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A large and increasing number of people around the world experience cognitive disability.

Rehabilitation robotics has provided promising training and assistance approaches

to mitigate cognitive deficits. In this article, we carried out a systematic review on

recent developments in robot-assisted cognitive training. We included 99 articles

in this work and described their applications, enabling technologies, experiments,

and products. We also conducted a meta analysis on the articles that evaluated

robot-assisted cognitive training protocol with primary end users (i.e., people with

cognitive disability). We identified major limitations in current robotics rehabilitation

for cognitive training, including the small sample size, non-standard measurement of

training and uncontrollable factors. There are still multifaceted challenges in this field,

including ethical issues, user-centered (or stakeholder-centered) design, the reliability,

trust, and cost-effectiveness, personalization of the robot-assisted cognitive training

system. Future research shall also take into consideration human-robot collaboration

and social cognition to facilitate a natural human-robot interaction.

Keywords: rehabilitation robotics, human-robot interaction, robot-assisted cognitive training, socially assistive

robotics, multimodal interaction, cognitive disability

1. INTRODUCTION

It is estimated that ∼15% of the world’s population, over a billion people, experience some form
of disability and a large proportion of this group specifically experience cognitive disability (WHO,
2011). The number of people with disabilities is increasing not only because of the growing aging
population who have a higher risk of disability but also due to the global increase in chronic health
conditions (Hajat and Stein, 2018). Individuals with cognitive disability, such as Alzheimer’s disease
(AD) or Autism spectrum disorder (ASD), may have a substantial limitation in their capacity for
functional mental tasks, including conceptualizing, planning, sequencing thoughts and actions,
remembering, interpreting subtle social cues, and manipulating numbers and symbols (LoPresti
et al., 2008). This vulnerable population is usually associated with significant distress or disability
in their social, occupational, or other important activities.

With recent advancements of robotics and information and communication technologies
(ICTs), rehabilitation robots hold promise in augmenting human healthcare and in aiding exercise
and therapy for people with cognitive disabilities. As an augmentation of human caregivers with
respect to the substantial healthcare labor shortage and the high burden of caregiving, robots may
provide care with high repeatability and without any complaints and fatigue (Taheri et al., 2015b).
In a meta analysis comparing how people interacted with physical robots and virtual agents, Li
(2015) showed that physically present robots were found to be more persuasive, perceived more
positively, and result in better user performance compared to virtual agents. Furthermore, robots
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can facilitate social interaction, communication and positive
mood to improve the performance and effectiveness of cognitive
training (Siciliano and Khatib, 2016). For example, a recent study
(Pino et al., 2020) showed that older adults with mild cognitive
impairment (MCI) that received memory training through the
humanoid social robot (NAO) achieved more visual gaze, less
depression, and better therapeutic behavior. Physically embodied
robots hold promise as accessible, effective tools for cognitive
training and assistance in future.

There have been a few literature reviews on physical
rehabilitation (Bertani et al., 2017; Kim et al., 2017; Morone
et al., 2017; Veerbeek et al., 2017), or cognitive rehabilitation for
specific user populations, such as children with ASD (Pennisi
et al., 2016) and older adults (Mewborn et al., 2017). To the
authors’ best knowledge, this article presents the first systematic
review that focuses on robotic rehabilitation for cognitive
training. We present applications, enabling technologies, and
products of robotics rehabilitation based on research papers
research papers focusing on cognitive training. We also discuss
several challenges to the development of robots for cognitive
training and present future research directions.

2. METHODS

2.1. Search Strategy
We conducted a systematic review in the datasets of Google
Scholar, Crossref, PubMed, Scopus, and Web of Science using
the key words (“robot” OR “robots” OR “robotics” OR “robotic”)
AND (“cognitive training” OR “cognitive rehabilitation” OR
“cognitive therapy” OR “cognitive recovery” OR “cognitive
restore”). The search was limited to the articles published
between 2015 and December 14, 2020. The search in Google
Scholar yielded 5,630 articles. Google Scholar ranks sources
according to relevance, which takes into account the full text
of each source as well as the source’s author, the publication
in which the source appeared and how often it has been cited
in scholarly literature (University of Minnesota Libraries, 2021).
We screened the titles of the first 500 articles and excluded the
remaining results due to their low relevance. After the analysis
of abstracts and written languages, 328 articles were further
excluded due to duplication (i.e., exact copy of two works), non-
English language, and/or not pertaining to the research topic.
Then 172 full articles were reviewed for eligibility. The articles
that were aimed for physical rehabilitation or review articles
were excluded. Finally, 80 eligible articles were included for
further analysis. As illustrated in the PRISMA flow diagram (see
Figure 1), with the keywords we initially found 200, 31, 106,
and 50 articles in the datasets of Crossref, PubMed, Scopus
and Web of Science for screening, respectively. These articles
were combined with the 80 additional articles from Google
Scholar for further screening. After the analysis of titles, abstracts,
written languages and types of article, 238 articles were excluded
due to duplication, non-English language, non-eligible article
types (e.g., book chapter, book, dataset, report, reference entry,
editorial and systematic review), and/or not pertaining to the
research topic. Then 229 full articles were reviewed for eligibility.
The articles that were aimed for physical rehabilitation or

review articles were excluded. Finally, 99 eligible articles were
included in this systematic review, including journal articles
and conference papers presented at conference, symposium and
workshop. These papers included the contents of applications,
user population, supporting technologies, experimental studies,
and/or robot product(s). Moreover, 53 articles that included
experimental study of robot-assisted cognitive training with
primary end users (i.e., people with cognitive disability) were
identified for further meta-analysis.

The literature include cognitive training robots in the forms of
companion robots, social robots, assistive robots, social assisted
robots, or service robots, which are collectively referred to
as “cognitive training robots” in this systematic review. The
literature employed different terminologies for cognitive training
by rehabilitation robots, such as robot-enhanced therapy (David
et al., 2018; Richardson et al., 2018), robot-assisted intervention
(Scassellati et al., 2018), robot-assisted treatment (Taheri et al.,
2015a), robot-assisted training (Tsiakas et al., 2018), robot-
assisted therapy (Sandygulova et al., 2019), robot-mediated
therapy (Begum et al., 2015; Huskens et al., 2015). Here, we
do not distinguish between these different terms and instead
adopt the term of “robot-assisted training” to represent all these
different terms.

3. RESULTS

3.1. Applications
The studies on robot-assisted cognitive training are categorized
in terms of their applications and end users in Table 1. To
date, the most researched application (36 out of 98 articles,
as shown in Table 1) of robots in cognitive training is to
improve individual social communication skills, which may
include joint attention skills, imitation skills, turn-taking skills
and other social interaction skills. For example, Kajopoulos et al.
(2015) designed a robot-assisted training protocol based on
response to joint attention for children with ASD. The training
protocol used a modified attention cueing paradigm, where
the robot’s head direction cued children’s spatial attention to
a stimulus presented on one side of the robot. The children
were engaged in a game that could be completed only through
following the robot’s head direction. To aid in the training
of imitation skills in children with ASD, Taheri et al. (2020)
proposed a reciprocal gross imitation human–robot interaction
platform, in which ASD children are expected to imitate the
robot body gestures, including a combination of arms, feet,
neck, and torso movements. David et al. (2020) developed a
robot-enhanced intervention on turn-taking abilities in ASD
children. In their protocol, the robot provided instruction (e.g.,
“Now is my turn”) to the child, checked if the child moved the
picture as instructed, and provided feedback (e.g., “Good job”)
to the child if the child respected turns by staying with his or
her hands still, without interrupting the robot. Robot-assisted
cognitive training showed increased cognitive capabilities for
people with limited social capabilities, such as children with
ASD (Huijnen et al., 2016; Esteban et al., 2017; Marino et al.,
2019) and people with dementia (Sung et al., 2015; Yu et al.,
2015; Otaki and Otake, 2017). Due to cognitive impairment,
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FIGURE 1 | PRISMA flow diagram illustrating the exclusion criteria and stages of the systematic review.

individuals with dementia may also show deficits in social
functioning, such as social withdrawal (Havins et al., 2012;
Dickerson, 2015). In the pilot study by Sung et al. (2015) about
robot-assisted therapy using socially assistive pet robot (PARO),
institutionalized older adults showed significantly increased
communication and interaction skills and activity participation
after receiving 4-week robot-assisted therapy. Another robotic
application is to provide intervention to enhance people’s
impaired cognitive function, such as memory (Paletta et al.,
2018), attention (Lins et al., 2019) and concentration (Tleubayev
et al., 2019), or reduce their negative psychophysiological
feelings, such as stress (Aminuddin et al., 2016) and anxiety
(Ab Aziz et al., 2015). Additionally, a few studies adopted
the robots to facilitate learning and educational activities for
people with cognitive disabilities, such as children with dyslexia
(Andruseac et al., 2015) or Traumatic Brain Injury (TBI)
(Barco Martelo and Fosch Villaronga, 2017).

3.2. Enabling Technologies
Recent development in robotics, ICTs, multimodal human-
robot interaction, and artificial intelligence leads to significant
process in robot-assisted cognitive training and rehabilitation.

This section presents a summary on a few important enabling
technologies that foster the advancement of robotic rehabilitation
for cognitive training, including multimodal perception,
multimodal feedback, gamification, virtual and augmented
reality, and artificial intelligence.

3.2.1. Design of Physical Appearance
A robot can have a human-like (Miskam et al., 2015; Peleka et al.,
2018; Taheri et al., 2019), animal-like (Cao et al., 2015; Sung et al.,
2015), or unfamiliar appearance (Scassellati et al., 2018). Besides
the appearance, the size, softness, and comfort of the robot can
also have an impact on users’ perception, affection, cognitive
load, and gaze following during interaction (Kohori et al., 2017),
and thus the effectiveness of cognitive training. It remains
unclear how users’ perception is specifically affected by the robot’s
appearance. On the one hand, the human-like appearance was
indicated to significantly positively affect users’ perception of
anthropomorphism, animacy, likeability, and intelligence toward
robots, compared to a snowman-like appearance (Haring et al.,
2016). On the other hand, increasing human-like appearance was
found not to necessarily increase performance in human-robot
interaction. For example, in the survey of expectation about the
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TABLE 1 | Type of robot-assisted cognitive training and end-user population.

