping to upskill existing
robots’ functionality, or to allow for load balancing for
networks with sensors of different capabilities, or for robots
with varying skills (Figure 7). Additionally, tools from
algebraic topology such as persistent homology (Edelsbrunner
and Mozorov, 2012) can be used to detect robustness of the
components of the motion graphs.

Applications
In this section, we envision applications of our model for swarm
robotic and social robotic ecosystems on the blockchain of
sheaves bound by smart contracts.

Swarm robotics: Swarm robotics harness concepts in emergent
behavior from formation of swarms in nature, such as swarms of
bees that rely on collective intelligence to accomplish complex
tasks that might be difficult for the single organism, but through
synchronization, delegation and feedback are accomplished by
groups of organisms. The ideas borrowed from swarm formations
in nature have influenced several advances in robotics (Brambilla
et al., 2013) by relying on tiny, cost-effective robots that are able
to communicate with each other and coordinate their activities to
accomplish complex tasks such as mining and foraging
operations, UAVs, disaster rescue missions and military
applications. The use of blockchain for swarm robotics has
been explored in (Ferrer, 2018), where the authors propose the
use of blockchain to provide better security, enhanced distributed
decision-making, and the ability to coordinate in an environment
populated by heterogeneous robots. Thus, individual robot
transactions are stored in blocks that link to form a
distributed ledger. Our proposed model of imperfect
information and irrationality can be encoded in sheaves and
smart contracts for swarm robotics, and can be robustly applied
to several scenarios, as shown in Figure 7. For example, swarm
robots in a mining operation may utilize multiple kinds of robots

for detecting motion, sound, heat, carbon dioxide or other
parameters. Each of these robots operates under imperfect
information of the environment and the ad hoc network. With
time, the imperfect information parameter is gradually refined as
more and more sensors from the robots gather information about
the environment and each other. The irrationality parameter of
the robot prevents the robot from jumping to conclusions about
the environment and serves as a nudge to rely on collective
intelligence of the ad hoc network.

As the robots communicate with each other forming ad hoc
networks, each sensing and communication activity is stored on
the blockchain and can be viewed as a germ, which links to other
germs to form stalks. The linkages in forming stalks may be based
on any scheme - the class of robots (heat detector), operational
category (high-altitude motion detection), high-level functions
(data analysis) or network maintenance (signaling for additional
robots to a particular site in the event of viable leads). Each of
these stalks coexists with other stalks formed from various
schematic configurations, allowing for redundancy in
operations. This sheaf of co-existing stalks is bound by smart
contracts, which allow for just-in-time execution of higher-level
tasks. Sheaves enable compact representations of the decision
spaces found in swarm robotics applications, since the local and
global properties of the sheaf impose fewer computational
resources than a graph-theoretic approach. This enables a
richer representation of the blockchain, enabling a deeper
understanding of features such as persistence (Edelsbrunner
and Mozorov, 2012), influence and clustering.

Social robots: Social robots are an emerging area of study
(Leite et al., 2013; Fong et al., 2003; Breazeal, 2003), as robots are
increasingly finding applications as peers to humans. Although
this peerage is not yet on the level of human networks, robots
such as smart speakers, mobility assistants and robotic
companions for the elderly may be viewed as social robots
that take the place of humans in that role.

As AI/ML algorithmic capabilities advance, it is crucial for the
social robot to know how to be “human”, to engage in
conversations where empathy rather than knowledge is key to
establishing trust and equality. A robot who knows everything
and wins every game will soon wear out its welcome with

FIGURE 6 | Stalks representing social robots. Left: A controller robot.
Right: A lower-level robot.

FIGURE 7 | Blockchain sheaf of multiple robot interactions.
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children, as will a robot which algorithmically outputs the same
information every time. For example, a driver in an unfamiliar
location who relies on a navigation robot might ask it for
directions every day to the same place. While there is comfort
in knowing that the robot never fails and will faithfully offer
navigational assistance every time, a human might behave
differently by teaching another “how to fish”, instead of
procuring the “fish” every time. Such a learning model for the
robot goes beyond merely looking up databases to answer a
query–it incorporates a more realistic participatory learning
model, not unlike one found in human educational
environments. In such a participatory learning model, the
robot is rewarded for encouraging the human to participate in
active problem-solving, instead of providing the answers for every
query. Although this form of robot learning is time-consuming
and resource-intensive, the process may be incentivized by
nudging the robot toward participatory learning models. The
data corresponding to such interactions between the human and
the robot can be stored on the blockchain, organized in the form
of sheaves for analysis and tuning of the parameters in the
learning model.

