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The Covid-19 pandemic has had a widespread effect across the globe. Themajor effect on
health-care workers and the vulnerable populations they serve has been of particular
concern. Near-complete lockdown has been a common strategy to reduce the spread of
the pandemic in environments such as live-in care facilities. Robotics is a promising area of
research that can assist in reducing the spread of covid-19, while also preventing the need
for complete physical isolation. The research presented in this paper demonstrates a
speech-controlled, self-sanitizing robot that enables the delivery of items from a visitor to a
resident of a care facility. The system is automated to reduce the burden on facility staff,
and it is controlled entirely through hands-free audio interaction in order to reduce
transmission of the virus. We demonstrate an end-to-end delivery test, and an in-
depth evaluation of the speech interface. We also recorded a speech dataset with two
conditions: the talker wearing a face mask and the talker not wearing a face mask. We then
used this dataset to evaluate the speech recognition system. This enabled us to test the
effect of face masks on speech recognition interfaces in the context of autonomous
systems.
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INTRODUCTION

On March 11th, 2020, the World Health Organization (WHO) declared Covid-19 to be a global
pandemic (Huang et al., 2020), however the transmission and impact of the virus has varied
tremendously across regional, racial, and socioeconomic boundaries. Of particular importance and
concern is the role of front-line health care workers in spreading the virus (Casini et al., 2019) and the
extra burden placed on those workers in situations of high transmission risk. For example in China, a
study that surveyed health care workers in hospitals found that half of the employees were depressed
(50.7%), close to half of them had anxiety (44.7%), over a third of them suffered from insomnia
(36.1%) (Li et al., 2020), and a little under three quarter of them were facing psychological distress
(Tomlin et al., 2020).

This burden faced by health-care workers is compounded when those workers are responsible for
the mental and physical health of aging patients. Although the Covid-19 pandemic has affected
people all over the globe, it has had a disproportionately strong effect on the aging population and
their care givers. For example, as of September 2020 there have been just over 146,000 cases in
Canada. Of these, 10,549 cases were staff at long-term care facilities and 18,940 were residents of such
facilities. Since senior citizens account for 77% of the deaths related to SARS-CoV-2 (NIA, 2020),
there was an immediate need early in the pandemic to reduce the rate of transmission to people who
live in care facilities for the elderly and the care-givers who work with them. One common strategy
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has been near-complete lockdown of such facilities. Although
effective at reducing the risk of transmission into the resident
population, this approach has the unwanted consequence of
isolating residents from loved ones at a profoundly stressful
time. The longer-term consequences of this physical and social
isolation on the mental wellness of the aging population is not yet
known. Here we describe an end-to-end robotics solution to
break the physical isolation of lockdown in long-term care and
similar facilities.

Robotics is a promising area of research that can contribute to
an effective response to pandemic across a variety of health care
scenarios. Uses have been proposed and developed ranging from
assistance during Ebola outbreaks (Yang et al., 2020) to
supporting children during their stay in a hospital (Joseph
et al., 2018). Robotics and other autonomous systems offer the
distinct advantage of uncoupling physical interactions between
people by providing the option of interaction-at-a-distance. This
enables robots to act as a physical link between people who
cannot come into close contact. Widespread use of such systems
could act as a surrogate in place of real physical interaction during
periods of high risk of disease transmission.

One barrier to adoption of robotics in health care
environments is the human-robot interaction (HRI)
component. The research performed in this paper uses speech
as a modality for interaction, in order to lower the learning curve
for end users interacting with robots. Speech is an intuitive and
powerful means of interaction between humans and robots, and
speech recognition is increasingly being adopted for HRI in
humanoid robotics (Stiefelhagen et al., 2004; Higy et al., 2018;
Kennedy et al., 2017). However, speech still remains
underexplored in industrial collaborative robotics. A goal of
this paper was to provide insight into the scientific and
technical challenges of audio HRI in complex collaborative
robotics.

According the World Health Organization, the coronavirus
that causes COVID-19 is transmitted by various modes, but
mainly during one of two classes of interactions between
individuals: either close contact that allows direct exposure to
respiratory droplets, or contact with contaminated surfaces
enabling the virus to be transported to the nose or mouth by
the hands. Robots cannot contract respiratory diseases and do not
cough or sneeze, so using robotic systems as a physical link
between individuals breaks the direct respiratory transmission
mode. However, most robotic systems employ at least some
degree of hands-on operation so that human users can
provide instructions to the robot (e.g., via a keyboard or tablet
computer). This interaction exposes the risk of transmission via
contaminated surfaces. A hands-free solution is needed. Here we
present an end-to-end system for robotic delivery of items from a
visitor to a resident of a care facility. The proposed system can
operate without supervision by a facility worker thus reducing
their workload and diminishing their exposure and spread of the
virus. Importantly, it is controlled entirely by audio interaction
for hands-free use so that both direct respiratory and indirect
surface transmission modes are broken.