Application User population References

Social

communication skills

Children with ASD;

Children with ADHD;

Children with ID;

People with dementia;

People with CP;

Older adults with social

interaction problems

Begum et al., 2015; Conti et al., 2015; Costescu et al., 2015; Huskens et al., 2015; Kajopoulos

et al., 2015; Miskam et al., 2015; Nunez et al., 2015; Sung et al., 2015; Taheri et al., 2015a,

2018, 2019, 2020; Yu et al., 2015; Zheng et al., 2015, 2016; Huijnen et al., 2016; Ozcana

et al., 2016; Salvador et al., 2016; Santatiwongchai et al., 2016; Tariq et al., 2016; Wong and

Zhong, 2016; Yun et al., 2016; Barco Martelo and Fosch Villaronga, 2017; Bharatharaj et al.,

2017; Esteban et al., 2017; Otaki and Otake, 2017; Rudovic et al., 2017; Wood et al., 2017;

David et al., 2018, 2020; Richardson et al., 2018; Scassellati et al., 2018; Ali et al., 2019;

Marino et al., 2019; Melo et al., 2019; Sandygulova et al., 2019; Alnajjar et al., 2020

Memory Children with CP;

Older adults without CI;

People with mild CI;

People with dementia

Sonntag, 2015; Ahn et al., 2017; Garcia-Sanjuan et al., 2017; Tsardoulias et al., 2017; Paletta

et al., 2018; Taranović et al., 2018a,b,c; Tsiakas et al., 2018; Nault et al., 2020; Pino et al., 2020

Concentration Children with ASD;

Children with ADHD

Tleubayev et al., 2019

Attention Children with CP;

Children with ID;

People with mild CI;

Older adults without CI;

People with severe CI

Garcia-Sanjuan et al., 2017; Tsardoulias et al., 2017; D’Amico and Guastella, 2019; Lins et al.,

2019

Visuo-spatial

abilities

Children with impaired

spatial abilities and WM

D’Amico and Guastella, 2019

Awareness People with ABI Yokota et al., 2019

Cognitive training

(No specific

cognitive function)

Children with ASD;

People with mild CI;

People with dementia;

Older adults without CI;

People with ID;

People post-stroke

Kim et al., 2015, 2019; Kostavelis et al., 2015; Valentí Soler et al., 2015; Agrigoroaie et al.,

2016; Coeckelbergh et al., 2016; Demetriadis et al., 2016; Lopez-Samaniego and

Garcia-Zapirain, 2016; Salichs et al., 2016, 2018; Tsiakas et al., 2016; Abdollahi et al., 2017;

Chu et al., 2017; Darragh et al., 2017; Khosla et al., 2017; Korchut et al., 2017; Shukla et al.,

2017, 2019; Javed et al., 2018; Peleka et al., 2018; Rudovic et al., 2018; Andriella et al.,

2019a,b, 2020; Law et al., 2019a,b; Pereira et al., 2019; Tokunaga et al., 2019; Calderita et al.,

2020; Carros et al., 2020; Chen et al., 2020; Manca et al., 2020; Mois et al., 2020; Schüssler

et al., 2020

Disruptive

behavior problems

Children with DBD Rabbitt et al., 2015

Anxiety People with anxiety Ab Aziz et al., 2015

Distress Children with cancer Alemi et al., 2016

Stress People with stress Aminuddin et al., 2016

Psychological healing Not specified Kohori et al., 2017

Hypnotherapy Not specified Alimardani and Hiraki, 2017

Education Children with dyslexia;

Children with ASD;

Children with severe PD;

Children with TBI;

People with PMLD

Andruseac et al., 2015; Ioannou et al., 2015; Shukla et al., 2015; Taheri et al., 2016, 2019;

Barco Martelo and Fosch Villaronga, 2017; Bharatharaj et al., 2017; van den Heuvel et al.,

2017; Clabaugh et al., 2019

Vocational training People with ASD;

People with TBI

Bozgeyikli et al., 2015

CI, Cognitive Impairment; ASD, Autism Spectrum Disorders; ADHD, Attention Deficit Hyperactivity Disorder; ID, Intellectual Disability; CP, Cerebral Palsy; WM, Working memory; ABI,

Acquired Brain Injuries; PD, Physical Disability; TBI, Traumatic Brain Injury; PMLD, Profound and Multiple Learning Disabilities; DBD, Disruptive Behavior Disorders.

robots’ appearance in robot-assisted ASD therapy, zoomorphic
robots were indicated to be less ethically problematic than robots
that looked too much like humans (Coeckelbergh et al., 2016).
Some of their participants (i.e., parents, therapists, or teachers
of children with ASD) worried about the possibility that the
robot is perceived by the child as a friend, or that the robot
looks too human-like. The relation between robots’ human-like
appearance and people’s reaction to them may relate to the
uncanny valley theory (Mori et al., 2012), which describes that
people’s familiarity (or affinity) with robots increases as the robots

appear more human-like but when the robots are almost human,
people’s response would shift to revulsion. Tung (2016) observed
an uncanny valley between the degree of anthropomorphism
and children’s attitudes toward the robots. In the review paper
to study factors affecting social robot acceptability in older
adults including people with dementia or cognitive impairment,
Whelan et al. (2018) found that there is a lack of consensus
regarding to the optimal appearance of social robots and
that the uncanny valley concept varies between individuals
and groups.
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3.2.2. Multimodal Sensing
Having a good understanding of a user’s cognitive state,
affective state and surrounding environment, which is termed
as multimodal perception, is a prerequisite step for robots to
provide cognitive training. Usually the concept of multimodal
perception involves two stages, multimodal sensing and
perception. Further details on these two techniques in previous
publications are individually discussed in the following. Various
sensors have been adopted to facilitate a robot to achieve
multimodal sensing, based on system requirements, end-user
population, cost-effectiveness, etc. Among different sensing
technologies, visual and auditory sensing are the most popular
modalities. We summarize the multiple modalities for sensing in
the following aspects.

1. Visual sensing. During human-robot interaction, visual
sensors are a very popular, useful and accessible channel
for perception. The advancement of technologies, such as
manufacturing and ICTs, enabled researchers to integrate small,
high-resolution and affordable cameras into their rehabilitation
robotic system. Some studies placed cameras in the environment
along with the robot (Melo et al., 2019). Other studies included
cameras in the robotic mechanical system. For example, in
the social robot Pepper, there were 2D and 3D cameras
attached to the head (Paletta et al., 2018). With computational
approaches, such as computer vision, the robots analyzed
the video/images from the cameras and recognized users’
critical states, such as their environment, facial expression,
body movements, and even emotion and attention (Paletta
et al., 2018; Peleka et al., 2018; Rudovic et al., 2018; Mois
et al., 2020), which led to a better perception of users
(Johal et al., 2015).

2. Auditory sensing.Another popular modality adopted during
robot-assisted cognitive training is auditory sensing. Researchers
analyzed users’ auditory signals in terms of the lexical field,
tone and/or volume of voice for speech recognition, emotion
detection, and speaker recognition in robots (Paletta et al., 2018;
Peleka et al., 2018; Rudovic et al., 2018). Due to the natural
and intuitive nature for users behind the auditory sensing,
some end users, such as older adults preferred this sensing
channel to the touch input during interaction with the robot
(Zsiga et al., 2018).

3. Physiological sensing. Besides visual and auditory sensing,
physiological modalities have been incorporated into the robotic
system, in order to have a better understanding of users’ states
(e.g., affective states). Previous studies show that human-robot
interaction may be enhanced using physiological signals, such
as heart rate, blood pressure, breathing rate, and eye movement
(Sonntag, 2015; Lopez-Samaniego and Garcia-Zapirain, 2016;
Ozcana et al., 2016; Ahn et al., 2017; Alimardani and Hiraki,
2017). For example, Rudovic et al. (2018) employed wearable
sensors to detect children’s heart-rate, skin-conductance and
body temperature during their robot-based therapy for children
with ASD, to estimate children’s levels of affective states
and engagement. When studying robot-assisted training for
children with ASD, Nunez et al. (2015) used a wearable device
of electromyography (EMG) sensors to detect smiles from
children’s face.

4. Neural sensing. The inclusion of brain-imaging sensors
provides capabilities to measure and/or monitor a user’s brain
activity and to understand the user’s mental states (Ali et al.,
2019). This was especially useful when considering the user’s
cognitive states, such as level of attention and task engagement
(Alimardani and Hiraki, 2017; Tsiakas et al., 2018). Neural
sensing may also be meaningful to users who have difficulty in
expressing their intention and feeling because of their physical
and/or cognitive limitations, such as the older adults with
Alzheimer’s disease. Currently, among all candidates of brain-
imaging sensors, EEG and functional near-infrared spectroscopy
(fNIRS) are two popular modalities due to their advantages
of non-invasiveness, portability, and cost-effectiveness. For
example, Lins et al. (2019) developed a robot-assisted therapy
to stimulate the attention level of children with cerebral palsy
and applied electroencephalogram (EEG) sensors to measure
children’s attention level during the therapy.

3.2.3. Multimodal Feedback
After perceiving its user and environment, a robot shall entail
multimodal feedback to interact (e.g., display its behaviors and
feedback) with its user in a comfortable, readable, acceptable,
and effective way (Melo et al., 2019). Multimodal feedback is
particularly meaningful when the end users are unfamiliar with
technologies or are limited in cognitive capabilities, such as
older adults with dementia. Examples of feedback include voice,
video, gesture, and physical appearance, all of which can affect
users’ perception of the robot during their interaction and thus
the effectiveness of cognitive training/rehabilitation (Ab Aziz
et al., 2015; Rabbitt et al., 2015). The following list shows
popular modalities for robotic feedback during interaction with
human users.

1. Visual feedback.One of themost widely-used overt feedback
modalities is visual feedback or graphical user interface (GUI),
displaying two-dimensional information. During robot-assisted
cognitive training, visual feedback was delivered through an
additional computer screen (Salvador et al., 2016; Taheri et al.,
2019; Mois et al., 2020), or a touchscreen embodied in the
robot (Paletta et al., 2018; Peleka et al., 2018). Some principles
and/or issues on the design of GUI for robot-assisted training
were suggested in previous studies. For example, a few studies
recommended a larger screen and a simpler interface associated
with each function choice for GUI to better facilitate visual
feedback during cognitive training (Ahn et al., 2017).