This participatory learning model can also be applied to the
scenario of robot-robot interaction. Similar to human
environments, robotic environments can be viewed as a hierarchy
of heterogeneous robots, possessing different abilities for different
environments. A robot that newly joins an environment may be
“taught” how to learn the specific circumstances of the environment
from other robots. The potential applications of such robots may be
found in diverse environments, such as sensing applications or
pursuit-evasion games, where the introduction of new robots to an
environmentmight help facilitate richer data gathering and processing
abilities. Additional applications could include newer robots
introduced in a networked IoT environment, in automation and
manufacturing. Further, robots that have to continually upgrade their
skillset to “learn” new tasks and social learning from fellow robots
might be more conducive to a robust learning experience. The ethical
implications of social learning models in robotic environments
provide a rich area of study, that is beyond the scope of this paper.

A robot that is embedded with imperfect information and
irrationality will be able to self-adjust its level of relating with the

human, while constantly learning from its interactions to match the
specific environment. This learning mechanism will operate at a cost
to the instant gratification on the part of the human, but will
ultimately lead to a co-equal model for robots and humans in
diverse environments. We expect that, through our
computationally efficient sheaf-theoretic model for blockchain
applications, robotic interaction in context can be efficiently
analyzed to enable robots reciprocate in social environments. The
interactions between robots and humans will be stored on the
blockchain allowing for distributed analysis and immutability,
bound by smart contracts that are constructed with ethical
algorithms. The blockchain, in this case, could be envisioned as a
sheaf of robot-human and robot-robot interactions classified by task,
priority, or any other parameter. The smart contract itself will contain
the two parameters of imperfect information and irrationality. The
imperfect information parameter will be dynamically adjusted based
on the scenario, causing the robot to suppress its dominance, when
needed. The irrationality parameter can be chosen to match the
environment, such as that of a child, or a human in varying contexts.
Of particular importance here is the concept of immutability. For
example, in the case of a dispute that leads to disagreements between
the human and the robot, not unlike those found between friends or
acquaintances, immutability can help “clear the air” and establishwhat
was actually said or performed in a previous setting. It can also serve as
a firm record for legal matters to establish accountability for robot
actions and human interaction with the robot.

SOCIAL ROBOTS AND BLOCKCHAIN–AN
EXAMPLE

Let R≥ 0 denote linearly ordered partially ordered set (poset) of non-
negative real numbers. The category of continuous intervals Int is
composed of objects and morphisms. We call the objects, denoted by
?? (???)dR ≥ 0, and denote an object as a single transaction for the

FIGURE 8 | A sheaf representation of transactions.

FIGURE 9 | Representing blocks, transactions and hashes as a sheaf.

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 5593809

Murimi Sheaf Theory for Robotic Blockchains

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


blockchain. Given two transactions l and l’, the set Int(l, l’) of
morphisms between them implies the gluing properties of sheaves,
where they collect local data from nearby individual points.

Let two transactions A and B be defined asA,B ϵ Int.An (A,B)
chain is a span in Int represented as follows. The (A, B) chain
(Figure 8) is a sheaf C whose sheaf map is given by f : C→A × B.

Composition of Blocks and Chains
TheMerkle tree-like representation of the blockchain as a sheaf is
shown in Figure 9. Consider block B1 that contains two
transactions, T1 and T2. Represented as a sheaf along the lines
of Figure 7, transactions T1 and T2 comprise the inputs to block
B1. The output of block B1 is the hash of B1, and along with
transactions T3 and T4 forms the set of inputs to block B2. This
process continues for block B3, whose inputs are the transactions
T5 and T6, along with the hash of block. B2.

The blocksB1, B2 andB3 can be represented as a sheaf of blocks in
series, as shown in Figure 10. si denote the set of inputs to block Bi.

Multiple chains, each of which is represented by the schematic
in Figure 10 can be combined to result in a composition of chains
Ci, as shown in Figure 11. This represents sheaves in parallel,
which in the case of Figure 10 denotes chains in parallel. The
inputs and outputs of this system of parallel chains are
represented by tensor products. Thus, the input and output
are respectively given by s1 × s3, and s2 × s4.

A Social Robot Example: Voice Assistant
Robot
In this section, we provide an example of how a voice assistant
social robot whose interactions with the environments are stored

on the blockchain can be represented with the above-mentioned
constructs of sheaf composition. Voice assistant social robots are
found in numerous environments ranging from devices like Alexa
and Siri to the more sophisticated ones such as Sophia (Weller,
2017). While we exemplify the voice assistant robot, the example
can be applied to the case of a multi-sensor robot. Figure 12
provides a representation. The sensor of the voice assistant robot
receives a stimulus, which is then tuned with the parameters of
imperfect information and irrationality. Each of the four
components in the system depicted in Figure 12 can be
represented as a sheaf, thus rendering Figure 12 as a
composition of sheaves.

Sensor: The sensor updates its goals and beliefs from
information about past events in real-time. For an audio
stimulus, the social robot will receive the input (S + N), filter
out the noise (N) and estimate the meaning of the text. The sheaf
is represented as shown in Figure 13.

Stimulus: Let S denote the audio stimulus, which is the set of
elements comprising the voice input to the sensor (sequence of

FIGURE 10 | A sheaf containing blocks in series.