One novel contribution this paper makes is the evaluation of
the effect masks and accented speech have on speech recognition

interfaces for robotics in real-world environments. The
demonstration of an end-to-end self-sanitizing delivery
system is also a unique demonstration that can provide a
useful starting point for roboticists looking to build such
systems for real world environments. Our system
demonstrates how speech control can be integrated into a
robotics project, enabling users to directly communicate with
robots naturally. This paper has two intended audiences. The
first is speech recognition researchers who are curious about
the distortion effects of masks, and will find our analysis of
speech recognition performance under different mask
conditions to be informative. Secondly, roboticists who are
trying to develop automated delivery systems will find the
technical implementation of the end-to-end solution to be
one path to solve the typical problems that arise in this
scenario.

MATERIALS AND METHODS

The goal of this research was to improve the quality of life and
reduce the isolation of residents in facilities with a high risk of
disease transmission during the pandemic. We sought to develop
a system that can deliver items from visitors to residents using
end-to-end voice interaction to prevent physical contact with
surfaces. The robot makes use of a custom speech recognition
interface to interact with humans at a distance, thus reducing the
transmission of pathogens. This section begins by outlining the
robotics hardware platform on which the system was
demonstrated, then delves into the speech recognition
interface used to control the robot, and finally outlines the
implementation of a human-robot interaction workflow using
a state machine. All custom software was developed using the
Python programming language.

0.1 Robotics Platform
This section outlines the robotics platform and other hardware
used to demonstrate the system in this paper. The robotics
platform used was a Turtlebot 2 mobile base consisting of a
Kobuki base with proximity sensors, and an Orbbec Astra Pro
Depth Camera for mapping, navigation, and obstacle avoidance.
The Turtlebot 2 uses an Acer netbook to run the mapping,
navigation, and other aspects of the mobile base. We mounted
a Raspberry Pi 3 Model B to the base of the turtlebot and attached
microphones from a Logitech C920 webcam to the top of the
robot. This raspberry pi was used to run the speech recognition
interface described below. All communication between
components of the Turtlebot 2 as well as the speech
recognition system on the Raspberry Pi ran through Robot
Operating System (ROS) modules. Importantly, by using ROS
as a middle layer, the system is scalable to larger ROS-based rover
platforms in the case that the Turtlebot 2 is insufficient for a
particular use case.

0.2 Depth Camera
The depth camera was the Orbbec Astra with a depth image size
of 640 × 480 (VGA) 16 bit @ 30 FPS. It has a scanning range from
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0.4 to 8 m. The field of view consists of 60°horizontally,
49.5°vertically and 73°diagonally. It also has an infrared and
RGB sensor (Astra, 2020).

0.3 Mapping and Navigation
The mapping was created using Robot Operating System 3D
Robot Visualizer (RVIZ) (Dave Hershberger and Gossow, 2020)
and gmapping (Gerkey, 2020a) packages. The gmapping package
provided the turtlebot with the laser-based simultaneous
localization and mapping (SLAM) node using the
depthimage_to_laserscan package. Since it was impossible
during the 2020 pandemic to work within the setting of a care
facility, we demonstrated our system in a typical academic
research building. To control which rooms we wanted to map,
we used the turtlebot_teleop package, created by Wise (2020),
which provided us with manual control of teleoperation using a
keyboard. During this pre-mapping phase, we achieved a better
map by occasionally stopping and slowly rotating the robot to
draw an accurate representation of the objects and obstacles
around it. We used the publish point feature in RVIZ and
manually integrated the waypoints in a python dictionary to
obtain the coordinates of the rooms that we wanted to include in
the turtlebot’s database. Each waypoint consisted of five different
entries: the exact coordinates, and four nearest neighbours. The
nearest neighbours were intended to be used as a fallback option.
In the event that the turtlebot could not properly plan a trajectory
to one set of coordinates, it fell back to the next set until a proper
plan was made available to be followed. The map was stored using
the map_server package, created by Brian Gerkey (2020), this
produced two files (.pgm and .yaml) that were used later with the
AMCL package. The AMCL package created by Gerkey (2020b)
was used with the previously generated map to allow the turtlebot
to navigate to specified waypoints provided by the audio
interaction interface.