2. Auditory feedback. Another widely used modality for
feedback or interaction is auditory output, like speech
during human-human interaction. This intuitive auditory
communication can reduce the unfamiliarity with robotic
technologies and increase the usability of system in the
vulnerable population, such as the elderly population (Zsiga
et al., 2018). Among previous studies, this feedback was delivered
in one or combined form of beep (Nault et al., 2020), speech
(Ab Aziz et al., 2015; Miskam et al., 2015; Peleka et al., 2018;
Taheri et al., 2019), and music (Nunez et al., 2015). With auditory
output, the robot provided daily communication and medication
reminder, instructed cognitive training, and made emergent
warning (e.g., short of battery) to the user (Orejana et al., 2015).
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3. Non-verbal feedback.We refer to non-verbal feedback as all
non-verbal communication cues by a robotic body, such as hand
gestures and other body movements (Miskam et al., 2015; Taheri
et al., 2019), eye gaze (Taheri et al., 2019), eye colors (Miskam
et al., 2015; Taheri et al., 2019), and facial expression. Animation,
similar to verbal language, makes a significant contribution
to improving robot-assisted cognitive training. Moreover, the
robot’s animation can particularly introduce social interaction to
a user, which is meaningful to individuals with impairments in
social interaction skills.

4. Haptic feedback. Haptic feedback, by simulating the sense
of touch and motion, may play important role during robot-
assisted cognitive training due to the importance of touch
in everyday life (Beckerle et al., 2017; Cangelosi and Invitto,
2017). Tactile feedback is one type of haptic feedback. During
robot-assisted cognitive training, haptic feedback can also be
introduced using vibration via wearable devices. For example,
Nault et al. (2020) developed a socially assistive robot-facilitated
memory game elaborated with audio and/or haptic feedback
for older adults with cognitive decline. Although there was no
significant difference in participants’ game accuracy, preference,
and performance in their system pilot study, the results provided
insight into future improvements, such as increasing the strength
of haptic feedback to increase the ease of being perceived and
make the system more engaging. One notable robot, Paro,
with the combination of soft, plush surface and additional
encouraging haptic feedback (e.g., small vibration) creates a
soothing presence. In a pilot study for institutionalized older
adults by Sung et al. (2015), the communication and social
skills of participants were improved by the robot-assisted therapy
using Paro.

3.2.4. Gamification
Recently, game technology is becoming a popular way to
motivate, engage and appeal to users in cognitive tasks, since
traditional cognitive tasks are usually effortful, frustrating,
repetitive, and disengaging. Serious games and brain training
games are a growing research field for cognitive training
(Heins et al., 2017). Integration between gaming and robotic
technologies has attracted increasing amount of interest in
research and application, to further enhance users’ engagement
in cognitive training. A few types of relationships between robots
and games have been developed in the literature. For example,
a robot can lead or accompany users through the game for
cognitive training by providing instructions on how to perform
the task (Ioannou et al., 2015; Chu et al., 2017; Tsardoulias et al.,
2017; Scassellati et al., 2018; Sandygulova et al., 2019; Taheri
et al., 2019; Tleubayev et al., 2019; Nault et al., 2020) or playing
a role of an active player in the game (Tariq et al., 2016; Melo
et al., 2019). Additionally, a robot can provide various types
of feedback (see details in section 3.2.3) to encourage users to
engage in the game (Taheri et al., 2015a; Lopez-Samaniego and
Garcia-Zapirain, 2016). Often, games associated with cognitive
training can be integrated into the robotic systems through
a GUI (Ahn et al., 2017; Paletta et al., 2018; Peleka et al.,
2018).

3.2.5. Virtual and Augmented Reality
Combining robot-assisted cognitive training with virtual reality
(VR) and/or augmented reality (AR) techniques offers a cost-
effective and efficient alternative to traditional training settings.
The incorporation of VR/AR allows for replication of the tasks
and environments in a more convenient and affordable way.
Researchers also explored robotic cognitive training using mixed
reality technology in cognitive training. For example, Sonntag
(2015) presented an intelligent cognitive enhancement platform
for people with dementia, where a mixed reality glass was used
to deliver the storyboard (e.g., serious game for active memory
training) to the user and a NAO robot served as a cognitive
assistant for “daily routine.” Bozgeyikli et al. (2015) used virtual
reality in a vocational rehabilitation system, which included
six different modules, such as money management in a virtual
grocery store, to provide vocational training for persons with
ASD and TBI.

3.2.6. Artificial Intelligence
Artificial Intelligence plays a significant role in the field of robot-
assisted cognitive training/rehabilitation, including applications
in multimodal perception and feedback, personalization, and
adaptability (Ab Aziz et al., 2015; Rudovic et al., 2018). Given
multimodal sensing, a successful multimodal perception further
requires robots to integrate signals across multiple modalities of
input sensors. To date, a great progress has been made thanks
to the advancement of machine learning and deep learning.
Multi-modal signals enable the robot with a good interpretation
and understanding of its users, including their needs, intention,
emotions, and surrounding environment (Paletta et al., 2018).
Rudovic et al. (2018) implemented deep learning in a robot for
ASD therapy to automatically estimate children’s valence, arousal
and engagement levels. Javed et al. (2018) utilized multimodal
perception, including the analyses of children’s motion, speech,
and facial expression, to estimate children’s emotional states.
Using multiple feedback modalities may overload users with
redundant information, increase task completion time, and
reduce the efficiency of cognitive training (Taranović et al.,
2018c). Additionally, users may favor certain modalities over
others due to personal preference or cognitive disability.
Taranović et al. (2018c) designed an experiment of adaptive
modality selection (AMS) in robot-assisted sequential memory
exercises and applied artificial intelligence to learn the strategy
that selects the appropriate combination and amount of feedback
modalities tailored to different situations (e.g., environments and
users). An appropriate strategy is crucial to successful long-term
robot-assisted cognitive intervention. Specifically, reinforcement
learning, an area of machine learning, is a promising approach
to adapt and personalize the intervention to each individual
user as well as to optimize the performance of robot-assisted
cognitive training, due to its capability of allowing a robot to
learn from its experience of interaction with users (Sutton and
Barto, 2018). For example, Tsiakas et al. (2016) used interactive
reinforcement learning methods to facilitate the adaptive robot-
assisted therapy, that is, adapt the task difficulty level and task
duration to users with different skill levels (e.g., expert or novice
user), in the context that users need to perform a set of cognitive
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or physical training tasks. Javed et al. (2018) developed a Hidden
Markov model (HMM) in their adaptive framework for child-
robot interaction, aiming to enable a child with ASD to engage in
robot-assisted ASD therapy over long term. In their HMM, the
states took into consideration a child’s emotional state or mood,
and the actions were the robot’s behaviors or other audiovisual
feedback. Clabaugh et al. (2019) utilized reinforcement learning
to personalize instruction challenge levels and robot feedback
based on each child’s unique learning patterns for long-term
in-home robot interventions. Although reinforcement learning
may suffer the problem of sample inefficiency, the slowness of
reinforcement learning can be overcome using techniques, such
as episodic memory and meta-learning (Botvinick et al., 2019).

3.3. Experimental Studies
Many experimental studies have been conducted to evaluate the
important properties of robotic rehabilitation, such as feasibility,
safety, usability, performance, etc. On the one hand, exploratory
studies including surveys and interviews with users (e.g., patients,
caregivers, and therapists) have been conducted to inform the
next stage of study (Rabbitt et al., 2015; Coeckelbergh et al.,
2016; Salichs et al., 2016; Darragh et al., 2017; Kohori et al.,
2017; Korchut et al., 2017; Law et al., 2019b). On the other
hand, researchers have conducted experimental studies to verify
and/or validate robot-assisted cognitive training systems. Table 2
shows a meta analysis for experimental studies, where the robot-
assisted cognitive training was provided to primary end users
(i.e., persons with cognitive disabilities). Up to date, majority
of the experimental studies were conducted in a controlled lab
setting, and only a few studies were conducted in an environment
simulating daily activities in real world (Scassellati et al., 2018).

3.3.1. Study Design
Most experimental studies included three phases: pre-training
assessment (i.e., baseline assessment), robot-assisted cognitive
training, and post-training assessment (Kajopoulos et al., 2015;
Kim et al., 2015; Sung et al., 2015; Yu et al., 2015; Alemi et al.,
2016; Taheri et al., 2016, 2019; van den Heuvel et al., 2017;
Scassellati et al., 2018; Marino et al., 2019). The effectiveness
of robot-assisted training was evaluated by the comparison of
pre- and post-training assessments using machine learning or
statistical methods (Kim et al., 2015; Yu et al., 2015; Scassellati
et al., 2018; Marino et al., 2019; Taheri et al., 2019).

Most studies adopted the group-based design where
participants were randomly assigned to control or intervention
groups (Kim et al., 2015; Sung et al., 2015; Yu et al., 2015; Marino
et al., 2019). Some researchers employed single-case designs
(or single-subject designs) to investigate the impact of social
robots on cognitive training (Ioannou et al., 2015; Taheri et al.,
2015a; David et al., 2018). For example, Ioannou et al. (2015)
conducted the single-case study to explore the potential role
of co-therapist of humanoid social robot, NAO, during autism
therapy session with one child with ASD. In their study, there are
four intervention sessions, and one follow-up, post-intervention
therapy session to examine the effectiveness of the therapy
with NAO.

Sample sizes vary dramatically in the literature (Ioannou
et al., 2015; Kajopoulos et al., 2015; Kim et al., 2015; Sung
et al., 2015; Chu et al., 2017; Khosla et al., 2017; Rudovic
et al., 2018), where some studies were conducted with hundreds
of participants whereas some studies included only a few
participants. Challenges to recruitment included accessibility of
participants and their caregivers, participants’ disability, and
ethical issues (e.g., privacy).

In terms of the intensity and duration of robot-assisted
cognitive training, due to the variety of applications and end
users, there was also a great variation in the total number of
training sessions as well as the session duration. For example,
with respect to one single training session, it took from about 20
min (Shukla et al., 2015; Tleubayev et al., 2019) to 90 min (Kim
et al., 2015). Corresponding to the total cognitive training period,
it varied from a few days (Bharatharaj et al., 2017) to more than 5
years (Chu et al., 2017).

3.3.2. Evaluation
Researchers employed subjective and/or objective evaluation
metrics to evaluate the performance of robots in cognitive
training. Subjective measurement include qualitative
observation, interviews and questionnaires. Objective
measurements evaluate the performance from a behavioral
or neurophysiological level.