FIGURE 11 | Composition of a sheaf of parallel chains

FIGURE 12 | Composition of sheaves in a voice assistant social robot.

FIGURE 13 | Stimulus sheaf as a blockchain.
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words or intelligible vocalizations). The stimulus is the sum
∑
sϵS

Ms, where Ms is the additive meaning of a sequence. For
example, “Robot X, what is the time?” will be parsed as the
meaning of individual words as well as the context of the sentence
in the following manner. “Robot–Robot X–Robot X what–Robot
X what is–Robot X what is the–Robot X what is the time? The
gluing of these sections of the stimulus can be facilitated by the
stimulus sheaf. Additionally, by composing a stimulus system
made of other attributes such as tone and sentiment (which could
themselves be sheaves), further information can be stored on the
blockchain sheaf similar to the representations shown in
Figures 9–11.

Imperfect information: The information obtained by the
sensor presents varying degrees of uncertainty. For the case of
the audio input, this uncertainty is captured by the sheaf P, which
is composed of attributes such as varying dialects, gender/age
specific vocal differences, and a general inability to understand
and/or process the text.

Irrationality: The amount of irrationality represented by the
robot in its interactions depends on the varying freedoms
available to the robot to act outside of its stated goals or
beliefs. Humans exhibit irrationality in varying degrees in
differing circumstances, however, robots are programmed to
work steadfastly toward a goal. The amount of irrationality
exhibited by a robot in any interaction can be represented as a
sheaf R that is composed of circumstantial affects. For example, a
social robot might talk in silly voices with a toddler, answer the
toddler’s requests in a jovial manner, while behaving differently
with the parents. In this scenario, the social robot’s irrationality
can be stored on the blockchain, which can then be represented as
a sheaf. Similar to the case of imperfect information, additional
information concerning irrationality can be combined to form a
composition of chains, all of which represent the sheaf. R.

CHALLENGES OF USING THE
BLOCKCHAIN SHEAF FOR ROBOTICS
APPLICATIONS
This section describes the challenges and limitations of using the
blockchain sheaf for robotics applications. We focus on three
aspects of the blockchain sheaf related to diversity of blockchain
applications, size of the blockchains andmyopic keymanagement
tools. First, the use of separate blockchains for different
applications and the inability to “smartify” every aspect of
human society presents a hindrance to the application of
uniform sheaf-theoretic analytic tools. Further, smart contracts
that are valid for one application might find limited applicability
in other applications, and thus the scope of the jurisdiction in case
of arguments becomes contentious as humans seek to find the
right entity that is to be held accountable for certain actions. As
humans and robots interact over a range of domains, the
interaction data may be stored in separate blockchains thereby
increasing the complexity of the blockchain networks and the
tools to analyze them.

Secondly, scalability of rapidly expanding blockchains is
crucial. Blockchain relies on distributed consensus to add new
transactions to the block. Copies of the blockchain are stored on
several nodes, and the consensus process, although resulting in
immutable records, is slow. As robots tune their parameters of
imperfect information and irrationality to interact with varying
clients, records of their interactions that are stored on the
blockchain will have to undergo the same vetting process of
approval and distributed consensus. When coupled with the task
of correlating information from multiple blockchains, issues of
scalability will be paramount. Lastly, discernment of truly private
and important information will be a challenging issue in social
robotics. Key management of the blockchain sheaf will raise
significant challenges in the absence of robotic understanding
of what is important. Since, management of critical assets on the
blockchain relies heavily on management of private keys, in
networks inhabited by robots and humans, imperfect
information on the part of both robot and human entities
might lead to insufficient protection mechanisms for private
keys. While it is relatively easy to train the robot to recognize
the value of cryptocurrencies and thereby enforce strict
protection mechanisms for private keys controlling wallets, it
might be harder for a robot to understand the value of other kinds
of data from diverse sources such as IoT devices, supply chain
data, smart records, education credentials, and gaming data.
While it may be convenient to think that all data is valuable
and should be stored on the blockchain, it immediately raises the
previously mentioned challenges of information overload on the
blockchain. Further, the smart contracts that are embedded with
imperfect information and irrationality might not have been
encoded with enough foresight, thereby creating myopic smart
contracts that do not recognize the value of some data in the
present, but later turns out to be valuable data in retrospect.

CONCLUSION

In this paper, we proposed a novel framework for visualizing
robotics applications on the blockchain that used sheaf theoretic
constructs from algebraic topology. To illustrate our framework,
we provided examples of robotic blockchain sheaves for various
applications. The work in this paper highlights multiple areas for
future research in incorporating applied topological constructs to
study blockchain applications. This includes studies concerning
the structure of blockchain which could use local/global
properties of blockchain sheaves to reveal hidden properties of
the architectures. Areas of potential research include the revised
dynamics of the blockchain with AI/ML applications for specific
contexts of human-social interaction.
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