0.4 Sanitization Pod
Another technology that has shown promise for reducing virus
transmission rates is Ultraviolet (UV) light sanitization. A recent
study on UV light has shown it to be effective on killing Covid-19
virus (Kitagawa et al., 2020) in their study, the authors have
demonstrated that a 222 nm Ultraviolet C (UV-C) irradiation for
30 s resulted in 99.7% decrease of SARS-CoV-2 virus. The
combination of UV light sanitization and robotics is a
powerful combination for fighting the war against Covid-19.
An example of this combination is a robot developed by MIT
and Ava Robotics that can sanitize warehouses through the use of
UV-C light (Gordon, 2020). Robots can assist health care
employees with trivial tasks that reduce human exposure to
and the spreading of the SARS-CoV-2 pathogen.

Our system as conceived in this context is not fool-proof, for
example if the robot encountered an infectious individual while
navigating through the space, it is possible that it could transmit
pathogens. Since many transmissible pathogens can live on
surfaces for minutes to hours, we included an intermediate
behaviour for the robot in which it brings the item to be
delivered to a location where it can be cleaned. For our
demonstration, we built a custom enclosure with an opening

to represent a station for either automatic or manual sanitization
of the to-be-delivered item. We envision a more elaborate future
implementation that might involve automatic UV-C or similar
systems.

An important aspect of voice communication is
acknowledgement that the receiver is indeed listening to the
speaker’s instructions. Humans use behaviours such as head-
turning and sometimes subtle facial gestures to convey
attentiveness. To provide acknowledgement of voice
commands, we used a voice-activity detection algorithm
(provided by WebRTC) with an LED indicator to show that
the robot was triggered to be in listening mode.

0.5 Speech Recognition Interface
The speech recognition interface consisted of multiple
components that record and understand the speech of the
person using the delivery robot. The following section gives a
high-level overview of the speech recognition interface. The
process started with voice activity detection (VAD) and speech
recognition. We compared two commonly used open source
speech recognition systems in our research, Mozilla
DeepSpeech and Kaldi. Each speech recognition system used a
custom language model with a vocabulary that was restricted to
the specifics of the delivery task. Once a sentence was recognized
the user intent was parsed from the sentence using simple rules.
Next, we consider the specifics of each component of the system.

0.5.1 Speech Recognition and Custom Language
Model
The first speech recognition system was implemented using
WebRTC (Google, 2020b) for voice activity detection (VAD)
and used the DeepSpeech architecture demonstrated by Hannun
et al. (2014) for speech recognition. Specifically, we used the
implementation from Mozilla (2020). This implementation
contains a model that runs using Tensorflow Lite (Google,
2020a). This allowed us to run the speech recognition system
on a raspberry pi in real-time. The system started by performing
VAD on each audio frame using WebRTC and then added each
incoming audio frame to a ring buffer. If the ratio of frames
containing speech exceeded a threshold, the existing frames from
the buffer were fed to the speech recognition system. New frames
were continuously fed to both the speech recognition system and
the ring buffer until the ratio fell back below the threshold. Some
adjustment of the voice activity threshold were required, but once
the correct threshold was determined the system was quite
effective at identifying the onset of a voice.

Mozilla Deepspeech uses KenLM (Heafield, 2011) as the
language model used during decoding the speech from the
neural network. In this research we trained a custom KenLM
language model that was used to recognize specific sentences
related to initiating the robot to deliver a package, confirmation of
a correct delivery location, confirmation of receipt of a package,
etc. Using a reduced custom model substantially increases the
accuracy of the speech recognition system’s performance in real-
world environments. The custom language model was a 3°g
KenLM model trained with example sentences. During
inference we set the language model alpha value to 0.931,289
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and the beta value to 1.183,414 as these were the default values
used in DeepSpeech.

The second speech recognition system we used was Kaldi
(Povey et al., 2011), and the Vosk API (Cephei, 2020). For this
system we used the built in voice activity detection and the vosk-
model-small-en-us model, which was lightweight and can run on
small single board computers. This model also uses the Kaldi
Active Grammar feature, which enabled us to dynamically change
the vocabulary of the model to only include words relevant to the
delivery task. We used the same set of sentences and words used
to train the previously described custom language model for
DeepSpeech.

0.5.2 Intent Parsing
The next step in the speech recognition system was parsing the
user’s intent from the recognized speech. This was greatly
simplified due to the use of the restricted language model
described previously. The main type of intent parsing that
occurred was detecting when a user intended to initiate a
delivery, and then parsing out the location of the delivery. The
first step in achieving this was to ensure a recognized sentence
started with the word “robot”, which implied that the user was
addressing the robot. Once a sentence that started with the word
robot had been recognized, the next step was parsing the location
from the string. The language model was restricted such that all
the delivery sentences contained the phrase “deliver this package
to” as part of the sentence. An example of this is the sentence “hey
robot please deliver this package to room A”. The fixed structure
of these sentences enabled us to split the recognized string on the
words “package to” and take the remaining part of the string as
the selected room for delivery.