1. Observation.During the experiments or recorded video, the
experimenters or professional therapists observed and evaluated
participants’ behaviors, such as affective feelings, eye contact,
communication, and other related interactions, based on their
knowledge and experience (Begum et al., 2015; Conti et al., 2015;
Costescu et al., 2015; Ioannou et al., 2015; Shukla et al., 2015;
Taheri et al., 2015a, 2019; Yu et al., 2015; Tariq et al., 2016;
Wong and Zhong, 2016; Yun et al., 2016; Zheng et al., 2016;
Abdollahi et al., 2017; Chu et al., 2017; Garcia-Sanjuan et al.,
2017; Khosla et al., 2017; Rudovic et al., 2017; David et al., 2018;
Marino et al., 2019; Sandygulova et al., 2019; Tleubayev et al.,
2019). This measurement was a very practical, dominant metric
during the study of children with ASD. With the development
of ICTs, some studies also applied customized software (instead
of human effort) to evaluate user’s behaviors, such as smiles and
visual attention (Pino et al., 2020).

2. Interview. Interviews were conducted with the primary
users (i.e., patients), their caregivers (e.g., parents and other
family caregivers), and therapists, to learn about users’ opinion
and experience, and the performance of the robot-assisted
cognitive training (Yu et al., 2015; Bharatharaj et al., 2017;
Darragh et al., 2017; Paletta et al., 2018; Sandygulova et al., 2019;
Taheri et al., 2019; Tleubayev et al., 2019). As stated in the book
on user experience (UX) lifecycle by Hartson and Pyla (2018),
user interview is a useful, practical technique to understand users’
needs, design solutions, and evaluate UX, all of which are basic
fundamental activities in UX lifecycle. Specifically, interviews
can be applied to extract requirements of people with cognitive
disability and/or their caregivers, to create the human-robot
interaction design concepts, and to verify and refine human-
robot interaction design for cognitive training. For example, in
the case studies by Orejana et al. (2015), older adults with chronic
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TABLE 2 | Meta analysis on end-user experiments of robot-assisted cognitive training.

References Participants Country-term Study design Outcomes (after training)

Abdollahi et al.

(2017)

6 (1M) seniors with mild

dementia and/or depression,

aged 63–86

USA; 4–6 weeks One-on-one (robot vs. human)

pilot study; Each individual

had 24/7 access to robot.

Participants established rapport with the

robot and greatly valued and enjoyed

having the robot in their room. Subjects

spent ∼130 min per day interacting with

the robot.

Agrigoroaie et al.

(2016)

1 male with physical disability

and cerebellar ataxia, aged

73; 1 female with arthritis

aged 83

UK; One ∼1-h session Interaction with the robot in

one partner care facility.

The residents’ reactions were positive and

they found the robot useful.

Alemi et al. (2016) 11 children with cancer, aged

9.5 ± 1.63

Iran; 18 days, 8 sessions WOZ; Randomized into

robot-assisted therapy group

vs. psychotherapy control

group

Children’s stress, depression and anger

were considerably alleviated during robot

treatment. Significant differences were

observed between two groups.

Ali et al. (2019) 12 (11M) children with ASD,

aged 3.7–10.4

Pakistan; 6 months, 8

sessions for each intervention

Two different therapies of

human-robot interaction, with

and without inter-robot

communication

Each participant showed improved eye

contact duration over the experiments. In

imitation module, participants actuated

both robots almost equally in recurring

experiments.

Alnajjar et al. (2020) 11 boys with ASD, aged 9.03

± 2.56

UAE; one 5-min session in 1st

week (pilot) and following 7

weeks with 1 session/week

Dynamic interaction scenario;

Pilot study and long-term

study

In long-term study, all 6 participants

portrayed a trend of increasing attention

scores. However, the therapist and system

assessment trends were similar for most

of the patients.

Begum et al. (2015) 3 (3M) persons with ASD,

aged 13–19

USA; 6–10 days; 10–19

sessions; 2–4 min/session

WOZ Metrics of skill execution and prompt

dependency together created a highly

informative picture of how well different

participants performed. HRI metrics

(Gaze, communication, and affect) were

unable to measure the efficacy of the robot

in achieving the goal of the therapy.

Bharatharaj et al.

(2017)

9 children with ASD, aged

9.33 ± 3.39; 9 children’s

parents; 1 pediatrician; 1

psychologist

India; 5 consecutive days;

Three 15-min sessions/day

Pilot study; WOZ; The robot

was taught in the presence of

children, who are expected to

be curious by the robot and

compete with the robot.

Results indicated that children with ASD

appeared attracted and happy to interact

with the parrot-inspired robot.

Chu et al. (2017) 139 (43M) seniors with

dementia, aged 65–90

Australia; ≥5 years; Mostly 1

trial, 4–6 h/trial

Observational study in real life; Social robots can improve diversion

therapy service value to PwD through

sensory enrichment, positive social

engagement and entertainment.

Clabaugh et al.

(2019)

17 children with ASD, aged

3–7

USA; 41 ± 5.92 days,

encouraging 5 sessions/week,

10 games/session

In-home SAR intervention;

Single-subject design for

subjective measures

Each child participant was engaged with

most intervention and showed improved

targeted skills and long-term retention of

intervention content. The robot system

was reported useful and adaptable by

families.

Conti et al. (2015) 3 (3M) children with ASD and

ID, aged 11–12

Italy; One 9-min session WOZ; Robot-mediated

imitated game

Suggesting that the robot can be

effectively integrated in the ASD therapies

currently used.

Costescu et al.

(2015)

40 children with TD, aged 5.4

± 0.4; 41 children with ASD,

aged 8.4 ± 2.2

Romania; Not specified Counterbalanced; Each

participant went through a

robot condition and a human

condition for reversal learning

task.

Children with ASD were more engaged in

the task and seemed to enjoy more in the

robot condition vs. human condition. Their

cognitive flexibility performance was

generally similar in the robot and human

conditions.

David et al. (2018) 5 (4M) children with ASD,

aged 3–5

Romanian; 20 days, one

10-min session/day

Single-case alternative

treatments design; Rapid

alternation of 2 treatments;

WOZ

A very consistent pattern across all types

of sessions: using more cues (i.e., gaze

orientation, pointing, and vocal instruction)

for prompting JA increased children’s

performance.
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TABLE 2 | Continued

References Participants Country-term Study design Outcomes (after training)

David et al. (2020) 5 (3M) children with ASD,

aged 3–5

Romania; 20 sessions, 1

session/day, 5–15

min/session

Single-case alternative

treatments; Robot-enhanced

treatment (RET) vs. standard

human treatment (SHT); WOZ

Most children reached similar levels of

performance on turn-taking skills across

SHT and RET, meaning that children

benefit to a similar extent from both

interventions. The Robot partner seemed

to be more interesting to ASD children

than human partner.

Demetriadis et al.

(2016)

45 (9M) persons with mild CI,

age not specified

Greece; ∼ 8 weeks, Once per

week, 45–60 min/session

Randomized: intervention

group with programming

tasks vs. control group

Significantly improved post-test

performance in “Test of Everyday

Attention” in intervention group vs. control

group.

D’Amico and

Guastella (2019)

1 boy with impaired spatial

abilities and WM, aged 15

Italy; 1 week, 6 activities,

30–60 min each activity

The boy followed the RE4BES

protocol.

Improvement in 4 WM abilities, no

improvements in short-term visual memory

span, a worsening in word span

1 boy with ID and severe

difficulty on focused attention,

aged 10

Italy; 1 month, 2

meetings/week

Single case

quasi-experimental design

Significantly reduced problem behavior.

Garcia-Sanjuan et al.

(2017)

40 (8M) seniors with no, mild

and severe CI, aged 81.33 ±

8.48

Spain; 3 tasks, ∼10–50 s/task Usability study; Each user

performed tasks individually

It is usable and engaging for users with no

or mild CI. It is less usable for persons with

severe CI, but triggering positive emotional

reactions among them.

Huskens et al.

(2015)

3 boys with ASD, aged 5–10;

3 healthy sibling aged 7–11

Netherlands; 3–5 sessions; 30

min/session;

Concurrent multiple baseline

design across 3 child–sibling

pairs; 3 pairs were randomly

assigned to different baseline

lengths of three, four, and five

sessions.

No statistically significant changes in ASD

children’s collaborative behaviors.

Ioannou et al. (2015) 1 boy with high functioning

ASD, aged 10

Cyprus; Four 20-min sessions Single-case study; The boy

played game with the robot

and therapist

From session to session, the boy became

more independent, initiating interaction

with NAO, directing his gaze and

expressing affective feelings.

Javed et al. (2018) 3 boys with ASD, aged 7–15;

3 (2M) neurotypical children,

aged 4–9

USA; Activity time not

specified

Preliminary study; Test vs.

control group; 2-stage activity

targeted at sensory

processing skills

ASD children initiated more physical

contact with the robot on average

compared to neurotypical group. Children

from both groups waved and smiled at the

robot, and displayed imitation by

attempting to emulate the robot’s dance.

Kajopoulos et al.

(2015)

7 (4M) children with ASD,

aged 4–5

Singapore; 3 weeks, six

20-min sessions

3 phases: pre-test, robot

training and post-test

Improved RJA skills after training. RJA

skills were transferred from interaction with

robot to with human experimenter.

Khosla et al. (2017) 115 seniors with dementia,

aged 65–90

Australian; ≥1 trials; 4–6

h/trial;

Each trial involved 3 stages:

introduction of robot,

interaction with robot, and

robot played games with

users.

A statistically significant improvement in

emotional, visual, and behavioral

engagement of older people with social

robots over the years. Their acceptance in

the interaction with social robots was

verified.

Kim et al. (2015) 48 seniors without CI, aged

≥60

South Korea; 12 weeks, 5

days/week, 90 min/day

Randomized: traditional CT

vs. robot-assisted CT vs.

without CT

Attenuation of age related cortical thinning

in both CT groups. Less cortical thinning in

the anterior cingulate cortices in robot

group.

Kim et al. (2019) 48 seniors with mild CI, aged

≥60

South Korea; 4 weeks, 60

min/day

Single-blind RCT; Robot

intervention group vs. control

group

Greater improvement in attention in robot

intervention group vs. control group.

Law et al. (2019a) 10 (4M) seniors with no or

mild CI, aged 75–101; 2

experts in aged care

New Zealand; 1–3 sessions,

∼60 min/session

Quantitative and qualitative

design to gather users’ and

observers’ feedback

Both users and experts believed the

potential of robot-assisted cognitive game

to improve cognition in people with MCI.

Many functional issues with robot needed

to improve.
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TABLE 2 | Continued

References Participants Country-term Study design Outcomes (after training)

Lins et al. (2019) 5 (3M) children with mild to

moderate CP, aged 4–7

Brazil; 2 months, 2

sessions/week;

Group sessions; 3-phase

game where children

manipulated the robot

All children improved their performances

on at least one level of difficulty for the

exercise, with only two children failing to

reach the third and last level of difficulty.