Another type of intent parsing that occurred in our speech
interface was to obtain confirmation from a user: either
confirmation of a correct intended delivery location, or
confirmation of successful package delivery. The first
confirmation happened after the selected room identifier was
parsed out of the recognized sentence. The robot used the Text-
To-Speech system described in the next section to confirm with
the user as to whether the room was correctly understood. The
user then confirmed the location as correct or rejected the
location. To do this, the language model contained multiple
sentences containing various confirming statements such as
“yes”, “yes that is correct” etc. and other rejection statements
such as “no”, “no that’s wrong”, etc. The confirmation intent
parsing step then performed keyword spotting over the
recognized string to see if any of the rejection statements were
present. If they were present the robot rejected the selected
location and informed the user. If the sentence contained
confirmation statements such as “yes” the robot then
performed the delivery. The final case is one in which the
perceived sentence did not contain any of the keywords, in
which case the system continued listening for a confirmation
or rejection.

0.5.3 Text-To-Speech
The system included a Text-To-Speech (TTS) functionality that
enables it to speak to users. This is an important component of

the Human-Robot Interaction as it is the primary method
through which the robot communicates after parsing the
delivery location and during delivery confirmation. The TTS
system used was the Ubuntu say command, which uses the
GNUstep speech engine created by Hill (2008). The TTS
system operated using a ROS python script; when a string was
published to a TTS topic the TTS system executed the say
command using the subprocess library. This enabled the TTS
system to be easily triggered via ROS from any device connected
to roscore over the network.

0.6 State Machine for Human-Robot
Interaction
All of the components demonstrated so far were connected
together into a complete system using a state machine that
communicated over ROS and coordinated the various aspects
of the human-robot interaction. The state machine and
interaction process are outlined in Figure 1.

The state machine facilitated an interaction scenario in
which a visitor to a long-term care facility wishes to deliver
a package to an at-risk individual that resides in the facility.
The visitor initiated the interaction with the robot by placing a
package in the robot’s delivery basket and then speaking to the
robot. Then the visitor instructs the robot on which room to
deliver the package to by saying a sentence such as “Hey robot,
please deliver this package to room E3”. Once the robot has
successfully parsed a delivery sentence the state machine
advances to the confirmation state. In this state the robot
repeats the room number to the human and asks if the room
number is correct.

Once the robot received verbal confirmation, the state
machine proceeded to the next state, which sent the room
id over ROS to the navigation system. The navigation system
then mapped the name to coordinates using the turtlebot’s
database. Next, the robot sanitized itself by navigating into the
UV-c sanitization pod. Once the robot had waited for the
correct amount of time in the pod it navigated to the
coordinates for the target room. Arrival at the delivery
target waypoint triggered the delivery confirmation state. In
this state the robot used the TTS system to inform the recipient
that they have a package and should remove it from the basket.
After a time delay to account for the removal of the package the
robot asked for confirmation that the package has been
removed. Once the robot received this verbal confirmation,
the state machine entered the final state, in which the robot
navigated back to the home position.

The state machine included an error state. The error state
communicated to the user that the robot did not understand a
command and then returned to the initial command recognition
state. This error state was specifically used during the command
recognition and confirmation stages to provide a way for the
robot to reset itself if instructions were unclear.

Methodology
Our tests of the implemented system consisted of a test of the
delivery scenario from start to finish, and an in-depth test of the
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speech recognition component. The setups of these experiments
are described below.

0.6.1 Delivery Scenario Evaluation
We verified the system’s functionality by completing an end-to-
end speech-controlled delivery using all of the components
described in the implementation section. We envisioned a
scenario in which a visitor to a care home would want a
small item such as a note or gift to be delivered to a
resident in a lock-down situation. Thus the test ran between
two labs at the Canadian Centre for Behavioural Neuroscience
at the University of Lethbridge. One lab was designated as the
start point where the visitor would give the item to the robot
and provide voice instructions about where to deliver it. This
space also contained a designated parking area for the robot
and a box intended to simulate the sanitization pod. This lab

was labelled lab c (see Figure 2). The destination for the
delivery was set to a second lab that was in the same
building and connected by a hallway to the first lab. This
lab was labelled lab t. The hallway contained garbage/recycling
bins which provided a realistic real-world environment for
navigation. Both rooms were on the same floor, as our robotics
platform cannot navigate between floors. This is a critical
challenge that would be important for future research in
developing delivery systems.

The speech recognition system used in the test had a
language model that recognised sentences such as robot
please deliver this package to room c or robot take this
package to room t, where room c and room t were the only
valid room names. During the test a light package was placed in
the delivery basket in lab c and removed in lab t upon
successful delivery.

FIGURE 1 | The Human-Robot Interaction Workflow. Delivery was triggered and confirmed by speech interaction between a visitor and the robot. The robot
navigated to the delivery target waypoint, with a stop to clean the itemwith UV-C light. At the target waypoint the robot used speech to confirm delivery and then returned
to its home position. Note that the entire interaction required no physical interaction with surfaces on the robot and, except for placing and retrieving the item in the
basket, could be conducted from a distance of as much as several meters away.

FIGURE 2 | Experimental setup for speech recognition evaluation and delivery scenario evaluation.
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0.6.2 Speech Recognition Evaluation
To evaluate the performance of the speech recognition system in
real-world conditions, we recorded audio from 13 participants
asking the robot to deliver a package to a room they selected from
a list of 30 possible rooms. Audio was recorded in a typical office
space with background heating/ventilation as the main source of
noise (the RT60 of the room was 0.33 @ 1,000 Hz and the average
SNR was 10.92 dB). Each possible room was a randomly
generated combination of a single letter and single numerical
digit, e.g., E4. The audio was recorded using microphones
mounted on the turtlebot. Since viruses cannot be transmitted
to a robot, the visitor need not maintain any particular distance
from the robot. Thus, participants stood facing the turtlebot
behind a line marked on the ground 61 cm back from the
robot’s position to speak the commands. The recording setup
is shown in Figure 2.

A hallmark of the COVID-19 pandemic was the widespread
requirement to wear a face mask in public spaces. Since such
masks are known to impart a low-pass filter to speech (Corey
et al., 2020), we considered whether our speech recognition
system would be negatively affected if users were wearing
masks. We therefore recorded speech using two conditions,
one with the participant wearing a face mask and another
with the face mask removed. This enabled us to calculate
whether or not a face mask would impede the accuracy of
each speech recognition system. For each condition we
recorded five trials for a total of 10 trials per participant.
Each participant wore their own personal mask. The masks
consisted of a variety of cloth, disposable polyester, and
other masks.

RESULTS

0.7 Experiment 1: Delivery Scenario
Evaluation
The first evaluation we performed of the delivery robot was an
end-to-end test delivery of a package from a starting location to
an end location, as outlined in Section 0.6.1. The first step in this
test was the manual generation of a map using the ROS gmapping
package. The turtlebot was manually navigated using the teleop
package and the generated map was saved for use during
navigation. The map is shown in Figure 3. The coordinates of
the starting point, sanitization pod, and delivery destination, were
then recorded and added to the python dictionary described in
Section 0.3. The command recognition component of the state
machine was configured such that the recognition of the phrase
Room T triggered a delivery to lab T and Room C triggered a
delivery to lab C. The previously described DeepSpeech system
was used for this step. The coordinates of the starting point in lab
C were also used as the location of the home position.

A package was placed in the robot’s delivery basket. After
receiving a verbal delivery command, the robot successfully
recognized and parsed the sentence asking it to deliver the
package to room T. The robot then navigated into the
sanitization box, waited for the correct amount of time, and then
autonomously navigated to lab T. Once the package was removed
and the robot received verbal confirmation it returned to the initial
starting point in lab C. A video demonstration is available at1.

FIGURE 3 | Map generated for turtlebot navigation using the ROS
gmapping package and an astra depth camera.

FIGURE 4 | First-pass outcomes of each recognition system with (left)
and without (right) a face mask. Recognition was scored as correct when the
intended target room was successfully recognized the first try. Recognition
was scored as clarification required when the state machine needed to
enter the error state and ask the user to repeat the instruction. Recognition
was scored as incorrect when the system recognized the wrong room. This
mode would require the user to reject the recognized room during the
confirmation step and repeat the instruction.

1https://youtu.be/-LCqVXyjT1k.
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0.8 Experiment 2: Evaluation of Delivery
Location Recognition System
The use of audio interaction to achieve hands-free autonomy for
the delivery robot was a key goal of this research. We explored
factors related to the success of potential failure of each speech
interaction system. We were particularly interested in two factors
that might influence the usefulness of audio interaction in this use
case: the use of a protective face mask, and the challenge of
recognizing the speech of users whose first language is not
English. Specifically, we evaluated each system’s delivery
location recognition component as described in Section 0.6.2.
Thirteen participants contributed five audio samples for each
experimental condition: with and without a protective cloth mask
covering the mouth and nose. The audio was recorded using the
microphones on the robot. We recorded audio from both native
English speakers and non-native speakers.