Lopez-Samaniego

and Garcia-Zapirain

(2016)

7 (3M) seniors with PI and CI,

aged 78.0 ± 7.75

Spain; Once every 3 months,

25 min/session

All subjects participated the

same cognitive and physical

exercise.

Users were satisfied with the system

usability (mean SUS score, 79.29).

Manca et al. (2020) 14 (5M) seniors with mild CI,

aged 75.3 ± 4.5

Italy; 12 sessions over 1

month, 2 days/week

Randomized in terms of

technology familiarity; robot-

vs. tablet-assisted music

game.

Participants in the tablet group provided

more correct answers during game than

the robot group. The robot was received

with more enthusiasm by the older adults.

Marino et al. (2019) 14 (12M) children with ASD,

aged 4–8

Italy; 10 sessions, twice a

week, 90 min/session

RCT; Randomized in terms of

gender; Robot-assisted

intervention vs. control group;

Group sessions

Substantial improvements in

contextualized emotion recognition,

comprehension and emotional

perspective-taking through the use of

human-assisted social robots.

Mois et al. (2020) 11 (3M) seniors with

forgetfulness, aged 74.64 ±

6.02

USA; 4 weeks, 30-min

session per week

WOZ Engaging with the SAR improved

participants’ cognitive function across

multiple domains

Otaki and Otake

(2017)

6 seniors with coimagination,

aged 73

Japan; 1 session; session

duration not specified

WOZ The robot could fulfill its role as a

moderator, but the impression of robotic

motion was not so good and the robot did

not extend the topic by the question.

Pino et al. (2020) 21 (11M) seniors with mild CI,

aged 73.45 ± 7.71

Italy; 8 weeks, weekly 90-min

meeting

Group format; Training

conditions robot- vs. human-

assisted

Robot-assisted memory training increased

patients’ visual gaze and reinforced

therapeutic behavior.

Rudovic et al. (2017) 36 (30M) children with ASD,

aged 3–13

Japan and Serbia; One

25-min session

Exploratory analysis; WOZ; 2

Groups of Japan and Serbia

Statistically significant differences in

engagement displayed in the two groups.

Salvador et al.

(2016)

11 (9M) children with

high-functioning ASD, aged

9.8 ± 2.9

USA; 5 weeks, 1

session/week

2 initial baseline sessions; 3

robot assisted intervention

sessions.

There is correlation between reinforcer

preference and age.

Sandygulova et al.

(2019)

14 (12M) children with ASD

and ADHD, aged 3–8

Kazakhstan; ≤6–15-min

sessions

Iterative interaction design; 2

Phases; Design involving

therapists, doctors and

parents

Robot-assisted play had positive

outcomes for most children.

Santatiwongchai

et al. (2016)

6 (5M) children with ASD,

aged 3–10

Thailand; ≤6 blocks of

imaging matching game

Preliminary experiment; The

robot as a medium for

children with ASD and their

parents in the game

Results varied among the children.

Generally, response time and the number

of incorrect answers decreased. Children

often lost concentration during

experiment.

Scassellati et al.

(2018)

12 children with ASD, aged

9.02 ± 1.41

USA; 1 month, 30 min/day Home-based intervention;

Child-robot-caregiver

interaction

The system maintained engagement over

the 1-month deployment. Children

showed improved JA skills with adults

when not in the presence of the robot.

Caregivers reported less prompting over

time and overall increased communication.

Shukla et al. (2017) 30 (12 M) persons with ID,

aged 45.24 ± 11.28; 6

caregivers, aged 38.6 ± 9.24

Spain; 2 days, 1 session/day,

10–20 min/session

Groups with robot-assisted

cognitive stimulation vs. only

caregiver

A significant reduction in caregiver

workload in robot group. Disadvantages of

robotic technical limitation.

Shukla et al. (2015) 6 (1M) persons with moderate

to severe ID, aged 33–67

Spain; 3 months, 15–30

min/trial

Case study; 4 categories of

participant-robot interactions

Participants showed 33 (out of 54) perfect

responses. Irrespective of their mental

condition all the participants were able to

engage fully with the robot during

interaction. All participants showed either a

reduced or at-least same level of disability

behavior during robot interaction trials

comparing to normal situation behaviors.
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Sung et al. (2015) 16 seniors with social

interactions problems, aged

≥65

Taiwan; 4 weeks, two 30-min

sessions/week

Robot assisted therapy in

group session

Significantly improved communication and

interaction skills (z = −2.94, P = 0.003)

and activity participation (z = −2.66, P =

0.008) in participants after therapy.

Taheri et al. (2015a) 2 twin boys with ASD, aged 7 Iran; 6 weeks, two 30-min

sessions/week

Individual and group sessions;

Robot-Patient and

Robot-Patient-Brother/Parent

Both participants showed greatly improved

joint attention, pointing, and gaze shifting.

Taheri et al. (2018) 2 twin boys with ASD, aged 7 Iran; 6 weeks, two 30-min

sessions/week

Single subject design using

WOZ; Robot-Child or

Robot-Child-

Brother/Parent/Therapist

interactions

The JA scores of both participants vs.

treatment time showed linear shape of

0.3704 and 0.2589 (p = 0.02). A decrease

in autistic and maladaptive behaviors in

child with low-functioning ASD. The

communication of both participants with

each other improved.

Taheri et al. (2019) 4 boys with ASD, aged 6–7 Iran; 11 weeks (11 sessions),

20–30 min/session

Case study design; WOZ;

pre-, post-, follow-up test

As a tool and facilitator, the robot was able

to teach musical notes/rhythms to

participants with high-functioning ASD.

The severity of children’s autism as well as

the stress of the parents decreased

somewhat during sessions. Noticeable

improved social/cognitive skills in all

participants.

Taheri et al. (2016) 4 boys with ASD, aged 6 Iran; 11 sessions, 20–30

min/session

Single subject design study;

WOZ

All participants showed improvement in

playing rhythm. The program affected

positively on ASD severity, fine movement

and communication skills.

Taheri et al. (2020) 20 (14M) children with ASD,

aged 4.95 ± 2.01; 20 (10M)

children with TD, aged 5.30 ±

1.95

Iran; Not specified Counterbalance condition;

Random order of robot-child

interaction and human-child

interaction; WOZ;

While the TD group showed a significantly

better imitation performance than the ASD

group, both ASD and TD groups

performed better in the human-child mode

than the robot-child mode.

Tariq et al. (2016) 3 (3M) children with ASD,

aged 3.5–7

Pakistan; Four 15-min

sessions

Exploratory study of

robot-mediated play protocol

Increased execution, duration of target

behaviors and social development (i.e.,

communicative competence, turn taking,

and eye contact) of children with ASD with

the robot-mediated play.

Tleubayev et al.

(2019)

3 (2M) children with severe

ASD and ADHD, aged 5–8

Kazakhstan; 21 days, 4–6

sessions on different days,

∼15–20 min/session

Exploratory

repeated-measures study

Sub 1: interested with the robot, and

comprehension of tasks evolved

throughout the experiment. Sub 2: Less

noticeable dynamics in behavior. Sub 3:

Significant improvement in eye contact

with the robot and people outside the

experiment.

Tokunaga et al.

(2019)

21 (12M) healthy seniors,

aged ≥65

Japan; 1 session, Session

duration not specified

User study; Individual session. Robot’s appearance was acceptable;

Participants had difficulty remembering

story (correct rate ≤ 50%)

Valentí Soler et al.

(2015)

101 (Phase1); 110 (Phase 2) Spain; 3 months, 2

days/week, 30–40

min/session

Controlled clinical trial of

parallel groups; Randomized

by living units, stratified by

dementia severity: CONTROL

vs. PARO vs. NAO (Phase1)

and CONTROL vs. PARO vs.

and DOG (Phase2).

Phase 1: Improved apathy in patients in

robot groups; Declined MMSE (but not

sMMSE) scores in Patients in NAO; No

significant changes between the robot

groups. Phase 2: Increased QUALID

scores in patients in PARO.

van den Heuvel et al.

(2017)

17 children with severe

physical disability, aged 2–8; 7

professionals

Netherlands; 2.5 months, 6

sessions, 2 individual

sessions/week or 1 group

session/week

Exploratory pilot study; WOZ;

Children interacted with the

robot in individual or group

sessions.

A positive contribution of the robot in

achieving therapy and educational goals.

Sessions with robot were indicated as

playful. The robot can contribute toward

eliciting motivation, concentration, taking

initiative and improving attention span of

children.

(Continued)
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TABLE 2 | Continued

References Participants Country-term Study design Outcomes (after training)

Wong and Zhong

(2016)

8 (6M) children with ASD,

aged 5.3 ± 0.5

Singapore; 5 weeks, one

45-min session/week

Between conditions and

within subjects design.

Randomized to control

condition and robot training

condition

90% of children achieved some or all of

individual pre-set aims. Significantly

improved turn-taking skills and JA, and

longer duration in eye contact

engagement in children in robot condition.

Yun et al. (2016) 8 children with minimum

competency level of

age-appropriate cognitive

skills, aged 3–5

South Korea; 8 sessions,

30–40 min/session

8 sessions were executed

using iRobiQ and CARO

equally; Child-therapist-robot

interaction

Highest accuracy of 85.7% by robot in eye

contact recognition; Gradually declined

total eye contact rate during sessions.

Progressively increased correct answer

rate (≥72.25%) in reading emotions in

participants.

Zheng et al. (2016) 6 boys with ASD, aged 2.8 ±

0.37

USA; 4 sessions across 32.5

days; Session 5 and 6 the

same day

User study; 4 sessions of

one-target interventions; 2

sessions to evaluate JA skills

after 8 months

This autonomous robotic system was able

to elicit improved one-target JA

performance in young children with ASD

over 8 months.

Zheng et al. (2015) 4 children with ASD, aged

3.83 ± 0.54; 6 children with

TD, aged 3.61 ± 0.64

USA; Four 3-min sessions User study; 2

human-administered sessions

and 2 robot-administered

sessions for each participant

The robotic system drew more attention

from the ASD children and taught gestures

more effectively compared to a human

therapist.