We measured accuracy to choose the correct target room by
running each speech recognition system on the pre-recorded
audio and parsing the results using the same approach as the
command recognition step of the state machine. Accuracy was
then calculated across all trials for each condition as the
percentage of destinations that were parsed and determined
successfully. The results of the experiment are shown in
Figure 4. The mask-off condition outperformed the mask-on
condition for both systems, correctly recognizing 70.8 and 73.8%
of the destinations as opposed to 52.3 and 60.0% for the mask-on
case for the DeepSpeech and Kaldi/Vosk systems respectively. We
also compared the results between participants who learned
English as a first language and non-native speakers of English.
The results are shown in Table 1. We found that the speech
recognition system performed poorly with non-native English,
particularly when the speaker was wearing a mask.

DISCUSSION

The Covid-19 pandemic has put an enormous strain on front-line
medical workers and threatened the lives of millions worldwide.
The widespread effects of the virus have also disproportionately
effected our aging population, who account for 77% of Covid-19
related deaths. The social and mental health impacts of lockdown
measures in long-term and assisted-living care facilities for
seniors, even for those who never experience the disease, are
not yet known but are likely to be severe. We sought to develop an
end-to-end autonomous delivery system that could break the
physical isolation of care-home residents by delivering physical
items (such as gifts, letters, etc.) from visitors to residents. The

system needed to meet two criteria: 1) break the direct respiratory
transmission pathway by using a mobile rover platform and 2)
break the surface transmission pathway by providing an end-to-
end hands-free speech control system. The system needed to be
intuitive to use and good at trapping errors.

We built a successful system based on a ROS-controlled
Turtlebot2 mobile base and free-field microphones. In ideal
conditions the system demonstrated good first-pass accuracy
(75% for native English speakers without masks) at
understanding the target destination for the delivery. In the
first-pass failure mode, 21% of outcomes were cases of the
robot failing to understand any target instruction and, thus,
asking for the instruction to be repeated. Only 6% of first-pass
interactions resulted in the robot understanding the wrong target
destination. Coupled with simple error-trapping in the
confirmation step, we believe the system could perform quite
well under ideal conditions.

One goal of this work was to compare commonly used speech
recognition packages (DeepSpeech vs. Kaldi/VOSK). Whereas
the two approaches performed identically given the
hypothetically ideal case of native English speakers without
masks, we found that Kaldi/VOSK handled the less-ideal case
of users wearing masks. In that case Kaldi/VOSK showed a lower
tendency to have high confidence in the wrong room (16.9% for
DeepSpeech vs. 1.5% for Kaldi/VOSK).

There are, however, a number of challenges that were
uncovered by this research. First, it is evident that face masks
cause problems for automatic speech recognition. This is
unsurprising given that they effectively low-pass filter the
acoustic signal (Corey et al., 2020). One solution might
involve training a custom acoustic model for the speech
recognition system trained on audio that is recorded from
people wearing masks. Alternatively, an existing speech dataset
could be modified to simulate the acoustic effect of a mask. A
second important challenge is that speech recognition systems
may perform worse for non-native speakers of English. This is a
known problem of speech recognition systems in general trained
with speech from native English speakers (Hou et al., 2019;
Derwing et al., 2000). Importantly though, the problem of
recognizing non-native English speech and the problem of
recognizing speech with a face mask seem to be interactive
(such that only 36% for DeepSpeech and 44% for Kaldi/Vosk
of first-pass recognitions were successful in this worst-case
scenario). Creation of a more robust acoustic model could
increase the reliability and widespread usefulness of the system.

Here we demonstrated the usefulness and some of the
challenges associated with hands-free audio control of

TABLE 1 | First-pass Recognition Accuracy compared between participants who learned English as their first language vs. English as a second language. The best
performance is highlighted in bold. Accuracy is averaged over all five recordings for each condition from all 13 participants.

Delivery Location Recognition Accuracy %

Mask Condition No Mask Mask
Approach DeepSpeech Kaldi/Vosk DeepSpeech Kaldi/Vosk
English is First language 75.0 75.0 62.5 70.0
English is second language 64.0 72.0 36.0 44.0
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robotics. By building the system around a set of ROSmodules, the
system is both scalable and portable to other robot systems that
make use of the ROS platform. Although this research is
described entirely within the context of autonomous delivery
in a health-care isolation scenario, it is easy to imagine related use
cases in which hands-free control of a mobile robot platform
might be advantageous. It is our hope that the present study
draws attention to the important contribution that audio AI can
make to sound-aware robots across a wide-range of use cases.

DATA AVAILABILITY STATEMENT

The datasets for this study have not been published, as they
contain personally identifiable human data. They can be made
available on request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of Lethbridge Institutional Review Board.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

LG contributed to the development of the speech recognition
interface, human-robot interaction state machine, analysis, and
testing, and writing. SB contributed to the development of the
navigation system, sanitization pod, testing, and writing. MT
contributed to the supervision of the project, writing, review,
analysis, and project administration. All authors approved the
final version of the submitted article.