M, male; RCT, Randomized Control Trial; PI, Physical Impairment; CI, Cognitive Impairment; CT, Cognitive Training; WOZ, Wizard-of-OZ robot control; WM, Working memory; ID,

Intellectual disability; JA, Joint Attention; RJA, Responding to JA; TD, Typically Developing; CP, Cerebral Palsy.

health conditions in a rural community used a healthcare robot
(iRobi) in their homes for at least 3 months. Then participants
were interviewed to learn personal accounts of participants’s
experience. Through the interview, the authors found that more
familiar games may be easier for older people to relate to and
therefore increase users’ confidence and that a larger screen
would make the functions easier to see and use. The interview
also revealed that older people sometimes have less dexterity so
making the touchscreen less sensitive to long presses may remove
accidental triggering of functions.

3. Questionnaire. Most studies utilized questionnaires to
evaluate the performance of robot-assisted cognitive training.
Researchers adopted questionnaire(s) based on their targeted
performance, such as targeted user groups (e.g., patients,
caregivers, or therapists), targeted cognitive capabilities (e.g.,
memory or anxiety), and research goals (e.g., users’ perception
of robot or effectiveness of robot). A few studies designed their
own questionnaires according to their study (Tariq et al., 2016;
Abdollahi et al., 2017; Ahn et al., 2017; Bharatharaj et al., 2017;
Khosla et al., 2017; van den Heuvel et al., 2017; Scassellati et al.,
2018; Lins et al., 2019; Tokunaga et al., 2019). Table 3 shows a list
of common questionnaires in the literature.

4. Behavioral measurement. From a behavioral perspective,
researchers measured the number of correct/incorrect responses,
response time, and/or time to complete the activity by
participants to evaluate the performance of robot-assisted
training (Bozgeyikli et al., 2015; Costescu et al., 2015; Ioannou
et al., 2015; Kajopoulos et al., 2015; Salvador et al., 2016; Shukla
et al., 2017; Lins et al., 2019; Nault et al., 2020).

5. Neurophysiological measurement. The advancement
of brain-imaging technologies and deep learning enables
researchers to assess the impact of cognitive training on cognitive
capabilities from a neurophysiological perspective, using

brain-imaging tools, such as EEG, fNIRS or functional magnetic
resonance imaging (fMRI) (Ansado et al., 2020). Researchers
also applied such tools to detect changes in the brain associated
with participants’ cognitive capability as metrics to evaluate the
performance of robots in cognitive training (Kim et al., 2015;
Alimardani and Hiraki, 2017).

3.4. Robot Products
The development of technologies, such as manufacturing
and ICTs, has led to the generation of mass-product robots
for research, education and therapeutic applications (Wood
et al., 2017; Pandey and Gelin, 2018). Particularly in the
field of cognitive training/rehabilitation, the developed robots
are featured with capabilities, such as the aforementioned
multimodal perception and multimodal feedback to support
the human-robot interaction during cognitive training. Table 4
shows commonly used robot products as well as the important
features to enable these robots to assist cognitive training.
Their specific applications in cognitive training among previous
studies, for example, assisting the intervention for memory and
social communication skills, are listed in Table 1.

4. DISCUSSIONS

4.1. Limitations
4.1.1. Sample Size
Probably, the most common challenge faced by researchers of
cognitive training is a small size of participants. This imposes the
generalization and reliability of experimental results in question.
The limitation of small sample size was caused by the small
number of participants or the limited number of available robots
for experiments (Kajopoulos et al., 2015; Shukla et al., 2015;
Zheng et al., 2015; Tariq et al., 2016; Bharatharaj et al., 2017;
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TABLE 3 | Questionnaires used to evaluate performance of robot-assisted cognitive training.

Performance Questionnaire References

Global functioning

and disability

World Health Organization Disability;

Assessment Schedule 2 (WHODAS 2.0);

Functional Rating Scale for Symptoms of

Dementia (FRSSD);

Instrumental Activities of Daily Living

(IADL)

Shukla et al., 2015; Demetriadis et al., 2016

Quality of life SF-12 scale;

WHOQOL-BREF;

Quality of Life in Late-stage Dementia (QUALID)

Valentí Soler et al., 2015; Lopez-Samaniego and

Garcia-Zapirain, 2016

Cognitive functions

(or severity)

Mini-Mental State Exam (MMSE);

Severe Mini-Mental State Exam (SMMSE);

CNS Vital Signs;

Cambridge Neuropsychological Test Automated

Battery (CANTAB);

Alzheimer’s Disease Assessment Scale-

cognitive subscale (ADAS-cog);

Gilliam Autism Rating Scale (GARS);

Global Deterioration Scale (GDS);

Clinical Dementia Rating (CDR)

Kim et al., 2015, 2019; Valentí Soler et al., 2015;

Demetriadis et al., 2016; Taheri et al., 2019; Mois et al.,

2020

Autism Severity Gilliam Autism Rating Scale (GARS) Shukla et al., 2015; Taheri et al., 2015a, 2016, 2018

Memory decline Memory Assessment Clinics-Questionnaire

(MAC-Q)

Pino et al., 2020

Adaptive behaviors AAMR Adaptive Behavior Scale: residential

and community (ABS-RC: 2)

Shukla et al., 2015

Activity participation Activity Participation Scale Sung et al., 2015

Social

communication skills

Assessment of Communication and Interaction

Skills (ACIS-C);

Autism Social Skills Profile (ASSP)

Sung et al., 2015; Taheri et al., 2019

Attention The Godspeed questionnaire;

Early Social Communication Scale (ESCS);

Joint attention assessment of Bean and Eigsti;

Test of Everyday Attention (TEA)

Kajopoulos et al., 2015; Demetriadis et al., 2016;

Scassellati et al., 2018

Perceptions of robots Robotic Social Attributes Scale (RoSAS) Mois et al., 2020

Robot acceptance Technology Acceptance Scale Pereira et al., 2019; Mois et al., 2020

Robot usability System Usability Scale (SUS) Miskam et al., 2015; Lopez-Samaniego and

Garcia-Zapirain, 2016; Nault et al., 2020; Pino et al.,

2020

Robot’s psychosocial

impact

Psychosocial Impact of Assistive Devices

Scales (PIADS)

Pino et al., 2020

Robot’s

neuropsychiatric

impact

Neuropsychiatric Inventory (NPI)

APADEM-NH

Apathy Inventory (AI)

Valentí Soler et al., 2015; Demetriadis et al., 2016

Robot effectiveness Individually Prioritized Problem Assessment

(IPPA)

van den Heuvel et al., 2017

Robot satisfaction Questionnaire for User Interaction Satisfaction

(QUIS)

Lopez-Samaniego and Garcia-Zapirain, 2016

User’s personality Based on Big Five personality traits Agrigoroaie et al., 2016

User’s experience Intrinsic Motivation Inventory (IMI) Nunez et al., 2015

Perceived workload NASA Task Load Index (NASA TLX) Shukla et al., 2017; Mois et al., 2020; Nault et al., 2020

Anxiety Multidimensional Anxiety Children Scale

(MASC);

Children’s Depression Inventory (CDI);

Hospital Anxiety and Depression Scale

(HADS);

State-Trait Anxiety Inventory (STAI-X)

Alemi et al., 2016; Pino et al., 2020

Depression Children’s Depression Inventory (CDI);

HADS;

Cornell Scale for Depression in Dementia

(CSDD);

Geriatric Depression Scale (GDS)

Yu et al., 2015; Alemi et al., 2016; Demetriadis et al.,

2016; Pino et al., 2020

(Continued)

Frontiers in Robotics and AI | www.frontiersin.org 13 May 2021 | Volume 8 | Article 605715

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Yuan et al. Cognitive Robotic Rehabilitation

TABLE 3 | Continued

Performance Questionnaire References

Anger Children’s Inventory of Anger (CIA) Alemi et al., 2016

Affect Positive and Negative Affect Schedule

(PANAS)

Nunez et al., 2015; Aminuddin et al., 2016

Parenting stress Parenting Stress Index-Short Form (PSI-SF) Taheri et al., 2019

Caregiver burden Zarit Burden Inventory (ZBI) Yu et al., 2015

Darragh et al., 2017; Garcia-Sanjuan et al., 2017; Tsardoulias
et al., 2017; Lins et al., 2019; Marino et al., 2019; Tleubayev
et al., 2019). Typically, a research lab has only a few robots. This
would be particularly challenging to experimental studies that
require multiple sessions for each individual user. In this case,
within the same study period, these studies have to control the
number of participants to a small number. The recruitment of
participants was influenced by the accessibility to participants
during the whole study and sometimes the problems associated
with their caregivers (Alemi et al., 2016; Taheri et al., 2019). For
example, in the study (Alemi et al., 2016) of exploring effect of
utilizing a robot NAO as a therapy-assistive tool to deal with
pediatric distress among children with cancer. In terms of the
small sample size, researchers mentioned that due to the novelty
of their project and scant number of systematical psychological
interventions for patients with cancer or other refractory illness
in Iranian hospitals, it was difficult to persuade children’s parents
to join their study. Also, they mentioned that it was hard for
parents to bring their kids to intervention sessions on a regular
basis. Moreover, the issue of small sample size also means that the
participants in some studies were not general and representative,
in terms of factors, such as their severity of cognitive disability,
their age and gender (Begum et al., 2015; Yu et al., 2015; Chu
et al., 2017).

4.1.2. Measurement of Training Effectiveness
Another impeding factor in studies of robot-assisted cognitive
training is the evaluation of its training effectiveness, which
can relate to choosing tools for specific evaluation metrics,
identifying relevant evaluation metrics, or designing experiments
to facilitate evaluation. In terms of the evaluation metrics, many
studies adopted subjective evaluations, which could be biased
and inaccurate. To the authors’ best knowledge, there is no
standardized questionnaire to evaluate robot-assisted cognitive
training. As shown in Table 3, multiple different questionnaires
were applied to evaluate the same target (e.g., robot acceptance),
which makes it difficult to compare the performance of robot-
assisted cognitive training between different studies (Bharatharaj
et al., 2017). Often, assessment metrics focus on the impact on
the specifically trained cognitive capability, ignoring the potential
transfer to other cognitive skills (Zheng et al., 2016) and the
long-term performance (Richardson et al., 2018). Moreover,
evaluations were frequently conducted for the robot-assisted
cognitive training in controlled laboratory settings. The real-
world environments are usually noisy and dynamic, which brings
greater challenges for a reliable, robust user-robot interaction and

a good user experience of the robot (Salem et al., 2015; Trovato
et al., 2015).

Additionally, the effectiveness of robot-assisted cognitive
training may be impacted by users’ perceived interaction with
the robot. On the one hand, some studies (Lopez-Samaniego and
Garcia-Zapirain, 2016; Pereira et al., 2019; Mois et al., 2020) have
evaluated the acceptance, satisfaction and perception of robots
for cognitive training. On the other hand, many studies (Kim
et al., 2015; Shukla et al., 2015; Demetriadis et al., 2016; Pino et al.,
2020) have evaluated effectiveness of robot-assisted cognitive
training on participant’s cognitive capabilities. However, it is
rarely addressed in the literature how acceptance and perception
of the robot affects the effectiveness of cognitive training.
Moreover, as shown inTable 2, some studies presented the results
of robot-assisted training without comparing to the effectiveness
of human-assisted training. For more rigorous evaluation of the
effectiveness of a robot-assisted cognitive training approach, it is
recommended to compare against human-assisted training and
other existing approaches.

4.1.3. Uncontrollable Factors
There always exist uncontrollable factors during the study of
robot-assisted cognitive training/rehabilitation. The problem is
more noteworthy for multiple-session studies since researchers
cannot control participants’ daily and social activities outside
of the laboratory setting. The topic of uncontrollable factors is
relatively less studied. In a study on using a social robot to teach
music to children with autism, Taheri et al. (2019) pointed out
some improvements observed in music education and/or social
skills are attributable to other interventions or education the
participants may be receiving. When investigating the influence
of robot-assisted training on cortical thickness in the brains of
elderly participants, Kim et al. (2015) recognized uncontrollable
factors due to participants’ daily cognitive activity at home, such
as using computers or reading books.

4.2. Challenges and Future Development
4.2.1. Ethical Challenges
During the development of robots for cognitive
training/rehabilitation, there are some ethical issues with
respect to human dignity, safety, legality, and social factors to
be considered. For example, during robot-assisted cognitive
training, the interaction between the user and the robot happens
at both the cognitive (dominant) and physical level (Villaronga,
2016). There could be the issue of perceived safety, or cognitive
harm. For example, the user may perceive the robot unsafe
or scary (Salem et al., 2015; Coeckelbergh et al., 2016). In the
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TABLE 4 | Features of common robot products for cognitive training.

Name Physical appearance Multimodal sensing Multimodal feedback Available in market References

NAO Human-like Cameras;

Microphones;

Touch sensors

Animation;

Conversation

Yes Begum et al., 2015; Conti et al.,

2015; Huskens et al., 2015; Ioannou

et al., 2015; Miskam et al., 2015;

Shukla et al., 2015, 2017; Sonntag,

2015; Taheri et al., 2015a, 2016,

2018, 2019, 2020; Valentí Soler et al.,

2015; Zheng et al., 2015, 2016; Alemi

et al., 2016; Tariq et al., 2016;

Rudovic et al., 2017; Tsardoulias

et al., 2017; van den Heuvel et al.,

2017; David et al., 2018, 2020;

Tsiakas et al., 2018; Ali et al., 2019;

Marino et al., 2019; Sandygulova

et al., 2019; Tleubayev et al., 2019;

Alnajjar et al., 2020; Pino et al., 2020

Pepper Human-like Cameras;

Microphones;

Touch sensors;

Infrared sensors

Animation;

GUI;

Conversation;

Eye color changing

Yes Nunez et al., 2015; Paletta et al.,

2018; Carros et al., 2020; Manca

et al., 2020; Nault et al., 2020;

Schüssler et al., 2020

KASPAR Human-like Visual;

Touch sensors

Animation;

Conversation;

Facial expression

No Huijnen et al., 2016; Wood et al.,

2017

Paro Animal-like Auditory sensor;

Touch sensor;

Light sensor;

Posture sensor

Animation;

Sounds

Yes Sung et al., 2015; Valentí Soler et al.,

2015; Yu et al., 2015; Aminuddin

et al., 2016

Probo Animal-like Cameras;

Microphones;

Touch sensors

Animation;

GUI;

Conversation;

Facial expression

No Cao et al., 2015

CuDDler Animal-like Camera;

Microphones

Animation;

Sounds

No Kajopoulos et al., 2015; Wong and

Zhong, 2016

iRobiQ Human-like Camera;

Microphone;

Touch sensors

Animation;

GUI;

Conversation;

Facial expression

Yes Yun et al., 2016; Ahn et al., 2017

Silbot Human-like Camera;

Microphones

Animation;

GUI;

Conversation

Yes Kim et al., 2015; Law et al., 2019b

Mero Human-like Cameras;

Microphone

Animation;

GUI;

Conversation;

Facial Expression

No Kim et al., 2015

Lego robot Not

applicable

(Building

bricks)

Changeable,

Color sensor;

Touch sensors;

Infrared sensor

Changeable,

Auditory;

Tablet;

Animation

Yes Andruseac et al., 2015; Demetriadis

et al., 2016; Lopez-Samaniego and

Garcia-Zapirain, 2016;

Garcia-Sanjuan et al., 2017; D’Amico

and Guastella, 2019; Lins et al., 2019

RAMCIP Human-like Camera;

Microphone;

Laser scanners

GUI;

Conversation;

Facial expression

No Kostavelis et al., 2015; Peleka et al.,

2018

Jibo Unfamiliar Cameras;

Microphones

GUI;

Communication;

Spin in 360◦

Yes Scassellati et al., 2018

Vän

Robotics

Human-like Camera Animation;

Communication

Yes Mois et al., 2020

RoboKind Human-like Cameras;

Microphones;

Touch sensors

Animation;

Conversation;

Facial expressions

Yes Taheri et al., 2015a, 2018; Salvador

et al., 2016

(Continued)
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TABLE 4 | Continued

Name Physical appearance Multimodal sensing Multimodal feedback Available in market References

Keepon Snowman-

like

Cameras;

Microphone;

Touch sensors

Animation;

Sounds

Yes Costescu et al., 2015

CARO Human-like Cameras;

Microphones;

Touch sensors

GUI;

Eye emotional

expressions

No Yun et al., 2016

Kompaï Human-like Cameras;

microphones

GUI;

Communication

Yes Agrigoroaie et al., 2016

InO-Bot Turtle-like Proximity sensors;

Line follower

sensors

Light (LED);

Auditory

Yes D’Amico and Guastella, 2019

study (Shim and Arkin, 2016) exploring the influence of robot
deceptive behavior on human-robot interaction, a robot NAO
deceptively showed positive feedback to participants’ incorrect
answers in a motor-cognition dual task. The self-report results
revealed that the robot’s deceptive feedback positively affected
a human’s frustration level and task engagement. Even though
a robot’s deceptive action may lead to positive outcome, Shim
and Arkin emphasized that the ethical implications of the robot
deception, including those regarding motives for deception,
should always be discussed and validated prior to its application.
Another arising ethical issue is how responsibility can be
allocated, or distribution of responsibility (Loh, 2019; Müller,
2020). For example, if a robot acts during cognitive training,
will the robot itself, designers or users be responsible, liable or
accountable for the robot’s actions? We should also pay close
attention to ethical issues, such as the affective attachments,
dependency on the robot, safety and privacy protection of
users’ information, and transparency in the use of algorithms
in robotic systems (Kostavelis et al., 2015; Casey et al., 2016;
Richardson et al., 2018; Fiske et al., 2019). Similarly, designers
should accommodate the design of robot to these ethical
considerations (Ozcana et al., 2016). To ensure the perceived
safety, researchers need to always take end users’ perception
into account, which can be known through questionnaires
and interviews with them (and their caregivers and therapists
if needed), and their behavioral and neurophysiological
activities. The tendency for humans to form attachments to
anthropomorphized robots should be carefully considered
during design (Riek and Howard, 2014; Riek, 2016). Moreover,
for fear that the robot could replace human health care from both
patients and the professional caregivers, it should be emphasized
that the rehabilitation robots are developed with the aim of
supplementing human caregivers, rather than replacing them
(Doraiswamy et al., 2019).

4.2.2. User-Centered Design
The goal of robotic cognitive rehabilitation is to provide cost-
effective cognitive training to vulnerable people with cognitive
disabilities, which can supplement their caregivers and/or
therapists (Doraiswamy et al., 2019). Therefore, we encourage
the idea of user-driven, instead of technology-driven, robot

design and development (Rehm et al., 2016). Emphasis should
be given to the primary users (i.e., patients) of the robots and
other key stakeholders (e.g., caregivers, therapists, and doctors)
to design and shape this robot, including requirement analysis,
robot development and evaluation with different stakeholders
(Casey et al., 2016; Gerling et al., 2016; Leong and Johnston,
2016; Rehm et al., 2016; Salichs et al., 2016; Barco Martelo
and Fosch Villaronga, 2017; Riek, 2017). It is also important
to pay attention to potential technical difficulties for vulnerable
populations, such as the elderly and children with ASD (Orejana
et al., 2015) and the social and contextual environment that the
robot will be applied to (Jones et al., 2015). More standardized,
unbiased benchmarks and metrics need to be developed for
different stakeholders to evaluate the performance of robots
from their perspectives. While it is necessary to start pilot
studies with healthy participants, it is crucial to relate the
developed systems to patients with cognitive impairment at
home settings.

Furthermore, robot development is a multidisciplinary study
which requires knowledge from multiples fields, such as social
cognitive science, engineering, psychology, and health care,
such as ASD and dementia. Enhanced collaborations among
these fields are needed to improve future technology in
robotic rehabilitation.

4.2.3. Reliability, Trust, Transferability, and

Cost-Effectiveness
The reliability of the robotic system ensures that the robot can
consistently work in noisy, dynamic real-world environment.
This makes a significant contribution to a user’s confidence
and increases positive perception of the robot (Wood et al.,
2017). Mistakes made by robots during interaction can cause
a loss of trust in human users. More work on human-robot
interaction is needed to implement a reliable and robust
robot to assist cognitive training. This may cover multimodal
sensing technologies, artificial intelligence, and modeling. On
the other hand, we need to take into consideration how to
effectively restore trust to the robot in case that mistakes
are made by the robot during interaction with the user.
This may involve how and when the robot apologizes for
its mistake for users. Robinette et al. (2015) found that
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timing is a key to repair robot trust, suggesting that the
robot should wait and address the mistake next time a
potential trust decision occurs rather than addressing the
mistake immediately.

Currently, most studies focus on specific cognitive training
tasks and environments, whichmeans that the robot cannot assist
in other cognitive tasks. Here, we encourage the implementation
of a transferable mechanism in robots for cognitive training.
In other words, we should enable more powerful learning
algorithms in the robot so that the robot can learn and
adapt to more new cognitive training (Andriella et al., 2019a).
Researchers should also take cost-effectiveness into account
during the design of robot (Wood et al., 2017). From the
commercial perspective, cost-effectiveness is considered beyond
the purchase, maintenance, and training costs for the system
(Riek, 2017). Furthermore, from the perspective of time
and effort of users, more work is needed to find out the
optimal robot-assisted cognitive training strategy (e.g., the
frequency and duration of each cognitive session). Therefore,
we encourage future studies clearly state the used training
strategies, making it easier for the community to compare
different strategies.