FUNDING

The research was funded by an NSERC Canada Discovery
Grant (No. #05659) and a Government of Alberta Centre for
Autonomous Systems in Strengthening Future Communities
grant to MT and an Alberta Innovates Graduate Student
Scholarship to LG.

ACKNOWLEDGMENTS

The authors would like to thank the Agility Innovation Zone at the
University of Lethbridge Learning Centre for supporting this project.

REFERENCES

Astra, O. (2020). Orbbec astra specifications. Available at: https://www.
roscomponents.com/en/cameras/76-orbbec.html (Accessed October, 2020).

Brian Gerkey, T. P. (2020). Map server package. Available at: http://wiki.ros.org/
map_server (Accessed October, 2020).

Casini, B., Tuvo, B., Cristina, M. L., Spagnolo, A. M., Totaro, M., Baggiani, A., et al.
(2019). Evaluation of an ultraviolet c (uvc) light-emitting device for disinfection
of high touch surfaces in hospital critical areas. Int. J. Environ. Res. Public
Health 16, 3572. doi:10.3390/ijerph16193572

Cephei, A. (2020). Vosk offline speech recognition API. Available at: https://
alphacephei.com/vosk/ (Accessed October, 2020).

Corey, R. M., Jones, U., and Singer, A. C. (2020). Acoustic effects of medical, cloth,
and transparent face masks on speech signals. J. Acous. Soc. America 148 (4),
2371–2375. doi:10.1121/10.0002279

Dave Hershberger, J. F., and Gossow, D. (2020). RVIZ visualization package.
Available: http://wiki.ros.org/rviz (Accessed October, 2020).

Derwing, T. M., Munro, M. J., and Carbonaro, M. (2000). Does popular speech
recognition software work with esl speech? TESOL Q. 34, 592–603. doi:10.2307/
3587748

Gerkey, B. (2020a). GMapping package. Available: http://wiki.ros.org/gmapping
(Accessed October, 2020).

Gerkey, B. P. (2020b). AMCL package. Available: http://wiki.ros.org/amcl
(Accessed October, 2020).

Google (2020a). Tensorflow Lite. Available: https://www.tensorflow.org/lite.
(Accessed October, 2020)

Google (2020b). WebRTC. Available: https://webrtc.org/ (Accessed October,
2020).

Gordon, R. (2020). CSAIL robot disinfects greater boston food bank. Available:
https://news.mit.edu/2020/csail-robot-disinfects-greater-boston-food-bank-
covid-19-0629 (Accessed October, 2020).

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., et al. (2014).
Deep speech: Scaling up end-to-end speech recognition. Available at: http://
arxiv.org/abs/1412.5567 (Accessed October, 2020).

Heafield, K. (2011). “Kenlm: Faster and smaller language model queries,” in
Proceedings of the sixth workshop on statistical machine translation

(Edinburgh, Scotland: Association for Computational Linguistics),
187–197.

Higy, B., Mereta, A., Metta, G., and Badino, L. (2018). Speech recognition for the
icub platform. Front. Robotics AI 5, 10. doi:10.3389/frobt.2018.00010

Hill, D. (2008). Gnuspeech: Articulatory speech synthesis. Available at: http://
www.gnu.org/software/gnuspeech/ (Accessed August 23 2015).

Hou, J., Guo, P, Sun, S., Soong, F. K., Hu, W., and Xie, L. (2019). “Domain
adversarial training for improving keyword spotting performance of esl
speech,” in ICASSP 2019-2019 IEEE International conference on acoustics,
speech and signal processing (ICASSP), Brighton, UK, May 12 2019-May
17 2019 (Brighton, United Kingdom: IEEE), 8122–8126.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features
of patients infected with 2019 novel coronavirus in wuhan, China. The lancet
395, 497–506. doi:10.1016/s0140-6736(20)30183-5

Joseph, A., Christian, B., Abiodun, A. A., and Oyawale, F. (2018). A review on
humanoid robotics in healthcare. MATEC Web Conf. 153, 02004. doi:10.1051/
matecconf/201815302004

Kennedy, J., Lemaignan, S., Montassier, C., Lavalade, P., Irfan, B., Papadopoulos,
F., et al. (2017). “Child speech recognition in human-robot interaction:
evaluations and recommendations,” in Proceedings of the 2017 ACM/IEEE
International conference on human-robot interaction, Vienna, Austria, March
06 2017 (New York, NY, USA: ACM Press), 82–90. Available at: http://hdl.
handle.net/1854/LU-8528353 (Accessed November 13, 2018).