4.2.4. Personalization
There is no “one-size-fits-all” in health care. To provide a
successful cognitive training, the robot needs to be personalized
and adaptive in three levels. Firstly, personalization requires the
robot to provide appropriate cognitive training and feedback
to meet the specific need of groups with different cognitive
disabilities (e.g., people with ASD, people with ADRD). Secondly,
the robots need to adapt to the diversity existing in the
population as well as tailor to each individual user’s severity of
cognitive impairment, cultural and gender-dependent difference,
personality and preference (Kostavelis et al., 2015; Javed et al.,
2016; Riek, 2016; Darragh et al., 2017; Rudovic et al., 2017;
Richardson et al., 2018; Sandygulova et al., 2019). For example,
children with ASD, have a wide range of behavioral, social,
and learning difficulties. And each individual may have a
different preference to robot’s gender and modalities of feedback
(Sandygulova and O’Hare, 2015; Nault et al., 2020). As a result,
we expect that a personalized robot would provide various
cognitive training, e.g., a variety of games and adjustable voice,
for diverse individual needs and requirements to keep the
user engaged and focused over long term (Scassellati et al.,
2018; Tleubayev et al., 2019). Furthermore, rehabilitation robots
should adapt to individually time-changing characters, such as
cognitive impairment, task engagement, and even personalities
(Agrigoroaie and Tapus, 2016; Tsiakas et al., 2016, 2018). For
example, the robot should adjust the cognitive training and
feedback if the user feels bored, too difficult, or too easy (Lins
et al., 2019). Machine learning methods should also take into
consideration of personalization. Existing methods, such as
interactive reinforcement learning (IRL) or incremental learning
(Castellini, 2016) provide good examples, where one block
module is used to specifically model each user’s information,
such as patient’s name, hobbies and personalities related to
cognitive training (Salichs et al., 2016). IRL is a variation

of reinforcement learning that studies how a human can be
included in the agent learning process. Human input play the
role of feedback (i.e., reinforcement signal after the selected
action) or guidance (i.e., actions to directly intervene/correct
current strategy). IRL can also be utilized to enable adaptation
and personalization during robot-assisted cognitive training.
For example, Tsiakas et al. (2016) proposed an adaptive robot
assisted cognitive therapy using IRL, where the primary user
feedback input (e.g., engagement levels) were considered as a
personalization factor and the guidance input from professional
therapist were considered as a safety factor. Their simulation
results showed that IRL improved the applied policy and
led to a faster convergence to optimal policy. Castellini
(2016) proposed an incremental learning model to enforce
a true, endless adaptation of the robot to the subject and
environment as well as improve the stability and reliability
of robot’s control. Incremental learning enables an adaptive
robot system to update its own model whenever it is required,
new information is available, or the prediction is deemed no
longer reliable.

4.2.5. Human-Robot Collaboration
Future rehabilitation robots should not only be autonomous but
also be collaborative (or co-operative) (Huijnen et al., 2016;Weiss
et al., 2017). From the perspective of collaboration between the
robot and the primary end users (i.e., people with cognitive
disability), there is evidence indicating that a fully autonomous
robotic system is not the best option for interaction with
the vulnerable population (Peca et al., 2016). Instead, a semi-
autonomous robot is a more suitable solution (Wood et al.,
2017). With the highest-level goal of enhancing user’s cognitive
capabilities, the robot should “care” about the user’s situation,
take compensatory reaction as a teammate, engage the user
and train/stimulate the user’s cognitive capabilities as best as
possible. The capability of collaboration may also help to avoid
the user’s feeling of redundancy and increase their feeling of
self-autonomy and long-term engagement in cognitive training
(Orejana et al., 2015). The robot should have a good perception
of the user’s changing situations and an intelligent strategy to
engage the user. On the other hand, from the perspective of
collaboration among robots, users, and their caregivers (and
therapists), more future work is needed to solve the shared
control issue. Researchers need to figure out strategies for robots
to render the caregivers’ and therapists’ tasks easier as an
assistive tool for cognitive training, instead of totally replacing
them (Kostavelis et al., 2015; Coeckelbergh et al., 2016). A
distribution between autonomy of robots and teleoperation by
caregivers/therapists is needed to support the collaboration of
robots for cognitive training.

4.2.6. Social Cognition
The knowledge gained in human-human interaction can be
applied to foster human-robot interaction and to obtain critical
insights for optimizing social encounters between humans
and robots (Henschel et al., 2020). Marchesi et al. (2019)
conducted a questionnaire study to investigate whether people
adopt intentional stance (Dennett, 1989) toward a humanoid
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robot, iCub. Their results showed that it is possible to
sometimes induce adoption of the intentional stance toward
humanoid robots. Additionally, non-invasive neuroimaging
techniques (e.g., fMRI) in neuroscience enable the possibility
of probing social cognitive processing in human brain during
interaction with robots. For example, Rauchbauer et al.
(2019) observed that neural markers of mentalizing and social
motivation were significantly more activated during human-
human interaction than human-robot interaction. Klapper
et al. (2014) showed that human brain activity within the
theory-of-mind network (Saxe and Wexler, 2005; Price, 2012;
Koster-Hale and Saxe, 2013) was reduced when interacting
with agents in a form of low human animacy (i.e., physical
appearance) compared to high human animacy. These issues
become important when we adopt robots for cognitive training
for people with cognitive dysfunction (Frith and Frith, 1999;
Chevallier et al., 2012), as they underline the substantial
contrast between human-human and human-agent interactions.
Additionally, the advanced non-invasive, portable, and cost-
effective neuroimaging techniques (e.g., EEG and fNIRS) hold the
promise of evaluating human-robot interaction from controlled
laboratory setting to real-world setting. Herein, we encourage
to leverage human neuroscience to facilitate the development
of robots for cognitive training, such as understanding the
effects of robot-assisted cognitive training and learning the
extent and contexts at which it can be beneficial from
neurophysiological perspective.

4.2.7. Natural Human-Robot Interaction
Similar to human-human interaction during cognitive training
by human therapists, robots need to be able to interact with
users naturally in robotic rehabilitation. This includes having a
good understanding of user’s emotions (e.g., happiness, shame,
engagement), intentions and personality (Pettinati and Arkin,
2015; Rahbar et al., 2015; Vaufreydaz et al., 2016; Rudovic
et al., 2018), being able to provide an emotional response
when being shared with personal information (de Graaf et al.,
2015; Chumkamon et al., 2016), talking day-by-day more to
the user on various topics like hobbies, and dealing with
novel events (Dragone et al., 2015; Kostavelis et al., 2015;
Adam et al., 2016; Ozcana et al., 2016). These natural user-
robot interactions require powerful perception, reasoning, acting
and learning modules in robots, or in other words, cognitive
and social-emotional capabilities. However, from the perception
perspective, understanding users’ intentions and emotions is still
a great challenge for robots (Matarić, 2017). Robots need to
interpret multimodal signals (e.g., facial expression, gestures,
voice, and speech) simultaneously to understand users’ covert
intentions and emotions. Similarly, more work is needed for
the multimodal feedback in the future. To maximize the
benefits of physically present robots and facilitate both the
short- and long-term human-robot interaction for cognitive
training, we need to develop more embodied communication
in robots, not limited in verbal communication (Paradeda
et al., 2016; Salichs et al., 2016; Matarić, 2017). Haptic sensing
and feedback should be strongly considered in future research
as part of multimodal perception and feedback (Arnold and

Scheutz, 2017; Cangelosi and Invitto, 2017). More specifically,
we need to implement the strategy to enable the robot to
associate cognitive assistance and exercise with appropriate
multimodal feedback, e.g., spoken words, facial expressions,
eye gaze, and other body movements (Paletta et al., 2018).
The embodied communication during human-robot interaction
is a challenging research area (Nunez et al., 2015). It is still
unclear how and how much the embodied communication
from the robot can influence user’s perception of the robot
(Dubois et al., 2016). Moreover, previous studies indicated that
users’ experience of the robot could also be influenced by
the unexpected behaviors (Lemaignan et al., 2015), synchrony
and reciprocity (Lorenz et al., 2016), and even cognitive biases
(Biswas and Murray, 2016, 2017) from the robot. A caveat
is that there still exist many unknowns for natural human-
robot interaction.

In summary, to achieve natural human-robot interaction
during cognitive training requires not only multimodal sensing
technology and artificial intelligence (e.g., deep learning) (Jing
et al., 2015; Lopez-Samaniego and Garcia-Zapirain, 2016; Pierson
and Gashler, 2017) but also the development of related fields
(Wan et al., 2020), such as cognitive computing (Chen et al.,
2018), social-cognitive mechanisms (Wiltshire et al., 2017), and
modeling of cognitive architectures (Kotseruba et al., 2016; Woo
et al., 2017).

5. CONCLUSION

Robot-assisted cognitive training is becoming an affordable
promise for people with cognitive disabilities. In this review
paper, we present a systematic review on the current application,
enabling technologies, and main commercial robots in the
field of robot-assisted cognitive training. Many studies have
been successfully conducted to evaluate the feasibility, safety,
usability, and effectiveness of robotic rehabilitation. Existing
studies often include a small sample size. Also, the questionnaires
need to be standardized both to evaluate the overall experience
with the robot and the impact of the robot on the specific
cognitive ability that it aims to assess. There are still multifaceted
challenges in the application of robots in cognitive training.
Firstly, ethical issues, such as human safety and violation of
social norms, can arise during robot-assisted cognitive training.
Secondly, with respect to the design of a robot-assisted cognitive
training system, the developers should have a close collaboration
with the end-users and stakeholders from the initial design,
implementation, evaluation and improvement. Thirdly, the
trust, reliability and the cost-effectiveness should be taken into
account. Moreover, the rehabilitation robot should be capable
to adapt and personalize to the specific individual need, and
also learn to collaborate with users in the future. The recent
advancement of social cognition may facilitate the human-robot
interaction during cognitive training. Lastly, the rehabilitation
robot should be able to interact with users in a natural
way, similar to the human-human interaction during cognitive
training. Noticeably, these challenges are mutually influencing
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one another. Cross-disciplinary collaboration is necessary to
solve these challenges in future.
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