Kitagawa, H., Nomura, T., Nazmul, T., Keitaro, O., Shigemoto, N., Sakaguchi, T., et al.
(2020). Effectiveness of 222-nm ultraviolet light on disinfecting sars-cov-2 surface
contamination. Am. J. Infect. Control.49 (3), 299–301. doi:10.1016/j.ajic.2020.08.022

Li, W., Yang, Y., Liu, Z.-H., Zhao, Y.-J., Zhang, Q., Zhang, L., et al. (2020).
Progression of mental health services during the covid-19 outbreak in China.
Int. J. Biol. Sci. 16, 1732. doi:10.7150/ijbs.45120

Mozilla (2020). mozilla/DeepSpeech. Available at: https://github.com/mozilla/
DeepSpeech (Accessed October, 2020).

NIA (2020). National Institute of Ageing. Available at: https://ltc-covid19-tracker.
ca (Accessed September, 2020).

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011).
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding, December 11 2011–December 15 2011,
Hawaii, US, (Big Island, Hawaii: IEEE Signal Processing Society).

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6127508

Grasse et al. Speech Control for Hands-Free Robotics

https://www.roscomponents.com/en/cameras/76-orbbec.html
https://www.roscomponents.com/en/cameras/76-orbbec.html
http://wiki.ros.org/map_server
http://wiki.ros.org/map_server
https://doi.org/10.3390/ijerph16193572
https://alphacephei.com/vosk/
https://alphacephei.com/vosk/
https://doi.org/10.1121/10.0002279
http://wiki.ros.org/rviz
https://doi.org/10.2307/3587748
https://doi.org/10.2307/3587748
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
https://www.tensorflow.org/lite
https://webrtc.org/
https://news.mit.edu/2020/csail-robot-disinfects-greater-boston-food-bank-covid-19-0629
https://news.mit.edu/2020/csail-robot-disinfects-greater-boston-food-bank-covid-19-0629
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
https://doi.org/10.3389/frobt.2018.00010
http://www.gnu.org/software/gnuspeech/
http://www.gnu.org/software/gnuspeech/
https://doi.org/10.1016/s0140-6736(20)30183-5
https://doi.org/10.1051/matecconf/201815302004
https://doi.org/10.1051/matecconf/201815302004
http://hdl.handle.net/1854/LU-8528353
http://hdl.handle.net/1854/LU-8528353
https://doi.org/10.1016/j.ajic.2020.08.022
https://doi.org/10.7150/ijbs.45120
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://ltc-covid19-tracker.ca
https://ltc-covid19-tracker.ca
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Stiefelhagen, R., Fugen, C., Gieselmann, R., Holzapfel, H., Nickel, K., and Waibel, A.
(2004). “Natural human-robot interaction using speech, head pose and gestures,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sendai, Japan, September 28-October 2 2004, Vol. 3, 2422–2427.

Tomlin, J., Dalgleish-Warburton, B., and Lamph, G. (2020). Psychosocial support
for healthcare workers during the covid-19 pandemic. Front. Psychol. 11, 1960.
doi:10.3389/fpsyg.2020.01960

Wise, M. (2020). Turtlebot teleop package. Available at: http://wiki.ros.org/
turtlebot_teleop (Accessed October, 2020).

Yang, G.-Z., Nelson, J. B., Murphy, R. R., Choset, H., Christensen, H., Collins, H.
S., et al. (2020). Combating covid-19—the role of robotics in managing public
health and infectious diseases. Sci. Robot. 5, eabb5589. doi:10.1126/
scirobotics.abb5589

Conflict of Interest: The authors (LG and MT) disclose an affiliation with Reverb
Robotics Inc., which develops audio AI solutions for robotics.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Grasse, Boutros and Tata. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6127509

Grasse et al. Speech Control for Hands-Free Robotics

https://doi.org/10.3389/fpsyg.2020.01960
http://wiki.ros.org/turtlebot_teleop
http://wiki.ros.org/turtlebot_teleop
https://doi.org/10.1126/scirobotics.abb5589
https://doi.org/10.1126/scirobotics.abb5589
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Speech Interaction to Control a Hands-Free Delivery Robot for High-Risk Health Care Scenarios
	Introduction
	Materials and Methods
	0.1 Robotics Platform
	0.2 Depth Camera
	0.3 Mapping and Navigation
	0.4 Sanitization Pod
	0.5 Speech Recognition Interface
	0.5.1 Speech Recognition and Custom Language Model
	0.5.2 Intent Parsing
	0.5.3 Text-To-Speech

	0.6 State Machine for Human-Robot Interaction
	Methodology
	0.6.1 Delivery Scenario Evaluation
	0.6.2 Speech Recognition Evaluation


	Results
	0.7 Experiment 1: Delivery Scenario Evaluation
	0.8 Experiment 2: Evaluation of Delivery Location Recognition System

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


